JP5228376B2 - 赤外線遮蔽微粒子およびその製造方法、赤外線遮蔽微粒子分散体、赤外線遮蔽体、ならびに赤外線遮蔽基材 - Google Patents
赤外線遮蔽微粒子およびその製造方法、赤外線遮蔽微粒子分散体、赤外線遮蔽体、ならびに赤外線遮蔽基材 Download PDFInfo
- Publication number
- JP5228376B2 JP5228376B2 JP2007137882A JP2007137882A JP5228376B2 JP 5228376 B2 JP5228376 B2 JP 5228376B2 JP 2007137882 A JP2007137882 A JP 2007137882A JP 2007137882 A JP2007137882 A JP 2007137882A JP 5228376 B2 JP5228376 B2 JP 5228376B2
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- infrared shielding
- tungsten oxide
- dispersion
- composite tungsten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paints Or Removers (AREA)
Description
また、遮光部材の観点からは、例えば、窓材等に使用される遮光部材として、可視光領域から近赤外線領域に吸収特性があるカーボンブラック、チタンブラック等の無機顔料、および、可視光領域のみに強い吸収特性のあるアニリンブラック等の有機顔料等を含む黒色系顔料を含有する遮光フィルム、アルミ等の金属を蒸着したハーフミラータイプの遮光部材が提案されている。
本発明者らはさらに研究を続け、当該個々の粒子表面に対して均一に吸着し、被膜を形成する化合物として、有機金属化合物とシラン化合物とが適していることに想到した。つまり、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子の表面を、有機金属化合物で被覆するか、シラン化合物で被覆するか、さらに好ましくは、有機金属化合物とシラン化合物とで被覆することで、当該微粒子へ耐水性および化学安定性を付与できることに想到した。そして当該耐水性および化学安定性を付与したタングステン酸化物微粒子、複合タングステン酸化物微粒子を適用した赤外線遮蔽基材、赤外線遮蔽微粒子分散体等が、耐水性および化学安定性に優れ、且つ、優れた赤外線遮蔽特性を有することを見出し、本発明に至った。
一般式MxWyOz(但し、Mはアルカリ金属から選ばれる1種または2種以上の元素、Wはタングステン、Oは酸素、(0.001≦x/y≦1、2.2≦z/y≦3))で表記される複合タングステン酸化物の微粒子であって、
当該微粒子の平均一次粒径が、1nm以上、800nm以下であり、
当該複合タングステン酸化物の微粒子が有機溶媒中に分散された分散液へ、有機金属化合物を添加し混合液とした後、当該混合液を攪拌しながらシラン化合物を添加して、当該有機金属化合物およびシラン化合物を当該複合タングステン酸化物の微粒子表面に被覆することで得られた、シラン化合物および有機金属化合物で被覆されていることを特徴とする赤外線遮蔽微粒子である。
前記微粒子表面が露出することなく、膜厚5nm以上、30nm以下の前記シラン化合物および有機金属化合物で被覆されていることを特徴とする第1の発明に記載の赤外線遮蔽微粒子である。
有機溶媒に分散された前記複合タングステン酸化物の微粒子の分散液へ、前記有機金属化合物を添加し混合液とした後、当該混合液を攪拌しながら前記シラン化合物を添加し、当該シラン化合物および有機金属化合物を複合タングステン酸化物の微粒子表面に被覆した後、当該混合液を乾固し、当該固化物を解砕処理して得られることを特徴とする第1または第2の発明のいずれかに記載の赤外線遮蔽微粒子である。
前記複合タングステン酸化物の微粒子の粒子径が、5nm以上、2μm以下であることを特徴とする第1〜第3の発明のいずれかに記載の赤外線遮蔽微粒子である。
前記有機金属化合物が、
アルミニウムアルコレートまたはこの重合物、
環状アルミニウムオリゴマー、アルコキシ基含有のアルミニウムキレート、ジルコニウムアルコレートまたはこれらの重合物、
ジルコニウムキレート化合物、チタンアルコレート、またはこれらの重合物、
チタンキレート化合物、
から選ばれる1種または2種以上の化合物であることを特徴とする第1〜第4の発明のいずれかに記載の赤外線遮蔽微粒子である。
前記有機金属化合物の添加量が、前記複合タングステン酸化物の微粒子100重量部に対して、金属元素換算で0.05重量部〜300重量部であることを特徴とする第1〜第5の発明のいずれかに記載の赤外線遮蔽微粒子である。
前記シラン化合物が、一般式Si(OR)4(但し、Rは、同一または異種の炭素原子数1〜6の1価炭化水素基)で表記される4官能性シラン化合物、または、その部分加水分解生成物であることを特徴とする第1〜第6の発明のいずれかに記載の赤外線遮蔽微粒子である。
前記シラン化合物の、前記複合タングステン酸化物の微粒子に対する比率が、含有する二酸化ケイ素換算で、複合タングステン酸化物の微粒子1重量部に対して、0.01〜100重量部であることを特徴とする第1〜第7の発明のいずれかに記載の赤外線遮蔽微粒子である。
前記複合タングステン酸化物の微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.45≦z/y≦2.999)で表記される組成比のマグネリ相を含むことを特徴とする第1〜第8の発明のいずれかに記載の赤外線遮蔽微粒子である。
一般式MxWyOzで表記される前記複合タングステン酸化物の微粒子が、六方晶、正方晶、立方晶、から選ばれる1種または2種以上の結晶構造を有することを特徴とする第1〜第9の発明のいずれかに記載の赤外線遮蔽微粒子である。
Mが、Cs、Rb、K、Liから選ばれる1種または2種以上の元素であり、かつ、前記複合タングステン酸化物微粒子が六方晶の結晶構造を有することを特徴とする第1〜第10の発明のいずれかに記載の赤外線遮蔽微粒子である。
第1〜第11の発明のいずれかに記載の赤外線遮蔽微粒子が、液体媒質または固体媒質中に分散していることを特徴とする赤外線遮蔽微粒子分散体である。
前記固体媒質が、樹脂またはガラスのいずれかであることを特徴とする第12の発明に記載の赤外線遮蔽微粒子分散体である。
前記固体媒質中に前記赤外線遮蔽微粒子が分散している赤外線遮蔽微粒子分散体が、フィルム状またはボード状であることを特徴とする第12または第13の発明に記載の赤外線遮蔽微粒子分散体である。
前記固体媒質中に前記赤外線遮蔽微粒子が分散している赤外線遮蔽微粒子分散体が、粉状であることを特徴とする第12または第13の発明に記載の赤外線遮蔽微粒子分散体である。
第15の発明に記載の粉状の赤外線遮蔽微粒子分散体と、樹脂ペレットとの、混練成形体であることを特徴とする赤外線遮蔽微粒子分散体である。
前記液体媒質が、有機溶媒、樹脂を溶解させた有機溶媒、樹脂を分散させた有機溶媒、水、から選ばれる1種以上の媒質であることを特徴とする第12の発明に記載の赤外線遮蔽微粒子分散体である。
第12の発明に記載の液体媒質中に分散している赤外線遮蔽微粒子分散体、または、第15の発明に記載の固体媒質中に分散している赤外線遮蔽微粒子分散体を液状の溶媒と混合した赤外線遮蔽微粒子分散体、または、第17の発明に記載の赤外線遮蔽微粒子分散体、から選択される1種以上の赤外線遮蔽微粒子分散体が、基材表面に塗布膜形成していることを特徴とする赤外線遮蔽基材である。
一般式MxWyOz(但し、Mはアルカリ金属から選ばれる1種または2種以上の元素、Wはタングステン、Oは酸素、(0.001≦x/y≦1、2.2≦z/y≦3))で表記される複合タングステン酸化物微粒子を、有機溶媒に分散させて分散液を得る工程と、
当該分散液へ、シラン化合物を添加混合および有機金属化合物を添加混合して、当該複合タングステン酸化物微粒子の表面にシラン化合物および有機金属化合物を被覆する工程と、
当該有機溶媒を蒸発除去し、さらに加熱を行い、シラン化合物および有機金属化合物が被覆された、複合タングステン酸化物微粒子の粉状体を得る工程と、
当該粉状体を解砕して、単分散のシラン化合物および有機金属化合物が被覆された複合タングステン酸化物微粒子を得る工程とを、具備する赤外線遮蔽微粒子の製造方法であって、
前記分散液へ、シラン化合物および有機金属化合物を添加混合して、当該複合タングステン酸化物微粒子の表面に、シラン化合物および有機金属化合物を被覆する工程において、
まず、前記分散液へ、前記有機金属化合物を添加混合して、有機金属化合物を含有する分散処理物とし、
次に、当該有機金属化合物を含有する分散処理物へ水を添加混合し、さらに、シラン化合物を添加混合して、有機金属化合物とシラン化合物とを含有する分散液とすることを特徴とする赤外線遮蔽微粒子の製造方法である。
一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、(0.001≦x/y≦1、2.2≦z/y≦3)で表記される複合タングステン酸化物であって、当該微粒子の平均一次粒径が1nm以上800nm以下であり、且つ、当該微粒子表面が、シラン化合物または/および有機金属化合物で被覆されていることを特徴としている。
尚、本発明において、「タングステン酸化物微粒子や複合タングステン酸化物微粒子へ耐水性を付与する為に、当該タングステン酸化物微粒子や複合タングステン酸化物微粒子の表面へ、均一に形成した、金属化合物被膜または/およびシラン化合物被膜による被覆」を、単に「表面被覆」と略記する場合がある。
一般に、自由電子を含む材料は、プラズマ振動によって波長200nmから2600nmの太陽光線の領域周辺の電磁波に反射吸収応答を示すことが知られている。このような物質の粉末を、光の波長より小さい粒径の微粒子とすると、可視光領域(380nmから780nm)の幾何学散乱が低減されて可視光領域の透明性が得られることが知られている。
尚、本明細書において、透明性とは、可視光領域の光に対して散乱が少なく透過性が高いという意味で用いている。
一方、酸素欠損を持つWO3や、WO3にNa等の陽性元素を添加したいわゆるタングステンブロンズは、導電性材料であり、自由電子を持つ材料であることが知られている。そして、これらの自由電子を持つ材料の単結晶等の分析により、赤外線領域の光に対する自由電子の応答が示唆されている。
物である。
x/yの値が0.001より大きければ、十分な量の自由電子が生成され目的とする赤外線遮蔽効果を得ることが出来る。そして、元素Mの添加量が多いほど、自由電子の供給量が増加し、赤外線遮蔽効率も上昇するが、x/yの値が1程度で当該効果も飽和する。また、x/yの値が1より小さければ、当該赤外線遮蔽材料中に不純物相が生成されるのを回避できるので好ましい。
微粒子の可視光領域の透過が向上し、近赤外領域の吸収が向上する。この六方晶の結晶構造の模式的な平面図である図1を参照しながら説明する。図1において、符号1で示すWO6単位にて形成される8面体が、6個集合して六角形の空隙が構成され、当該空隙中に、符号2で示す元素Mが配置して1箇の単位を構成し、この1箇の単位が多数集合して六方晶の結晶構造を構成する。
て低減するため、粒子径の減少に伴い散乱が低減し透明性が向上するからである。さらに粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、粒子径が小さい方が好ましい、粒子径が1nm以上あれば工業的な製造は容易である。
本発明に用いる有機金属化合物は、アルミニウム系有機金属化合物としてアルミニウムアルコレート化合物およびその重合物、アルミニウムキレート化合物、ジルコニア系有機金属化合物としてジルコニウムアルコレート化合物およびその重合物、ジルコニウムキレート化合物、チタン系有機金属化合物としてチタンアルコレート化合物およびその重合物、チタンキレート化合物、から選ばれる一種又は二種以上であることが好ましい。
有機金属化合物が0.05重量部以上あれば表面を被覆する効果が発揮され耐水性向上の効果が得られるからである。
また、有機金属化合物が300重量部以下であれば、前記タングステン酸化物微粒子、複合タングステン酸化物微粒子に対する吸着量が過剰になることを回避出来る。
これは、有機金属化合物の、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子に対する吸着量が過剰になると、溶媒除去時に当該有機金属化合物を介して微粒子同士が造粒し易くなることを回避したいからである。当該望まれない微粒子同士の造粒によって、用途によっては良好な透明性が得られなくなる場合があるからである。加えて、有機金属化合物の過剰によって、相当の有機金属化合物添加量および処理時間を要することとなる為、生産コスト的にも不利となる。よって工業的な観点から有機金属化合物の添加量は、300重量部以下とすることが好ましい。
本発明に用いるシラン化合物は、一般式:Si(OR)4(但し、Rは同一または異種の炭素原子数1〜6の一価炭化水素基)で示される4官能性シラン化合物またはその部分加水分解生成物である。
例えば、シラザン系処理剤、クロロシラン系処理剤、アルコキシ基を分子構造中に有する無機系処理剤、および、アルコキシ基を分子末端または側鎖に有する有機系処理剤から選択されたケイ素を含有する表面処理剤が挙げられる。
具体的には、ヘキサメチルジシラザン、サイクリックシラザン、N,N−ビス(トリメチルシリル)ウレア、N−トリメチルシリルアセトアミド、ジメチルトリメチルシリルアミン、ジエチルトリメチルシリルアミン、トリメチルシリルイミダゾール、N−トリメチルシリルフェニルウレア等が挙げられ、かつ、これ等の加水分解物またはその重合物の適用も可能である。
クロロシラン系処理剤の代表的なものは、メチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、トリフロロプロピルトリクロロシラン、ヘプタデカフロロデシルトリクロロシラン、ビニルトリクロルシラン等が挙げられ、かつ、これ等の加水分解物またはその重合物の適用も可能である。
代表的なものとしては、シラン系カップリング剤等が挙げられる。具体的には、ビニル
トリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、β―(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、γ―グリシドキシプロピルトリメトキシシラン、γ―グリシドキシプロピルトリエトキシシラン、γ―グリシドキシプロピルメチルジエトキシシラン、γ―メタクリロキシプロピルメチルジメトキシシラン、γ―メタクリロキシプロピルトリエトキシシラン、N−β(アミノエチル)γ―アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ―アミノプロピルトリメトキシシラン、γ―アミノプロピルトリメトキシシラン、γ―アミノプロピルトリエトキシシラン、N−フェニルーγ―アミノプロピルトリメトキシシラン、γ―クロロプロピルトリメトキシシラン、γ―メルカプトプロピルトリメトキシシラン等が挙げられる。
更に、アルコキシシラン表面処理剤として分類される以下の化合物、すなわち、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリエトキシシラン、デシルトリメトキシシラン、トリウルオロプロピルトリメトキシシラン、ヘプタデカトリフルオロデシルトリメトキシシラン等が挙げられる。さらに、これらの化合物の加水分解物、または、その重合物の適用も可能である。
また、アルコキシ基を、分子末端または側鎖に有し、主鎖がエポキシ、アクリル、ウレタン等の親油性高分子である有機系処理剤等も有効であるがこの限りではない。
本発明に係る赤外線遮蔽微粒子は、前記タングステン酸化物微粒子または/および複合タングステン酸化物微粒子の表面に、前記有機金属化合物または/およびシラン化合物が、好ましくは前記有機金属化合物およびシラン化合物の被膜が、被覆として形成されたものである。
具体的には、平均一次粒子径が1nm〜800nmのタングステン酸化物微粒子または/および複合タングステン酸化物微粒子を適宜な溶媒中に分散させておき、当該溶媒中へ表面処理剤として、前記シラン化合物または/および有機金属化合物を添加して混合攪拌を行う。すると、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子の表面が、前記シラン化合物または/および有機金属化合物の被膜で被覆される。当該被覆の後、溶媒を蒸発除去し、さらに、被膜の密度や化学的安定性を高める目的で、被覆されている前記シラン化合物や有機金属化合物の熱分解温度以上の温度まで加熱処理して粉状体を得る。得られた粉状体に被覆された被膜を傷つけないよう、乾式または/および湿式で解砕して再分散させたものである。
注意する。これは、表面処理の過程で、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子が凝集を起こし、表面処理が微粒子の凝集の上になされるような状態となった場合、後述する再分散などの粉砕工程を経た際に、表面処理がなされていない面が露出して十分な耐水性を得ることが困難となるからである。
ここで、本発明者らの詳細な検討により、本発明に係る表面処理剤として、前記シラン化合物および前記有機金属化合物の中から適宜選択された材料を単独で用いることの他に、二種類以上を組み合わせて用いる構成が好ましいことが判明した。
具体的には、シラン化合物、有機金属化合物からそれぞれ1種類以上を選択し、2種類以上の化合物の混合物として用いるか、または2種類以上の化合物を別々に添加処理することによって、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子の表面を、複合物による単層の被膜、または、二層以上の多層被膜により被覆することにより、さらに優れた耐水効果を得ることができる。
具体的には、まず、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子を、有機溶媒に分散して分散液を調製する。次に、当該分散液へ、有機金属化合物を混合攪拌して微粒子へ被覆処理を行い、さらに攪拌を継続しながらシラン化合物を滴下混合し、さらに攪拌を継続して、シラン化合物を微粒子へ被覆処理する。
次に、有機溶媒を蒸発除去させて被覆された被膜を固化させ、さらに、有機金属化合物やシラン化合物の熱分解温度以上の温度で加熱処理し、被覆された被膜の密度や化学的安定性を高めて、被覆された微粒子の粉状体を得る。
次に、当該被覆された微粒子の被膜を傷つけないよう、乾式または/および湿式で当該粉状体を解砕して再分散させることで、本発明に係る赤外線遮蔽微粒子を得る。
得られた本発明に係る赤外線遮蔽微粒子は、赤外線遮蔽製品の原料として微粒子状態の
まま、または、液体媒質若しくは固体媒質に分散された状態で用いることが出来る。
また、上述したように、微粒子の表面被覆後における加熱処理は、表面処理剤の熱分解温度以上で行うが、各化合物によって熱分解の温度、速度定数ともに異なる。従って、加熱雰囲気、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子の耐熱温度、を考慮して適宜選択すればよい。
a)赤外線遮蔽微粒子分散体
本発明に係る赤外線遮蔽微粒子分散体は、上記の赤外線遮蔽材料微粒子が液体媒質または固体媒質中に分散しているものである。
本発明に係る赤外線遮蔽微粒子分散体を、赤外線遮蔽微粒子を液体媒質に分散させた状態で利用する場合、液体媒質は、有機溶媒、樹脂を溶解させた有機溶媒、樹脂を分散させた有機溶媒、水、から選択される1種以上の液体媒質を用いることが出来る。
本発明に係る赤外線遮蔽微粒子が、当該液体媒質に分散された分散体を得るには、本発明に係る赤外線遮蔽微粒子を、当該液体媒質に添加して得る方法を採ることが出来る。さらに、本発明に係る赤外線遮蔽微粒子を製造する工程において、上述した被覆処理と同時に赤外線遮蔽微粒子分散体を得る方法を採ってもよい。すなわち、表面処理前のタングステン酸化物微粒子または/および複合タングステン酸化物微粒子と、表面処理剤とを、アルコール、水等の液体媒質に分散させ、被覆処理と同時に、表面処理剤で被覆されたタングステン酸化物微粒子または/および複合タングステン酸化物微粒子が分散された分散体を得る構成を採用してもよい。
本発明に係る赤外線遮蔽微粒子分散体を、当該赤外線遮蔽微粒子が固体媒質に分散された状態で利用する場合、当該赤外線遮蔽微粒子が、樹脂またはガラス等の固体媒質に分散した状態で赤外線遮蔽製品等として使用することができる。
樹脂に対するフィラー量が50重量%以下であれば、樹脂マトリクス中での微粒子同士が造粒を回避出来るので、良好な透明性を保つことが出来る。また、フィラー使用量も制御出来るのでコスト的にも有利である。
また、上述したフィルムやボードの母体となる樹脂は、特に限定されるものではなく用途に合わせて選択可能であるが、耐候性を考慮するとフッ素樹脂が有効である。そして、フッ素樹脂に較べ、低コストで透明性が高く汎用性の広い樹脂として、PET樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂等が挙げられる。
本発明に係る赤外線遮蔽微粒子分散体を固体媒質に分散させた赤外線遮蔽微粒子分散体を、さらに粉砕し粉体とした状態でも利用することが出来る。当該粉状の赤外線遮蔽微粒子分散体においては、既に、赤外線遮蔽微粒子が固体媒質中で十分に分散している。従って、当該粉状の赤外線遮蔽微粒子分散体を所謂マスターバッチとして、適宜な液体溶媒に溶解させたり、樹脂ペレット等と混練することで、容易に、液状または固形状の赤外線遮蔽微粒子分散体を製造することが出来る。
本発明の赤外線遮蔽基材は、基材表面に、本発明に係る赤外線遮蔽材料微粒子を含有する被膜が形成されていることを特徴としている。
基材表面に、本発明に係る赤外線遮蔽微粒子を含有する被膜を形成すれば、耐水性および化学安定性に優れ、かつ赤外線遮蔽材料として好適に利用される赤外線遮蔽基材を得ることができる。
例えば、本発明に係る赤外線遮蔽微粒子を、アルコール等の有機溶媒や水等の液体媒質と、樹脂バインダーと、場合によっては分散剤と、混合した分散体を適宜基材表面に塗布した後、液体媒質を加熱処理して除去し、当該赤外線遮蔽微粒子が基材表面に直接積層された赤外線遮蔽基材が例示される。
尚、前記樹脂バインダー成分としては、用途に合わせて選択可能であり、紫外線硬化樹脂、熱硬化樹脂、常温硬化樹脂、熱可塑樹脂等が挙げられる。また、樹脂バインダー成分を含まない液体媒質が適用された分散体を用いた場合は、赤外線遮蔽微粒子群を基材表面に積層させた後に、樹脂等の成分を含む液体媒質を上層に塗布しても同様の赤外線遮蔽基材を得ることができる。
が、機械的特性、光学特性、耐熱性および経済性の点より好適である。当該ポリエステル系2軸配向フィルムは共重合ポリエステル系であっても良い。
本発明に係る赤外線遮蔽微粒子分散体を用いて、耐水性および化学安定性に優れた、フィルムやボード等の赤外線遮蔽物品が得られる。
これらの赤外線遮蔽物品は、例えば、各種建築物や車両の窓材等であって、可視光線を十分に取り入れながら近赤外領域の光を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制することを目的としたもの、PDP(プラズマディスプレイパネル)に使用され、当該PDPから前方に放射される近赤外線を遮蔽するもの等、に使用することができる。
本実施例において、可視光透過率(VLT、Visible light transmittance)、とは、ヒトの視器官を通して、視感覚を起こすことができる放射光(波長380nm〜780nm)の透過光量の積算値のことであり、D65光源の分光分布と標準比視感度からなる重価係数とより計算された値である。また、日射透過率(ST、Solar Transmittance)とは、可視光から近赤外線領域(波長35
0nm〜2100nm)の透過光量の積算値であり、D65光源の分光分布からなる重価係数より計算された値である。VLT、STともに、JIS A 5759に準ずる方法で測定を行っている(但し、ガラスに貼付せずフィルムのみで測定を行っている)。
膜のヘイズ値は、JIS K 7105に基づいた測定を行った。
平均分散粒子径は、動的光散乱法を用いた測定装置(大塚電子株式会社製 ELS−800)により測定した平均値とした。
耐水性の評価方法は、65℃の温水中に7日間浸漬したとき、可視光透過率70%の試料において、透過率の変化が5ポイント以下のものを良好とし、変化が5ポイントを超えるものは耐水性が不良とした。
尚、ここでいう膜の光学特性値(可視光透過率、ヘイズ値)とは基材フィルム(帝人デュポンフィルム(株)製100μm厚PETフィルム、商品名テトロン(商標)HLEW)を含む値を示し、基材フィルム自体の可視光透過率は90%、ヘイズ値は1.9%である。
イソプロピルアルコール(IPA)3480gにCs0.33WO3粉末(住友金属鉱山(株)製)520gを攪拌混合し、これを媒体攪拌ミルで分散処理して平均分散粒子径100nmの分散液Aを調製した。
次いで、上記分散液A200gとエチルアセトアセテートアルミニウムジイソプロピレート(川研ファインケミカル(株)製、商品名アルミキレートALCH)20gとIPA540gとを混合攪拌した後、超音波ホモジナイザーを用いて分散処理した。
次いで、当該分散処理物を攪拌しながら、当該分散処理物へ、水100gを1時間かけて滴下添加し、さらに攪拌しながら、テトラエトキシシラン(多摩化学(株)製、正珪酸エチル、SiO2換算量28.8%)140gを2時間かけて滴下添加した後、20℃にて15時間の攪拌を行った後、この液を70℃で2時間加熱熟成した。
このAl2O3/SiO2被覆Cs0.33WO3微粒子8gと有機分散剤8gとトルエン84gとを混合し、媒体攪拌ミルで湿式分散処理を行い平均分散粒子径100nmの分散液を調製した。
当該分散液2gと紫外線硬化樹脂(東亞合成(株)製、商品名UV3701)2gをと混合し、塗布液とした。
上記塗布液を、基材として準備した100μm厚のPETフィルム上へ、バーコーター(♯20)を用いて成膜した。そして、70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し膜を硬化させて赤外線遮蔽膜を得た。
この赤外線遮蔽膜を65℃の温水中に7日間浸漬後、可視光透過率を測定したところ、可視光透過率は70.5%、ヘイズは2.5%であった。温水浸漬による可視光透過率の増加量は0.5ポイントと小さく、ヘイズの変化も少ないことがわかった。
IPA−58gと、水−7.2gと10重量%のHNO3−0.1gを仕込み、テトラエトキシシラン(多摩化学(株)製、正珪酸エチル、SiO2換算量28.8%)34.72gを2時間かけて滴下添加し、15時間20℃で攪拌し、SiO2換算で10wt%のシリケート溶液(B液)100gを得た。
次いで、実施例1とは異なりIPAと攪拌混合、媒体攪拌ミルでの分散処理を行っていないCs0.33WO3粉末(住友金属鉱山(株)製)5gに前記B液を添加し、ヘンシェルミキサーを用い、室温(25℃)にて1000rpmの攪拌回転数で30分間混合し、その後、温度を60℃に上昇させると共に回転数を2000rpmに上げて1時間攪拌し、Cs0.33WO3微粒子に対して約2倍重量のSiO2で被覆されたCs0.33WO3微粒子分散液を得た。実施例1と異なり、得られた粉状体を湿式粉砕処理を行わず、混合攪拌のみで分散処理を行った。
上記塗布液を、基材として準備した100μm厚のPETフィルム上へ、バーコーター(♯20)を用いて成膜した。そして、70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し膜を硬化させて赤外線遮蔽膜を得た。
この赤外線遮蔽膜を65℃の温水中に7日間浸漬後、可視光透過率を測定したところ、可視光透過率は79.0%、ヘイズは30.3%であった。温水浸漬による可視光透過率の増加量は8.7ポイントと大きく、被覆の耐水性は不良であった。
比較例1では、個々の粒子に対して均一に被覆処理されなかったばかりか、一次粒子、二次粒子ともに粒度が大きいため、実用的な透明性が得られなかったものと考えられる。
上記分散液A200gとジルコニウムトリブトキシアセチルアセトネート((株)松本交商製、商品名:ZC−540)20gとIPA540gとを混合攪拌した後、超音波ホモジナイザーを用いて分散処理した以外は、実施例1と同様にして、シリカによる表面被覆処理を行い、Cs0.33WO3微粒子に対して、約5重量%のZrO2および約2倍重量のSiO2で被覆されたCs0.33WO3微粒子を得た。
このZrO2/SiO2被覆Cs0.33WO3微粒子8gと有機分散剤8gとトルエン84gとを混合し、分散処理を行い平均分散粒子径100nmの分散液を調製した。この分散液中に分散している表面処理Cs0.33WO3微粒子についてTEM観察を行ったところ、Cs0.33WO3微粒子の表面が露出することなく、5nm〜30nmの範囲の被膜で均一に被覆されていた。
また、EDSを用いて、分散液中に分散している個々の微粒子について組成分析を行ったところ、被膜成分(ZrO2/SiO2)のみからなる固形粒子の析出は確認されなか
った。
当該分散液2gと紫外線硬化樹脂(東亞合成(株)製、商品名UV3701)2gとを混合し、塗布液とした。
上記塗布液を、基材として準備した100μm厚のPETフィルム上へ、バーコーター(♯20)を用いて成膜した。そして、70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し膜を硬化させて赤外線遮蔽膜を得た。
この赤外線遮蔽膜を65℃の温水中に7日間浸漬後、可視光透過率を測定したところ、可視光透過率は71.3%、ヘイズは2.7%であった。温水浸漬による可視光透過率の増加量は1.3ポイントと小さく、ヘイズの変化も少ないことがわかった。
上記分散液A200gとテトラノルマルブチルチタネート((株)松本交商製、商品名:TA−25)20gとIPA540gとを混合攪拌した後、超音波ホモジナイザーを用いて分散処理した以外は、実施例1と同様にして、シリカによる表面被覆処理を行い、Cs0.33WO3微粒子に対して、約5重量%のTiO2および約2倍重量のSiO2で被覆されたCs0.33WO3微粒子を得た。
このTiO2/SiO2被覆Cs0.33WO3微粒子8gと有機分散剤8gとトルエン84gとを混合し、分散処理を行い平均分散粒子径100nmの分散液を調製した。
この分散液中に分散しているTiO2/SiO2被覆Cs0.33WO3微粒子について、TEM観察を行ったところ、Cs0.33WO3微粒子の表面が露出することなく、5nm〜30nmの範囲の被膜で均一に被覆されていた。
また、EDSを用いて、分散液中に分散している個々の微粒子について組成分析を行ったところ、被膜成分(TiO2/SiO2)のみからなる固形粒子の析出は確認されなかった。
基材に100μm厚のPETフィルムを使用し、バーコーター(♯20)を用いて、上記塗布液をPETフィルム上に成膜した。これを70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し、膜を硬化させた。この赤外線遮蔽膜の光学特性を測定したところ、日射透過率は35%であり、実用的な赤外線遮蔽性能を有していた。可視光透過率は70%で可視光領域の光を十分透過している事が分かった。さらにヘイズは2.6%であり、透明性が極めて高く内部の状況が外部からもはっきり確認できた。透過色調は、美しい青色となった。
この赤外線遮蔽膜を65℃の温水中に7日間浸漬後、可視光透過率を測定したところ、可視光透過率は72.1%、ヘイズは2.8%であった。温水浸漬による可視光透過率の増加量は2.1ポイントと小さく、ヘイズの変化も少ないことがわかった。
上記分散液A0.4gとトルエン1.6gと紫外線硬化樹脂(東亞合成(株)製、商品名UV3701)2gとを攪拌混合し、塗布液とした。
基材に100μm厚のPETフィルムを使用し、バーコーター(♯20)を用いて、上記塗布液をPETフィルム上に成膜した。これを70℃で1分間乾燥し、溶媒を蒸発させた後、高圧水銀ランプを用いて紫外線を照射し、膜を硬化させた。この赤外線遮蔽膜の光学特性を測定したところ、日射透過率は35%であり、実用的な赤外線遮蔽性能を有して
いた。可視光透過率は70%で可視光領域の光を十分透過している事が分かった。さらにヘイズは2.3%であり、透明性が極めて高く内部の状況が外部からもはっきり確認できた。透過色調は、美しい青色となった。
上記分散液A200gとエチルアセトアセテートアルミニウムジイソプロピレート(川研ファインケミカル(株)製、商品名アルミキレートALCH)20gとIPA540gとを混合攪拌した後、超音波ホモジナイザーを用いて分散処理した。
次いで、当該分散処理物を攪拌しながら、当該分散処理物へ、水100gを1時間かけて滴下添加し、さらに攪拌しながら、テトラエトキシシラン(多摩化学(株)製、正珪酸エチル、SiO2換算量28.8%)140gを2時間かけて滴下添加した後、20℃にて15時間の攪拌を行った後、この液を70℃で2時間加熱熟成した。
次いで、この熟成液を真空乾燥して溶媒を蒸発させた後、200℃で1時間加熱処理して得られた粉状体を乾式粉砕することで、Cs0.33WO3微粒子に対して約5重量%のAl2O3および約2倍重量のSiO2で被覆された、Cs0.33WO3微粒子を得た。
この粉状体A0.01kgとETFE(テトラフルオロエチレン−エチレン共重合体)樹脂8.7kgとを、Vブレンダーにて乾式混合後、ETFE樹脂の溶融温度付近である320℃で密閉混合を十分に行い、この混合物を320℃にて押出して、約100μmのフィルムに成形した。
当該フィルムの日射透過率は36%であり、実用的な赤外線遮蔽性能を有していた。可視光透過率は70.2%、ヘイズは9.8%だった。
次に、当該フィルムを65℃の温水中に7日間浸漬後、可視光透過率を測定したところ可視光透過率は70.3%、ヘイズは10.1%であった。温水浸漬による可視光透過率の増加量は0.1ポイントであり、ヘイズの変化も少なく、フィルムの耐水性は極めて良好であった。
上記粉状体A0.01kgとPET樹脂8.7kgとをVブレンダーにて乾式混合後、ETFE樹脂の溶融温度付近である300℃で密閉混合を十分に行い、この混合物を300℃にて押出して、約100μmのフィルムに成形した。このときの日射透過率は36%であり、実用的な赤外線遮蔽性能を有していた。可視光透過率は70.8%、ヘイズは1.8%だった。
これを、65℃の温水中に7日間浸漬後、可視光透過率を測定したところ、可視光透過率は71.6%、ヘイズは2.2%であった。温水浸漬による可視光透過率の増加量は0.8ポイントであり、ヘイズの変化も少なく、フィルムの耐水性は極めて良好であった。
上記分散液A40gと有機分散剤4gとトルエン56gとを混合し、ドラム乾燥機を用いて溶媒を除去し、Cs0.33WO3微粒子および上記有機分散剤の加熱残分よりなる粒子径2μmの粉状体Bを得た。
この粉状体B0.01kgとETFE(テトラフルオロエチレン−エチレン共重合体)樹脂8.7kgとをVブレンダーにて乾式混合後、ETFE樹脂の溶融温度付近である320℃で十分に密閉混合を行い、この混合物を320℃にて押出して、約100μmのフィルムに成形した。この時の可視光透過率は69.9%でヘイズは8.8%だった。
当該フィルムを、65℃の温水中に7日間浸漬後、可視光透過率を測定したところ、
日射透過率は43%、可視光透過率は75.1%、ヘイズは14.5%であった。温水浸漬による可視光透過率の増加量は5.2ポイントであり、ヘイズの変化も比較的大きく、フィルムの耐水性は不良であった。
Claims (19)
- 一般式MxWyOz(但し、Mはアルカリ金属から選ばれる1種または2種以上の元素、Wはタングステン、Oは酸素、(0.001≦x/y≦1、2.2≦z/y≦3))で表記される複合タングステン酸化物の微粒子であって、
当該微粒子の平均一次粒径が、1nm以上、800nm以下であり、
当該複合タングステン酸化物の微粒子が有機溶媒中に分散された分散液へ、有機金属化合物を添加し混合液とした後、当該混合液を攪拌しながらシラン化合物を添加して、当該有機金属化合物およびシラン化合物を当該複合タングステン酸化物の微粒子表面に被覆することで得られた、シラン化合物および有機金属化合物で被覆されていることを特徴とする赤外線遮蔽微粒子。 - 前記微粒子表面が露出することなく、膜厚5nm以上、30nm以下の前記シラン化合物および有機金属化合物で被覆されていることを特徴とする請求項1に記載の赤外線遮蔽微粒子。
- 有機溶媒に分散された前記複合タングステン酸化物の微粒子の分散液へ、前記有機金属化合物を添加し混合液とした後、当該混合液を攪拌しながら前記シラン化合物を添加し、当該シラン化合物および有機金属化合物を複合タングステン酸化物の微粒子表面に被覆した後、当該混合液を乾固し、当該固化物を解砕処理して得られることを特徴とする請求項1または2のいずれかに記載の赤外線遮蔽微粒子。
- 前記複合タングステン酸化物の微粒子の粒子径が、5nm以上、2μm以下であることを特徴とする請求項1〜3のいずれかに記載の赤外線遮蔽微粒子。
- 前記有機金属化合物が、
アルミニウムアルコレートまたはこの重合物、
環状アルミニウムオリゴマー、アルコキシ基含有のアルミニウムキレート、ジルコニウムアルコレートまたはこれらの重合物、
ジルコニウムキレート化合物、チタンアルコレート、またはこれらの重合物、
チタンキレート化合物、
から選ばれる1種または2種以上の化合物であることを特徴とする請求項1〜4のいずれかに記載の赤外線遮蔽微粒子。 - 前記有機金属化合物の添加量が、前記複合タングステン酸化物の微粒子100重量部に対して、金属元素換算で0.05重量部〜300重量部であることを特徴とする請求項1〜5のいずれかに記載の赤外線遮蔽微粒子。
- 前記シラン化合物が、一般式Si(OR)4(但し、Rは、同一または異種の炭素原子数1〜6の1価炭化水素基)で表記される4官能性シラン化合物、または、その部分加水分解生成物であることを特徴とする請求項1〜6のいずれかに記載の赤外線遮蔽微粒子。
- 前記シラン化合物の、前記複合タングステン酸化物の微粒子に対する比率が、含有する二酸化ケイ素換算で、複合タングステン酸化物の微粒子1重量部に対して、0.01〜100重量部であることを特徴とする請求項1〜7のいずれかに記載の赤外線遮蔽微粒子。
- 前記複合タングステン酸化物の微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.45≦z/y≦2.999)で表記される組成比のマグネリ相を含むことを特徴とする請求項1〜8のいずれかに記載の赤外線遮蔽微粒子。
- 一般式MxWyOzで表記される前記複合タングステン酸化物の微粒子が、六方晶、正方晶、立方晶、から選ばれる1種または2種以上の結晶構造を有することを特徴とする請求項1〜9のいずれかに記載の赤外線遮蔽微粒子。
- Mが、Cs、Rb、K、Liから選ばれる1種または2種以上の元素であり、かつ、前記複合タングステン酸化物微粒子が六方晶の結晶構造を有することを特徴とする請求項1〜10のいずれかに記載の赤外線遮蔽微粒子。
- 請求項1〜11のいずれかに記載の赤外線遮蔽微粒子が、液体媒質または固体媒質中に分散していることを特徴とする赤外線遮蔽微粒子分散体。
- 前記固体媒質が、樹脂またはガラスのいずれかであることを特徴とする請求項12に記載の赤外線遮蔽微粒子分散体。
- 前記固体媒質中に前記赤外線遮蔽微粒子が分散している赤外線遮蔽微粒子分散体が、フィルム状またはボード状であることを特徴とする請求項12または13に記載の赤外線遮蔽微粒子分散体。
- 前記固体媒質中に前記赤外線遮蔽微粒子が分散している赤外線遮蔽微粒子分散体が、粉状であることを特徴とする請求項12または13に記載の赤外線遮蔽微粒子分散体。
- 請求項15に記載の粉状の赤外線遮蔽微粒子分散体と、樹脂ペレットとの、混練成形体であることを特徴とする赤外線遮蔽微粒子分散体。
- 前記液体媒質が、有機溶媒、樹脂を溶解させた有機溶媒、樹脂を分散させた有機溶媒、水、から選ばれる1種以上の媒質であることを特徴とする請求項12に記載の赤外線遮蔽微粒子分散体。
- 請求項12に記載の液体媒質中に分散している赤外線遮蔽微粒子分散体、または、請求項15に記載の固体媒質中に分散している赤外線遮蔽微粒子分散体を液状の溶媒と混合した赤外線遮蔽微粒子分散体、または、請求項17に記載の赤外線遮蔽微粒子分散体、から選択される1種以上の赤外線遮蔽微粒子分散体が、基材表面に塗布膜形成していることを特徴とする赤外線遮蔽基材。
- 一般式MxWyOz(但し、Mはアルカリ金属から選ばれる1種または2種以上の元素、Wはタングステン、Oは酸素、(0.001≦x/y≦1、2.2≦z/y≦3))で表記される複合タングステン酸化物微粒子を、有機溶媒に分散させて分散液を得る工程と、
当該分散液へ、シラン化合物を添加混合および有機金属化合物を添加混合して、当該複合タングステン酸化物微粒子の表面にシラン化合物および有機金属化合物を被覆する工程と、
当該有機溶媒を蒸発除去し、さらに加熱を行い、シラン化合物および有機金属化合物が被覆された、複合タングステン酸化物微粒子の粉状体を得る工程と、
当該粉状体を解砕して、単分散のシラン化合物および有機金属化合物が被覆された複合タングステン酸化物微粒子を得る工程とを、具備する赤外線遮蔽微粒子の製造方法であって、
前記分散液へ、シラン化合物および有機金属化合物を添加混合して、当該複合タングステン酸化物微粒子の表面に、シラン化合物および有機金属化合物を被覆する工程において、
まず、前記分散液へ、前記有機金属化合物を添加混合して、有機金属化合物を含有する分散処理物とし、
次に、当該有機金属化合物を含有する分散処理物へ水を添加混合し、さらに、シラン化合物を添加混合して、有機金属化合物とシラン化合物とを含有する分散液とすることを特徴とする赤外線遮蔽微粒子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007137882A JP5228376B2 (ja) | 2007-05-24 | 2007-05-24 | 赤外線遮蔽微粒子およびその製造方法、赤外線遮蔽微粒子分散体、赤外線遮蔽体、ならびに赤外線遮蔽基材 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007137882A JP5228376B2 (ja) | 2007-05-24 | 2007-05-24 | 赤外線遮蔽微粒子およびその製造方法、赤外線遮蔽微粒子分散体、赤外線遮蔽体、ならびに赤外線遮蔽基材 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008291109A JP2008291109A (ja) | 2008-12-04 |
JP5228376B2 true JP5228376B2 (ja) | 2013-07-03 |
Family
ID=40166187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007137882A Active JP5228376B2 (ja) | 2007-05-24 | 2007-05-24 | 赤外線遮蔽微粒子およびその製造方法、赤外線遮蔽微粒子分散体、赤外線遮蔽体、ならびに赤外線遮蔽基材 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5228376B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2010055570A1 (ja) * | 2008-11-13 | 2012-04-05 | 住友金属鉱山株式会社 | 赤外線遮蔽微粒子及びその製造方法、並びにそれを用いた赤外線遮蔽微粒子分散体、赤外線遮蔽基材 |
CN111373011A (zh) * | 2017-11-13 | 2020-07-03 | 住友金属矿山株式会社 | 表面处理红外线吸收微粒、表面处理红外线吸收微粒粉末、使用了该表面处理红外线吸收微粒的红外线吸收微粒分散液、红外线吸收微粒分散体和它们的制造方法 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009067621A (ja) * | 2007-09-12 | 2009-04-02 | Nippon Shokubai Co Ltd | 酸化物粒子、当該粒子を含む分散体及び当該粒子を用いた触媒 |
KR101192912B1 (ko) * | 2007-11-05 | 2012-10-18 | 바스프 에스이 | 근적외선 복사의 열-주입 양을 증가시키기 위해 사용되는 텅스텐 산화물 |
JP5794755B2 (ja) * | 2009-05-21 | 2015-10-14 | 石原産業株式会社 | 赤外線反射材料及びその製造方法並びにそれを含有した塗料、樹脂組成物 |
JP5642358B2 (ja) * | 2009-05-21 | 2014-12-17 | 石原産業株式会社 | 赤外線反射材料の処理方法 |
JP5692499B2 (ja) * | 2009-08-17 | 2015-04-01 | 住友金属鉱山株式会社 | 赤外線遮蔽材料微粒子分散液と赤外線遮蔽粘着膜形成用塗布液、赤外線遮蔽粘着膜と赤外線遮蔽光学部材、および、プラズマディスプレイパネル用多層フィルターとプラズマディスプレイパネル |
JP5891580B2 (ja) * | 2011-01-04 | 2016-03-23 | 旭硝子株式会社 | 近赤外線吸収粒子の製造方法、分散液の製造方法および樹脂組成物の製造方法 |
JP5673250B2 (ja) * | 2011-03-15 | 2015-02-18 | 旭硝子株式会社 | 近赤外線吸収粒子、その製造方法、分散液、樹脂組成物、近赤外線吸収塗膜を有する物品および近赤外線吸収物品 |
JP5673273B2 (ja) * | 2011-03-23 | 2015-02-18 | 旭硝子株式会社 | 近赤外線吸収粒子およびその製造方法、ならびに分散液、樹脂組成物、近赤外線吸収塗膜を有する物品および近赤外線吸収物品 |
JP5305050B2 (ja) | 2011-04-14 | 2013-10-02 | 住友金属鉱山株式会社 | 熱線遮蔽微粒子含有組成物の製造方法および熱線遮蔽微粒子含有組成物、当該熱線遮蔽微粒子含有組成物を用いた熱線遮蔽膜および当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材 |
JP2015044922A (ja) * | 2013-08-27 | 2015-03-12 | 住友金属鉱山株式会社 | 熱線遮蔽分散体、熱線遮蔽分散体形成用塗布液および熱線遮蔽体 |
GB201418604D0 (en) * | 2014-10-20 | 2014-12-03 | Colorant Chromatics Ag | Polymeric materials |
WO2017073691A1 (ja) * | 2015-10-30 | 2017-05-04 | 住友金属鉱山株式会社 | 粘着剤層、近赤外線遮蔽フィルム、合わせ構造体、積層体、及び粘着剤組成物 |
CN110997823A (zh) * | 2017-07-24 | 2020-04-10 | 住友金属矿山株式会社 | 红外线吸收微粒分散粉末、含红外线吸收微粒分散粉末的分散液、含红外线吸收微粒分散粉末的油墨、防伪油墨以及防伪用印刷物 |
JP6769563B2 (ja) * | 2017-11-13 | 2020-10-14 | 住友金属鉱山株式会社 | 赤外線吸収微粒子分散液、赤外線吸収微粒子分散体、およびそれらの製造方法 |
JP7338237B2 (ja) * | 2018-05-28 | 2023-09-05 | 住友金属鉱山株式会社 | 赤外線吸収ランプおよび赤外線吸収ランプカバー |
WO2020110906A1 (ja) * | 2018-11-28 | 2020-06-04 | 住友金属鉱山株式会社 | 表面処理赤外線吸収微粒子分散液およびその製造方法 |
EP3901098A4 (en) * | 2018-12-18 | 2022-03-16 | Sumitomo Metal Mining Co., Ltd. | METHOD FOR PRODUCING ORGANIC-INORGANIC HYBRID PARTICLES ABSORBING INFRARED RADIATION AND ORGANIC-INORGANIC HYBRID PARTICLE ABSORBING INFRARED RADIATION |
JP7292586B2 (ja) * | 2019-01-21 | 2023-06-19 | 住友金属鉱山株式会社 | 表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体、および、赤外線吸収基材 |
WO2021206062A1 (ja) * | 2020-04-09 | 2021-10-14 | 日本ペイントホールディングス株式会社 | 赤外反射性顔料、塗料組成物、塗膜および物品 |
JP2023002077A (ja) * | 2021-06-22 | 2023-01-10 | 住友金属鉱山株式会社 | 赤外線吸収複合微粒子、赤外線吸収微粒子分散液、および、赤外線吸収微粒子分散体 |
CN115491791B (zh) * | 2022-09-29 | 2023-05-26 | 中国人民解放军海军工程大学 | 一种二氧化硅/铯钨青铜近红外屏蔽复合纤维的制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH064802B2 (ja) * | 1986-01-30 | 1994-01-19 | パイロツトインキ株式会社 | 着色液 |
JP3089776B2 (ja) * | 1991-12-18 | 2000-09-18 | 住友化学工業株式会社 | 樹脂充填用水酸化アルミニウム及びこれを用いてなる人工大理石 |
JP4221811B2 (ja) * | 1999-04-27 | 2009-02-12 | 有限会社テー・エス・ビー | 表面処理粉体及び粉体の表面処理方法 |
EP1676890B1 (en) * | 2003-10-20 | 2019-06-26 | Sumitomo Metal Mining Co., Ltd. | Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle |
JP2005226008A (ja) * | 2004-02-13 | 2005-08-25 | Sumitomo Metal Mining Co Ltd | 日射遮蔽体形成用分散液及び日射遮蔽体並びにその製造方法 |
JP4491601B2 (ja) * | 2004-02-19 | 2010-06-30 | 昭和アルミパウダー株式会社 | 複合被覆アルミニウム顔料、その製造方法およびその用途 |
JP2006193376A (ja) * | 2005-01-14 | 2006-07-27 | Sumitomo Metal Mining Co Ltd | 表面被覆六ホウ化物微粒子及びその製造方法 |
-
2007
- 2007-05-24 JP JP2007137882A patent/JP5228376B2/ja active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2010055570A1 (ja) * | 2008-11-13 | 2012-04-05 | 住友金属鉱山株式会社 | 赤外線遮蔽微粒子及びその製造方法、並びにそれを用いた赤外線遮蔽微粒子分散体、赤外線遮蔽基材 |
CN111373011A (zh) * | 2017-11-13 | 2020-07-03 | 住友金属矿山株式会社 | 表面处理红外线吸收微粒、表面处理红外线吸收微粒粉末、使用了该表面处理红外线吸收微粒的红外线吸收微粒分散液、红外线吸收微粒分散体和它们的制造方法 |
CN111373011B (zh) * | 2017-11-13 | 2023-04-21 | 住友金属矿山株式会社 | 表面处理的红外线吸收微粒、其粉末、其分散液、其分散体和它们的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2008291109A (ja) | 2008-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5228376B2 (ja) | 赤外線遮蔽微粒子およびその製造方法、赤外線遮蔽微粒子分散体、赤外線遮蔽体、ならびに赤外線遮蔽基材 | |
WO2010055570A1 (ja) | 赤外線遮蔽微粒子及びその製造方法、並びにそれを用いた赤外線遮蔽微粒子分散体、赤外線遮蔽基材 | |
EP3712223A1 (en) | Surface-treated infrared-absorbing fine particles, surface-treated infrared-absorbing fine particle powder, infrared-absorbing fine particle dispersion in which said surface-treated infrared-absorbing fine particles are used, infrared-absorbing fine particle dispersoid, and methods for producing these | |
EP2221349B1 (en) | Process for producing fine particles of surface treated zinc oxide, fine particles of surface treated zinc oxide, dispersion liquid and dispersion solid of the fine particles of surface treated zinc oxide, and base material coated with fine particles of zinc oxide | |
EP0768277A1 (en) | Fine zinc oxide particles, process for producing the same, and use thereof | |
KR101795191B1 (ko) | 열선 차폐 분산체의 제조방법, 열선 차폐 분산체, 및 열선 차폐체 | |
CN113316560B (zh) | 表面处理红外线吸收微粒、粉末、分散液、分散体及基材 | |
JP7342861B2 (ja) | 表面処理赤外線吸収微粒子分散液および赤外線吸収透明基材 | |
TWI825069B (zh) | 近紅外線吸收材料微粒子分散體、近紅外線吸收體、近紅外線吸收物積層體及近紅外線吸收用夾層構造體 | |
JP4929835B2 (ja) | 表面被覆六ホウ化物粒子の製造方法 | |
JP6949304B2 (ja) | 熱線吸収成分含有マスターバッチおよびその製造方法、熱線吸収透明樹脂成形体、並びに熱線吸収透明積層体 | |
JP2006193670A (ja) | シリカ膜被覆6ホウ化物微粒子とその製造方法、これを用いた光学部材用塗布液及び光学部材 | |
JP7338237B2 (ja) | 赤外線吸収ランプおよび赤外線吸収ランプカバー | |
WO2020110906A1 (ja) | 表面処理赤外線吸収微粒子分散液およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090703 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130304 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160329 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5228376 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |