[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5223132B2 - Plant pathogen infection inhibitor and method for suppressing pathogen infection - Google Patents

Plant pathogen infection inhibitor and method for suppressing pathogen infection Download PDF

Info

Publication number
JP5223132B2
JP5223132B2 JP2008221781A JP2008221781A JP5223132B2 JP 5223132 B2 JP5223132 B2 JP 5223132B2 JP 2008221781 A JP2008221781 A JP 2008221781A JP 2008221781 A JP2008221781 A JP 2008221781A JP 5223132 B2 JP5223132 B2 JP 5223132B2
Authority
JP
Japan
Prior art keywords
plant
group
aminolevulinic acid
pathogen infection
rice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008221781A
Other languages
Japanese (ja)
Other versions
JP2010053104A (en
Inventor
誠 上野
誠司 西川
章 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Seiwa KK
Original Assignee
Cosmo Oil Co Ltd
Seiwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Seiwa KK filed Critical Cosmo Oil Co Ltd
Priority to JP2008221781A priority Critical patent/JP5223132B2/en
Priority to CN200910171257A priority patent/CN101658182A/en
Publication of JP2010053104A publication Critical patent/JP2010053104A/en
Application granted granted Critical
Publication of JP5223132B2 publication Critical patent/JP5223132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、農作物の収量が著しく減少する原因となる植物病原菌の感染を抑制することが可能になる植物の病原菌感染抑制剤及び病原菌感染抑制方法に関する。   The present invention relates to a plant pathogen infection inhibitor and a pathogen infection suppression method capable of suppressing the infection of a plant pathogen that causes a significant decrease in the yield of agricultural crops.

近年、世界の人口増加や気候変化などによる農作物不足が問題となってきている。農作物生産における収量減少の多くは、病害虫と雑草による損出被害である。その中で、病害防除も安定的な農作物生産と消費者への安定的な供給のために重要となっている。従来、このような病害防除には一般的に化学合成農薬が使用されている。   In recent years, crop shortages due to global population growth and climate change have become a problem. Most of the yield reduction in crop production is damage caused by pests and weeds. Among them, disease control is also important for stable crop production and stable supply to consumers. Conventionally, chemically synthesized pesticides are generally used for such disease control.

化学合成農薬の多くは、病害の原因となる植物病原菌へ殺菌又は抗菌作用により、直接的に影響を及ぼして、植物病原菌の感染拡大を防止する。イネのいもち病やキュウリの褐斑病も同様に化学合成農薬を用いた防除が行われている。クロロフィル生合成モジュレーターおよびδ−アミノレブリン酸とからなる殺虫剤組成物も、生きている虫の中にテトラピロールの蓄積を誘発させ、直接的に殺虫する方法である(特許文献1)。   Many chemically synthesized pesticides directly affect phytopathogenic fungi that cause disease by sterilization or antibacterial action to prevent the spread of phytopathogenic fungi. Rice blast and cucumber brown spots are also controlled with chemically synthesized pesticides. An insecticide composition comprising a chlorophyll biosynthesis modulator and δ-aminolevulinic acid is also a method for inducing the accumulation of tetrapyrrole in a living insect and directly killing the insect (Patent Document 1).

ただし、植物病原菌へ殺菌又は抗菌作用により感染拡大を防止する化学合成農薬は、同一種類のものを連続的に使用することにより、耐性菌を出現させることがある。耐性菌の出現は農作物生産に重大な被害を及ぼす可能性があり、イネのいもち病やキュウリの褐斑病においても耐性菌の出現は問題となっている。   However, chemical synthetic pesticides that prevent the spread of infection by sterilizing or antibacterial action against phytopathogenic fungi may cause resistant bacteria to appear by using the same type continuously. The emergence of resistant bacteria can cause serious damage to crop production, and the emergence of resistant bacteria is also a problem in rice blast disease and brown spot disease of cucumber.

さらに、環境への配慮や食への安全意識の高まりから、化学合成農薬を減らした又は使用しない農作物生産、植物自身が有する植物病原菌に対する抑制機構を有効に利用して病原菌感染による農作物被害を防ぐことが求められている。
本発明の植物の病原菌感染抑制剤の有効成分の1つである5−アミノレブリン酸は、クロロフィルの前駆物質であり、ほとんどの植物は自ら合成することができるが、適切な量を外部から与えると光合成活性などを増強させることが知られている(特許文献2)。
特表平6−500989号 特開平4−338305号
In addition, because of consideration for the environment and heightened awareness of food safety, the production of crops with reduced or no use of chemically synthesized pesticides, and the prevention of crop damage caused by infection with pathogens by effectively utilizing the plant's own control mechanism against plant pathogens It is demanded.
5-Aminolevulinic acid, which is one of the active ingredients of the plant pathogen infection inhibitor of the present invention, is a chlorophyll precursor, and most plants can synthesize themselves, but when given an appropriate amount from the outside It is known to enhance photosynthetic activity (Patent Document 2).
Special table hei 6-500989 JP-A-4-338305

本発明が解決しようとする課題は、イネ及びキュウリをはじめとする植物において、植物自身が有する植物病原菌に対する抑制機構を有効に利用して病原菌感染による植物被害を防ぐことができる植物の病原菌感染抑制剤及びその方法を提供することである。   The problem to be solved by the present invention is to suppress plant pathogen infections in plants such as rice and cucumber, which can effectively prevent plant damage caused by pathogen infection by effectively utilizing the suppression mechanism against plant pathogens possessed by the plant itself. Providing an agent and method thereof.

本発明者は、植物病原菌へ殺菌又は抗菌作用により感染拡大を防止する化学合成農薬は、耐性菌を出現させる可能性があることを問題視し、また、植物の生命活動の中心となる光合成を高める植物中に含有される、5−アミノレブリン酸により、植物自身が有する植物病原菌に対する抑制機構を高めることができれば植物病原菌の感染を抑制することが可能であると考えた。一方、5−アミノレブリン酸の外生的な施用には気孔を開かせる傾向も知られており、気孔の解放は病原菌の感染ルートの一つを増強する懸念も考えられた。   The present inventor considered that chemically synthesized pesticides that prevent the spread of infection by sterilizing or antibacterial action against plant pathogens may cause the emergence of resistant bacteria, and photosynthesis, which is the center of life activity of plants, is considered. We thought that the infection of phytopathogenic fungi could be suppressed if 5-aminolevulinic acid contained in the plants to be enhanced could enhance the suppression mechanism for the phytopathogenic fungi of the plants themselves. On the other hand, the exogenous application of 5-aminolevulinic acid is also known to have a tendency to open pores, and there was a concern that the release of pores might enhance one of the infection routes of pathogenic bacteria.

そこで、本発明者らは、かかる現状に鑑み鋭意研究を行ったところ、5−アミノレブリン酸及び金属を併用することにより、本発明を完成させるに至った。   Therefore, the present inventors have conducted intensive research in view of the present situation, and have completed the present invention by using 5-aminolevulinic acid and a metal together.

すなわち本発明は、以下の通りである。
(1) 一般式(1)
NCHCOCHCHCOR (1)
[式中、R及びR は水素原子を示し;Rはヒドロキシ基、炭素数1〜12のアルコキシ基を示す。]
で表される5−アミノレブリン酸、その誘導体又はそれらの塩とK、Ca、Mg、Na、Fe、Mn、Cu、Zn、B及びMoから選ばれる少なくとも1種以上の金属とを有効成分とする植物の病原菌感染抑制剤。
(2) 一般式(1)で表される5−アミノレブリン酸、その誘導体が、5−アミノレブリン酸、5−アミノレブリン酸メチルエステル、5−アミノレブリン酸エチルエステル、5−アミノレブリン酸プロピルエステル、5−アミノレブリン酸ブチルエステル、5−アミノレブリン酸ペンチルエステル又は5−アミノレブリン酸ヘキシルエステルである上記(1)記載の植物の病原菌感染抑制剤。
(3) K、Ca、Mg、Na、Fe、Mn、Cu、Zn、B及びMoから選ばれる少なくとも1種以上の金属が、K、Ca、Mg、Na、Fe、Mn、Cu、Zn及びMoの金属である上記(1)又は(2)記載の植物の病原菌感染抑制剤。
(4) 植物が穀物であり、植物病原菌がいもち病菌である上記(1)〜(3)いずれか1に記載の植物の病原菌感染抑制剤。
(5) 植物が野菜であり、植物病原菌が褐斑病菌である上記(1)〜(3)いずれか1に記載の植物の病原菌感染抑制剤。
(6) 植物を定植する24〜100時間前に、上記(1)〜(5)のいずれか1に記載の病原菌感染抑制剤を葉面散布することを特徴とする植物の病原菌感染抑制方法。
That is, the present invention is as follows.
(1) General formula (1)
R 2 R 1 NCH 2 COCH 2 CH 2 COR 3 (1)
[In the formula, R 1 and R 2 is a water MotoHara child; R 3 represents a hydroxy group, an alkoxy group having 1 to 12 carbon atoms. ]
As an active ingredient, 5-aminolevulinic acid, a derivative thereof or a salt thereof represented by the formula (I) and at least one metal selected from K, Ca, Mg, Na, Fe, Mn, Cu, Zn, B, and Mo are used. Plant pathogen infection inhibitor.
(2) 5-aminolevulinic acid represented by the general formula (1) and derivatives thereof are 5-aminolevulinic acid, 5-aminolevulinic acid methyl ester, 5-aminolevulinic acid ethyl ester, 5-aminolevulinic acid propyl ester, 5-aminolevulin The plant pathogen infection inhibitor according to the above (1), which is acid butyl ester, 5-aminolevulinic acid pentyl ester or 5-aminolevulinic acid hexyl ester.
(3) At least one metal selected from K, Ca, Mg, Na, Fe, Mn, Cu, Zn, B, and Mo is K, Ca, Mg, Na, Fe, Mn, Cu, Zn, and Mo. The plant pathogen infection inhibitor as described in (1) or (2) above, which is a metal of the above.
(4) The plant pathogen infection inhibitor according to any one of (1) to (3) , wherein the plant is a cereal and the plant pathogen is a blast fungus.
(5) The plant pathogen infection inhibitor according to any one of (1) to (3) , wherein the plant is a vegetable and the plant pathogen is a brown spot fungus.
(6) before 24 to 100 hours for planting plants, (1) to (5) pathogen infection suppression method of the plant, characterized in that the pathogen infection inhibitor according to foliar application to any one of the.

本発明の植物の病原菌感染抑制剤の有効成分の1つは、前記一般式(1)の5−アミノレブリン酸、その誘導体又はそれらの塩である(一般式(1)の5−アミノレブリン酸、その誘導体を「ALA」、それらの塩を「ALA塩」、両者を合わせ「ALA類」とも記す)。
一般式(1)中のR1及びR2で示される基について説明する。
アルキル基としては、炭素数1〜24の直鎖又は分岐鎖のアルキル基が好ましく、より好ましくは炭素数1〜18のアルキル基、特に炭素数1〜6のアルキル基が好ましい。炭素数1〜6のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基等が挙げられる。アシル基としては、炭素数1〜12の直鎖又は分岐鎖のアルカノイル基、アルケニルカルボニル基又はアロイル基が好ましく、特に炭素数1〜6のアルカノイル基が好ましい。当該アシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基等が挙げられる。アルコキシカルボニル基としては、総炭素数2〜13のアルコキシカルボニル基が好ましく、特に炭素数2〜7のアルコキシカルボニル基が好ましい。当該アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、イソプロポキシカルボニル基等が挙げられる。アリール基としては、炭素数6〜16のアリール基が好ましく、例えば、フェニル基、ナフチル基等が挙げられる。アラルキル基としては、炭素数6〜16のアリール基と上記炭素数1〜6のアルキル基とからなる基が好ましく、例えば、ベンジル基等が挙げられる。
One of the active ingredients of the plant pathogen infection inhibitor of the present invention is 5-aminolevulinic acid of the general formula (1), a derivative thereof or a salt thereof (5-aminolevulinic acid of the general formula (1), its Derivatives are referred to as “ALA”, their salts as “ALA salts”, and the two as “ALAs”).
The groups represented by R 1 and R 2 in the general formula (1) will be described.
The alkyl group is preferably a linear or branched alkyl group having 1 to 24 carbon atoms, more preferably an alkyl group having 1 to 18 carbon atoms, and particularly preferably an alkyl group having 1 to 6 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a sec-butyl group. As the acyl group, a linear or branched alkanoyl group, alkenylcarbonyl group or aroyl group having 1 to 12 carbon atoms is preferable, and an alkanoyl group having 1 to 6 carbon atoms is particularly preferable. Examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group and the like. As the alkoxycarbonyl group, an alkoxycarbonyl group having 2 to 13 carbon atoms is preferable, and an alkoxycarbonyl group having 2 to 7 carbon atoms is particularly preferable. Examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, and an isopropoxycarbonyl group. As an aryl group, a C6-C16 aryl group is preferable, for example, a phenyl group, a naphthyl group, etc. are mentioned. The aralkyl group is preferably a group consisting of an aryl group having 6 to 16 carbon atoms and the alkyl group having 1 to 6 carbon atoms, and examples thereof include a benzyl group.

一般式(1)中のRで示される基について説明する。
アルコキシ基としては、炭素数1〜24の直鎖又は分岐鎖のアルコキシ基が好ましく、より好ましくは炭素数1〜16のアルコキシ基、特に炭素数1〜12のアルコキシ基が好ましい。当該アルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、デシルオキシ基、ドデシルオキシ基等が挙げられる。アシルオキシ基としては、炭素数1〜12の直鎖又は分岐鎖のアルカノイルオキシ基が好ましく、特に炭素数1〜6のアルカノイルオキシ基が好ましい。当該アシルオキシ基としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基等が挙げられる。アルコキシカルボニルオキシ基としては、総炭素数2〜13のアルコキシカルボニルオキシ基が好ましく、特に総炭素数2〜7のアルコキシカルボニルオキシ基が好ましい。当該アルコキシカルボニルオキシ基としては、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、n−プロポキシカルボニルオキシ基、イソプロポキシカルボニルオキシ基等が挙げられる。アリールオキシ基としては、炭素数6〜16のアリールオキシ基が好ましく、例えば、フェノキシ基、ナフチルオキシ基等が挙げられる。アラルキルオキシ基としては、前記アラルキル基を有するものが好ましく、例えば、ベンジルオキシ基等が挙げられる。
The group represented by R 3 in the general formula (1) will be described.
The alkoxy group is preferably a linear or branched alkoxy group having 1 to 24 carbon atoms, more preferably an alkoxy group having 1 to 16 carbon atoms, and particularly preferably an alkoxy group having 1 to 12 carbon atoms. Examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, pentyloxy group, hexyloxy group, octyloxy group, decyloxy group, dodecyloxy group and the like. As the acyloxy group, a linear or branched alkanoyloxy group having 1 to 12 carbon atoms is preferable, and an alkanoyloxy group having 1 to 6 carbon atoms is particularly preferable. Examples of the acyloxy group include an acetoxy group, a propionyloxy group, and a butyryloxy group. As the alkoxycarbonyloxy group, an alkoxycarbonyloxy group having 2 to 13 carbon atoms is preferable, and an alkoxycarbonyloxy group having 2 to 7 carbon atoms is particularly preferable. Examples of the alkoxycarbonyloxy group include a methoxycarbonyloxy group, an ethoxycarbonyloxy group, an n-propoxycarbonyloxy group, an isopropoxycarbonyloxy group, and the like. The aryloxy group is preferably an aryloxy group having 6 to 16 carbon atoms, and examples thereof include a phenoxy group and a naphthyloxy group. As the aralkyloxy group, those having the aralkyl group are preferable, and examples thereof include a benzyloxy group.

一般式(1)中、R1及びR2としては水素原子が好ましい。R3としてはヒドロキシ基、アルコキシ基又はアラルキルオキシ基が好ましく、より好ましくはヒドロキシ基又は炭素数1〜12のアルコキシ基、特にメトキシ基又はヘキシルオキシ基が好ましい。 In general formula (1), R 1 and R 2 are preferably hydrogen atoms. R 3 is preferably a hydroxy group, an alkoxy group or an aralkyloxy group, more preferably a hydroxy group or an alkoxy group having 1 to 12 carbon atoms, particularly a methoxy group or a hexyloxy group.

ALAとしては、5−アミノレブリン酸、5−アミノレブリン酸メチルエステル、5−アミノレブリン酸エチルエステル、5−アミノレブリン酸プロピルエステル、5−アミノレブリン酸ブチルエステル、5−アミノレブリン酸ペンチルエステル、5−アミノレブリン酸ヘキシルエステル、5−アミノレブリン酸ベンジルエステル等が挙げられ、特に5−アミノレブリン酸が好ましい。   As ALA, 5-aminolevulinic acid, 5-aminolevulinic acid methyl ester, 5-aminolevulinic acid ethyl ester, 5-aminolevulinic acid propyl ester, 5-aminolevulinic acid butyl ester, 5-aminolevulinic acid pentyl ester, 5-aminolevulinic acid hexyl ester , 5-aminolevulinic acid benzyl ester and the like, and 5-aminolevulinic acid is particularly preferable.

ALA塩としては、例えば塩酸塩、リン酸塩、硝酸塩、硫酸塩、スルホン酸塩、酢酸塩、プロピオン酸塩、酪酸塩、吉草酸塩、クエン酸塩、フマル酸塩、マレイン酸塩、リンゴ酸塩等の酸付加塩及びナトリウム塩、カリウム塩、カルシウム塩等の金属塩が挙げられる。   Examples of ALA salts include hydrochloride, phosphate, nitrate, sulfate, sulfonate, acetate, propionate, butyrate, valerate, citrate, fumarate, maleate, malic acid Examples include acid addition salts such as salts, and metal salts such as sodium salts, potassium salts, and calcium salts.

ALA類は、化学合成、微生物や酵素を用いる方法のいずれの方法によっても製造できる。例えば、特開平4−9360号公報、特表平11−501914号公報、特願2004−99670号明細書、特願2004−99671号明細書、特願2004−99672号明細書記載の方法が挙げられる。その生産物は、イネに対して有害な物質を含まない限り分離精製することなく、そのまま用いることができる。また、有害な物質を含む場合は、その有害物質を適宜、有害とされないレベルまで除去した後、用いることができる。
また、本発明においてそれらALA類はそれぞれ単独でも、これらの2種以上を混合して用いることもできる。
ALAs can be produced by any of chemical synthesis and methods using microorganisms or enzymes. For example, methods described in JP-A-4-9360, JP-A-11-501914, Japanese Patent Application No. 2004-99670, Japanese Patent Application No. 2004-99671, and Japanese Patent Application No. 2004-99672 are mentioned. It is done. The product can be used as it is without separation and purification as long as it does not contain substances harmful to rice. Moreover, when a harmful substance is contained, it can be used after removing the harmful substance to a level not harmful.
In the present invention, these ALAs may be used alone or in combination of two or more thereof.

また、本発明の植物の病原菌感染抑制剤における有効成分の1つである金属は、例えば、K、Ca、Mg、Na、Fe、Mn、Cu、Zn、B及びMoであり、好ましくは、Mg、Fe及びMnである。これらは、少なくとも1種以上含まれていればよいが、Mg、Fe及びMnが含まれているのが好ましく、K、Ca、Mg、Na、Fe、Mn、Cu、Zn、B及びMoが含まれているのが特に好ましい。
ALA類と金属との配合比は、総金属1モルに対して0.0001〜1モル、好ましくは0.0005〜0.1モル、特に好ましくは0.001〜0.01モルであればよい。
本発明の植物の病原菌感染抑制剤は、少なくとも使用時には、水溶液として用いられる。従って、上記金属は、水溶液中でカチオン化し得る塩等の形態として用いられるが、水溶液の状態で遊離カチオンであってもALA塩の形態であってもよい。
The metal that is one of the active ingredients in the plant pathogen infection inhibitor of the present invention is, for example, K, Ca, Mg, Na, Fe, Mn, Cu, Zn, B, and Mo, and preferably Mg. Fe and Mn. These may contain at least one or more kinds, but preferably contain Mg, Fe and Mn, and include K, Ca, Mg, Na, Fe, Mn, Cu, Zn, B and Mo. It is particularly preferred that
The compounding ratio of ALAs and metals may be 0.0001 to 1 mol, preferably 0.0005 to 0.1 mol, particularly preferably 0.001 to 0.01 mol, relative to 1 mol of total metals. .
The plant pathogen infection inhibitor of the present invention is used as an aqueous solution at least at the time of use. Therefore, although the said metal is used as forms, such as a salt which can be cationized in aqueous solution, it may be a free cation in the state of aqueous solution, or may be a form of ALA salt.

本発明の植物の病原菌感染抑制剤における適用対象となる植物としては、特に限定されず、農業分野で広く栽培されている植物が挙げられるが、イネ、オオムギ、コムギ、ヒエ、トウモロコシ、アワ等の穀物類;カボチャ、カブ、キャベツ、ダイコン、ハクサイ、ホウレンソウ、コマツナ、ミツバ、アスパラガス、ブロッコリー、ニラ、セロリ、レタス、シュンギク、キョウナ、チンゲンサイ、ピーマン、トマト、ナス、キュウリ、オクラ等の野菜類;ミカン、リンゴ、カキ、ウメ、ナシ、ブドウ、モモ、イチゴ、スイカ、メロン等の果実類;キク、ガーベラ、パンジー、ラン、シャクヤク、チューリップ等の花卉類;サツキ、クヌギ、スギ、ヒノキ、ナラ、ブナ等の樹木類;アズキ、インゲン、ダイズ、ラッカセイ、ソラマメ、エンドウ等の豆類;コウライシバ、ベントグラス、ノシバ等の芝類;ジャガイモ、サツマイモ、サトイモ、ヤマイモ、タロイモ等のイモ類;ネギ、ワケギ、タマネギ、ラッキョウ等のネギ類;ニンジン、ダイコン、ハツカダイコン、カブ、ゴボウ等の根菜類が挙げられ、穀物類及び野菜類が好ましく、イネ及びキュウリがより好ましい。   The plant to be applied in the pathogen infection inhibitor of the plant of the present invention is not particularly limited, and includes plants widely cultivated in the agricultural field, such as rice, barley, wheat, millet, maize, millet, etc. Cereals; Vegetables such as pumpkin, turnip, cabbage, Japanese radish, Chinese cabbage, spinach, Komatsuna, honeybee, asparagus, broccoli, leek, celery, lettuce, garlic, kyouna, chinsai, green pepper, tomato, eggplant, cucumber, okra; Fruits such as oranges, apples, oysters, ume, pears, grapes, peaches, strawberries, watermelons, melons, etc .; Trees such as beech; adzuki beans, green beans, soybeans, peanuts, broad beans, peas, etc. Beans; lawn grasses such as potato moth, bentgrass, wild buckwheat; potatoes such as potato, sweet potato, taro, yam, taro, etc .; Cereals and vegetables are preferred, and rice and cucumber are more preferred.

本発明の植物の病原菌感染抑制剤における適用対象となる植物病原菌としては、穀物類に対しては、いもち病、立苗枯病、ばか苗病;野菜類に対しては、菌核病、灰色かび病、葉かび病、うどんこ病、褐斑病、灰色かび病、べと病、黄化えそ病;果実類に対しては、かいよう病、腐らん病、モニリア病;花卉類に対しては、腐敗病;樹木類に対しては、ペスタロチア病、枝枯病、いもち病;豆類に対しては、豆類炭そ病、菌核病、炭そ病;芝類に対しては、葉腐病、菌核病、冠さび病、ダラースポット病、褐点病;イモ類に対しては、菌核病、疫病、夏疫病;ネギ類に対しては、灰色かび病、白色疫病;根菜類に対しては、黒条病、黒根病、根腐病挙げられ、いもち病及び褐斑病が好ましい。   The plant pathogenic fungi to be applied in the plant pathogen infection inhibitor of the present invention include rice blast, standing seedling disease, stupid disease for cereals; mycorrhizal disease, gray for vegetables. Mold, leaf mold, powdery mildew, brown spot, gray mold, downy mildew, yellow rot; for fruits, scab, rot, moniliosis; Rot disease; for trees, Pestalothia disease, branch blight, rice blast; for beans, legume anthracnose, mycorrhizal disease, anthracnose; Disease, mycosis, crown rust, dollar spot disease, brown spot disease; for potatoes, fungal disease, plague, summer plague; for green onions, gray mold disease, white plague; root vegetables On the other hand, black stripe disease, black root disease and root rot are mentioned, and rice blast disease and brown spot disease are preferable.

本発明の植物の病原菌感染抑制剤は、病害が発生していない植物へ茎葉処理することができ、葉面処理することが好ましい。その場合、本発明の植物の病原菌感染抑制剤を、5−アミノレブリン酸塩酸塩質量基準で、0.01〜10ppm、好ましくは0.01〜1ppm、より好ましくは0.05〜1ppmの水溶液濃度で含有せしめ、使用するのが好ましい。施用時期としては、定植24〜100時間前、好ましくは48〜72時間前に散布すればよい。なお、処理後は日光を十分に照射する方がよい。
また、併用される金属濃度は、上記ALA類との配合比から算出される。
The plant pathogen infection inhibitor of the present invention can be treated with a foliage to a plant in which no disease has occurred, and is preferably subjected to a foliar treatment. In that case, the pathogen infection inhibitor of the plant of the present invention is 0.01 to 10 ppm, preferably 0.01 to 1 ppm, more preferably 0.05 to 1 ppm in terms of an aqueous solution concentration on the basis of mass of 5-aminolevulinic acid hydrochloride. It is preferably contained and used. The application time may be sprayed 24 to 100 hours before planting, preferably 48 to 72 hours before planting. In addition, it is better to irradiate enough sunlight after a process.
Moreover, the metal concentration used together is calculated from the blending ratio with the ALA.

本発明の植物の病原菌感染抑制剤により、植物病原菌による病害を抑制できる理由は、以下のように考えられる。
すなわち、本発明の植物の病原菌感染抑制剤をイネ及びキュウリ等の植物に予め処理すると、光合成が高められ植物の物質生産が増加するとともに、植物がこれらの物質を植物病原菌であると異物認識し、植物体内に生産された物質を利用して植物自身の防御機能を高め、植物病原菌の感染を抑制し、植物病原菌による感染被害の拡大を効率的に抑制することが可能になると考えられる。一方、金属を併用することでより効果が向上する理由については明らかにできていないが、ALA類の外生的な施用による気孔の解放に何らかの影響を及ぼしているものと想定される。ところが、更に驚いたことには感染抑制を効率的に行うには、本発明の植物の病原菌感染抑制剤を植物への処理時期が重要であることが明らかとなった。このことは、例えばイネのように苗栽培から圃場へ移植される時期すなわち、病原菌の存在の可能性が高い環境へ暴露されるタイミングを考慮して本発明の植物の病原菌感染抑制剤を処理することが効果的であることを意味している。
また、抑制効果の低い処理時期が存在するため、少量の化学合成農薬を抑制効果の低いタイミングで処理すると更に効果的であるばかりか、化学合成農薬の使用時期を短い時期に限定できるため、化学合成農薬の処理量を低減し、感染抑制の効果を得られることが期待される。
The reason why the disease caused by plant pathogens can be suppressed by the plant pathogen infection inhibitor of the present invention is considered as follows.
That is, when the plant pathogen infection inhibitor of the present invention is pre-treated on plants such as rice and cucumber, photosynthesis is increased and plant substance production increases, and the plant recognizes these substances as foreign substances that are plant pathogens. It is considered that the substances produced in the plant body can be used to enhance the defense function of the plant itself, to suppress the infection of the phytopathogenic fungus, and to efficiently suppress the spread of the infection damage caused by the phytopathogenic fungus. On the other hand, the reason why the effect is further improved by using a metal in combination has not been clarified, but it is assumed that some effect is exerted on the release of pores by exogenous application of ALAs. However, it was further surprising that it became clear that the timing of treating the plant pathogen infection inhibitor of the present invention with plants was important in order to efficiently control infection. This is because, for example, the plant pathogen infection inhibitor of the present invention is treated in consideration of the timing of transplanting from seedling cultivation to a field like rice, that is, the timing of exposure to an environment where the presence of pathogenic bacteria is highly likely. Means that it is effective.
In addition, since there are treatment periods with low inhibitory effects, it is not only more effective to treat a small amount of chemically synthesized pesticides at a timing with low inhibitory effects, but the use time of chemically synthesized pesticides can be limited to short periods of time. It is expected that the treatment amount of synthetic pesticides can be reduced and infection control effects can be obtained.

次に実施例を挙げ、本発明をさらに詳しく説明するが、本発明はこれら実施例に何ら制約されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not restrict | limited at all by these Examples.

実施例1
5−アミノレブリン酸塩酸塩3gを表1に記載のNaaldwijk cucumber培地のイオン組成の各イオン成分が1000倍になるように調整した改変培地1Lに溶解し、本発明の植物の病原菌感染抑制剤としての混合液(以下、混合液という)を調製した。試験に使用したイネの品種は、「朝日」であり、いもち病菌はイネの品種「朝日」に病原性を示す「レース007」を使用した。
なお、Naaldwijk cucumber培地の詳細は、例えば、「COMPARISON OF THE MINERAL COMPOSITION OF 12 STANDARD NUTRIENT SOLUTIONS De Rijck G. and Schrevens E. Faculty of Agricultural and Applied Biological Sciences Department of Applied Plant Sciences K.U.Leuven Wilem de Croylaan 42, B-3001 Heverlee(Belgium)」に記載がある。
Example 1
3 g of 5-aminolevulinic acid hydrochloride was dissolved in 1 L of a modified medium adjusted so that each ionic component of the ionic composition of the Naaldwijk cucumber medium listed in Table 1 was 1000 times, and used as a plant pathogen infection inhibitor of the present invention. A mixed solution (hereinafter referred to as a mixed solution) was prepared. The rice cultivar used in the test was “Asahi”, and the rice blast fungus used “Race 007”, which is pathogenic to the rice cultivar “Asahi”.
Details of the Naaldwijk cucumber medium can be found, for example, in `` COMPARISON OF THE MINERAL COMPOSITION OF 12 STANDARD NUTRIENT SOLUTIONS De Rijck G. and Schrevens E. Faculty of Agricultural and Applied Biological Sciences Department of Applied Plant Sciences KULeuven Wilem de Croylaan 42, B- 3001 Heverlee (Belgium) ".

イネは種籾を蒸留水に浸し、催芽後、水稲育粒状培土グリーンソイル(窒素0.9g、燐酸1.1g、カリ1.0g/3.3kg)を加えたケース(5×8×5cm)に播種し、3葉期まで生育させて実験に使用した。   Rice is immersed in distilled water, and after germination, it is put into a case (5 x 8 x 5 cm) with paddy rice growing granular soil green soil (nitrogen 0.9 g, phosphoric acid 1.1 g, potassium 1.0 g / 3.3 kg). It was seeded, grown to the third leaf stage, and used for the experiment.

(2)いもち病菌の培養
いもち病菌(レース007)は、予め試験管(直径1.8×18cm)に20ml分注したジャガイモ煎汁寒天(PSA)培地(ジャガイモ 200g、スクロース 20g、寒天 20g、蒸留水 1000ml)に植え付けて26℃で培養させておいたものを使用した。上記のいもち病は直径9cmのプラスチックシャーレに約50mlずつ分注した米糠寒天培地(米糠 50g、寒天 20g、蒸留水 1000ml)に移植して14日間培養した。その後、菌叢の気中菌糸を取り除き、26℃に設定したBLB蛍光灯照射下に2日間保って胞子を形成させた。
(2) Cultivation of Blast Fungus Blast fungus (Race 007) was prepared in a 20 ml potato broth agar (PSA) medium (potato 200 g, sucrose 20 g, agar 20 g, distilled) in a test tube (diameter 1.8 × 18 cm). What was planted in water (1000 ml) and cultured at 26 ° C. was used. The above blast was transplanted to a rice bran agar medium (50 g of rice bran, 20 g of agar, 1000 ml of distilled water) dispensed in a plastic petri dish having a diameter of 9 cm and cultured for 14 days. Thereafter, the aerial hyphae in the flora were removed, and spores were formed by maintaining for 2 days under irradiation with a BLB fluorescent lamp set at 26 ° C.

(3)胞子懸濁液の作成
胞子を形成させた菌叢上に蒸留水を注ぎ、4重のガーゼでろ過し、菌糸片等を除去後、遠心分離(2000×g、5分間)にかけ、胞子を集めた。集めた胞子は血球計算盤を用いて1×10spores/mlに調整して使用した。
(3) Preparation of spore suspension Pour distilled water onto the spore-formed microflora, filter with quadruple gauze, remove mycelium fragments, etc., then centrifuge (2000 xg, 5 minutes), Collected spores. The collected spores were adjusted to 1 × 10 5 spores / ml using a hemocytometer.

(4)混合液のイネ葉への処理といもち病接種
混合液を蒸留水で500倍、1000倍、5000倍希釈したものと蒸留水を用意し、上記のイネ葉に1ケース20mlを噴霧処理し、十分に光を照射し、48時間後にいもち病菌の胞子懸濁液を噴霧接種した。接種後、24時間湿室・暗黒下に保ち、5日後に各ケースの発病個体率及び1葉あたりの病斑数を確認した。
(4) Treatment of the mixed solution to rice leaves and inoculation of blast disease Prepare the mixed solution diluted 500 times, 1000 times and 5000 times with distilled water and distilled water, and spray 20 ml of one case onto the above rice leaves Then, after sufficient irradiation, 48 hours later, a spore suspension of blast fungus was spray-inoculated. After inoculation, it was kept in a damp room / darkness for 24 hours, and after 5 days, the incidence rate of each case and the number of lesions per leaf were confirmed.

この結果、接種5日後において蒸留水区では発病株率80.0±9.4%となり、高い発病個体率を示した。しかし、混合液の500倍、1000倍、5000倍の希釈倍率区ではそれぞれ発病個体率は23.3±14.1%、30.0±14.1%、26.6±9.4%となり、高い発病抑制効果が確認された(図1)。なお、発病個体率は、個体(数葉を有する株)あたり1個以上の病班を認めた率を示している。
さらに、イネ1葉当たりのいもち病病斑数を調査した結果、蒸留水区では6.8±3.7個であったのに対し、混合液の500倍、1000倍、5000倍の希釈倍率区ではそれぞれ病斑数は1.4±1.9個、1.5±2.9個、1.5±3.0個となり、高い病斑形成の抑制を確認した(図2、図3)。なお、病班点は、直径約0.5mm以上の中央に濃い褐色点を持ち、周囲にやや薄い褐色域をもつ典型的な病状班を意味する。
As a result, in the distilled water section 5 days after the inoculation, the disease strain rate was 80.0 ± 9.4%, indicating a high disease individual rate. However, in the dilution factor group of 500 times, 1000 times and 5000 times of the mixed solution, the disease individual rate becomes 23.3 ± 14.1%, 30.0 ± 14.1%, 26.6 ± 9.4%, respectively. A high disease inhibitory effect was confirmed (FIG. 1). The disease individual rate indicates the rate at which one or more diseased lesions were observed per individual (strain having several leaves).
Furthermore, as a result of investigating the number of blast spots on a rice leaf, it was 6.8 ± 3.7 in the distilled water section, whereas the dilution ratio was 500 times, 1000 times and 5000 times that of the mixed solution. In each ward, the number of lesions was 1.4 ± 1.9, 1.5 ± 2.9, and 1.5 ± 3.0, confirming high suppression of lesion formation (FIGS. 2 and 3). ). In addition, a disease spot point means a typical disease state spot having a dark brown point in the center having a diameter of about 0.5 mm or more and a slightly light brown area around it.

図1、図2、図3に示すように混合液のイネ葉への前処理において、いもち病の発病個体率及び1葉あたりの病斑数が減少し、感染が抑制されることが確認された。   As shown in FIG. 1, FIG. 2, and FIG. 3, it was confirmed that the pretreatment of the mixed solution to rice leaves reduces the incidence of blast and the number of lesions per leaf, thereby suppressing infection. It was.

実施例2
混合液、イネ、いもち病菌の胞子懸濁液は実施例1と同様のものを用いた。
混合液を500倍希釈したものと蒸留水を用意し、イネ葉に1ケース20mlを噴霧処理し、十分に光を照射し、0時間、12時間、24時間、48時間、72時間後にいもち病菌の胞子懸濁液を噴霧接種した。接種後、24時間湿室・暗黒下に保ち、5日後に各ケースの発病個体率及び1葉あたりの病斑数を確認した。
Example 2
The spore suspension of the mixed solution, rice and blast fungus was the same as in Example 1.
Prepare 500-fold diluted solution and distilled water, spray 20ml of rice case into one case, and irradiate with enough light. After 0 hours, 12 hours, 24 hours, 48 hours, 72 hours, blast fungus Sprayed with a spore suspension of After inoculation, it was kept in a damp room / darkness for 24 hours, and after 5 days, the incidence rate of each case and the number of lesions per leaf were confirmed.

この結果、接種5日後において蒸留水区では1葉あたりの病斑数は7.4±2.7個となった。一方、0時間、12時間、24時間、48時間、72時間前処理区ではそれぞれ病斑数は0.9±2.1個、8.4±2.0個、2.0±3.0個、1.9±2.4個、2.6±1.4個となり、24時間以降に病斑形成抑制効果が確認された(図4、図5)。   As a result, 5 days after the inoculation, the number of lesions per leaf was 7.4 ± 2.7 in the distilled water section. On the other hand, in the 0-hour, 12-hour, 24-hour, 48-hour, and 72-hour pretreatment sections, the number of lesions was 0.9 ± 2.1, 8.4 ± 2.0, and 2.0 ± 3.0, respectively. The number was 1.9 ± 2.4, 2.6 ± 1.4, and the lesion formation inhibitory effect was confirmed after 24 hours (FIGS. 4 and 5).

図4、図5に示すように混合液のイネ葉への前処理後24時間以降において、いもち病の1葉あたりの病斑数が減少し、感染が抑制されることが確認された。また、0時間での混合接種において、いもち病の1葉あたりの病斑数が減少しているために混合液に直接的に菌の感染行動を阻害する作用が存在することが確認された。   As shown in FIGS. 4 and 5, it was confirmed that the number of lesions per leaf of blast decreased after 24 hours after the pretreatment of the mixed solution on rice leaves, and the infection was suppressed. Moreover, in the mixed inoculation at 0 hours, since the number of lesion spots per leaf of blast was reduced, it was confirmed that the mixed solution has an action to directly inhibit the infection behavior of the fungus.

実施例3
混合液、イネ、いもち病菌の胞子懸濁液は実施例1と同様のものを用いた。ただし、イネは種籾を蒸留水に浸し、催芽後、水稲育粒状培土グリーンソイル(窒素0.9g、燐酸1.1g、カリ1.0g/3.3kg)を加えたケース(15×6×10cm)に播種し、5葉期まで生育させて実験に使用した。
混合液を500倍希釈したものと蒸留水を用意し、上記のイネ葉鞘の裏面表皮に混合液又は蒸留水を注射器で処理した。その後、十分に光を照射し、24時間後に混合液又は蒸留水を十分に蒸留水で洗い流し、いもち病菌の胞子懸濁液をイネ葉鞘に接種した。接種後、接種イネ葉鞘は湿室にしたプラスチックケース内に納めた後、26℃の人工気象器内に保った。接種48時間後にカミソリを用いて葉鞘裏面表皮切片を作製し、光学顕微鏡下で細胞内の侵入菌糸を観察し、侵入菌糸形成率及び菌糸伸展度を高橋ら(1958年)の方法により算出した。
Example 3
The spore suspension of the mixed solution, rice and blast fungus was the same as in Example 1. However, rice is soaked in distilled water, and after sprouting, a paddy rice-growing granular soil green soil (nitrogen 0.9 g, phosphoric acid 1.1 g, potassium 1.0 g / 3.3 kg) is added (15 × 6 × 10 cm) ) And grown to the 5th leaf stage and used for the experiment.
Diluted water and distilled water were prepared 500 times, and the mixed liquid or distilled water was treated with a syringe on the back skin of the rice leaf sheath. Then, light was sufficiently irradiated, and after 24 hours, the mixed solution or distilled water was sufficiently washed away with distilled water, and a rice leaf sheath was inoculated with a spore suspension of blast fungus. After inoculation, the inoculated rice leaf sheath was placed in a wet plastic chamber and kept in a 26 ° C. meteorological device. 48 hours after inoculation, a razor was used to prepare a slice of the back of the leaf sheath, the invading hyphae in the cells were observed under an optical microscope, and the invading hyphae formation rate and hyphae extension were calculated by the method of Takahashi et al. (1958).

この結果、接種48時間後のいもち病の侵入菌糸形成率は蒸留水前処理区では73.0±20.1%となった。一方、混合液前処理区では21.9±20.8%となった。さらに、菌糸伸展度を調査すると蒸留水前処理区では2.5±1.3(最高伸展度13.0)であったのに対して、混合液前処理区では0.4±0.5(最高伸展度4.0)となった。これらの結果は混合液前処理によりイネ側のいもち病菌に対する抑制機構が働き、侵入を抑制したことを確認した(表2、図6)。   As a result, the invading mycelia formation rate of blast disease 48 hours after inoculation was 73.0 ± 20.1% in the distilled water pretreatment section. On the other hand, it was 21.9 ± 20.8% in the mixed solution pretreatment section. Furthermore, when the mycelial extension was investigated, it was 2.5 ± 1.3 (maximum extension 13.0) in the distilled water pretreatment section, whereas 0.4 ± 0.5 in the mixed solution pretreatment section. (Maximum extensibility 4.0). These results confirmed that the suppression mechanism against the rice blast fungus on the rice side worked and the invasion was suppressed by the mixed solution pretreatment (Table 2, FIG. 6).

実施例4
混合液、イネ、いもち病菌の胞子懸濁液は実施例1と同様のものを用いた。ただし、イネは種籾を蒸留水に浸し、催芽後、水稲育粒状培土グリーンソイル(窒素0.9g、燐酸1.1g、カリ1.0g/3.3kg)を加えたケース(15×6×10cm)に播種し、4−5葉期まで生育させて実験に使用した。
混合液又は微量金属のみの溶液を500倍及び1000倍希釈したものと蒸留水を用意して、それぞれにいもち病菌の胞子懸濁液を懸濁後、上記のイネ葉に1ケース20mlを噴霧した。接種後、24時間湿室・暗黒下に保ち、7日後に各ケースの1葉あたりの病斑数を確認した。
Example 4
The spore suspension of the mixed solution, rice and blast fungus was the same as in Example 1. However, rice is soaked in distilled water, and after sprouting, a paddy rice-growing granular soil green soil (nitrogen 0.9 g, phosphoric acid 1.1 g, potassium 1.0 g / 3.3 kg) is added (15 × 6 × 10 cm) ), And grown to 4-5 leaf stage and used for the experiment.
Diluted water and 500-fold and 1000-fold diluted metal solutions were prepared. Suspensions of blast fungus were suspended in each, and then 20 ml of one case was sprayed onto the rice leaves. . After inoculation, it was kept in a wet room / darkness for 24 hours, and the number of lesions per leaf in each case was confirmed 7 days later.

この結果、接種7日後のいもち病接種において、混合液及び微量金属のみの500倍希釈溶液ではそれぞれ病斑数は0.95±2.1個、2.5±2.8個となり、混合液及び微量金属のみの1000倍希釈溶液ではそれぞれ病斑数は1.8±2.8個、2.5±3.7個となり、微量金属のみでも病斑形成抑制効果が確認されたが、混合液でより高い病斑形成抑制効果が確認された(図7、図8)。   As a result, in the blast disease inoculation 7 days after the inoculation, the number of lesions was 0.95 ± 2.1 and 2.5 ± 2.8, respectively, in the mixed solution and the 500-fold diluted solution containing only trace metals. In the 1000-fold diluted solution containing only trace metals, the number of lesions was 1.8 ± 2.8 and 2.5 ± 3.7, respectively. A higher lesion formation inhibitory effect was confirmed with the liquid (FIGS. 7 and 8).

実施例5
混合液は実施例1と同様のもの、キュウリの品種は、「北進」であり、キュウリ褐斑病菌はキュウリの品種「北進」に病原性を示す菌株を使用した。
Example 5
The mixed solution was the same as in Example 1, the cucumber variety was “Kitashin”, and the cucumber brown spot fungus was a strain that was pathogenic to the cucumber variety “Kokushin”.

(1)キュウリの栽培方法
キュウリは種子を、サカタスーパーミックスA(窒素180mg、燐酸120mg、カリ220mg/1L)を加えたビニールポット(直径9×高さ8cm)に播種し、2葉期まで生育させて実験に使用した。
(1) Cucumber cultivation method Cucumber seeds are sown in a plastic pot (diameter 9 x height 8 cm) with Sakata Supermix A (nitrogen 180 mg, phosphoric acid 120 mg, potash 220 mg / 1 L) and grown until the second leaf stage. And used in the experiment.

(2)褐斑病菌の培養、胞子懸濁液の作成
実施例1のいもち病菌の培養において、キュウリの褐斑病菌を用いた以外は、同様にして胞子を形成させ、実施例1と同様にして胞子懸濁液を調整した。
(2) Cultivation of brown spot fungus and preparation of spore suspension In the culture of blast fungus of Example 1, except that cucumber brown spot fungus was used, spores were formed in the same manner as in Example 1. A spore suspension was prepared.

(3)混合液のキュウリ葉への処理とキュウリの褐斑病接種
混合液を100倍希釈したものと蒸留水を用意し、上記のキュウリ葉に1葉あたり2mlを噴霧処理し、十分に光を照射し、48時間後にキュウリの褐斑病菌の胞子懸濁液を噴霧接種した。接種5日後に1葉あたりの病斑数を確認した。
(3) Treatment of mixed solution on cucumber leaves and inoculation of cucumber with brown spot disease Prepare a 100-fold diluted mixed solution and distilled water, spray 2 ml per leaf on the above cucumber leaves, and light enough 48 hours later, a spore suspension of cucumber brown spot fungus was spray-inoculated. Five days after the inoculation, the number of lesions per leaf was confirmed.

この結果、接種5日後において蒸留水前処理区では病斑数は31.0±17.0個となり、多くの病斑が形成された。しかし、混合液の100倍の希釈倍率前処理区では病斑数は7.6±9.6個となり、高い病斑形成の抑制効果が確認された(図9、図10)。   As a result, 5 days after inoculation, the number of lesions was 31.0 ± 17.0 in the distilled water pretreatment group, and many lesions were formed. However, the number of lesions was 7.6 ± 9.6 in the pretreatment group at a dilution ratio of 100 times that of the mixed solution, and a high inhibitory effect on lesion formation was confirmed (FIGS. 9 and 10).

図9、図10に示すように混合液のキュウリ葉への前処理後のキュウリの褐斑病菌接種において、1葉あたりの病斑数が減少し、感染が抑制されることが確認された。   As shown in FIG. 9 and FIG. 10, it was confirmed that the number of lesions per leaf was reduced and infection was suppressed in the inoculation of the cucumber leaves after the pretreatment of the mixed solution to the cucumber leaves.

本発明の植物の病原菌感染抑制剤によれば、植物病害の原因となるイネのいもち病菌、キュウリの褐斑病菌等の植物病原菌の植物体への感染を有効に抑制することが可能になる。   According to the plant pathogen infection inhibitor of the present invention, it is possible to effectively suppress the infection of plant pathogens such as rice blast fungus and cucumber brown spot fungus that cause plant diseases.

従って本発明の5−アミノレブリン酸と微量金属の混合剤は、イネ及びキュウリを始め、多くの農作物栽培において広く利用できる可能性を有するものである。   Therefore, the mixture of 5-aminolevulinic acid and trace metals of the present invention has the possibility of being widely used in many crops such as rice and cucumber.

実施例1におけるイネの発病個体率を示すグラフである。2 is a graph showing the incidence rate of rice disease in Example 1. 実施例1におけるイネ1葉当たりの病斑数を示すグラフである。2 is a graph showing the number of lesions per leaf of rice in Example 1. 図2のグラフ作成に用いられた、イネの病斑を示す写真である。図中の、蒸留水、又は500倍、1000倍、5000倍は、図2の蒸留水、又は混合液の各希釈倍率に対応する。It is a photograph which shows the lesion of rice used for graph preparation of FIG. Distilled water or 500 times, 1000 times, and 5000 times in the figure correspond to each dilution rate of the distilled water or mixed solution of FIG. 実施例2における、混合液のイネへの処理時間に対するイネ1葉当たりの病斑数を示すグラフである。In Example 2, it is a graph which shows the number of the lesion spots per rice leaf with respect to the processing time to the rice of a liquid mixture. 図4のグラフ作成に用いられた、イネの病斑を示す写真である。図中の、蒸留水、又は0時間、12時間、24時間、48時間、72時間は、図2の蒸留水、又は混合液の各処理時間に対応する。It is the photograph which shows the lesion of rice used for graph preparation of FIG. Distilled water in the figure, or 0 hours, 12 hours, 24 hours, 48 hours, and 72 hours correspond to the treatment times of the distilled water or mixed liquid in FIG. 表2の作成に用いられた、イネ葉鞘裏面表皮切片の光学顕微鏡写真である。図中の、蒸留水、又は混合液は、表2の蒸留水、又は混合液に対応する。It is an optical microscope photograph of the rice leaf sheath back surface epidermal section used for preparation of Table 2. The distilled water or mixed solution in the figure corresponds to the distilled water or mixed solution in Table 2. 実施例4におけるイネ1葉当たりの病斑数を示すグラフである。It is a graph which shows the number of lesions per rice leaf in Example 4. 図7のグラフ作成に用いられた、イネの病斑を示す写真である。図中の、ALA+/500倍、ALA−/500倍、ALA+/1000倍、ALA−/1000倍は、図7に記載のものに各々対応する。It is the photograph which shows the lesion of rice used for preparation of the graph of FIG. In the figure, ALA + / 500 times, ALA− / 500 times, ALA + / 1000 times, and ALA− / 1000 times respectively correspond to those shown in FIG. 7. 実施例5におけるキュウリ1葉当たりの病斑数を示すグラフである。10 is a graph showing the number of lesions per cucumber leaf in Example 5. 図9のグラフ作成に用いられた、キュウリの病斑を示す写真である。図中の、蒸留水、又は混合液は、図9の蒸留水、又は混合液に対応する。It is the photograph which shows the lesion of a cucumber used for graph preparation of FIG. The distilled water or mixed solution in the figure corresponds to the distilled water or mixed solution in FIG.

Claims (6)

一般式(1)
NCHCOCHCHCOR (1)
[式中、R及びR は水素原子を示し;Rはヒドロキシ基、炭素数1〜12のアルコキシ基を示す。]
で表される5−アミノレブリン酸、その誘導体又はそれらの塩とK、Ca、Mg、Na、Fe、Mn、Cu、Zn、B及びMoから選ばれる少なくとも1種以上の金属とを有効成分とする植物の病原菌感染抑制剤。
General formula (1)
R 2 R 1 NCH 2 COCH 2 CH 2 COR 3 (1)
[In the formula, R 1 and R 2 is a water MotoHara child; R 3 represents a hydroxy group, an alkoxy group having 1 to 12 carbon atoms. ]
As an active ingredient, 5-aminolevulinic acid, a derivative thereof or a salt thereof represented by the formula (I) and at least one metal selected from K, Ca, Mg, Na, Fe, Mn, Cu, Zn, B, and Mo are used. Plant pathogen infection inhibitor.
一般式(1)で表される5−アミノレブリン酸、その誘導体が、5−アミノレブリン酸、5−アミノレブリン酸メチルエステル、5−アミノレブリン酸エチルエステル、5−アミノレブリン酸プロピルエステル、5−アミノレブリン酸ブチルエステル、5−アミノレブリン酸ペンチルエステル又は5−アミノレブリン酸ヘキシルエステルである請求項1に記載の植物の病原菌感染抑制剤。 5-aminolevulinic acid represented by the general formula (1) and derivatives thereof are 5-aminolevulinic acid, 5-aminolevulinic acid methyl ester, 5-aminolevulinic acid ethyl ester, 5-aminolevulinic acid propyl ester, and 5-aminolevulinic acid butyl ester. The plant pathogen infection inhibitor of claim 1, which is 5-aminolevulinic acid pentyl ester or 5-aminolevulinic acid hexyl ester. K、Ca、Mg、Na、Fe、Mn、Cu、Zn、B及びMoから選ばれる少なくとも1種以上の金属が、K、Ca、Mg、Na、Fe、Mn、Cu、Zn及びMoの金属である請求項1又は2に記載の植物の病原菌感染抑制剤。 At least one metal selected from K, Ca, Mg, Na, Fe, Mn, Cu, Zn, B and Mo is a metal of K, Ca, Mg, Na, Fe, Mn, Cu, Zn and Mo. The plant pathogen infection inhibitor according to claim 1 or 2. 植物が穀物であり、植物病原菌がいもち病菌である請求項1〜3いずれか1項に記載の植物の病原菌感染抑制剤。 The plant pathogen infection inhibitor according to any one of claims 1 to 3 , wherein the plant is a cereal and the plant pathogen is a blast fungus. 植物が野菜であり、植物病原菌が褐斑病菌である請求項1〜3いずれか1項に記載の植物の病原菌感染抑制剤。 The plant pathogen infection inhibitor according to any one of claims 1 to 3 , wherein the plant is a vegetable and the plant pathogen is a brown spot fungus. 植物を定植する24〜100時間前に、請求項1〜5のいずれか1項に記載の病原菌感染抑制剤を葉面散布することを特徴とする植物の病原菌感染抑制方法。 In 24 to 100 hours prior to planting the plant, pathogen infection suppression method of the plant, characterized in that the pathogen infection inhibitor according to any one of claims 1-5 foliar application.
JP2008221781A 2008-08-29 2008-08-29 Plant pathogen infection inhibitor and method for suppressing pathogen infection Active JP5223132B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008221781A JP5223132B2 (en) 2008-08-29 2008-08-29 Plant pathogen infection inhibitor and method for suppressing pathogen infection
CN200910171257A CN101658182A (en) 2008-08-29 2009-08-27 Plant pathogenic bacteria infection inhibitor and pathogenic bacteria infection inhibiting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008221781A JP5223132B2 (en) 2008-08-29 2008-08-29 Plant pathogen infection inhibitor and method for suppressing pathogen infection

Publications (2)

Publication Number Publication Date
JP2010053104A JP2010053104A (en) 2010-03-11
JP5223132B2 true JP5223132B2 (en) 2013-06-26

Family

ID=41786605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008221781A Active JP5223132B2 (en) 2008-08-29 2008-08-29 Plant pathogen infection inhibitor and method for suppressing pathogen infection

Country Status (2)

Country Link
JP (1) JP5223132B2 (en)
CN (1) CN101658182A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108522507A (en) * 2018-06-19 2018-09-14 郑州信联生化科技有限公司 A kind of biological growth stimulant composition, preparation and its application
CN113348923A (en) * 2021-05-26 2021-09-07 南京禾稼春生物科技有限公司 Strawberry blight combined control method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242892A (en) * 1984-07-27 1993-09-07 The Board Of Trustees Of The University Of Illinois Chlorophyll biosynthesis modulators
JP2613136B2 (en) * 1991-05-14 1997-05-21 株式会社コスモ総合研究所 Plant growth promoter
JP2660646B2 (en) * 1992-11-12 1997-10-08 株式会社コスモ総合研究所 Apple peel coloring enhancer and method for improving apple peel coloring
KR100365151B1 (en) * 2000-05-08 2003-02-11 김형락 Novel use of delta-aminolevulinic acid for the prevention and treatment of infection by pathogenic microorganism
IL157139A0 (en) * 2001-01-29 2004-02-08 Agricare Ltd Methods and compositions for controlling plant pathogen
CN1402976A (en) * 2001-09-04 2003-03-19 湖南省植物保护研究所 New Matter for preventing and controlling disease of crop and regulating growth of crop
DK1731500T3 (en) * 2004-03-30 2011-02-07 Cosmo Oil Co Ltd 5-Aminolevulinic acid phosphate salt, process for its preparation and use thereof
JP4934292B2 (en) * 2005-07-05 2012-05-16 コスモ石油株式会社 5-Aminolevulinic acid ester phosphoric acid salts, method for producing the same, and use thereof

Also Published As

Publication number Publication date
JP2010053104A (en) 2010-03-11
CN101658182A (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP2613136B2 (en) Plant growth promoter
JP5410640B2 (en) Plant growth method and composition used therefor
KR100856759B1 (en) Cultivation of eco-friendly organic grapes, which improved anti-hypertention activity
JP5323539B2 (en) Yield improver for crop crops
EP2053921B1 (en) A new antifungal composition
JP4934425B2 (en) Use of rare sugars consisting of D-psicose for plants
CN101754679B (en) Metal component absorption enhancer for plant
JP2007238482A (en) Agent for enhancing absorption of specific element by plant
JP2011140463A (en) Technique for controlling plant disease using waste mushroom bed of edible mushroom
HU195614B (en) Process for producing fungicide
JP4888937B2 (en) Use of rare sugars to control microbial growth
JP2000095609A (en) Plant disease preventing composition and its use
JP5223132B2 (en) Plant pathogen infection inhibitor and method for suppressing pathogen infection
JPH08225408A (en) Plant chlorophyll content improving method
CN109805019A (en) Fungicidal composition and its application
Horotan et al. Effects of fungicide and acetylsalicylic acid treatments on the physiological and enzymatic activity in tomato (Lycopersicon esculentum Mill.)
Yoon et al. The suppressive effects of calcium compounds against Botrytis cinerea in paprika
JP7429968B2 (en) Pest resistance inducer and plant pest control method
RU2359457C1 (en) Composition for stimulating growth and development and for protecting crops from fungus diseases
JP2022101921A (en) Ascomycetes, mycorrhizal fungus, wood-rotting fungus crop and soil and processed food, beverage, crude drug raw material, and sewage residue residual agrochemicals decomposition cleaning, and soil nitrate-nitrogen decomposition cleaning method
CN103688936B (en) A kind of composite bactericide and application thereof containing eugenol and cyazofamid
KR100972663B1 (en) Composition comprising 5-aminolevulinic acid and polyglutamic acid useful as depressor and growth agent for plants
Kanayev et al. Development of an effective method of pre-seed treatment in seeds of sugar beet
RU2253640C1 (en) Method of utilizing waste waters produced in the urea peroxyhydrate filtration stage
JP2002322008A (en) Plant growth regulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

R150 Certificate of patent or registration of utility model

Ref document number: 5223132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250