[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5228732B2 - Panel joint structure - Google Patents

Panel joint structure Download PDF

Info

Publication number
JP5228732B2
JP5228732B2 JP2008240846A JP2008240846A JP5228732B2 JP 5228732 B2 JP5228732 B2 JP 5228732B2 JP 2008240846 A JP2008240846 A JP 2008240846A JP 2008240846 A JP2008240846 A JP 2008240846A JP 5228732 B2 JP5228732 B2 JP 5228732B2
Authority
JP
Japan
Prior art keywords
joint
rocker
vehicle
panel
cross member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008240846A
Other languages
Japanese (ja)
Other versions
JP2010070100A (en
Inventor
保雄 鈴木
勉 浜辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008240846A priority Critical patent/JP5228732B2/en
Publication of JP2010070100A publication Critical patent/JP2010070100A/en
Application granted granted Critical
Publication of JP5228732B2 publication Critical patent/JP5228732B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

本発明は、骨格部に対しパネル部材を接合したパネル接合構造に関する。   The present invention relates to a panel joint structure in which a panel member is joined to a skeleton part.

フロアパネルにおける左右のフロアフレームの少なくとも一方側から、車幅中央に向かって、斜め後方に延びる複数のビードを車体前後に並べて形成することで、衝突時にフロアパネルに皴が生じることを抑制し接合部の接合状態を確保するようにした技術が知られている(例えば、特許文献1参照)。
特開2005−67491号公報 特開2007−320501号公報 特開平9−207826号公報
A plurality of beads extending diagonally rearward from the at least one side of the left and right floor frames of the floor panel toward the vehicle width center are formed side by side on the front and back of the vehicle body to prevent wrinkles from occurring on the floor panel at the time of collision A technique is known in which the joining state of the parts is ensured (see, for example, Patent Document 1).
JP 2005-67491 A JP 2007-320501 A JP-A-9-207826

しかしながら、上記の如き従来の技術では、ビードを形成することでフロアパネルの面形状が変わるため、フロアの共振周波数やフロア下の風流れに影響を与えることが懸念される。   However, in the conventional technology as described above, since the surface shape of the floor panel is changed by forming the bead, there is a concern that the resonance frequency of the floor and the wind flow under the floor are affected.

本発明は、パネル部材がせん断変位を受けた場合に該パネル部材と骨格部との接合が確保され易いパネル接合構造を得ることが目的である。   An object of the present invention is to obtain a panel joining structure in which joining between the panel member and the skeleton is easily ensured when the panel member is subjected to shear displacement.

請求項1記載の発明に係るパネル接合構造は、パネル部材と、四辺を有する矩形枠状を成す骨格構造体と、前記骨格構造体の四辺のそれぞれと前記パネル部材とを、前記骨格構造体における並列する二辺が長手方向に相対変位した場合に角度が小さくなる特定の角部から該相対変位の方向に対し45°を成す方向に位置する特定部分での接合点の密度が他の部分での接合点の密度よりも疎となるように、該骨格構造体の各辺においてそれぞれの長手方向に離間した複数の接合点にて接合した接合部と、を備えている。 The panel joint structure according to the first aspect of the present invention includes a panel member, a skeleton structure having a rectangular frame shape having four sides, each of the four sides of the skeleton structure, and the panel member in the skeleton structure. parallel to two sides from a specific corner angle when relative displacement in the longitudinal direction decreases the density of the junction of a particular portion located in the direction in which the pair was 4 5 ° in the direction of said relative displacement of the other A joining portion joined at a plurality of joining points spaced apart in the longitudinal direction on each side of the skeletal structure so as to be sparser than the density of the joining points at the portion.

請求項1記載のパネル接合構造では、パネル部材は、骨格構造体との矩形枠状の接合部位の内側に位置する部分が略矩形板状を成している。骨格構造体の並列する二辺が長手方向に相対変位を生じると、パネル部材の上記矩形状部分(パネル部材の全部であっても良い)は、一対の対角は角度が小さくなり、他の一対の対角は角度が大きくなるようにせん断変位される。このせん断変位が大変位の場合、角度が小さくなる角部に近いほどパネル部材と骨格構造体との接合点で、作用するせん断応力が大きくなる。   In the panel joint structure according to the first aspect, the portion of the panel member located inside the joint portion of the rectangular frame shape with the skeleton structure has a substantially rectangular plate shape. When the two parallel sides of the skeletal structure cause relative displacement in the longitudinal direction, the rectangular portion of the panel member (or the entire panel member) may have a pair of diagonal angles that are smaller in angle. The pair of diagonals are subjected to shear displacement so that the angle becomes large. When this shear displacement is a large displacement, the shear stress acting at the joint point between the panel member and the skeleton structure increases as the angle decreases closer to the corner.

ここで、本パネル接合構造では、上記せん断により角度が小さくなる角部から45°の方向において接合点の密度が低いため、上記角部の接合点に対し大きな引張方向の荷重を支持し得る接合点の数が少ない。このため、本パネル接合構造では、上記角部近くの接合点に作用するせん断荷重が緩和される。 Here, in this panel joint structure, due to the low density of bonding points in the direction of the shearing by the angle decreases corners or et 4 5 °, to support the load of the large tensile direction with respect to the junction point of the corner Fewer joint points to obtain. For this reason, in this panel joining structure, the shear load which acts on the joining point near the said corner | angular part is relieved.

このように、請求項1記載のパネル接合構造では、パネル部材がせん断変位を受けた場合に該パネル部材と骨格部(骨格構造体)との接合が確保され易い。   Thus, in the panel joint structure according to the first aspect, when the panel member is subjected to shear displacement, it is easy to ensure the joint between the panel member and the skeleton part (skeleton structure).

請求項2記載の発明に係るパネル接合構造は、請求項1記載のパネル接合構造において、前記接合部は、前記骨格構造体における前記特定の角部の対角となる角部を成す二辺の何れか一方における長手方向の端部間に前記特定部分が位置しており、該特定部分での接合点の密度が前記二辺の何れか一方における他の部分での接合点の密度よりも疎とされて構成されている。   The panel joint structure according to a second aspect of the present invention is the panel joint structure according to the first aspect, wherein the joint portion is formed by two sides forming corners that are diagonal to the specific corners in the skeleton structure. The specific portion is located between the longitudinal ends of either one, and the density of the junction points at the specific portion is less than the density of the junction points at the other portion of either of the two sides. It is configured.

請求項2記載のパネル接合構造では、上記角部の対角となる角部を挟む二辺の何れか一方の長手方向端部間に上記特定部位が位置し、該特定部位が位置する一辺は、特定部位以外の接合点の密度に対し特定部位の接合点の密度が疎とされている。このため、パネル部材がせん断変位を受けた場合に該パネル部材と骨格構造体(上記角部)との接合が確保され易い。   In the panel joint structure according to claim 2, the specific part is located between the longitudinal ends of any one of the two sides sandwiching the corner that is a diagonal of the corner, and the side on which the specific part is located is The density of the junction points at the specific site is sparse relative to the density of the junction points other than the specific site. For this reason, when a panel member receives a shear displacement, joining of this panel member and a frame structure (the above-mentioned corner) is easy to be secured.

請求項3記載の発明に係るパネル接合構造は、パネル部材と、所定方向に沿って並列されると共に該並列方向に離間して配置された第1骨格部材及び第2骨格部材と、前記第1骨格部材と前記パネル部材とを該第1骨格部材の長手方向に離間した複数の接合点で接合し、該第1骨格部材における前記第2骨格部材に対し長手方向に相対変位する際の先頭側に位置する接合点が端部接合点とされた第1接合部と、前記第2骨格部材と前記パネル部材とを、前記端部接合点から前記第1骨格部材の長手方向に対し45°の方向に位置する特定部分での接合点の密度が他の部分での接合点の密度よりも疎となるように、前記第2骨格部材の長手方向に離間した複数の接合点にて接合した第2接合部と、を備えている。 A panel joint structure according to a third aspect of the invention includes a panel member, a first skeleton member and a second skeleton member arranged in parallel along a predetermined direction and spaced apart in the parallel direction, and the first The top side when the skeleton member and the panel member are joined at a plurality of joint points separated in the longitudinal direction of the first skeleton member, and the first skeleton member is displaced relative to the second skeleton member in the longitudinal direction. junction point located and the first joint portion which is an end junction, and said panel member and the second frame member, against the longitudinal direction of the first frame member from said end junction 4 5 Joined at a plurality of joint points separated in the longitudinal direction of the second skeleton member so that the density of the joint points at a specific portion located in the direction of ° is sparser than the density of the joint points at other portions. A second joint portion.

請求項3記載のパネル接合構造では、パネル部材は、並列する第1、第2骨格部材間に位置する部分が略矩形板状を成している。これら第1、第2骨格部材が互いの長手方向に相対変位を生じると、パネル部材の上記矩形状部分(パネル部材の全部であっても良い)は、矩形状部分における一対の対角は角度が小さくなり、他の一対の対角は角度が大きくなるようにせん断変位される。このせん断変位が大変位の場合、角度が小さくなる角部に近いほどパネル部材と骨格構造体との接合点で、作用するせん断応力が大きくなる。   In the panel joint structure according to the third aspect, the portion of the panel member positioned between the parallel first and second skeleton members has a substantially rectangular plate shape. When the first and second skeleton members are displaced relative to each other in the longitudinal direction, the rectangular portion of the panel member (or the entire panel member) may be a pair of diagonal angles in the rectangular portion. And the other pair of diagonals are shear-displaced so that the angle increases. When this shear displacement is a large displacement, the shear stress acting at the joint point between the panel member and the skeleton structure increases as the angle decreases closer to the corner.

ここで、本パネル接合構造では、第1接合部における端部接合点が上記したせん断変形に伴い角度が小さくなる角部の一方に位置することとなる。そして、この角部から45°の方向において接合点の密度が低いため、該角部近くの接合点に対し大きな引張方向の荷重を支持し得る接合点の数が少ない。このため、本パネル接合構造では、上記角部近くの接合点に作用するせん断荷重が緩和される。 Here, in this panel joining structure, the end joining point in the first joining part is located at one of the corners where the angle becomes smaller with the shear deformation described above. And this in the direction of the corner portion or et 4 5 ° for the density of the junction is low, a small number of bonding points capable of supporting a load of large tensile direction with respect to the junction near the corner portion. For this reason, in this panel joining structure, the shear load which acts on the joining point near the said corner | angular part is relieved.

このように、請求項3記載のパネル接合構造では、パネル部材がせん断変位を受けた場合に該パネル部材と骨格部(各骨格部材)との接合が確保され易い。   Thus, in the panel joint structure according to the third aspect, when the panel member is subjected to shear displacement, it is easy to ensure the joint between the panel member and the skeleton part (each skeleton member).

請求項4記載の発明に係る車体フロア構造は、フロアパネルと、車体における車幅方向外端で車両前後方向に延在されたロッカと、前記ロッカに対する車幅方向内側で車両前後方向に延在された前後メンバ部材と、車幅方向に延在され、前記ロッカと前記前後メンバとを架け渡す第1クロスメンバと、車幅方向に延在され、前記第1クロスメンバに対する車両前後方向の後側で前記ロッカと前記前後メンバとを架け渡す第2クロスメンバと、前記フロアパネルと前記ロッカとを、該ロッカの長手方向に離間した複数の接合点にて接合した外辺接合部と、前記前後メンバ又は前記第2クロスメンバと前記フロアパネルとを、前記外辺接合部における最前の接合点から車両前後方向に対し45°の方向に位置する特定部分の接合点の密度が他の部分での接合点の密度よりも疎となるように、前記前後メンバ又は前記第2クロスメンバの長手方向に離間した複数の接合点にて接合した内辺又は後辺接合部と、を備えている。 According to a fourth aspect of the present invention, a vehicle body floor structure includes a floor panel, a rocker extending in the vehicle longitudinal direction at an outer end in the vehicle width direction of the vehicle body, and extending in the vehicle longitudinal direction on the vehicle width direction inner side with respect to the rocker. A front and rear member member, a first cross member that extends in the vehicle width direction and bridges the rocker and the front and rear members, and a rear portion in the vehicle front and rear direction that extends in the vehicle width direction. A second cross member that bridges the rocker and the front and rear members on the side, an outer edge joint portion that joins the floor panel and the rocker at a plurality of joint points separated in the longitudinal direction of the rocker, the front and rear members and the second cross member and the floor panel, the density of the bonding point of the particular portion located in the direction of the against the junction of the foremost in the longitudinal direction of the vehicle 4 5 ° in the perimeter joints of other Part An inner side or a rear side joined portion joined at a plurality of joined points spaced in the longitudinal direction of the front and rear members or the second cross member so as to be sparser than the density of the joined points at .

請求項4記載の車体フロア構造では、外辺接合部においてロッカに接合されると共に内辺又は後辺接合部において前後メンバ及び第2クロスメンバの何れか一方に接合されたフロアパネルは、ロッカ、前後メンバ、第1、第2クロメンバとの矩形枠状の接合部位の内側に位置する部分が略矩形板状を成している。例えば前後メンバに後向きの変位が入力されると、フロアパネルの上記矩形状部分(フロアパネルの全部であっても良い)は、せん断変形される。このせん断変形によって、フロアパネルの上記矩形状部分は、ロッカと第1クロスメンバとの角部、及び前後メンバと第2クロスメンバとの角部は角度が小さくなる。このように角度が小さくなる角部におけるフロアパネルと骨格構造体との接合点では、せん断変位が大変位である場合に、作用するせん断応力が大きくなる。   In the vehicle body floor structure according to claim 4, the floor panel joined to either the front or rear member or the second cross member at the inner side or the rear side joined portion at the outer side joined portion and the rocker, The part located inside the joint part of the rectangular frame shape with the front and rear members and the first and second cross members has a substantially rectangular plate shape. For example, when a backward displacement is input to the front and rear members, the rectangular portion (or the entire floor panel) of the floor panel is sheared. Due to this shear deformation, the corners of the rocker and the first cross member and the corners of the front and rear members and the second cross member become smaller in the rectangular portion of the floor panel. When the shear displacement is a large displacement at the joint point between the floor panel and the skeleton structure at the corner portion where the angle becomes small as described above, the acting shear stress becomes large.

ここで、本車体フロア構造では、上記せん断により角度が小さくなる角部のうちロッカと第1クロスメンバとの角部に近い外辺接合部の最前の接合点から45°の方向において内辺又は後辺接合部の接合点の密度が低いため、外辺接合部の最前の接合点に対し大きな引張方向の荷重を支持し得る接合点の数が少ない。このため、本車体フロア構造では、外辺接合部の各接合点、特に最前の接合点に作用するせん断荷重が緩和される。 Inner Here, in this vehicle body floor structure, the rocker and the outer side direction of the junction or et 4 5 ° forwardmost junction near the corner between the first cross member of the corner angle is reduced by the shearing Since the density of the joints at the side or rear joint is low, the number of joints that can support a large load in the tensile direction with respect to the front joint at the outer joint is small. For this reason, in this vehicle body floor structure, the shear load which acts on each junction of an outer edge junction part, especially the foremost junction is relieved.

このように、請求項4記載の車体フロア構造では、パネル部材がせん断変位を受けた場合に該フロアパネルと骨格部(少なくとも1つの車体骨格部材)との接合が確保され易い。   Thus, in the vehicle body floor structure according to the fourth aspect, when the panel member is subjected to shear displacement, it is easy to ensure the bonding between the floor panel and the frame portion (at least one vehicle frame member).

請求項5記載の発明に係る車体フロア構造は、フロアパネルと、車体における車幅方向外端で車両前後方向に延在されたロッカと、前記ロッカに対する車幅方向内側で車両前後方向に延在された前後メンバと、車幅方向に延在され、前記ロッカと前記前後メンバとを架け渡す第1クロスメンバと、車幅方向に延在され、前記第1クロスメンバに対する車両前後方向の後側で前記ロッカと前記前後メンバとを架け渡す第2クロスメンバと、前記フロアパネルと前記前後メンバとを、該前後メンバの長手方向に離間した複数の接合点にて接合した内辺接合部と、前記ロッカ又は前記第1クロスメンバと前記フロアパネルとを、前記内辺接合部における最後の接合点から車両前後方向に対し45°の方向に位置する特定部分の接合点の密度が他の部分での接合点の密度よりも疎となるように、前記ロッカ又は前記第1クロスメンバの長手方向に離間した複数の接合点にて接合した外辺又は前辺接合部と、を備えている。 According to a fifth aspect of the present invention, a vehicle body floor structure includes a floor panel, a rocker extending in the vehicle longitudinal direction at an outer end in the vehicle width direction of the vehicle body, and extending in the vehicle longitudinal direction on the vehicle width direction inner side with respect to the rocker. A front-rear member, a first cross member extending in the vehicle width direction and extending between the rocker and the front-rear member, and a rear side in the vehicle front-rear direction extending in the vehicle width direction with respect to the first cross member A second cross member that bridges the rocker and the front and rear members, an inner side joint portion that joins the floor panel and the front and rear members at a plurality of joint points spaced in the longitudinal direction of the front and rear members, the said rocker or the first cross member and the floor panel, the density of the bonding point of the particular portion located in the direction of and against the vehicle longitudinal direction from the last junction 4 5 ° in the inner side joint of the other Part As a sparse than the density of the junction with, a, and an outer side or front side joint portion is joined by a plurality of bonding points spaced in the longitudinal direction of the rocker or the first cross member.

請求項5記載の車体フロア構造では、内辺接合部において前後メンバに接合されると共に外辺又は前辺接合部においてロッカ及び第1クロスメンバの何れか一方に接合されたフロアパネルは、ロッカ、前後メンバ、第1、第2クロメンバとの矩形枠状の接合部位の内側に位置する部分が略矩形板状を成している。例えば前後メンバに後向きの変位が入力されると、フロアパネルの上記矩形状部分(フロアパネルの全部であっても良い)は、せん断変形される。このせん断変形によって、フロアパネルの上記矩形状部分は、ロッカと第1クロスメンバとの角部、及び前後メンバと第2クロスメンバとの角部は角度が小さくなる。このように角度が小さくなる角部におけるフロアパネルと骨格構造体との接合点では、せん断変位が大変位である場合に、作用するせん断応力が大きくなる。   In the vehicle body floor structure according to claim 5, the floor panel joined to either the front or rear member at the inner side joint portion and joined to either the rocker or the first cross member at the outer side or front side joint portion is a rocker, The part located inside the joint part of the rectangular frame shape with the front and rear members and the first and second cross members has a substantially rectangular plate shape. For example, when a backward displacement is input to the front and rear members, the rectangular portion (or the entire floor panel) of the floor panel is sheared. Due to this shear deformation, the corners of the rocker and the first cross member and the corners of the front and rear members and the second cross member become smaller in the rectangular portion of the floor panel. When the shear displacement is a large displacement at the joint point between the floor panel and the skeleton structure at the corner portion where the angle becomes small as described above, the acting shear stress becomes large.

ここで、本車体フロア構造では、上記せん断により角度が小さくなる角部のうち前後メンバと第2クロスメンバとの角部に近い内辺接合部の最後の接合点から45°の方向において外辺又は前辺接合部の接合点の密度が低いため、内辺接合部の最後の接合点に対し大きな引張方向の荷重を支持し得る接合点の数が少ない。このため、本車体フロア構造では、内辺接合部の各接合点、特に最後の接合点に作用するせん断荷重が緩和される。 Here, in this vehicle body floor structure, in the last direction of junction or et 4 5 ° of the inner side joint portion near the corner between the front and rear members and the second cross member of the corner angle is reduced by the shearing Since the density of the junction points at the outer side or the front side junction is low, the number of junction points that can support a large load in the tensile direction with respect to the last junction of the inner side junction is small. For this reason, in this vehicle body floor structure, the shear load which acts on each joint point of an inner edge junction part, especially the last joint point is relieved.

このように、請求項5記載の車体フロア構造では、パネル部材がせん断変位を受けた場合に該フロアパネルと骨格部(少なくとも1つの車体骨格部材)との接合が確保され易い。   Thus, in the vehicle body floor structure according to the fifth aspect, when the panel member is subjected to shear displacement, it is easy to ensure the bonding between the floor panel and the frame portion (at least one vehicle frame member).

請求項6記載の発明に係る車体フロア構造は、フロアパネルと、車体における車幅方向外端で車両前後方向に延在されたロッカと、前記ロッカに対する車幅方向内側で車両前後方向に延在された前後メンバと、車幅方向に延在され、前記ロッカと前記前後メンバとを架け渡す第1クロスメンバと、車幅方向に延在され、前記第1クロスメンバに対する車両前後方向の後側で前記ロッカと前記前後メンバとを架け渡す第2クロスメンバと、前記前後メンバ又は前記第2クロスメンバと前記フロアパネルとを、前記ロッカと前記第1クロスメンバとの角部における前記フロアパネルとの接合点から車両前後方向に対し45°の方向に位置する特定部分の接合点の密度が他の部分での接合点の密度よりも疎となるように、前記前後メンバ又は前記第2クロスメンバの長手方向に離間した複数の接合点にて接合した内辺又は後辺接合部と、前記ロッカ又は前記第1クロスメンバと前記フロアパネルとを、前記前後メンバと前記第2クロスメンバとの角部における前記フロアパネルとの接合点から車両前後方向に対し45°の方向に位置する特定部分の接合点の密度が他の部分での接合点の密度よりも疎となるように、前記ロッカ又は前記第1クロスメンバの長手方向に離間した複数の接合点にて接合した外辺又は前辺接合部と、を備えている。 A vehicle body floor structure according to a sixth aspect of the present invention includes a floor panel, a rocker extending in the vehicle longitudinal direction at an outer end in the vehicle width direction of the vehicle body, and extending in the vehicle longitudinal direction on the inner side in the vehicle width direction with respect to the rocker. A front-rear member, a first cross member extending in the vehicle width direction and extending between the rocker and the front-rear member, and a rear side in the vehicle front-rear direction extending in the vehicle width direction with respect to the first cross member A second cross member that bridges the rocker and the front and rear members, and the front and rear members or the second cross member and the floor panel, and the floor panel at a corner of the rocker and the first cross member; as the density of the bonding point of the particular portion located in the direction of the pair and 4 5 ° from the joining point in the vehicle longitudinal direction is sparse than the density of the junction at other parts of the front and rear member or the second An inner side or rear side joined portion joined at a plurality of joining points spaced apart in the longitudinal direction of the cross member, the rocker or the first cross member and the floor panel, the front and rear members and the second cross member as the density of the bonding point of the particular portion positioned from the junction points with the floor panel at the corner in the direction of the longitudinal direction of the vehicle in pairs and 4 5 ° is sparse than the density of the junction at other parts And an outer side or a front side joint part joined at a plurality of joint points spaced in the longitudinal direction of the rocker or the first cross member.

請求項6記載の車体フロア構造では、内辺又は後辺接合部において前後メンバ及び第2クロスメンバに接合されると共に外辺又は前辺接合部においてロッカ及び第1クロスメンバの何れか一方に接合されたフロアパネルは、ロッカ、前後メンバ、第1、第2クロメンバとの矩形枠状の接合部位の内側に位置する部分が略矩形板状を成している。例えば前後メンバに後向きの荷重が入力されると、フロアパネルの上記矩形状部分(フロアパネルの全部であっても良い)は、せん断変形される。このせん断変形によって、フロアパネルの上記矩形状部分は、ロッカと第1クロスメンバとの角部、及び前後メンバと第2クロスメンバとの角部は角度が小さくなる。このように角度が小さくなる角部におけるフロアパネルと骨格構造体との接合点では、せん断変位が大変位である場合に、作用するせん断応力が大きくなる。   In the vehicle body floor structure according to claim 6, it is joined to the front and rear members and the second cross member at the inner side or the rear side joint, and is joined to either the rocker or the first cross member at the outer side or the front side joint. In the floor panel thus formed, the portion located inside the rectangular frame-shaped joint portion with the rocker, the front and rear members, and the first and second cross members has a substantially rectangular plate shape. For example, when a rearward load is input to the front and rear members, the rectangular portion of the floor panel (or the entire floor panel may be sheared). Due to this shear deformation, the corners of the rocker and the first cross member and the corners of the front and rear members and the second cross member become smaller in the rectangular portion of the floor panel. When the shear displacement is a large displacement at the joint point between the floor panel and the skeleton structure at the corner portion where the angle becomes small as described above, the acting shear stress becomes large.

ここで、本車体フロア構造では、ロッカと第1クロスメンバとの角部から45°の方向において内辺又は後辺接合部の接合点の密度が低いため、該角部の接合点に対し大きな引張方向の荷重を支持し得る接合点の数が少ない。また、前後メンバと第2クロスメンバとの角部から45°の方向において外辺又は前辺接合部の接合点の密度が低いため、該角部の接合点に対し大きな引張方向の荷重を支持し得る接合点の数が少ない。これらにより、本車体フロア構造では、外辺又は前辺接合部の各接合点及び内辺又は後辺接合部の各接合点、特に、上記せん断に伴い角度が小さくなる各角部の接合点に作用するせん断荷重が緩和される。 Here, in this vehicle body floor structure, the density of the bonding points of the inner side or the rear side joint in the rocker and the direction of the corner portion or et 4 5 ° between the first cross member is low, the junction of the corner portion On the other hand, the number of joint points that can support a load in a large tensile direction is small. In addition, since the density of the joints at the outer or front joints is low in the direction of 45 ° from the corners of the front and rear members and the second cross member, a large tensile load is applied to the joints at the corners. The number of joint points that can be supported is small. As a result, in the vehicle body floor structure, each joint point of the outer side or front side joint part and each joint point of the inner side or rear side joint part, in particular, each joint part of each corner part where the angle decreases with shearing. The acting shear load is relaxed.

このように、請求項6記載の車体フロア構造では、パネル部材がせん断変位を受けた場合に該フロアパネルと骨格部(各車体骨格部材)との接合が確保され易い。   Thus, in the vehicle body floor structure according to the sixth aspect, when the panel member is subjected to shear displacement, it is easy to ensure the bonding between the floor panel and the frame portion (each vehicle body frame member).

請求項7記載の発明に係る車体フロア構造は、請求項4〜請求項6の何れか1項記載の車体フロア構造において、前記接合部の各接合点は、スポット溶接による接合点である。   The vehicle body floor structure according to a seventh aspect of the present invention is the vehicle body floor structure according to any one of the fourth to sixth aspects, wherein each joint point of the joint is a joint point by spot welding.

請求項7記載の車体フロア構造では、せん断により剥がれが生じ得るスポット溶接による接合点は、上記の如くせん断荷重の大きくなり易いロッカと第1クロスメンバとの角部、及び前後メンバと第2クロスメンバとの角部の少なくとも一方から45°方向の接合点の密度を疎にすることで、接合が効果的に確保(維持)され易い。 In the vehicle body floor structure according to claim 7, the joint points by spot welding that may cause peeling due to shear are the corner portions of the rocker and the first cross member, and the front and rear members and the second cross as described above. by sparsely density of at least one pressurized et 4 5 ° the direction of junction of the corners of a member, easily junction is effectively ensured (maintained).

以上説明したように本発明に係るパネル接合構造は、パネル部材がせん断変位を受けた場合に該パネル部材と骨格部との接合が確保され易いという優れた効果を有する。   As described above, the panel joint structure according to the present invention has an excellent effect that when the panel member is subjected to shear displacement, the joint between the panel member and the skeleton is easily secured.

本発明の一実施形態に係るパネル接合構造としての車体フロア構造10について、図1〜図2に基づいて説明する。なお、図中に適宜記す矢印FRは車両前後方向の前方向を、矢印INは車幅方向内側を、矢印OUTは車幅方向外側をそれぞれ示す。   A vehicle body floor structure 10 as a panel joint structure according to an embodiment of the present invention will be described with reference to FIGS. Note that an arrow FR appropriately shown in the drawing indicates a forward direction in the vehicle longitudinal direction, an arrow IN indicates an inner side in the vehicle width direction, and an arrow OUT indicates an outer side in the vehicle width direction.

図2には、車体フロア構造10の要部が模式的な平面図にて示されている。この図に示される如く、車体フロア構造10は、パネル部材としてのフロアパネル12が車体骨格の一部を成す骨格構造体14に接合されて構成されている。   FIG. 2 shows a schematic plan view of the main part of the vehicle body floor structure 10. As shown in this figure, the vehicle body floor structure 10 is configured by joining a floor panel 12 as a panel member to a skeleton structure 14 forming a part of the vehicle skeleton.

この実施形態における骨格構造体14は、車体下部(フロア部)における車幅方向外端で車両前後方向に延在する第1骨格部材としてのロッカ(サイドシル)16と、骨格構造体14に対する車幅方向内側で車両前後方向に延在する第2骨格部材又は前後メンバとしてのアンダリインフォースメント18とを備えている。また、骨格構造体14は、それぞれ車幅方向延在された第1クロスメンバとしてのトルクボックス20、第2クロスメンバとしてのフロアクロスメンバ22を備えている。トルクボックス20は、ロッカ16とアンダリインフォースメント18との前端間を架け渡しており、フロアクロスメンバ22は、ロッカ16の前後方向中間部とアンダリインフォースメント18の後端部とを架け渡している。   The skeleton structure 14 in this embodiment includes a rocker (side sill) 16 as a first skeleton member that extends in the vehicle front-rear direction at the outer end in the vehicle width direction at the vehicle body lower portion (floor portion), and the vehicle width relative to the skeleton structure 14. A second skeleton member extending in the vehicle front-rear direction on the inner side in the direction or an under reinforcement 18 as a front-rear member is provided. The skeleton structure 14 includes a torque box 20 as a first cross member and a floor cross member 22 as a second cross member, each extending in the vehicle width direction. The torque box 20 spans between the front ends of the rocker 16 and the under reinforcement 18, and the floor cross member 22 bridges the intermediate portion in the front-rear direction of the rocker 16 and the rear end of the under reinforcement 18. .

以上により、骨格構造体14は、平面視で略矩形枠状を成す枠状骨格部14Aを構成している。また、アンダリインフォースメント18の前端は、前端が図示しないバンパリインフォースメントに連結されたフロントサイドメンバ24の後端に連結されている。したがって、バンパリインフォースメントへの前面衝突が生じた場合、アンダリインフォースメント18にはフロントサイドメンバ24を介して後向きの変位Dcが入力されるようになっている。   As described above, the skeleton structure 14 constitutes the frame-like skeleton portion 14A having a substantially rectangular frame shape in plan view. Further, the front end of the under reinforcement 18 is connected to the rear end of the front side member 24 whose front end is connected to a bumper reinforcement (not shown). Accordingly, when a frontal collision with the bumper reinforcement occurs, the rearward displacement Dc is input to the under reinforcement 18 via the front side member 24.

そして、フロアパネル12は、後に詳述する如く、枠状骨格部14Aの四辺を構成するロッカ16、アンダリインフォースメント18、トルクボックス20、フロアクロスメンバ22のそれぞれに対し、それぞれの(各辺の)長手方向に沿って配置された複数の接合点にて接合されている。図2に想像線にて示す如く、フロアパネル12における枠状骨格部14Aに接合された(接合部の内側の)略矩形平板状の部分を矩形パネル部12Aということとする。この実施形態では、矩形パネル部12Aは、車幅方向に対し車両前後方向に長い矩形状を成している。   Then, as will be described in detail later, the floor panel 12 is provided with respect to each of the rocker 16, the under reinforcement 18, the torque box 20, and the floor cross member 22 constituting the four sides of the frame-shaped skeleton portion 14A. ) It is joined at a plurality of joining points arranged along the longitudinal direction. As indicated by an imaginary line in FIG. 2, a substantially rectangular flat plate portion (inside the joint portion) joined to the frame-like skeleton portion 14 </ b> A in the floor panel 12 is referred to as a rectangular panel portion 12 </ b> A. In this embodiment, the rectangular panel portion 12A has a rectangular shape that is long in the vehicle front-rear direction with respect to the vehicle width direction.

以下、主に矩形パネル部12Aと枠状骨格部14Aとの接合構造について、具体的に説明する。なお、矩形パネル部12Aにおける前外(ロッカ16とトルクボックス20との間)、後内(アンダリインフォースメント18とフロアクロスメンバ22との間)の角部をそれぞれ12FO、12RIとする。また、矩形パネル部12Aにおける後外(ロッカ16とフロアクロスメンバ22との間)、前内(アンダリインフォースメント18とトルクボックス20との間)の角部をそれぞれ12RI、12FOとする。   Hereinafter, the joint structure between the rectangular panel portion 12A and the frame-like skeleton portion 14A will be specifically described. In addition, the front and outer (between the rocker 16 and the torque box 20) and the rear inner (between the under reinforcement 18 and the floor cross member 22) in the rectangular panel portion 12A are 12FO and 12RI, respectively. In addition, the corners of the rear panel (between the rocker 16 and the floor cross member 22) and the front panel (between the under reinforcement 18 and the torque box 20) in the rectangular panel unit 12A are respectively referred to as 12RI and 12FO.

図1には、フロアパネル12から切り出してみた矩形パネル部12Aが平面図にて示されている。この図に想像線にて示される如く、矩形パネル部12Aは、アンダリインフォースメント18に後向きの変位Dcが入力された場合、ロッカ16には反力Rが作用し、該アンダリインフォースメント18とロッカ16との車両前後方向(長手方向)の相対変位によって、対角を成す角部12FO、12RIは、せん断変位により角度が小さくなり、別の対角を成す角部12FI、12ROは、せん断変位により角度が大きくなるように変形する構成とされている。   In FIG. 1, a rectangular panel portion 12 </ b> A cut out from the floor panel 12 is shown in a plan view. As indicated by an imaginary line in this figure, when the backward displacement Dc is input to the under reinforcement 18, the rectangular panel portion 12 </ b> A receives a reaction force R on the rocker 16, and the under reinforcement 18 and the rocker Due to the relative displacement in the vehicle longitudinal direction (longitudinal direction) with respect to 16, the corners 12FO, 12RI forming a diagonal become smaller due to shear displacement, and the corners 12FI, 12RO forming another diagonal are subjected to shear displacement. It is set as the structure which deform | transforms so that an angle may become large.

矩形パネル部12Aとロッカ16とは、複数のスポット溶接点Sが車両前後方向に沿って配置された外側縦スポット溶接列26にて接合されている。矩形パネル部12Aとアンダリインフォースメント18とは、複数のスポット溶接点Sが車両前後方向に沿って配置された内側縦スポット溶接列28にて接合されている。矩形パネル部12Aとトルクボックス20とは、複数のスポット溶接点Sが車幅方向に沿って配置された前側横スポット溶接列30にて接合されている。矩形パネル部12Aとフロアクロスメンバ22とは、複数のスポット溶接点Sが車幅方向に沿って配置された後側横スポット溶接列32にて接合されている。   The rectangular panel portion 12A and the rocker 16 are joined by an outer vertical spot weld row 26 in which a plurality of spot welding points S are arranged along the vehicle longitudinal direction. The rectangular panel portion 12A and the under reinforcement 18 are joined by an inner vertical spot weld row 28 in which a plurality of spot welding points S are arranged along the vehicle longitudinal direction. The rectangular panel portion 12A and the torque box 20 are joined by a front lateral spot welding row 30 in which a plurality of spot welding points S are arranged along the vehicle width direction. The rectangular panel portion 12A and the floor cross member 22 are joined by a rear side spot welding row 32 in which a plurality of spot welding points S are arranged along the vehicle width direction.

上記の通り車両前後方向に長い矩形パネル部12Aにおいては、前側横スポット溶接列30、後側横スポット溶接列32は、複数のスポット溶接点Sが略等間隔では位置されて構成されている。   As described above, in the rectangular panel portion 12A that is long in the longitudinal direction of the vehicle, the front lateral spot weld row 30 and the rear lateral spot weld row 32 are configured such that a plurality of spot welding points S are positioned at substantially equal intervals.

一方、外側縦スポット溶接列26、内側縦スポット溶接列28は、それぞれの特定範囲Aにおける長手方向に隣り合うスポット溶接点Sの間隔D1が、特定範囲以外の範囲Bにおけるスポット溶接点Sの間隔D2に対し大とされている。換言すれば、外側縦スポット溶接列26、内側縦スポット溶接列28は、特定範囲Aにおいて他の範囲よりも複数のスポット溶接点Sの密度が低い(疎である)構成とされている。   On the other hand, in the outer vertical spot welding row 26 and the inner vertical spot welding row 28, the interval D1 between the spot welding points S adjacent in the longitudinal direction in each specific range A is the interval between the spot welding points S in the range B other than the specific range. Greater than D2. In other words, the outer vertical spot weld row 26 and the inner vertical spot weld row 28 are configured such that the density of the plurality of spot welds S in the specific range A is lower (sparse) than in other ranges.

外側縦スポット溶接列26における特定範囲Aは、矩形パネル部12Aの角部12RIに近接するスポット溶接点S、具体的には内側縦スポット溶接列28の最後端に位置する最後スポット溶接点Stから、該内側縦スポット溶接列28(アンダリインフォースメント18)すなわち車両前後方向との成す角が略45°の方向に位置する部分を含む範囲とされている。より具体的には、外側縦スポット溶接列26における特定範囲Aは、最後スポット溶接点Stから車両前後方向との成す角が45°となる仮想直線IL1が内側縦スポット溶接列28上に沿った仮想直線IL2に交差する点C1に対し、前後両側にそれぞれ所定長さに亘り設定されている。   The specific range A in the outer vertical spot weld row 26 is from the spot welding point S close to the corner 12RI of the rectangular panel portion 12A, specifically from the last spot weld point St located at the rearmost end of the inner vertical spot weld row 28. The inner longitudinal spot weld row 28 (under reinforcement 18), that is, a range including a portion where the angle formed with the vehicle longitudinal direction is located in a direction of approximately 45 °. More specifically, in the specific range A in the outer vertical spot weld row 26, the virtual straight line IL1 having an angle of 45 ° with the vehicle front-rear direction from the last spot weld point St is along the inner vertical spot weld row 28. With respect to the point C1 intersecting the virtual straight line IL2, it is set over a predetermined length on both the front and rear sides.

一方、内側縦スポット溶接列28における特定範囲Aは、矩形パネル部12Aの角部12FOに近接するスポット溶接点S、具体的には外側縦スポット溶接列26の最前端に位置する最前スポット溶接点Sfから、該外側縦スポット溶接列26(ロッカ16)すなわち車両前後方向との成す角が略45°の方向に位置する部分を含む範囲とされている。より具体的には、内側縦スポット溶接列28における特定範囲Aは、最前スポット溶接点Sfから車両前後方向との成す角が45°となる仮想直線IL3が内側縦スポット溶接列28上に沿った仮想直線IL4に交差する点C2に対し、前後両側にそれぞれ所定長さに亘り設定されている。   On the other hand, the specific range A in the inner vertical spot welding row 28 is a spot welding point S close to the corner portion 12FO of the rectangular panel portion 12A, specifically, the foremost spot welding point located at the foremost end of the outer vertical spot welding row 26. From Sf, the outer vertical spot welded row 26 (rocker 16), that is, a range including a portion where the angle formed with the vehicle longitudinal direction is located in a direction of approximately 45 °. More specifically, in the specific range A in the inner vertical spot weld row 28, the virtual straight line IL3 having an angle of 45 ° with the vehicle front-rear direction from the front spot weld point Sf is along the inner vertical spot weld row 28. With respect to the point C2 intersecting the virtual straight line IL4, it is set over a predetermined length on both the front and rear sides.

特定範囲Aの設定長さ、スポット溶接点S間の間隔D1、D2は、後述する如く、フロントサイドメンバ24に作用することが想定される前後方向の最大変位(設計変位)、スポット溶接点Sのせん断に対する強度、枠状骨格部14A(骨格構造体14)とフロアパネル12との接合構造全体として要求されるせん断剛性等に応じて適宜設定されるようになっている。   The set length of the specific range A and the distances D1 and D2 between the spot welding points S are the maximum displacement in the front-rear direction (design displacement) assumed to act on the front side member 24, as will be described later, and the spot welding point S. Is appropriately set according to the strength against shearing, the shear rigidity required for the entire joining structure of the frame-like skeleton portion 14A (skeleton structure 14) and the floor panel 12, and the like.

なお、この実施形態では、外側縦スポット溶接列26、内側縦スポット溶接列28は、各スポット溶接点Sの間隔を等間隔とした比較例の構成で得られる前後方向のせん断剛性が確保されるように、特定範囲A以外の範囲Bにおけるスポット溶接点Sの間隔D2を上記比較例における間隔Dよりも小としている。すなわち、車体フロア構造10における隣り合うスポット溶接点Sの間隔は、比較例における間隔Dとの関係では、D1>D>D2となる構成である。   In this embodiment, the outer vertical spot weld row 26 and the inner vertical spot weld row 28 have shear strength in the front-rear direction obtained by the configuration of the comparative example in which the intervals between the spot weld points S are equal. As described above, the interval D2 of the spot welding points S in the range B other than the specific range A is made smaller than the interval D in the comparative example. That is, the distance between adjacent spot welding points S in the vehicle body floor structure 10 is such that D1> D> D2 in relation to the distance D in the comparative example.

以上説明した車体フロア構造10においては、外側縦スポット溶接列26、内側縦スポット溶接列28が本発明における接合部に相当する。また、外側縦スポット溶接列26は、本発明における第1接合部及び第2接合部の何れか一方に相当し、内側縦スポット溶接列28は、第1接合部及び第2接合部の他方に相当する。したがって、最前スポット溶接点Sf、最後スポット溶接点Stが本発明における端部接合点に相当する。さらに、外側縦スポット溶接列26は本発明における外辺接合部に、内側縦スポット溶接列28は内辺接合部に相当する。   In the vehicle body floor structure 10 described above, the outer vertical spot weld row 26 and the inner vertical spot weld row 28 correspond to the joint portion in the present invention. The outer vertical spot weld row 26 corresponds to one of the first joint portion and the second joint portion in the present invention, and the inner vertical spot weld row 28 corresponds to the other of the first joint portion and the second joint portion. Equivalent to. Therefore, the foremost spot welding point Sf and the last spot welding point St correspond to the end joint points in the present invention. Further, the outer vertical spot weld row 26 corresponds to an outer side joint portion in the present invention, and the inner vertical spot weld row 28 corresponds to an inner side joint portion.

次に、実施形態の作用を説明する。   Next, the operation of the embodiment will be described.

上記構成の車体フロア構造10が適用された自動車等の車両では、前面衝突に至ると、バンパリインフォースメント、フロントサイドメンバ24を経由してアンダリインフォースメント18に車両前後方向後向きの変位Dcが入力される。この変位Dcによってフロアパネル12の矩形パネル部12Aは、内側縦スポット溶接列28にてアンダリインフォースメント18に接合された部分(以下、「内辺12B」という)が後向きに、すなわち外側縦スポット溶接列26にてロッカ16に接合された部分(以下、「外辺12C」という)が相対的に前向きに変位することでせん断(図1の矢印参照)を受け、図1に想像線にて示される如く変形される。   In a vehicle such as an automobile to which the vehicle body floor structure 10 having the above-described configuration is applied, when a frontal collision is reached, a backward displacement Dc in the vehicle front-rear direction is input to the under reinforcement 18 via the bumper reinforcement and the front side member 24. The Due to the displacement Dc, the rectangular panel portion 12A of the floor panel 12 has a portion (hereinafter referred to as “inner side 12B”) joined to the under reinforcement 18 in the inner vertical spot weld row 28 facing backward, that is, outer vertical spot welding. A portion joined to the rocker 16 in the row 26 (hereinafter referred to as “the outer side 12C”) is subjected to shear (see an arrow in FIG. 1) by being displaced relatively forward, and is shown by an imaginary line in FIG. It is transformed as described.

すなわち、矩形パネル部12A変形前の形状を図1に示す矩形(長方形)とする場合、対角を成す角部12FO、12RIが鋭角に(角度が小さく)なると共に、これらとは別の対角を成す角部12FI、12ROが鈍角に(角度が大きく)なる略平行四辺形状に変形される。そして、外側縦スポット溶接列26、内側縦スポット溶接列28、前側横スポット溶接列30、後側横スポット溶接列32の各スポット溶接点Sには、せん断荷重が作用する。   That is, when the shape before deformation of the rectangular panel portion 12A is the rectangle (rectangular shape) shown in FIG. 1, the diagonal corner portions 12FO and 12RI become acute angles (smaller angles), and other diagonal shapes. The corner portions 12FI and 12RO forming the shape are deformed into a substantially parallelogram shape having an obtuse angle (larger angle). A shear load acts on each spot welding point S in the outer vertical spot weld row 26, the inner vertical spot weld row 28, the front side spot weld row 30, and the rear side spot weld row 32.

ここで、車体フロア構造10では、外側縦スポット溶接列26における特定範囲Aでのスポット溶接点S間の間隔D1が該特定範囲A以外の範囲Bでの間隔D2に対し大であるため、上記のせん断荷重に対し内側縦スポット溶接列28の各スポット溶接点S、特に最後スポット溶接点Stに作用する荷重が緩和され、該最後スポット溶接点Stにおける接合が維持され易い。同様に、車体フロア構造10では、内側縦スポット溶接列28における特定範囲Aでのスポット溶接点S間の間隔D1が該特定範囲A以外の範囲Bでの間隔D2に対し大であるため、上記のせん断荷重に対し外側縦スポット溶接列26の各スポット溶接点S、特に最前スポット溶接点Sfに作用する荷重が緩和され、該最前スポット溶接点Sfにおける接合が維持され易い。   Here, in the vehicle body floor structure 10, the distance D1 between the spot welding points S in the specific range A in the outer vertical spot weld row 26 is larger than the distance D2 in the range B other than the specific range A. The load acting on each spot welding point S of the inner vertical spot welding row 28, particularly the last spot welding point St is alleviated with respect to the shear load, and the joining at the last spot welding point St is easily maintained. Similarly, in the vehicle body floor structure 10, the interval D1 between the spot welding points S in the specific range A in the inner vertical spot weld row 28 is larger than the interval D2 in the range B other than the specific range A. The load acting on each spot welding point S of the outer vertical spot weld row 26, particularly the foremost spot welding point Sf, is alleviated with respect to the shear load, and the joining at the foremost spot welding point Sf is easily maintained.

以下、このメカニズムについて、図3〜図8を参照しつつ補足する。なお、外側縦スポット溶接列26と内側縦スポット溶接列28とでは、最前スポット溶接点Sf、最後スポット溶接点Stの接合維持メカニズムは共通する(外側縦スポット溶接列26と内側縦スポット溶接列28とが相補的に機能する)ので、以下、主に外側縦スポット溶接列26の最前スポット溶接点Sfについて接合が維持されるメカニズムについて説明することとする。   Hereinafter, this mechanism will be supplemented with reference to FIGS. It should be noted that the outer vertical spot weld row 26 and the inner vertical spot weld row 28 have the same joint maintenance mechanism for the foremost spot weld point Sf and the last spot weld point St (the outer vertical spot weld row 26 and the inner vertical spot weld row 28. Therefore, hereinafter, a mechanism for maintaining the joining mainly at the foremost spot welding point Sf of the outer vertical spot welding row 26 will be described below.

図5には、スポット溶接点Sの間隔Dが一定である比較例に係る外側縦スポット溶接列100、内側縦スポット溶接列102にて枠状骨格部14Aに接合された矩形パネル部12Aについて、複数の帯板34にて構成したモデルとして考える帯板モデルが示されている。図5の例では、矩形パネル部12Aを、外側縦スポット溶接列26の特定のスポット溶接点Spと他のスポット溶接点Sがそれぞれ帯板34にて結ばれたものと仮定している。このモデルでは、特定のスポット溶接点Spに作用するせん断荷重は、各帯板34の荷重(ベクトル)の和として把握することができる。なお、図5に破線で示す帯板34は、上記した矩形パネル部12Aのせん断により圧縮される34を示し、実線にて示す帯板34は、上記した矩形パネル部12Aのせん断により引張られる34を示している。   In FIG. 5, the rectangular panel portion 12 </ b> A joined to the frame-shaped skeleton portion 14 </ b> A in the outer vertical spot welding row 100 and the inner vertical spot welding row 102 according to the comparative example in which the interval D of the spot welding points S is constant. A band plate model considered as a model constituted by a plurality of band plates 34 is shown. In the example of FIG. 5, the rectangular panel portion 12 </ b> A is assumed to be formed by connecting a specific spot welding point Sp of the outer vertical spot welding row 26 and another spot welding point S by a strip 34. In this model, the shear load acting on a specific spot welding point Sp can be grasped as the sum of the loads (vectors) of the strips 34. In addition, the strip | belt board 34 shown with a broken line in FIG. 5 shows 34 compressed by the shear of the above-mentioned rectangular panel part 12A, and the strip | belt board 34 shown with a continuous line is pulled 34 by the shear of the above-mentioned rectangular panel part 12A. Is shown.

ところで、矩形パネル部12Aは、微小変形をする場合には、変形に伴い圧縮される帯板34、引張られる帯板34のそれぞれからの荷重を受ける。一方、矩形パネル部12Aは、上記した衝突に伴うせん断により大きく変形される場合には、圧縮側の帯板34は弛んで(座屈して)発生する圧縮荷重は極端に小さくなる(このことは、実際の衝突でフロアパネル12において皺が発生することに対応している)。このため、矩形パネル部12Aの上記せん断に伴う大変形の際には、特定のスポット溶接点Spに作用するせん断荷重は、圧縮側の帯板34からの荷重を無視し、引張側の帯板34からの荷重の合力(ベクトル)として考えることができる。   By the way, when the rectangular panel portion 12A is subjected to minute deformation, the rectangular panel portion 12A receives a load from each of the strip 34 to be compressed and the strip 34 to be pulled. On the other hand, when the rectangular panel portion 12A is greatly deformed by the shear due to the above-described collision, the compression-side strip 34 is slackened (buckled), and the generated compression load becomes extremely small (this is This corresponds to the occurrence of wrinkles in the floor panel 12 due to an actual collision). For this reason, in the case of the large deformation accompanying the shearing of the rectangular panel portion 12A, the shear load acting on the specific spot welding point Sp ignores the load from the compression side strip 34, and the tension side strip It can be considered as a resultant force (vector) of the load from 34.

そして、図5からは、アンダリインフォースメント18(内辺12B)がロッカ16(外辺12C)に対し相対的に後方に変位するせん断変形の際には、外側縦スポット溶接列26の各スポット溶接点Sは、前方(相対変位方向の先頭側)に位置するものほど引張側の帯板34の連結数が多くなる(連結された帯板34のうち引張を受けるものの数が多くなる)ことが判る。すなわち、外側縦スポット溶接列100では、相対変位方向の先頭に位置する最前スポット溶接点Sfにおいて引張側の帯板34の連結数が最大となり、作用するせん断荷重が最大になる。   From FIG. 5, in the case of shear deformation in which the under reinforcement 18 (inner side 12 </ b> B) is displaced rearward relative to the rocker 16 (outer side 12 </ b> C), each spot welding of the outer vertical spot weld row 26 is performed. As the point S is located on the front side (the leading side in the relative displacement direction), the number of connected strips 34 on the tension side increases (the number of connected strips 34 that receive tension increases). I understand. That is, in the outer longitudinal spot weld row 100, the number of connected strips 34 on the tension side is maximized at the foremost spot weld point Sf located at the head in the relative displacement direction, and the acting shear load is maximized.

図6(A)、図6(B)は、図5の帯板モデルを外側縦スポット溶接列26の各スポット溶接点Sに適用して算出した、該外側縦スポット溶接列26の各スポット溶接点Sに作用するせん断荷重であり、図6(A)は平面視でのベクトルを、図6(B)は車両前後方向荷(X方向)の荷重Fx、車幅方向(Y方向)の荷重Fy、及びこれらの合力Fを示す線図である。この図からも、外側縦スポット溶接列26では、前方に位置するスポット溶接点Sほど作用するせん断荷重が大きくなることが判る。   FIGS. 6A and 6B show spot welding in the outer vertical spot weld row 26 calculated by applying the strip model of FIG. 5 to each spot welding point S in the outer vertical spot weld row 26. FIG. 6A shows a vector in plan view, FIG. 6B shows a load Fx in the vehicle longitudinal direction load (X direction), and a load in the vehicle width direction (Y direction). It is a diagram which shows Fy and these resultant force F. FIG. Also from this figure, it can be seen that, in the outer vertical spot weld row 26, the shear load acting on the spot welding point S located at the front increases.

図7は、外側縦スポット溶接列26の最前スポット溶接点Sfに複数の帯板34が連結されたモデルを示している。この図に示される如く、最前スポット溶接点Sfに連結された帯板34は、全て最前スポット溶接点Sfに引張荷重を作用させることとなる。これら複数の帯板34のうち、何れの帯板34が最前スポット溶接点Sfに作用させる荷重が大きいのかについて検討する。   FIG. 7 shows a model in which a plurality of strips 34 are connected to the foremost spot welding point Sf of the outer vertical spot welding row 26. As shown in this figure, the strips 34 connected to the foremost spot welding point Sf all apply a tensile load to the foremost spot welding point Sf. It will be examined which of the plurality of strips 34 has a large load applied to the foremost spot welding point Sf.

図8は、最前スポット溶接点Sfと内側縦スポット溶接列28の各スポット溶接点Sとを連結した帯板34毎の歪(すなわち荷重)を、図7の帯板モデルにて計算した結果を示している。図8の横軸は、外側縦スポット溶接列26と内側縦スポット溶接列28との車幅方向に沿った距離Lw(図7参照)に対する、最前スポット溶接点Sfからの車両前後方向に沿った離間距離Xを示している。この図から、X/Lw=1の場合、すなわち最前スポット溶接点Sfから車両前後方向に対し45°方向に延在する帯板34が、最前スポット溶接点Sfに作用させる荷重が最大であることが判る。   FIG. 8 shows the result of calculating the strain (that is, the load) for each strip 34 connecting the foremost spot welding point Sf and each spot welding point S in the inner vertical spot weld row 28 using the strip model shown in FIG. Show. The horizontal axis in FIG. 8 is along the vehicle longitudinal direction from the foremost spot welding point Sf with respect to the distance Lw (see FIG. 7) between the outer vertical spot weld row 26 and the inner vertical spot weld row 28 along the vehicle width direction. The separation distance X is shown. From this figure, in the case of X / Lw = 1, that is, the load exerted on the foremost spot welding point Sf by the strip 34 extending from the foremost spot welding point Sf in the direction of 45 ° with respect to the vehicle longitudinal direction is maximum. I understand.

この点につき補足すると、図9(B)に示される如く、最前スポット溶接点Sfと該最前スポット溶接点Sfから前後方向に距離Xだけ離間したスポット溶接点Sとを連結する帯板34は、上記した矩形パネル部12Aのせん断変形に伴ってスポット溶接点Sが後方にdXだけ変位すると、その長さがLからL+dLに伸びる。この伸びに伴う歪(L+dL)/Lが最大となる帯板34が最大の荷重を最前スポット溶接点Sfに作用させるところ、図9(A)にも示される如く、X/Lw=1となる点に位置するスポット溶接点Sにつながる帯板34が上記せん断変形に伴うひずみが最大となる。また、X/Lw=1となる点から前後に遠ざかるほど最前スポット溶接点Sfに作用する荷重が低減されることが判る。   Supplementing this point, as shown in FIG. 9 (B), a strip plate 34 that connects the foremost spot welding point Sf and the spot welding point S that is separated from the foremost spot welding point Sf by a distance X in the front-rear direction, When the spot welding point S is displaced backward by dX along with the shear deformation of the rectangular panel portion 12A, the length increases from L to L + dL. When the strip 34 having the maximum strain (L + dL) / L accompanying this elongation applies the maximum load to the foremost spot welding point Sf, as shown in FIG. 9A, X / Lw = 1. The band plate 34 connected to the spot welding point S located at the point has the maximum strain due to the shear deformation. Moreover, it turns out that the load which acts on the foremost spot welding point Sf is reduced, so that it distances back and forth from the point used as X / Lw = 1.

ここで、車体フロア構造10では、内側縦スポット溶接列28における最前スポット溶接点Sfから略45°方向のスポット溶接点Sの密度が疎であるため、換言すれば、最前スポット溶接点Sfへの作用させる荷重が大きい45°付近の帯板34が間引かれたものと捉えることができるので、最前スポット溶接点Sfに作用するせん断荷重を低減させることができる。   Here, in the vehicle body floor structure 10, since the density of the spot welding points S in the direction of about 45 ° from the foremost spot welding point Sf in the inner vertical spot welding row 28 is sparse, in other words, to the foremost spot welding point Sf. Since it can be understood that the strip 34 around 45 ° where the applied load is large is thinned out, the shear load acting on the foremost spot welding point Sf can be reduced.

図3(A)は、この効果を検証する車体フロア構造10の検証モデルを示しており、図3(B)は、上記した比較例に係る外側縦スポット溶接列100、内側縦スポット溶接列102が適用された車体フロア構造のモデルが示されている。そして、図4(A)は、図3(A)の検証モデルを用いた帯板モデルにて外側縦スポット溶接列26の各スポット溶接点Sに作用するせん断荷重を計算した結果である。一方、図4(B)は、図3(B)の比較例モデルを用いた帯板モデルにて外側縦スポット溶接列100の各スポット溶接点Sに作用するせん断荷重を計算した結果である。図4(A)と図4(B)とでは、縦軸、横軸とも同じスケールとされている。   FIG. 3A shows a verification model of the vehicle body floor structure 10 for verifying this effect. FIG. 3B shows an outer vertical spot weld row 100 and an inner vertical spot weld row 102 according to the comparative example described above. A model of a vehicle body floor structure to which is applied is shown. FIG. 4A shows the result of calculating the shear load acting on each spot welding point S of the outer vertical spot weld row 26 in the strip model using the verification model of FIG. 3A. On the other hand, FIG. 4B is a result of calculating a shear load acting on each spot welding point S of the outer longitudinal spot weld row 100 in a strip model using the comparative example model of FIG. 3B. 4A and 4B, the vertical axis and the horizontal axis are the same scale.

これら図4(A)と図4(B)との比較から、車体フロア構造10においては、外側縦スポット溶接列26の最大せん断荷重、すなわち最前スポット溶接点Sfのせん断荷重が比較例に対し10%強ほど低下していることが判る。   4A and 4B, in the vehicle body floor structure 10, the maximum shear load of the outer vertical spot weld row 26, that is, the shear load of the front spot weld point Sf is 10 compared to the comparative example. It can be seen that the percentage has declined by just over a percent.

したがって、本発明の実施形態に係る車体フロア構造10では、適用された車両の前面衝突に伴い矩形パネル部12Aがせん断を受けた場合に、最前スポット溶接点Sfに作用するせん断荷重(応力)が緩和され、該最前スポット溶接点Sfを含む外側縦スポット溶接列26の各スポット溶接点Sでの接合が維持され易い。同様に、車体フロア構造10では、適用された車両の前面衝突に伴い矩形パネル部12Aがせん断を受けた場合に、最後スポット溶接点Stに作用するせん断荷重(応力)が緩和され、該最後スポット溶接点Stを含む内側縦スポット溶接列28の各スポット溶接点Sでの接合が維持され易い。   Therefore, in the vehicle body floor structure 10 according to the embodiment of the present invention, the shear load (stress) acting on the foremost spot welding point Sf when the rectangular panel portion 12A is sheared due to the applied frontal collision of the vehicle. It is relaxed and the joining at each spot welding point S of the outer vertical spot welding row 26 including the foremost spot welding point Sf is easily maintained. Similarly, in the vehicle body floor structure 10, when the rectangular panel portion 12 </ b> A is subjected to shear due to the frontal collision of the applied vehicle, the shear load (stress) acting on the last spot welding point St is alleviated, and the last spot Joining at each spot welding point S of the inner vertical spot welding row 28 including the welding point St is easily maintained.

また、車体フロア構造10では、外側縦スポット溶接列26及び内側縦スポット溶接列28のそれぞれにおける特定範囲A以外の範囲Bでのスポット溶接点Sの間隔D2が比較例に係る外側縦スポット溶接列100での間隔Dよりも小であるため、該比較例と同等以上の弾性域でのせん断剛性を確保することができる。   Moreover, in the vehicle body floor structure 10, the distance D2 of the spot welding points S in the range B other than the specific range A in each of the outer vertical spot weld row 26 and the inner vertical spot weld row 28 is the outer vertical spot weld row according to the comparative example. Since it is smaller than the interval D at 100, it is possible to ensure shear rigidity in an elastic region equal to or greater than that of the comparative example.

この点につき補足すると、図9(A)に示される如く、最前スポット溶接点Sfにつながる各帯板34の前後方向の荷重Fxは、X/Lwが1〜2の間に位置するスポット溶接点Sにつながる帯板34について最大となることが判る。したがって、X/Lw>1の部分を含む上記範囲Bでスポット溶接点Sの間隔D2を小さくする(スポット溶接点Sを密に配置する)ことで、せん断剛性の向上に寄与する。この実施形態では、比較例に対し最大せん断荷重を低減させる効果を得る一方、同等以上の前後方向のせん断剛性が得られることが確認されている。   Supplementing this point, as shown in FIG. 9 (A), the load Fx in the front-rear direction of each strip 34 connected to the foremost spot welding point Sf is a spot welding point located between X and Lw of 1 to 2. It can be seen that the strip 34 connected to S is the maximum. Therefore, by reducing the distance D2 between the spot welding points S in the above-described range B including the portion of X / Lw> 1, it contributes to the improvement of shear rigidity. In this embodiment, it has been confirmed that, while obtaining the effect of reducing the maximum shear load with respect to the comparative example, the shear rigidity in the front-rear direction equal to or greater than that can be obtained.

以上まとめると、本実施形態に係る車体フロア構造10では、外側縦スポット溶接列26の最前スポット溶接点Sfから略45°方向に位置する、内側縦スポット溶接列28の特定範囲Aでスポット溶接点Sの密度を疎にしたため、前面衝突の際に外側縦スポット溶接列26の最前スポット溶接点Sfに作用するせん断荷重を緩和し、接合を維持することができる。同様に、内側縦スポット溶接列28の最後スポット溶接点Stから略45°方向の特定範囲Aに位置する、内側縦スポット溶接列28の特定範囲Aでスポット溶接点Sの密度を疎にしたため、前面衝突の際に内側縦スポット溶接列28の最後スポット溶接点Stに作用するせん断荷重を緩和し、接合を維持することができる。   In summary, in the vehicle body floor structure 10 according to the present embodiment, spot welding points are located within a specific range A of the inner vertical spot welding row 28 located approximately 45 ° from the foremost spot welding point Sf of the outer vertical spot welding row 26. Since the density of S is made sparse, the shear load acting on the foremost spot welding point Sf of the outer vertical spot weld row 26 at the time of frontal collision can be alleviated and the joining can be maintained. Similarly, since the density of the spot welding points S is sparse in the specific range A of the inner vertical spot weld row 28 located in the specific range A in the direction of about 45 ° from the last spot weld point St of the inner vertical spot weld row 28, The shear load acting on the last spot welding point St of the inner vertical spot weld row 28 during the frontal collision can be alleviated and the joining can be maintained.

また、車体フロア構造10では、外側縦スポット溶接列26及び内側縦スポット溶接列28における特定範囲以外の範囲Bでスポット溶接点Sの密度を密にしたため、所要のせん断剛性を確保することができる。   Moreover, in the vehicle body floor structure 10, since the density of the spot welding points S is made dense in the range B other than the specific range in the outer vertical spot weld row 26 and the inner vertical spot weld row 28, the required shear rigidity can be ensured. .

そして、車体フロア構造10では、フロアパネル12の矩形パネル部12Aにビードを形成したり補強部材を接合したりすることなく、該フロアパネル12と骨格構造体14との接合が確保される。すなわち、車体フロア構造10では、フロアパネル12の形状変更により共振周波数や床下の風流れ等に影響を与えることなく、フロアパネル12と骨格構造体14との接合が確保される。   In the vehicle body floor structure 10, the bonding of the floor panel 12 and the skeletal structure 14 is ensured without forming a bead or joining a reinforcing member to the rectangular panel portion 12 </ b> A of the floor panel 12. That is, in the vehicle body floor structure 10, the joining of the floor panel 12 and the skeleton structure 14 is ensured without affecting the resonance frequency, the wind flow under the floor, and the like by changing the shape of the floor panel 12.

なお、上記した実施形態では、矩形パネル部12Aが車幅方向に対し車両前後方向に長い矩形状である例を示したが、本発明はこれに限定されず、例えば、図10に示される如く車幅方向に長い矩形状の矩形パネル部50に対し本発明を適用しても良い。この場合、最前スポット溶接点Sfに対し45°方向の特定範囲Aは、後側横スポット溶接列32に設定され、最後スポット溶接点Stに対し45°方向の特定範囲Aは、前側横スポット溶接列30に設定されることとなる。この変形例に係る構成においても、上記実施形態と同様の作用によって同様の効果を得ることができる。この変形例においては、前側横スポット溶接列30、後側横スポット溶接列32が本発明における接合部に相当する。また、前側横スポット溶接列30が本発明における前辺接合部に相当し、後側横スポット溶接列32が本発明における後辺接合部に相当する。   In the above-described embodiment, the example in which the rectangular panel portion 12A has a rectangular shape that is long in the vehicle front-rear direction with respect to the vehicle width direction has been described. However, the present invention is not limited to this, and for example, as shown in FIG. You may apply this invention with respect to the rectangular-shaped rectangular panel part 50 long in a vehicle width direction. In this case, the specific range A in the 45 ° direction with respect to the foremost spot welding point Sf is set in the rear lateral spot welding row 32, and the specific range A in the 45 ° direction with respect to the last spot welding point St is in the front lateral spot welding. It will be set in column 30. Also in the configuration according to this modification, the same effect can be obtained by the same operation as in the above embodiment. In this modification, the front lateral spot weld row 30 and the rear lateral spot weld row 32 correspond to the joint portion in the present invention. Further, the front lateral spot weld row 30 corresponds to the front side joint portion in the present invention, and the rear side spot weld row 32 corresponds to the rear side joint portion in the present invention.

また、上記した実施形態では、矩形パネル部12Aの四辺がそれぞれ枠状骨格部14Aに接合された例を示したが、本発明はこれに限定されず、例えば、図11に示される如く車両前後方向に長い矩形パネル部12Aにおいては、外側縦スポット溶接列26、内側縦スポット溶接列28を必須要件とし、前側横スポット溶接列30、後側横スポット溶接列32を必須要件として考慮しなくても良く、実際に前側横スポット溶接列30、後側横スポット溶接列32を有しない構成とすることも可能である。すなわち、本発明におけるパル部材は、矩形枠状の骨格構造体に接合されたものと把握されるのには限られず、また、パネル部材における並列された一対の骨格部材間の位置する矩形状部分に本発明を適用することができる。   Further, in the above-described embodiment, an example in which the four sides of the rectangular panel portion 12A are joined to the frame-like skeleton portion 14A has been shown. However, the present invention is not limited to this, for example, as shown in FIG. In the rectangular panel portion 12A that is long in the direction, the outer vertical spot weld row 26 and the inner vertical spot weld row 28 are essential requirements, and the front lateral spot weld row 30 and the rear lateral spot weld row 32 are not considered as essential requirements. It is also possible to have a configuration that does not actually have the front lateral spot weld row 30 and the rear lateral spot weld row 32. That is, the pal member in the present invention is not limited to being grasped as being joined to the rectangular frame-like skeleton structure, and the rectangular portion located between the pair of skeleton members arranged in parallel in the panel member. The present invention can be applied to.

さらに、本発明は、ロッカ16、アンダリインフォースメント18、トルクボックス20、フロアクロスメンバ22で構成された骨格構造体14にフロアパネル12を接合する車体フロア構造10に適用されることに限定されることはなく、各種部位に適用可能である。   Furthermore, the present invention is limited to being applied to the vehicle body floor structure 10 in which the floor panel 12 is joined to the skeleton structure 14 constituted by the rocker 16, the under reinforcement 18, the torque box 20, and the floor cross member 22. There is nothing, and it is applicable to various parts.

またさらに、上記した実施形態では、複数の接合点がスポット溶接点Sである例を示したが、本発明はこれに限定されず、複数の接合点の一部又は全部をスポット溶接点Sに代えて、ボルトやリベット等の締結手段とした構成としても良い。   Furthermore, in the above-described embodiment, an example in which the plurality of joint points are spot welding points S has been shown, but the present invention is not limited to this, and some or all of the plurality of joint points are spot welding points S. Instead, it may be configured as fastening means such as bolts and rivets.

また、上記した実施形態では、外側縦スポット溶接列26、内側縦スポット溶接列28、前側横スポット溶接列30、後側横スポット溶接列32は、スポット溶接点Sが一直線状に配置された例を示したが、本発明はこれに限定されず、例えば、スポット溶接点Sがジグザグに配置されたり、複数列配置されたりした構成としても良い。   In the above-described embodiment, the outer vertical spot weld row 26, the inner vertical spot weld row 28, the front side spot weld row 30, and the rear side spot weld row 32 are examples in which the spot welding points S are arranged in a straight line. However, the present invention is not limited to this. For example, the spot welding points S may be arranged in a zigzag manner or in a plurality of rows.

本発明の実施形態に係る車体フロア構造を模式的に示す平面図である。1 is a plan view schematically showing a vehicle body floor structure according to an embodiment of the present invention. 本発明の実施形態に係る車体フロア構造の概略全体構成を示す平面図である。1 is a plan view showing a schematic overall configuration of a vehicle body floor structure according to an embodiment of the present invention. 本発明の実施形態に係る車体フロア構造の数値計算用の検証モデルを示す図、(B)は、比較例の計算用モデルを示す図である。The figure which shows the verification model for the numerical calculation of the vehicle body floor structure which concerns on embodiment of this invention, (B) is a figure which shows the calculation model of a comparative example. (A)は、本発明の実施形態に係る車体フロア構造における外側縦スポット溶接列の各スポット接合点に作用する荷重を示す線図、(B)は、比較例に係る車体フロア構造における外側縦スポット溶接列の各スポット接合点に作用する荷重を示す線図である。(A) is a diagram which shows the load which acts on each spot junction of the outer side vertical spot welding row | line | column in the vehicle body floor structure which concerns on embodiment of this invention, (B) is the outer side vertical in the vehicle body floor structure which concerns on a comparative example. It is a diagram which shows the load which acts on each spot junction of a spot welding row | line | column. 本発明の実施形態に係る車体フロア構造における外側縦スポット溶接列の各スポット接合点に作用する荷重を計算するための帯板モデルの概念図である。It is a conceptual diagram of the strip model for calculating the load which acts on each spot junction of the outer side vertical spot weld row | line | column in the vehicle body floor structure which concerns on embodiment of this invention. 図5に示す帯板モデルを用いた数値計算結果を示す図であって、(A)は各スポット接合点の荷重ベクトルを示す図、(B)は各スポット接合点の荷重レベルを示す線図である。It is a figure which shows the numerical calculation result using the strip model shown in FIG. 5, Comprising: (A) is a figure which shows the load vector of each spot joining point, (B) is a diagram which shows the load level of each spot joining point It is. 特定のスポット溶接点につながる複数の帯板の引張荷重を計算するための帯板モデルの概念図である。It is a conceptual diagram of the strip model for calculating the tensile load of the some strip connected to a specific spot welding point. 図5に示す帯板モデルを用いて各帯板に作用する荷重を計算した結果を示す線図である。It is a diagram which shows the result of having calculated the load which acts on each strip using the strip model shown in FIG. (A)は、図8よりも広い範囲で帯板に作用する荷重を計算した結果を示す線図、(B)は帯板の変形を模式的に示す図である。である。(A) is a diagram which shows the result of having calculated the load which acts on a strip in a wider range than FIG. 8, (B) is a figure which shows typically a deformation | transformation of a strip. It is. 本発明の実施形態の第1変形例に係る車体フロア構造を模式的に示す平面図である。It is a top view showing typically the body floor structure concerning the 1st modification of an embodiment of the present invention. 本発明の実施形態の第2変形例に係る車体フロア構造を模式的に示す平面図である。It is a top view showing typically the body floor structure concerning the 2nd modification of an embodiment of the present invention.

符号の説明Explanation of symbols

10 車体フロア構造(パネル接合構造)
12 フロアパネル(パネル部材)
14 骨格構造部
16 ロッカ(第1骨格部材、第2骨格部材)
18 アンダリインフォースメント(第2骨格部材、第1骨格部材)
20 ダッシュクロスメンバ
22 フロアクロスメンバ
26 外側縦スポット溶接列(接合部、第1接合部、第2接合部、外辺接合部)
28 内側縦スポット溶接列(接合部、第2接合部、第1接合部、内辺接合部)
30 前側横スポット溶接列(接合部、前辺接合部)
32 後側横スポット溶接列(接合部、後辺接合部)
50 矩形パネル部(パネル部材)
S スポット溶接点(接合点)
Sf 最前スポット溶接点(端部接合点)
St 最後スポット溶接点(端部接合点)
10 Car body floor structure (panel joint structure)
12 Floor panels (panel members)
14 skeleton structure part 16 rocker (first skeleton member, second skeleton member)
18 Under reinforcement (2nd skeleton member, 1st skeleton member)
20 dash cross member 22 floor cross member 26 outer vertical spot weld row (joint, first joint, second joint, outer joint)
28 Inner vertical spot weld row (joint, second joint, first joint, inner joint)
30 Front side horizontal spot weld row (joint, front joint)
32 Rear side spot weld row (joint, rear joint)
50 Rectangular panel (panel member)
S Spot welding point (joint point)
Sf Front spot welding point (end joint)
St Last spot welding point (end joint)

Claims (7)

パネル部材と、
四辺を有する矩形枠状を成す骨格構造体と、
前記骨格構造体の四辺のそれぞれと前記パネル部材とを、前記骨格構造体における並列する二辺が長手方向に相対変位した場合に角度が小さくなる特定の角部から該相対変位の方向に対し45°を成す方向に位置する特定部分での接合点の密度が他の部分での接合点の密度よりも疎となるように、該骨格構造体の各辺においてそれぞれの長手方向に離間した複数の接合点にて接合した接合部と、
を備えたパネル接合構造。
A panel member;
A skeleton structure having a rectangular frame shape having four sides;
And each said panel member of the four sides of the framework structure, two sides parallel Shi pairs in the direction of said relative displacement from a specific corner angle decreases when displaced relative to the longitudinal direction of the framework structure 4 such that the density of the junction of a particular portion located in a direction forming a 5 ° is sparse than the density of the junction at other parts, spaced respective longitudinal direction at each side of the backbone structure A joint joined at a plurality of joint points;
Panel junction structure with
前記接合部は、前記骨格構造体における前記特定の角部の対角となる角部を成す二辺の何れか一方における長手方向の端部間に前記特定部分が位置しており、該特定部分での接合点の密度が前記二辺の何れか一方における他の部分での接合点の密度よりも疎とされて構成されている請求項1記載のパネル接合構造。   In the joint portion, the specific portion is located between end portions in the longitudinal direction of any one of two sides forming a corner portion opposite to the specific corner portion in the skeleton structure, and the specific portion The panel bonding structure according to claim 1, wherein the density of the bonding points at the point is made sparser than the density of bonding points at the other part of either one of the two sides. パネル部材と、
所定間隔で並列して配置された第1骨格部材及び第2骨格部材と、
前記第1骨格部材と前記パネル部材とを該第1骨格部材の長手方向に離間した複数の接合点で接合し、該第1骨格部材における前記第2骨格部材に対し長手方向に相対変位する際の先頭側に位置する接合点が端部接合点とされた第1接合部と、
前記第2骨格部材と前記パネル部材とを、前記端部接合点から前記第1骨格部材の長手方向に対し45°の方向に位置する特定部分での接合点の密度が他の部分での接合点の密度よりも疎となるように、前記第2骨格部材の長手方向に離間した複数の接合点にて接合した第2接合部と、
を備えたパネル接合構造。
A panel member;
A first skeleton member and a second skeleton member arranged in parallel at a predetermined interval;
When the first skeleton member and the panel member are joined at a plurality of joint points separated in the longitudinal direction of the first skeleton member and are relatively displaced in the longitudinal direction with respect to the second skeleton member of the first skeleton member. A first joint where the joint located on the top side of the first end is the end joint;
And said panel member and the second frame member, a density of other parts of the junction of a particular portion located in the direction of the longitudinal pair and 4 5 ° of the first frame member from said end junction A second joining portion joined at a plurality of joining points spaced apart in the longitudinal direction of the second skeleton member so as to be sparser than the density of the joining points;
Panel junction structure with
フロアパネルと、
車体における車幅方向外端で車両前後方向に延在されたロッカと、
前記ロッカに対する車幅方向内側で車両前後方向に延在された前後メンバ部材と、
車幅方向に延在され、前記ロッカと前記前後メンバとを架け渡す第1クロスメンバと、
車幅方向に延在され、前記第1クロスメンバに対する車両前後方向の後側で前記ロッカと前記前後メンバとを架け渡す第2クロスメンバと、
前記フロアパネルと前記ロッカとを、該ロッカの長手方向に離間した複数の接合点にて接合した外辺接合部と、
前記前後メンバ又は前記第2クロスメンバと前記フロアパネルとを、前記外辺接合部における最前の接合点から車両前後方向に対し45°の方向に位置する特定部分の接合点の密度が他の部分での接合点の密度よりも疎となるように、前記前後メンバ又は前記第2クロスメンバの長手方向に離間した複数の接合点にて接合した内辺又は後辺接合部と、
を備えた車体フロア構造。
Floor panels,
A rocker extending in the vehicle longitudinal direction at the vehicle width direction outer end of the vehicle body,
Front and rear member members extending in the vehicle front-rear direction on the inner side in the vehicle width direction with respect to the rocker;
A first cross member that extends in the vehicle width direction and bridges the rocker and the front and rear members;
A second cross member that extends in the vehicle width direction and bridges the rocker and the front and rear members on the rear side in the vehicle front-rear direction with respect to the first cross member;
An outer side joint part that joins the floor panel and the rocker at a plurality of joint points spaced in the longitudinal direction of the rocker;
Said front and rear member or the second cross member and the floor panel, the density of the bonding point of the particular portion located in the direction of the against the junction of the foremost in the longitudinal direction of the vehicle 4 5 ° in the perimeter joints other An inner side or a rear side joined part joined at a plurality of joined points spaced apart in the longitudinal direction of the front and rear members or the second cross member so as to be sparser than the density of the joined points in the part of
Body floor structure with
フロアパネルと、
車体における車幅方向外端で車両前後方向に延在されたロッカと、
前記ロッカに対する車幅方向内側で車両前後方向に延在された前後メンバと、
車幅方向に延在され、前記ロッカと前記前後メンバとを架け渡す第1クロスメンバと、
車幅方向に延在され、前記第1クロスメンバに対する車両前後方向の後側で前記ロッカと前記前後メンバとを架け渡す第2クロスメンバと、
前記フロアパネルと前記前後メンバとを、該前後メンバの長手方向に離間した複数の接合点にて接合した内辺接合部と、
前記ロッカ又は前記第1クロスメンバと前記フロアパネルとを、前記内辺接合部における最後の接合点から車両前後方向に対し45°の方向に位置する特定部分の接合点の密度が他の部分での接合点の密度よりも疎となるように、前記ロッカ又は前記第1クロスメンバの長手方向に離間した複数の接合点にて接合した外辺又は前辺接合部と、
を備えた車体フロア構造。
Floor panels,
A rocker extending in the vehicle longitudinal direction at the vehicle width direction outer end of the vehicle body,
Front and rear members extending in the vehicle front-rear direction on the inner side in the vehicle width direction with respect to the rocker;
A first cross member that extends in the vehicle width direction and bridges the rocker and the front and rear members;
A second cross member that extends in the vehicle width direction and bridges the rocker and the front and rear members on the rear side in the vehicle front-rear direction with respect to the first cross member;
An inner side joint portion that joins the floor panel and the front and rear members at a plurality of joint points spaced in the longitudinal direction of the front and rear members;
The said rocker or the first cross member and the floor panel, the density of the bonding point of the particular portion located in the direction of and against the vehicle longitudinal direction from the last junction 4 5 ° in the inner side joint of the other An outer side or a front side joined part joined at a plurality of joined points spaced apart in the longitudinal direction of the rocker or the first cross member so as to be sparser than the density of the joined points at the part;
Body floor structure with
フロアパネルと、
車体における車幅方向外端で車両前後方向に延在されたロッカと、
前記ロッカに対する車幅方向内側で車両前後方向に延在された前後メンバと、
車幅方向に延在され、前記ロッカと前記前後メンバとを架け渡す第1クロスメンバと、
車幅方向に延在され、前記第1クロスメンバに対する車両前後方向の後側で前記ロッカと前記前後メンバとを架け渡す第2クロスメンバと、
前記前後メンバ又は前記第2クロスメンバと前記フロアパネルとを、前記ロッカと前記第1クロスメンバとの角部における前記フロアパネルとの接合点から車両前後方向に対し45°の方向に位置する特定部分の接合点の密度が他の部分での接合点の密度よりも疎となるように、前記前後メンバ又は前記第2クロスメンバの長手方向に離間した複数の接合点にて接合した内辺又は後辺接合部と、
前記ロッカ又は前記第1クロスメンバと前記フロアパネルとを、前記前後メンバと前記第2クロスメンバとの角部における前記フロアパネルとの接合点から車両前後方向に対し45°の方向に位置する特定部分の接合点の密度が他の部分での接合点の密度よりも疎となるように、前記ロッカ又は前記第1クロスメンバの長手方向に離間した複数の接合点にて接合した外辺又は前辺接合部と、
を備えた車体フロア構造。
Floor panels,
A rocker extending in the vehicle longitudinal direction at the vehicle width direction outer end of the vehicle body,
Front and rear members extending in the vehicle front-rear direction on the inner side in the vehicle width direction with respect to the rocker;
A first cross member that extends in the vehicle width direction and bridges the rocker and the front and rear members;
A second cross member that extends in the vehicle width direction and bridges the rocker and the front and rear members on the rear side in the vehicle front-rear direction with respect to the first cross member;
Said longitudinal member or said second cross member and the floor panel, located in the direction of the longitudinal direction of the vehicle in pairs and 4 5 ° from the junction point between the floor panel at the corner portion between the rocker and the first cross member The inner parts joined at a plurality of joining points separated in the longitudinal direction of the front and rear members or the second cross member so that the density of the joining points of the specific part is sparser than the density of the joining points in the other parts. Side or rear side joint,
The rocker or the first cross member and the floor panel, located in the direction of the longitudinal direction of the vehicle in pairs and 4 5 ° from the junction of the floor panel and at the corners of the front and rear members and the second cross member The outer edge joined at a plurality of joint points separated in the longitudinal direction of the rocker or the first cross member so that the density of the joint points of the specific part is sparser than the density of the joint points in the other part. Or the front side joint,
Body floor structure with
前記接合部の各接合点は、スポット溶接による接合点である請求項4〜請求項6の何れか1項記載の車体フロア構造。   The vehicle body floor structure according to any one of claims 4 to 6, wherein each joint point of the joint portion is a joint point by spot welding.
JP2008240846A 2008-09-19 2008-09-19 Panel joint structure Expired - Fee Related JP5228732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240846A JP5228732B2 (en) 2008-09-19 2008-09-19 Panel joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240846A JP5228732B2 (en) 2008-09-19 2008-09-19 Panel joint structure

Publications (2)

Publication Number Publication Date
JP2010070100A JP2010070100A (en) 2010-04-02
JP5228732B2 true JP5228732B2 (en) 2013-07-03

Family

ID=42202276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240846A Expired - Fee Related JP5228732B2 (en) 2008-09-19 2008-09-19 Panel joint structure

Country Status (1)

Country Link
JP (1) JP5228732B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5742574B2 (en) * 2011-08-10 2015-07-01 トヨタ自動車株式会社 Vehicle roof structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3307870B2 (en) * 1997-12-29 2002-07-24 ダイハツ工業株式会社 Car body side sill reinforcement structure
JP2005219521A (en) * 2004-02-03 2005-08-18 Toyota Motor Corp Vehicle body lower part structure
JP4744366B2 (en) * 2006-06-02 2011-08-10 トヨタ自動車株式会社 Body floor structure

Also Published As

Publication number Publication date
JP2010070100A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP6332250B2 (en) Vehicle floor structure
JP6449562B2 (en) Vehicle frame structure
US7008007B2 (en) Vehicle body end structure
JP5432269B2 (en) Car body rear structure
US8070217B2 (en) Vehicle body rear part structure
US11904674B2 (en) Battery pack support structure
CN114206710A (en) Vehicle body structure
WO2016098731A1 (en) Vehicular frame
CN105923048A (en) Frame Structure For Vehicle
JP5695556B2 (en) Car cabin structure
JP4852017B2 (en) Body superstructure
WO2016208409A1 (en) Vehicle body front structure
JP5228732B2 (en) Panel joint structure
US11603136B2 (en) Vehicle body
JP2023039627A (en) vehicle
JP2016155509A (en) Shock absorbing member
JP5527178B2 (en) Body structure
US10814810B2 (en) Bumper apparatus for vehicle
JP2001030954A (en) Front part structure of automobile body
JP4910731B2 (en) Connecting structure of vehicle frame member
JP6384562B2 (en) Vehicle front structure
JP2021014184A (en) Vehicle upper structure
JP7560807B2 (en) Rocker and vehicle structure equipped with the rocker
JP4744366B2 (en) Body floor structure
JP2020083137A (en) Steering column support structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees