JP2022101921A - A method for decomposing and cleaning residual pesticides and soil nitrate nitrogen decomposition and cleaning of crops and soil and processed foods, beverages, crude drug raw materials and sewage residue by wood-rotting fungi. - Google Patents
A method for decomposing and cleaning residual pesticides and soil nitrate nitrogen decomposition and cleaning of crops and soil and processed foods, beverages, crude drug raw materials and sewage residue by wood-rotting fungi. Download PDFInfo
- Publication number
- JP2022101921A JP2022101921A JP2020216308A JP2020216308A JP2022101921A JP 2022101921 A JP2022101921 A JP 2022101921A JP 2020216308 A JP2020216308 A JP 2020216308A JP 2020216308 A JP2020216308 A JP 2020216308A JP 2022101921 A JP2022101921 A JP 2022101921A
- Authority
- JP
- Japan
- Prior art keywords
- tuber
- white truffle
- white
- fungus
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 241000233866 Fungi Species 0.000 title claims abstract description 108
- 239000002689 soil Substances 0.000 title claims abstract description 83
- 239000000575 pesticide Substances 0.000 title claims description 181
- 238000000354 decomposition reaction Methods 0.000 title claims description 45
- 238000000034 method Methods 0.000 title claims description 40
- 238000004140 cleaning Methods 0.000 title claims description 17
- 239000010865 sewage Substances 0.000 title description 19
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 title description 14
- 239000002994 raw material Substances 0.000 title description 14
- 235000021067 refined food Nutrition 0.000 title description 13
- 235000013361 beverage Nutrition 0.000 title description 7
- 239000003814 drug Substances 0.000 title description 2
- 229940079593 drug Drugs 0.000 title description 2
- 241000235349 Ascomycota Species 0.000 claims abstract description 19
- 241000972296 Choiromyces meandriformis Species 0.000 claims description 291
- 239000003242 anti bacterial agent Substances 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 11
- 241001465754 Metazoa Species 0.000 claims description 8
- 241000122144 Tuberaceae Species 0.000 claims description 8
- 230000003115 biocidal effect Effects 0.000 claims description 5
- 241000230993 Rhizopogonaceae Species 0.000 claims description 4
- 238000012364 cultivation method Methods 0.000 claims description 3
- 239000010801 sewage sludge Substances 0.000 claims description 2
- 235000013305 food Nutrition 0.000 abstract description 48
- 238000004519 manufacturing process Methods 0.000 abstract description 24
- 238000005516 engineering process Methods 0.000 abstract description 5
- 239000003905 agrochemical Substances 0.000 abstract 2
- 238000003912 environmental pollution Methods 0.000 abstract 1
- 241000894006 Bacteria Species 0.000 description 189
- 239000000725 suspension Substances 0.000 description 84
- 239000000243 solution Substances 0.000 description 78
- 238000005507 spraying Methods 0.000 description 75
- 241000196324 Embryophyta Species 0.000 description 57
- 230000012010 growth Effects 0.000 description 52
- 239000004009 herbicide Substances 0.000 description 42
- 239000003337 fertilizer Substances 0.000 description 34
- 239000002917 insecticide Substances 0.000 description 33
- 230000002363 herbicidal effect Effects 0.000 description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- 235000013616 tea Nutrition 0.000 description 21
- 238000001784 detoxification Methods 0.000 description 20
- 239000000417 fungicide Substances 0.000 description 19
- 241000282414 Homo sapiens Species 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 241001122767 Theaceae Species 0.000 description 17
- 229940088710 antibiotic agent Drugs 0.000 description 17
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 17
- 238000003306 harvesting Methods 0.000 description 17
- 239000007921 spray Substances 0.000 description 17
- 201000010099 disease Diseases 0.000 description 16
- 230000036039 immunity Effects 0.000 description 16
- 239000002609 medium Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 244000144972 livestock Species 0.000 description 15
- 244000005700 microbiome Species 0.000 description 14
- 240000009088 Fragaria x ananassa Species 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 238000000746 purification Methods 0.000 description 13
- 240000007594 Oryza sativa Species 0.000 description 12
- 235000007164 Oryza sativa Nutrition 0.000 description 12
- 230000006378 damage Effects 0.000 description 12
- 235000009566 rice Nutrition 0.000 description 12
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 11
- 244000221633 Brassica rapa subsp chinensis Species 0.000 description 11
- 235000010149 Brassica rapa subsp chinensis Nutrition 0.000 description 11
- 230000000844 anti-bacterial effect Effects 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 210000003491 skin Anatomy 0.000 description 11
- 229930006000 Sucrose Natural products 0.000 description 10
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 10
- 238000010998 test method Methods 0.000 description 10
- 235000016623 Fragaria vesca Nutrition 0.000 description 9
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 9
- 241000607479 Yersinia pestis Species 0.000 description 9
- 230000001580 bacterial effect Effects 0.000 description 9
- 238000012258 culturing Methods 0.000 description 9
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 9
- 239000001963 growth medium Substances 0.000 description 9
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 239000000447 pesticide residue Substances 0.000 description 9
- 239000003375 plant hormone Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 235000000536 Brassica rapa subsp pekinensis Nutrition 0.000 description 8
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 8
- 229920005610 lignin Polymers 0.000 description 8
- 239000010908 plant waste Substances 0.000 description 8
- 235000007516 Chrysanthemum Nutrition 0.000 description 7
- 244000189548 Chrysanthemum x morifolium Species 0.000 description 7
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 7
- 230000000855 fungicidal effect Effects 0.000 description 7
- 235000021012 strawberries Nutrition 0.000 description 7
- CFRPSFYHXJZSBI-DHZHZOJOSA-N (E)-nitenpyram Chemical compound [O-][N+](=O)/C=C(\NC)N(CC)CC1=CC=C(Cl)N=C1 CFRPSFYHXJZSBI-DHZHZOJOSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000000749 insecticidal effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 229940079888 nitenpyram Drugs 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000007958 sleep Effects 0.000 description 6
- 231100000331 toxic Toxicity 0.000 description 6
- 230000002588 toxic effect Effects 0.000 description 6
- 241000167854 Bourreria succulenta Species 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 239000007640 basal medium Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 235000019693 cherries Nutrition 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000009630 liquid culture Methods 0.000 description 5
- 238000010792 warming Methods 0.000 description 5
- 244000025254 Cannabis sativa Species 0.000 description 4
- 241000228143 Penicillium Species 0.000 description 4
- 206010035148 Plague Diseases 0.000 description 4
- 241000589187 Rhizobium sp. Species 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000292 calcium oxide Substances 0.000 description 4
- 235000012255 calcium oxide Nutrition 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 235000013339 cereals Nutrition 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 210000004209 hair Anatomy 0.000 description 4
- 239000003617 indole-3-acetic acid Substances 0.000 description 4
- 238000003973 irrigation Methods 0.000 description 4
- 230000002262 irrigation Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 230000007480 spreading Effects 0.000 description 4
- 238000003892 spreading Methods 0.000 description 4
- RSTKLPZEZYGQPY-UHFFFAOYSA-N 3-(indol-3-yl)pyruvic acid Chemical compound C1=CC=C2C(CC(=O)C(=O)O)=CNC2=C1 RSTKLPZEZYGQPY-UHFFFAOYSA-N 0.000 description 3
- 240000007124 Brassica oleracea Species 0.000 description 3
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 3
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 3
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 244000183914 Dianthus superbus Species 0.000 description 3
- 235000013535 Dianthus superbus Nutrition 0.000 description 3
- 244000307700 Fragaria vesca Species 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 241001489212 Tuber Species 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 239000012773 agricultural material Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000000975 bioactive effect Effects 0.000 description 3
- 235000013365 dairy product Nutrition 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 210000003608 fece Anatomy 0.000 description 3
- 239000010910 field residue Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 235000003642 hunger Nutrition 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005580 one pot reaction Methods 0.000 description 3
- 238000004382 potting Methods 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- 230000003313 weakening effect Effects 0.000 description 3
- QYOJSKGCWNAKGW-PBXRRBTRSA-K 3-phosphonatoshikimate(3-) Chemical compound O[C@@H]1CC(C([O-])=O)=C[C@@H](OP([O-])([O-])=O)[C@H]1O QYOJSKGCWNAKGW-PBXRRBTRSA-K 0.000 description 2
- 241000186361 Actinobacteria <class> Species 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000256837 Apidae Species 0.000 description 2
- 241000221198 Basidiomycota Species 0.000 description 2
- 101000742062 Bos taurus Protein phosphatase 1G Proteins 0.000 description 2
- 241000711573 Coronaviridae Species 0.000 description 2
- 240000003421 Dianthus chinensis Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 241000233855 Orchidaceae Species 0.000 description 2
- 241000221700 Pezizales Species 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 241000222557 Rhizopogon Species 0.000 description 2
- 241000121220 Tricholoma matsutake Species 0.000 description 2
- 241000609666 Tuber aestivum Species 0.000 description 2
- YASYVMFAVPKPKE-UHFFFAOYSA-N acephate Chemical compound COP(=O)(SC)NC(C)=O YASYVMFAVPKPKE-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- -1 and at the same time Substances 0.000 description 2
- 239000000729 antidote Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000004177 carbon cycle Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002361 compost Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 230000004720 fertilization Effects 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- JXOHGGNKMLTUBP-HSUXUTPPSA-N shikimic acid Chemical compound O[C@@H]1CC(C(O)=O)=C[C@@H](O)[C@H]1O JXOHGGNKMLTUBP-HSUXUTPPSA-N 0.000 description 2
- JXOHGGNKMLTUBP-JKUQZMGJSA-N shikimic acid Natural products O[C@@H]1CC(C(O)=O)=C[C@H](O)[C@@H]1O JXOHGGNKMLTUBP-JKUQZMGJSA-N 0.000 description 2
- 210000004927 skin cell Anatomy 0.000 description 2
- 231100000245 skin permeability Toxicity 0.000 description 2
- 238000010025 steaming Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 1
- YOYAIZYFCNQIRF-UHFFFAOYSA-N 2,6-dichlorobenzonitrile Chemical compound ClC1=CC=CC(Cl)=C1C#N YOYAIZYFCNQIRF-UHFFFAOYSA-N 0.000 description 1
- ZBMRKNMTMPPMMK-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid;azane Chemical compound [NH4+].CP(O)(=O)CCC(N)C([O-])=O ZBMRKNMTMPPMMK-UHFFFAOYSA-N 0.000 description 1
- 241001019659 Acremonium <Plectosphaerellaceae> Species 0.000 description 1
- 241000224489 Amoeba Species 0.000 description 1
- 241000988927 Aspidisca Species 0.000 description 1
- 229930192334 Auxin Natural products 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 239000005885 Buprofezin Substances 0.000 description 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 1
- 206010007269 Carcinogenicity Diseases 0.000 description 1
- 241001517197 Cattleya Species 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 235000016936 Dendrocalamus strictus Nutrition 0.000 description 1
- 241000522213 Dichilus lebeckioides Species 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241001265118 Epichloe festucae var. lolii Species 0.000 description 1
- 241000234643 Festuca arundinacea Species 0.000 description 1
- 240000008397 Ganoderma lucidum Species 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 238000009620 Haber process Methods 0.000 description 1
- 241001539176 Hime Species 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 240000000599 Lentinula edodes Species 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 240000004296 Lolium perenne Species 0.000 description 1
- 231100000678 Mycotoxin Toxicity 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 241000190478 Neotyphodium Species 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 241000085657 Pezizales sp. Species 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 208000005374 Poisoning Diseases 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 239000006035 Tryptophane Substances 0.000 description 1
- 241000581516 Tuber himalayense Species 0.000 description 1
- 244000223977 Tuber melanosporum Species 0.000 description 1
- 235000002777 Tuber melanosporum Nutrition 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 231100000570 acute poisoning Toxicity 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 229940075522 antidotes Drugs 0.000 description 1
- 235000019568 aromas Nutrition 0.000 description 1
- 239000002363 auxin Substances 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- RIOXQFHNBCKOKP-UHFFFAOYSA-N benomyl Chemical compound C1=CC=C2N(C(=O)NCCCC)C(NC(=O)OC)=NC2=C1 RIOXQFHNBCKOKP-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QRZGKKJRSA-N beta-cellobiose Chemical compound OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QRZGKKJRSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- PRLVTUNWOQKEAI-VKAVYKQESA-N buprofezin Chemical compound O=C1N(C(C)C)\C(=N\C(C)(C)C)SCN1C1=CC=CC=C1 PRLVTUNWOQKEAI-VKAVYKQESA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 231100000260 carcinogenicity Toxicity 0.000 description 1
- 230000007670 carcinogenicity Effects 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 230000005059 dormancy Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000021393 food security Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- ZEKANFGSDXODPD-UHFFFAOYSA-N glyphosate-isopropylammonium Chemical group CC(C)N.OC(=O)CNCP(O)(O)=O ZEKANFGSDXODPD-UHFFFAOYSA-N 0.000 description 1
- 208000037824 growth disorder Diseases 0.000 description 1
- 239000003854 herbicide residue Substances 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 238000009335 monocropping Methods 0.000 description 1
- 238000009343 monoculture Methods 0.000 description 1
- 230000013370 mutualism Effects 0.000 description 1
- 239000002636 mycotoxin Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- PZDFRGGOXGETNN-UHFFFAOYSA-N phosphane;potassium Chemical compound P.[K] PZDFRGGOXGETNN-UHFFFAOYSA-N 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- QXJKBPAVAHBARF-BETUJISGSA-N procymidone Chemical compound O=C([C@]1(C)C[C@@]1(C1=O)C)N1C1=CC(Cl)=CC(Cl)=C1 QXJKBPAVAHBARF-BETUJISGSA-N 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000003516 soil conditioner Substances 0.000 description 1
- 244000000000 soil microbiome Species 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000031068 symbiosis, encompassing mutualism through parasitism Effects 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 235000000112 undernutrition Nutrition 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
本発明は、全世界的に農業で使用されている植物、作物栽培における化学肥料、農薬の残留成分を、子嚢菌木材腐朽菌菌根菌である白トリュフTuber 菌を使用して分解解毒して、安心安全な食糧、加工食品、飲料、茶、生薬を生産する技術に関する。 In the present invention, residual components of plants, chemical fertilizers and pesticides used in agriculture worldwide are decomposed and detoxified by using white truffle Tuber, which is a mycorrhizal fungus of ascospores and wood decay. , Safe and secure food, processed food, beverage, tea, technology to produce fertilizer.
20世紀の世界社会は炭素社会を構築し、地球の有限資源を浪費し安楽な生活と繁栄を希求した100年である。しかし、21世紀に入ると、その「つけ」が一度に浮上したように、多くの問題、課題が表れてきた。更に、追い打ちをかけるように、2020年の新型コロナウイルスは人類社会の根底を揺るがし、新たに疫病の克服という最大の問題を解決しなければ、人類の未来を展望できない課題まで背負うことになった。人類が健康でなければ全ての産業が成りたたない。今後、健康は自身の「免疫力」で保つ社会になり、健康への意識の高まりは今後非常に急速に進行するであろう。 The world society of the 20th century is 100 years when we built a carbon society, wasted the limited resources of the earth, and sought a comfortable life and prosperity. However, in the 21st century, many problems and issues have emerged, as if the "tsuke" had emerged all at once. Furthermore, as if to catch up, the new coronavirus in 2020 has shaken the foundations of human society, and unless the biggest problem of overcoming the plague is solved, it will bear the task of not being able to see the future of humankind. .. If humanity is not healthy, all industries will not be possible. In the future, health will become a society that is maintained by its own "immunity", and awareness of health will increase very rapidly in the future.
この時、問題になるのは毎日食べる食糧の「残留農薬」の問題である。完全無農薬食糧は理想であるが、それでは現在の人口を賄うことが出来ない。栄養不足は即「免疫力」の低下につながり、貧困国では疫病と飢餓で悲惨な惨状になる。この飢餓と免疫力低下を防ぐためには農薬と化学肥料を多用して食糧を確保しなければならない。 At this time, the problem is the "residual pesticides" in the foods we eat every day. Completely pesticide-free food is ideal, but it cannot cover the current population. Undernourishment immediately leads to a weakening of "immunity", and in poor countries, plague and hunger can be disastrous. To prevent this hunger and weakened immunity, pesticides and fertilizers must be used extensively to secure food.
我が国において栽培されている野菜や果物では、収穫までに最低で6回、多いものでは60回以上農薬散布が行われ、1ha当たりの農薬使用量(2010年)は、12.1kgで中国、韓国に次いで世界で3番目に多い。このような状況で栽培された作物を食すれば、残留農薬も摂取せざるを得ないが、この残留農薬は人類の免疫に大きく関与しており、どうやっても「免疫力」低下を回避できない。免疫力の強弱が人類の生存を左右することを新型コロナは実証した。 For vegetables and fruits cultivated in Japan, pesticides are sprayed at least 6 times before harvesting, and at most 60 times or more, and the amount of pesticides used per ha (2010) is 12.1 kg in China and South Korea. It is the third largest in the world after. If you eat crops cultivated in such a situation, you will have to ingest residual pesticides, but these residual pesticides are greatly involved in human immunity, and it is inevitable that the "immunity" will decline. The new corona has demonstrated that the strength of immunity affects the survival of humankind.
安心安全な残留農薬の無い免疫力を減退させない食糧生産を行ないながら、今後の人口増加を賄うだけの食糧確保という、人類生存の最も困難な二つの問題を両立満足させる技術開発が喫緊の課題である。現在の世界の農業は、増大する世界人口の食糧を賄うために、大量の農薬と化学肥料が使用されており、残留農薬(除草剤)残留硝酸態窒素の問題は、食糧、土壌にとどまらないで、家畜の飼料の抗生物資、除草剤の非農耕地への散布による汚染は、河川、海洋、地球環境、生物生態系への影響など深刻な問題になっている。特に、2020年に全世界を震撼させた新型コロナは、人類の免疫減退の問題をあぶり出し、世界は疫病との戦いという新たな課題を解決しなければならなくなった。 It is an urgent task to develop a technology that satisfies the two most difficult problems of human survival, that is, securing food that can cover future population growth while producing food that does not diminish immunity without residual pesticides that are safe and secure. be. Today's world agriculture uses large amounts of pesticides and fertilizers to feed the growing world population, and the problem of residual pesticides (herbicides) residual nitrate nitrogen is not limited to food and soil. Therefore, pollution of livestock feed by spraying antibiotics and herbicides on non-agricultural land has become a serious problem such as impact on rivers, oceans, global environment and biological ecosystems. In particular, the new corona that shook the whole world in 2020 exposed the problem of human immune decline, and the world had to solve the new problem of fighting the plague.
20世紀初頭の1900年におよそ16億人だった世界人口は2019年には77億人まで急増した。この人口の急増を可能にしたのは、1900年代初頭に発明されたハーバー・ボッシュによって発明されたアンモニア合成による化学肥料と農薬による食糧の増産である。今後増大すると予測される人口を支えるためには、今後益々多肥料栽培と農薬の大量使用を行なう必要があるといわれる。地球温暖化によって高温障害による生育不良、軟弱化は病害虫の大発生を誘起している。この環境変化は作物の適地適産を脅かすまでに進行しており、この中で収量確保の為に、更に多くの化学肥料と農薬と除草剤使用を余儀なくされている。このことが、ハーバー・ボッシュ法による肥料生産のためのエネルギー消費を更に増大させ、石油枯渇、土壌残留硝酸態窒素による地球温暖化促進、生物生態系の破壊、熱帯雨林の消滅など、21世紀の人類が解決しなければならない重要な問題、課題の多くが、農業の問題であるといっても過言ではない。 The world population, which was about 1.6 billion in 1900 at the beginning of the 20th century, surged to 7.7 billion in 2019. This rapid increase in population was made possible by the increased production of fertilizers and pesticides produced by ammonia synthesis, invented by Haber Bosch invented in the early 1900s. In order to support the population that is expected to increase in the future, it is said that it will be necessary to cultivate more fertilizers and use a large amount of pesticides in the future. Due to global warming, poor growth and weakening due to high temperature damage induce outbreaks of pests. This environmental change has progressed to the point of threatening the proper production of crops, forcing the use of more chemical fertilizers, pesticides and herbicides to ensure yields. This further increased energy consumption for fertilizer production by the Haber-Bosch process, including oil depletion, promotion of global warming by soil residual nitrate nitrogen, destruction of biological ecosystems, and disappearance of tropical rain forests in the 21st century. It is no exaggeration to say that many of the important problems and issues that humankind must solve are agricultural problems.
多肥栽培と農薬使用を行なわない場合、現在の食糧生産は60%まで激減するとも言われており、世界の各国とも食糧の安定生産の立場から、農薬使用を継続する姿勢である。特に、穀物栽培は「雑草との戦い」であり、農薬の中で最も多量に使用されているのが「除草剤」である。この除草剤の使用量は、今後ますます増大する状況であり、食の安心、安全とは真逆の方向に進んでいるが、そうしなければ、増大する人口を養うことが出来ないのである。21世紀の世界は、食の安全と飢餓、農薬と免疫を同時に解決しなければならないことを課せられている。新型コロナウイルスの特効薬、ワクチンを作っても、残留農薬が体内に潜伏して免疫力を失わせ、次に生まれる疫病に同じことが繰り返される可能性がある。 It is said that the current food production will drop sharply to 60% if high fertilizer cultivation and pesticide use are not carried out, and each country in the world is willing to continue using pesticides from the standpoint of stable food production. In particular, grain cultivation is a "fight against weeds", and the most abundant pesticide used is "herbicides". The amount of this herbicide used will continue to increase in the future, and it is moving in the opposite direction of food safety and security, but otherwise it will not be possible to support the growing population. .. The world of the 21st century is tasked with solving food safety and hunger, pesticides and immunity at the same time. Even if a vaccine, a silver bullet for the new coronavirus, is made, residual pesticides may hide in the body and weaken the immune system, and the same thing may be repeated for the next plague.
農作地などの土壌中に残留した農薬や蓄積された化学肥料を処理する手段としては、種々の方法が提案されているが、物理的な方法(例えば、特許文献1~3)では、大量の土壌の処理や、複雑な設備を用いなければならず、実際にはほとんど普及されていない。また、化学的な処理方法(例えば特許文献4)では、広い面積に必要量を散布する必要があり、また処理剤としてそのまま土壌中に残るので、作物によっては使用できないこともあった。さらに、微生物を利用した処理方法も、特定の農薬用(特許文献5~7)だけでなく、汎用(特許文献8)の微生物も提案されているが、これらの微生物の育成が考慮されていないのでいずれは死滅し、効果は限定的であった。
Various methods have been proposed as means for treating pesticides remaining in soil such as agricultural land and accumulated chemical fertilizers, but physical methods (for example,
一方、収穫物に残留する農薬は、対象物の安全を確保したうえで除去しなければならず、水洗が主に行われているが、完全に除去することは難しく、特に、生育中の作物体内に残留する農薬の除去には効果がなかった。このように、農作物やその農耕地など身近な環境に存在する有害物質を簡単かつ安全に除去する方法が望まれていた。 On the other hand, pesticides remaining in the harvest must be removed after ensuring the safety of the object, and washing with water is mainly performed, but it is difficult to completely remove them, especially for growing crops. It was not effective in removing pesticides remaining in the body. As described above, a method for easily and safely removing harmful substances existing in a familiar environment such as agricultural products and their cultivated land has been desired.
人類は前記したように人口の増加を賄う食糧を確保するために農薬を開発し、農薬が残留する原料を使用することで、殆ど全ての食糧、食品、加工食品、飲料が農薬に汚染された。食糧確保のための食糧生産を行なえば、この農薬が人類の免疫を低下させ、生物生態系に大きな影響を与え、地球環境を配するまでになった。 As mentioned above, human beings have developed pesticides to secure foods that can support the growth of the population, and by using raw materials with residual pesticides, almost all foods, foods, processed foods and beverages have been contaminated with pesticides. .. When food production was carried out to secure food, this pesticide lowered the immunity of human beings, had a great impact on the biological ecosystem, and even arranged the global environment.
自然界には、生物が産生する有毒物質は、必ず生物が分解解毒し清浄化するという自然の法則がある。分解解毒できない化学化合物を作るのは人間のみである。本来なら、科学は、毒性を持つ農薬を作る場合、同時に自然界と同じように「分解、解毒、清浄化」を図る「解毒剤」も開発すべきであるが、それを行なわないで利益追求に走った結果が、現在の残留問題の根源である。本発明者は、上記の自然の法則を考察したとき、今後も農薬を使わなければ食糧確保できないのであれば、自然の法則に則り「農薬を分解解毒」しなければ、この問題を解決でないとの考えに至った。 In the natural world, there is a natural law that toxic substances produced by living things are always decomposed, detoxified and purified by living things. Only humans make chemical compounds that cannot be decomposed and detoxified. Originally, science should develop "antidotes" that aim at "decomposition, detoxification, and purification" at the same time when making toxic pesticides, but in pursuit of profit without doing so. The result of running is the root of the current residual problem. When considering the above-mentioned laws of nature, the present inventor must solve this problem unless "decomposing and detoxifying pesticides" in accordance with the laws of nature if food cannot be secured without using pesticides in the future. I came up with the idea.
本発明者は先に「完全無農薬栽培」、「減肥料及び減農薬及び無農薬栽培」で行うことを考え特許出願3件を行なってきた(特願 2019-164530、特願 2019-164410、特願 2020-142873)。
しかし、現状は、逆に、今後益々農薬の生産、使用量が増大すると予想され、世界の農業を俯瞰したとき、高度な技術を必要とする「減肥料及び減農薬及び無農薬栽培」は減収を伴い食糧不足する国々が出ることが予想されるので、本発明者は、農薬を使用しても、その後解毒剤処理を行うことで、食糧、加工食品、飲料、環境から残留農薬を分解、解毒、清浄化を図り、農薬を使用しながら人体の免疫、環境破壊を防止することを考えた。
The present inventor has filed three patent applications in consideration of "completely pesticide-free cultivation" and "reduced fertilizer and pesticide-free cultivation" (Japanese Patent Application No. 2019-164530, Japanese Patent Application No. 2019-164410, Japanese Patent Application No. 2020-142873).
However, at present, on the contrary, it is expected that the production and usage of pesticides will increase more and more in the future, and when looking at the world's agriculture, sales of "reduced fertilizers, reduced pesticides and pesticide-free cultivation" that require advanced technology will decrease. Since it is expected that some countries will be short of food due to the above, the present inventor decomposes residual pesticides from foods, processed foods, beverages, and the environment by performing detoxification agent treatment even if pesticides are used. We considered detoxification and cleansing, and using pesticides to prevent human immunity and environmental destruction.
食糧、加工食品、飲料、環境から残留農薬を、完全に分解、解毒、清浄化するためには、作物の表面に付着した農薬だけでなく、生育中の植物、作物の体内に蓄積された農薬も除去する必要があるが、従来このような技術が知られていない。また、この残留農薬の問題は、今や全世界の共通のものであることから、全世界で実施可能な技術でなければならない In order to completely decompose, detoxify and purify residual pesticides from foods, processed foods, beverages and the environment, not only pesticides adhering to the surface of crops but also pesticides accumulated in growing plants and crops However, such a technique has not been known in the past. Also, since this pesticide residue problem is now common throughout the world, it must be a technology that can be implemented worldwide.
大自然の生物が代謝物として産生する生物活性物としての有毒化合物は、自然界ではほとんど全て木材腐朽菌、白色木材腐朽菌が第一分解者として分解無毒化しており、地球の大自然の土壌はこの浄化システムで保たれている。本発明者は、この地球の大自然の摂理、法則に着目して、残留農薬の分解解毒に、この大自然の浄化システムを導入すれば、安心安全な食糧生産を行ないながら、現在の人口、更には、今後予想される人口増加を対応できる食糧生産を可能にすることが出来ると考えた。
さらに、残留農薬の食循環の問題は、作物ばかりではなく、残留農薬を含有した飼料による肉、卵、乳製品、農薬に汚染された海水による海産物、魚類にまで及んでおり、地球には安心安全な食べ物が無い状態まで汚染は進行している。
Almost all toxic compounds as bioactive substances produced by natural organisms as metabolites are decomposed and detoxified by wood-rotting fungi and white wood-rotting fungi as the first decomposer in the natural world. It is kept in this purification system. The present inventor pays attention to the laws and laws of the great nature of the earth, and if this natural purification system is introduced for the decomposition and detoxification of residual pesticides, the current population can be produced while producing safe and secure food. Furthermore, we thought that it would be possible to produce food that could cope with the expected population growth in the future.
Furthermore, the problem of food circulation of residual pesticides extends not only to crops, but also to meat, eggs, dairy products from feeds containing residual pesticides, marine products from seawater contaminated with pesticides, and fish. Pollution has progressed to the point where there is no safe food.
圃場周囲エリアの生態系へ影響を及ぼす残留農薬とは、人間本位の収穫時、出荷時の残留濃度基準ではなく、栽培生育中のエリアに残留する農薬の問題である。本発明者は、上記のような視点から、収穫時の残留農薬と共に、作物栽培中の生育過程での残留農薬の分解解毒、浄化をしなければ、生物生態系を保全することは出来ないと考えた。つまり、別な言い方をすれば、農薬散布、除草剤の散布後、効果が表れた後、速やかに分解解毒すれば、上記の諸問題は全て解決するはずである。更に、加工食品原料の原料となる農作物の残留農薬を分解除去することで、安心安全な加工食品、飲料、茶などを生産することが出来る。 Residual pesticides that affect the ecosystem of the area around the field are not the standard of residual concentration at the time of harvesting and shipping at the time of human-oriented harvesting, but the problem of pesticides remaining in the area during cultivation and growth. From the above viewpoint, the present inventor cannot conserve the biological ecosystem unless it decomposes, detoxifies, and purifies the residual pesticides in the growing process during crop cultivation together with the residual pesticides at the time of harvest. Thought. In other words, in other words, after spraying pesticides and herbicides, after the effects appear, if the decomposition and detoxification are promptly performed, all the above problems should be solved. Furthermore, by decomposing and removing residual pesticides in agricultural products that are raw materials for processed foods, safe and secure processed foods, beverages, teas and the like can be produced.
先に述べたように残留農薬の食循環の問題は、作物ばかりではなく、残留農薬を含有した飼料による肉、卵、乳製品、農薬に汚染された海水による海産物、魚類にまで及んでおり、地球には安心安全な食べ物が無い状態まで汚染は進行しているが、飼料の原料となる農作物中の残留農薬や圃場その他の農薬散布エリアの残留農薬が分解除去されることで、上記汚染が抑制される。 As mentioned earlier, the problem of food circulation of residual pesticides extends not only to crops, but also to meat, eggs, dairy products from feeds containing residual pesticides, marine products from seawater contaminated with pesticides, and fish. Contamination has progressed to the point where there is no safe and secure food on the earth, but the above pollution is caused by the decomposition and removal of residual pesticides in crops that are raw materials for feed and residual pesticides in fields and other pesticide spraying areas. It is suppressed.
残留農薬を分解解毒するには、先行出願の減肥料及び減農薬及び無農薬栽培法(特願2019-164530号)で使用したPezizales sp.菌より優れた殺菌剤耐性を具備しなければ本発明の目的を達成することは出来ない。そこで本発明者は、土壌の中に子実体を形成する子嚢菌木材腐朽菌菌根菌であれば、土壌の多様な環境条件、雑菌耐性を具備しているのではないかと想定した。それは、土壌の中に次世代の子実体を形成するには、強い抗菌力と共に、土壌に生息する多様な微生物が産生する抗生物質、生物毒などの生物活性物質が含有するが、これらの多様な有害成分を分解清浄化する必要があるからである。 In order to decompose and detoxify residual pesticides, Pezizales sp. The object of the present invention cannot be achieved unless the fungicide resistance is superior to that of the fungus. Therefore, the present inventor has assumed that the ascomycete wood-rotting fungus that forms fruiting bodies in the soil may have various environmental conditions and resistance to various germs in the soil. It contains strong antibacterial activity and bioactive substances such as antibiotics and biological poisons produced by various microorganisms living in the soil to form the next generation of offspring in the soil. This is because it is necessary to decompose and clean the harmful components.
本発明者は、そのような観点から、一縷の望みを託し「減肥料及び減農薬及び無農薬栽培」で使用した「子嚢菌白色木材腐朽菌 菌根菌」であるTuber ssp.に属する「白トリュフ」Tuber magnatum菌に着目した。この白トリュフTuber 菌は食菌としては何世紀に渡り西欧諸国において最高のキノコとして高級料理に使用されてきて来ており、人畜無害で、世界各地に自生している。本発明者は、この白トリュフTuber 菌に着目し、その特性の全貌を解明するために更に膨大な試験を行い、下記表1に示す、他の微生物に見られない稀有な31特性を解明した。 From such a point of view, the present inventor entrusted the hope of "white" belonging to Tuber ssp. We focused on the "truffle" Tuber magnatum fungus. This white truffle Tuber bacterium has been used in high-class cuisine as the best mushroom in Western countries for centuries as a feeding bacterium, is harmless to humans and animals, and grows naturally all over the world. The present inventor focused on this white truffle Tuber bacterium and conducted an enormous amount of tests to elucidate the whole picture of its characteristics, and elucidated 31 rare characteristics not found in other microorganisms shown in Table 1 below. ..
白トリュフTuber 菌に着目した理由は、地球上で最も強力な分解能力を具備している微生物はリグニンを分解出来る白色木材腐朽菌であること、白色木材腐朽菌には、子嚢菌と担子菌があるが、子嚢菌には担子菌のような植物を枯らす菌がなく、生育中の作物の残留農薬を分解するためには植物に無害な菌であること、「子嚢菌白色木材腐朽菌」でありながら植物の生育助ける菌根菌に進化し土壌の中に子実体(いわゆるトリュフ)を形成すること、人畜、生物に対して絶対に安全な菌であるということ、強い抗菌力を持ち、全世界の寒帯から熱帯エリアの多様な土壌で生息できる菌であること、である。 The reason for focusing on the white truffle Tuber fungus is that the fungus with the strongest decomposition ability on the earth is a white wood-rotting fungus that can decompose lignin. However, there is no fungus that kills plants like the fungus, and it is a fungus that is harmless to plants in order to decompose residual pesticides in growing crops. Although it has evolved into a mycorrhizal fungus that supports the growth of plants, it forms offspring (so-called truffles) in the soil, is an absolutely safe fungus against humans, livestock, and living organisms, and has strong antibacterial activity. It is a fungus that can live in various soils in the cold and tropical areas of the world.
白トリュフTuberは、イタリア、フランスなどの塩基性アルカリ土壌(図2)に自生するキノコ菌であり、セイヨウショウロ科 、セイヨウショウロ属に属する菌で、他に黒トリフが著名であるが、最近の研究では近縁のTuber属菌は、近年、世界各エリアで新種が次々に発見され、北半球から南半球まで合わせると約160種が発見登録され、日本にも約15種自生しているといわれている。 White truffle Tuber is a mushroom fungus that grows naturally in basic alkaline soils such as Italy and France (Fig. 2), and belongs to the family Rhizopogon roseae and the genus Rhizopogon rose. In recent years, new species of Tuber spp., Which are closely related to each other, have been discovered one after another in various areas of the world, and about 160 species have been discovered and registered from the northern hemisphere to the southern hemisphere, and it is said that about 15 species grow naturally in Japan. There is.
また、白トリュフTuber 菌と使用して本発明を達成し全世界で実施するためには大量の菌糸体が必要になるが、本発明者は世界で初めて、白トリュフTuber 菌の大量培養に成功した(図8)。 In addition, a large amount of mycelium is required to achieve the present invention by using it with the white truffle Tuber bacterium and to carry it out worldwide, but the present inventor succeeded in mass culturing the white truffle Tuber bacterium for the first time in the world. (Fig. 8).
さらに、本発明は白トリュフTuber 菌に限定するものではなく、Tuber属にするほとんどの菌、黒トリュフ、中国黒トリュフなど160種のTuber ssp.菌を使用することが可能である。更に近縁種である子嚢菌木材腐朽菌Pezizales.属菌が同じような特性を持っていることから(特願 2019-164530号)、子嚢菌白色木材腐朽菌の中で「菌根菌」の特性を具備した他のセイヨウショウロ科、ショウロ科、チャワンダケ科菌を用いることも可能であることを示唆している。例えばチャワンダケ科の菌では、オオチャワンダケ、ベニチャワンダケ、クロチャワンダケ、タヌキノチャワンダケ、クリイロチャワンダケ、ニセクリイロチャワンダケ、にも可能性があると考えられる。 Furthermore, the present invention is not limited to the white truffle Tuber bacterium, and it is possible to use 160 kinds of Tuber ssp. Bacteria such as most of the genus Tuber, black truffle, and Chinese black truffle. Furthermore, since the fungi of the genus Pezizales., Which are closely related species, have similar characteristics (Japanese Patent Application No. 2019-164530), among the ascomycetes white wood-rotting fungi, "mycorrhizal fungi" It is suggested that other tuberaceae, tuberaceae, and pezizales fungi with characteristics can be used. For example, among the fungi of the family Chawandake, it is considered that there is a possibility of Ochawandake, Benichawandake, Kurochawandake, Tanukinochawandake, Kuriirochawandake, and Nisekuriirochawandake.
材腐朽菌の基本は自然界では枯れ落ち葉、風倒木、植物死骸などのリグニン、セルロース、その他の生理活性物質などをエサにして生き続けてきた第一次分解菌であり、この木材腐朽菌には担子菌と子嚢菌を合わせる世界中に数万以上の菌があるとされている。しかし、この中に木材腐朽菌でありながら生きている植物と共生し「菌根菌」の特性を具備して植物の生育を助けるラン菌、マツタケ菌、トリュフ菌などごく少数しかない。本発明の目的を達成するためには、木材腐朽菌でありながら生きている植物と共生して、その植物の生育を助ける菌根菌でなければならない。このような菌でなければ、栽培中の生きている作物体内に残留する農薬を分解、解毒することは出来ないからである。ただ単に作物残渣残留農薬を分解するのであれば、植物死骸を分解するシイタケなどの担子菌木材腐朽菌でも使用できるが、生きている生育中の作物には使用できない。 The basis of wood-rotting fungi is the primary degrading fungus that has survived in nature by feeding on dead leaves, wind-fallen trees, lignin such as dead plants, cellulose, and other physiologically active substances. It is said that there are more than tens of thousands of fungi in the world, including basidiomycetes and ascomycetes. However, there are only a few of these, such as orchids, matsutake mushrooms, and truffles, which coexist with living plants even though they are wood-rotting fungi and have the characteristics of "mycorrhizal fungi" to support the growth of plants. In order to achieve the object of the present invention, it must be a mycorrhizal fungus that coexists with a living plant even though it is a wood-rotting fungus and supports the growth of the plant. This is because it is not possible to decompose and detoxify the pesticides remaining in the living crops that are being cultivated without such bacteria. If it simply decomposes pesticide residues in crop residues, it can be used with basidiomycete wood-rotting fungi such as shiitake mushrooms that decompose plant carcasses, but it cannot be used for living and growing crops.
白トリフは、キノコ栽培で最も困難なキノコで、この菌の子実体は食べられるキノコとして、世界で最も高価なキノコとして賞味されてきた人畜無害なキノコである。何100年にもわたって食されてきたキノコであり、毒性の知見はない。本発明者がこの白トリュフTuber 菌に着目した最も重要な要素が安心安全なキノコ菌であることである。更に、作物にとっても害を与えない安全な「菌根菌」の特性を持っている木材腐朽菌の中でも稀な特性を具備していることである。 White truffles are the most difficult mushrooms to grow, and the fruiting bodies of this fungus are harmless to humans and animals that have been tasted as the most expensive mushrooms in the world as edible mushrooms. It is a mushroom that has been eaten for hundreds of years and has no known toxicity. The most important factor that the present inventor paid attention to this white truffle Tuber bacterium is that it is a safe and secure mushroom bacterium. Furthermore, it has a rare property among wood-rotting fungi, which has the property of a safe "mycorrhizal fungus" that does not harm crops.
白トリュフTuber 菌の菌根菌が植物の根と共生すると植物の根は「根毛」を持たない根に変化する。図9(1)は、ラン菌と共生したカトレアの菌根であり、根毛がない。
一方、図9(2)に示すイチゴは根毛を有するが、この根毛は乾燥に弱く、吸水力が弱いため、土壌が乾燥すると植物は大きなダメージを受ける。野生植物は、このリスクを回避するために菌根菌と共生し、菌根菌の菌糸を根毛の代わりとして、菌糸の強い水分吸収力を利用して乾燥に耐える。又、白トリュフTuber 菌のような白色木材腐朽菌は枯れ落ち葉、植物死骸のリグニン、セルオースを分解してブドウ糖を作り、これを植物に供給し、植物の光合成を補完する。同時にミネラル、酸素、窒素も供給し、連作障害が起こらないようにしている。又、菌根菌の多くは強い抗菌力で病害菌を休眠させ、植物を病害から保護している。植物は菌根菌と共生することによって充分なエネルギーを貯蔵できることから「耐暑性」「耐寒性」を増し、多年草植物では永年にわたり健康を持続させる。屋久島の7000年の大王杉がその実例だといわれている。
When the mycorrhizal fungus of White Truffle Tuber coexists with the root of the plant, the root of the plant changes to a root without "root hair". FIG. 9 (1) shows the mycorrhiza of cattleya that coexisted with the orchid bacterium and has no root hair.
On the other hand, the strawberry shown in FIG. 9 (2) has root hairs, which are vulnerable to drying and have weak water absorption, so that when the soil dries, the plants are greatly damaged. Wild plants coexist with mycorrhizal fungi to avoid this risk and use the mycelial hyphae as a substitute for root hairs to withstand desiccation by utilizing the strong water absorption capacity of the mycelium. In addition, white wood-rotting fungi such as the white truffle Tuber fungus decompose dead leaves, lignin of dead plants, and cellose to produce glucose, which is supplied to plants and complements the photosynthesis of plants. At the same time, minerals, oxygen and nitrogen are also supplied to prevent continuous cropping disorders. In addition, many mycorrhizal fungi have strong antibacterial activity to put the diseased bacteria to sleep and protect the plants from the disease. Since plants can store sufficient energy by coexisting with mycorrhizal fungi, they increase "heat resistance" and "cold resistance", and perennial plants maintain their health for many years. It is said that the 7000-year-old Daio Sugi on Yakushima is an example.
以下、本発明の態様を示す。
〔1〕菌根菌の特性を具備した子嚢菌白色木材腐朽菌を使用する、残留有害化合物を含有又は付着する物質における残留有害化合物の分解清浄化方法。
〔2〕菌根菌の特性を具備した子嚢菌白色木材腐朽菌が、セイヨウショウロ科、ショウロ科、またはチャワンダケ科から選択される菌である〔1〕記載の分解清浄化方法。
〔3〕菌根菌の特性を具備した子嚢菌白色木材腐朽菌が、白トリュフTuber 菌である〔1〕記載の分解清浄化方法。
〔4〕残留有害化合物を含有又は付着する物質が、植物、動物の排泄物、下水汚泥又は土壌である〔1〕~〔3〕の何れかに記載の分解清浄化方法。
〔5〕残留化合物が残留農薬である〔1〕~〔4〕の何れかに記載の分解清浄化方法。
〔6〕残留化合物が動物の排泄物中に含まれる抗生物質である〔1〕~〔4〕の何れかに記載の分解清浄化方法。
〔7〕菌根菌の特性を具備した子嚢菌白色木材腐朽菌を使用する植物の安定栽培方法
〔8〕菌根菌の特性を具備した子嚢菌白色木材腐朽菌が、セイヨウショウロ科、ショウロ科、またはチャワンダケ科から選択される菌である〔7〕記載の植物の安定栽培方法。
〔9〕菌根菌の特性を具備した子嚢菌白色木材腐朽菌が、白トリュフTuber 菌である〔7〕記載の植物の安定栽培方法。
Hereinafter, aspects of the present invention will be shown.
[1] A method for decomposing and cleaning residual harmful compounds in a substance containing or adhering to residual harmful compounds, using ascomycete white wood-rotting fungi having the characteristics of mycorrhizal fungi.
[2] The decomposition and cleaning method according to [1], wherein the ascomycete white wood-rotting fungus having the characteristics of mycorrhizal fungi is a fungus selected from Tuberaceae, Rhizopogonaceae, or Chawandake family.
[3] The decomposition and cleaning method according to [1], wherein the ascomycete white wood-rotting fungus having the characteristics of mycorrhizal fungi is the white truffle Tuber fungus.
[4] The decomposition and cleaning method according to any one of [1] to [3], wherein the substance containing or adhering to the residual harmful compound is plant, animal excrement, sewage sludge or soil.
[5] The decomposition cleaning method according to any one of [1] to [4], wherein the residual compound is a residual pesticide.
[6] The decomposition and cleaning method according to any one of [1] to [4], wherein the residual compound is an antibiotic contained in animal excrement.
[7] Ascomycete with mycorrhizal characteristics Stable cultivation method of plants using white wood-rotting fungi [8] Ascomycetes with mycorrhizal characteristics White wood-rotting fungi are tuberaceae and tuberaceae. , Or the method for stable cultivation of a plant according to [7], which is a fungus selected from the family Tuberaceae.
[9] The method for stable cultivation of a plant according to [7], wherein the ascomycete white wood-rotting fungus having the characteristics of mycorrhizal fungi is the white truffle Tuber fungus.
白トリュフTuber 菌懸濁液希釈液は液状であるので、通常の農薬散布の方法に準じジョウロ、噴霧器、飛行機、ドローンなどを使用することが出来る。しかし、懸濁液希釈液に限定することなく、大量培養して得られた白トリュフTuber 菌を担持させた粉剤、粒剤として使用することも可能であり、場所や対象物に応じて選択すればよい。
除草剤の場合、面積当たりの使用量が少ないので、その分解浄化のためには、白トリュフTuber 菌懸濁液を植物残渣が充分濡れた状態となるまで散布すればよい。
Since the diluted solution of white truffle Tuber suspension is liquid, it can be used with a jouro, a sprayer, an airplane, a drone, etc. according to the usual method of spraying pesticides. However, it is not limited to the suspension diluent, and it can also be used as a powder or granule carrying the white truffle Tuber bacterium obtained by mass culturing, and it can be selected according to the place and the object. Just do it.
In the case of herbicides, the amount used per area is small, so in order to decompose and purify the herbicide, a suspension of white truffle Tuber bacteria may be sprayed until the plant residue is sufficiently wet.
作物生育中の生体内残留農薬分解するには、農薬散布24時間から48時間の間に白トリュフTuber 菌懸濁液希釈液30から50倍液を10a当たり200から500L噴霧散布する。
このとき、展着剤を所定濃度に添加、希釈液1L当たり白砂糖5g添加すればよい。白砂糖添加した場合は、葉圏、根圏の病害菌を不活性化し、また、白トリュフTuber 菌の空中窒素固定で減肥料及び減農薬及び無農薬栽培が可能になる。
殺虫剤、殺菌剤共に薬効が表れるのは散布24時間ほどであるから、これより前に行わないことが重要である。
To decompose residual pesticides in the body during crop growth, spray 200 to 500 L of white truffle Tuber suspension diluted solution 30 to 50 times per 10 a between 24 hours and 48 hours of pesticide spraying.
At this time, the spreading agent may be added to a predetermined concentration, and 5 g of white sugar may be added per 1 L of the diluted solution. When white sugar is added, the disease-causing bacteria in the phyllosphere and rhizosphere are inactivated, and the white truffle Tuber bacteria can be fixed with nitrogen in the air to enable reduced fertilizer, reduced pesticide and pesticide-free cultivation.
Since the medicinal effects of both insecticides and fungicides appear for about 24 hours after spraying, it is important not to do so before this.
雑草の除草剤成分を分解するには、茎葉の場合、除草剤を散布してから24時間~48時間後に白トリュフTuber 菌懸濁液希釈溶液を、茎葉が充分濡れる程度噴霧すればよく、除草剤処理残渣の残留農薬分解の場合(枯れた残渣)は、除草剤散布で雑草が枯れていても、この残さには除草剤成分が残留して、残渣が分解した後、土壌に残留汚染するので、枯れた雑草残渣に白トリュフTuber 菌懸濁液希釈液30から50倍溶液を充分濡れる程度噴霧するのがよい。
また、圃場雑草刈り取り残渣、除草剤残渣 果樹草生栽培残渣の場合は、白トリュフTuber 菌懸濁液30から50倍希釈液を充分濡れる程度噴霧散布する(展着剤添加、白砂糖希釈液1L当たり5から10g添加)。すると、約7日から15日で残渣に白トリュフTuber 菌が生育繁殖して、残渣を分解すると同時に農薬、除草剤成分を分解解毒し、土壌病害菌を休眠させ、同時に土壌の残留硝酸態窒素を浄化し、更に白トリュフTuber 菌が空中窒素固定を行い減肥料及び減農薬及び無農薬栽培可能な圃場に再生することが出来る。
In order to decompose the herbicide component of weeds, in the case of foliage, 24 to 48 hours after spraying the herbicide, a diluted solution of White Truffle Tuber fungus suspension should be sprayed to the extent that the foliage is sufficiently wet. In the case of residual pesticide decomposition of the agent treatment residue (withered residue), even if the weeds are withered by spraying the herbicide, the herbicide component remains in this residue, and after the residue is decomposed, it contaminates the soil. Therefore, it is advisable to spray the dead weed residue with a 30 to 50-fold solution of the white truffle Tuber suspension diluted solution to the extent that it is sufficiently wet.
In the case of field weed cutting residue and herbicide residue, fruit tree grass cultivated residue is sprayed with a 50-fold diluted solution from 30 to 50-fold diluted solution of white truffle Tuber (addition of spreading agent, per 1 L of white sugar diluted solution). Add 5 to 10 g). Then, white truffle Tuber bacteria grow and propagate in the residue in about 7 to 15 days, and at the same time, the pesticide and herbicide components are decomposed and detoxified, the soil disease bacteria are put to sleep, and at the same time, the residual nitrate nitrogen in the soil is decomposed. It can be regenerated into a field where white truffle Tuber bacteria can be cultivated with reduced fertilizer, reduced pesticide and no pesticide by fixing nitrogen in the air.
土壌に残留する農薬を分解するには、以下の二つの方法が考えられる。
<方法1>予め白トリュフTuber 菌を土壌に繁殖させておく方法
早春、又は作物を栽培する約15から30日前に、白トリュフTuber 菌懸濁液希釈30から50倍溶液を10a当たり200から300L土壌表面に丁寧に噴霧散布する(白砂糖希釈液1L当たり5から10g添加)。散布後、絶対に耕さないことが重要である(耕すことにより白トリュフTuber 菌の菌糸を切断し、菌ネットワークを破壊してしまう)。
このようにすると、地表に白トリュフTuber 菌が生育し、土壌病害菌を休眠させることが出来る。その後、農薬、除草剤を散布しても白トリュフTuber 菌は死ぬことはなく、土壌に落下した農薬、散布した除草剤成分を分解解毒し、常に清浄な土壌に持続することで、作物が根から農薬成分を吸収することが防げる。
これを図3で説明すれば、左図は、前作で使用された農薬は作物だけでなく土壌にも残留するので、ここに白トリュフTuber 菌懸濁液を散布することにより、中図のように作物だけでなく土壌の残留農薬が少なくなる。このような土壌で次物を栽培すれば、右図のように次作に含有する残留農薬も非常に少なくなる。
The following two methods can be considered for decomposing pesticides remaining in the soil.
<
In this way, the white truffle Tuber bacterium grows on the surface of the earth, and the soil disease bacterium can be put to sleep. After that, even if pesticides and herbicides are sprayed, the white truffle Tuber bacteria do not die, and the pesticides and herbicide components that have fallen on the soil are decomposed and detoxified, and the crops are rooted by constantly maintaining them in clean soil. It is possible to prevent the absorption of pesticide components.
Explaining this in Fig. 3, the left figure shows the pesticide used in the previous crop remaining not only in the crop but also in the soil. In addition to crops, there is less pesticide residue in the soil. If the next product is cultivated in such soil, the amount of residual pesticides contained in the next crop will be very small as shown in the figure on the right.
<方法2>雑草が生えてから、白トリュフTuber 菌を土壌に散布する方法
雑草が生えてから白トリュフTuber 菌懸濁液希釈液30から50倍液を充分濡れる程度噴霧散布する。(展着剤添加、白砂糖希釈液1L当たり5から10g添加)。
散布2,3日後に農薬、除草剤を散布する。これで白トリュフTuber 菌により農薬、除草剤成分を分解解毒出来る
<
Pesticides and herbicides are sprayed a few days after spraying. With this, the white truffle Tuber bacteria can decompose and detoxify pesticides and herbicides.
なお、白トリュフTuber 菌は0℃から5℃、積雪下でも生育繁殖する菌であるので、秋に除草剤散布した場合は、土壌細菌が低温で休眠し分解しない場合がある。
晩秋に白トリュフTuber 菌懸濁液50倍希釈液(白砂糖添加)を10a当たり200から300L噴霧散布すると、除草剤残留成分を分解すると同時病害菌を休眠させることが出来る。
Since the white truffle Tuber bacterium grows and propagates at 0 ° C to 5 ° C even under snow, soil bacteria may dormant at low temperatures and do not decompose when the herbicide is sprayed in autumn.
By spraying 200 to 300 L of white truffle Tuber bacterial suspension 50-fold diluted solution (with white sugar added) per 10a in late autumn, the herbicide residual components can be decomposed and the simultaneous disease bacteria can be put to sleep.
また、後述するように、白トリュフTuber 菌は殺菌剤や殺虫剤などの有毒成分を分解する能力を有するので、図7(サクランボ農園の例)のような散布装置で殺菌剤や殺虫剤を散布する。そこで、殺菌剤や殺虫剤が効果を発揮した後、1~2日後に同じ散布装置を利用して、白トリュフTuber 菌懸濁液を散布すれば、役目を果たした殺菌剤や殺虫剤を分解するので、殺菌剤や殺虫剤の残留量を大幅に低減することができる。 In addition, as will be described later, since the white truffle Tuber bacterium has the ability to decompose toxic components such as fungicides and insecticides, the fungicides and insecticides are sprayed with a spraying device as shown in FIG. 7 (example of cherry farm). do. Therefore, if the white truffle Tuber bacterial suspension is sprayed using the same spraying device one to two days after the fungicide or insecticide is effective, the fungicide or insecticide that has played a role can be decomposed. Therefore, the residual amount of the fungicide and the insecticide can be significantly reduced.
下水場残渣には高濃度硝酸態窒素、作物と共生しない細菌が生息しおり、これをそのまま圃場に施与しても作物は良く生育しないことが知られており、多くの場合焼却している。
この下水残渣を高さ15から20cm平らにして、これに白トリュフTuber 菌懸濁液を添加し、湿度約80%に保つ。0℃から50℃の温度範囲で約7から15日で白トリュフTuber 菌が飽和状態に繁殖し完成する。
白トリュフTuber 菌は作物を助ける「菌根菌」であると共に、土壌病害菌を休眠させる能力を具備しており、土壌病害を抑止して「減肥料及び減農薬及び無農薬栽培用の優良な土壌改良材に改変する事が出来、循環型農業の構築が可能である。
High-concentration nitrate nitrogen and bacteria that do not coexist with crops inhabit the sewage residue, and it is known that crops do not grow well even if they are applied to the field as they are, and they are incinerated in many cases.
The sewage residue is flattened to a height of 15 to 20 cm, to which a suspension of white truffle Tuber bacteria is added and the humidity is maintained at about 80%. The white truffle Tuber bacterium propagates in a saturated state in about 7 to 15 days in a temperature range of 0 ° C to 50 ° C and is completed.
White truffle Tuber fungus is a "mycorrhizal fungus" that helps crops and has the ability to put soil disease fungi to sleep. It can be modified into a soil conditioner, and it is possible to build a recycling-type agriculture.
図4(1)はキャベツ、図4(2)は、トウモロコシの収穫後の残差を示す。特に秋に収穫する作物の残渣に含有する農薬成分は、温帯地方では寒冷期に向かい低温になるために、細菌、微生物は活動力が衰え残渣を分解出来ない状態になり、農薬成分は土壌に残留する。また、収穫後の作物残渣には残留農薬の他に、病害菌が生息している。
このような作物残差方残留農薬を除去するには、収穫後の作物残渣を地表に広げ白トリュフTuber 菌懸濁液希釈50倍から100倍液を噴霧散布する(白砂糖 希釈液1Lに5から10g添加)。これにより、作物残渣の病害菌を休眠させ、次の作物の病気を防止できる。作物残渣に含有する残留農薬を分解して、作物残渣を圃場の炭素循環の原料にすることが出来る。
FIG. 4 (1) shows cabbage, and FIG. 4 (2) shows the residual after harvesting of corn. In particular, the pesticide components contained in the residues of crops harvested in autumn become colder toward the cold season in temperate regions, so bacteria and microorganisms lose their activity and cannot decompose the residues, and the pesticide components are in the soil. Remains. In addition to residual pesticides, disease-causing bacteria inhabit the crop residues after harvesting.
To remove such crop residue pesticide residues, spread the crop residue on the ground surface and spray a 50 to 100 times diluted white truffle Tuber bacterium suspension (5 to 1 L of white sugar diluted solution). Add 10g from). As a result, the disease-causing bacteria of the crop residue can be put to sleep and the disease of the next crop can be prevented. Residual pesticides contained in crop residues can be decomposed and the crop residues can be used as a raw material for carbon cycle in the field.
多様な作物原料より多様な加工食品が製造されているが、この原料にはほとんどの場合残留農薬が残留している。このような原料から残留農薬を分解するには、図5に示される様に、食品加工の工程の中、白トリュフTuber 菌懸濁液希釈液に原料を1から2時間浸漬し、その後水洗いの工程を挿入すればよい。このような処理により原料の残留農薬をほとんど分解解毒、清浄化することが可能である。 A variety of processed foods are produced from various crop raw materials, but in most cases, residual pesticides remain in these raw materials. To decompose residual pesticides from such raw materials, as shown in FIG. 5, during the food processing process, soak the raw material in a diluted solution of white truffle Tuber bacterium suspension for 1 to 2 hours, and then wash with water. The process may be inserted. By such treatment, it is possible to decompose and detoxify and purify most of the residual pesticides as raw materials.
茶葉の栽培圃場では、多量の農薬(殺菌剤、殺虫剤)が散布(通常8回程度)されており(図6(1))、茶用の農薬は2020年現在で約100種類が登録されて使用されている。
当然、製茶された「お茶」には、基準値以下ではあるが「残留農薬」が含有し、喫茶した場合、茶葉含有の成分と同時に、この残留農薬成分も当然溶出している。
また、製茶する場合、複数の生産者の茶をブレンドすることから、製品化された茶の分析では「茶畑」を特定することは、ほとんど不可能である。
この問題を解決するには、加工食品と同じように加工工程に残留農薬分解解毒、清浄化工程を挿入することで解決できる。即ち、図6(4)に示すように、茶葉を摘んで蒸す前に白トリュフTuber 菌懸濁液希釈液に1から数時間浸漬して清浄化し、その後水洗いしたのちに「蒸す」工程を行なえばよい。図6(3)は、慣行の製茶工程を示す。
In the tea leaf cultivation field, a large amount of pesticides (bactericides, pesticides) are sprayed (usually about 8 times) (Fig. 6 (1)), and about 100 types of pesticides for tea are registered as of 2020. Is used.
Naturally, the "tea" produced contains "residual pesticides" although it is below the standard value, and when tea is used, the residual pesticide components are naturally eluted at the same time as the tea leaf-containing components.
In addition, when making tea, it is almost impossible to identify the "tea plantation" by the analysis of the commercialized tea because the teas of multiple producers are blended.
This problem can be solved by inserting a residual pesticide decomposition detoxification and cleaning process into the processing process in the same way as processed foods. That is, as shown in FIG. 6 (4), before picking and steaming tea leaves, soak them in a diluted solution of white truffle Tuber bacterium suspension for 1 to several hours to clean them, then wash them with water and then perform the "steaming" step. Just do it. FIG. 6 (3) shows a conventional tea making process.
白トリュフTuber 菌が繁殖するためにはエネルギー源として「炭素源」が必要である。この炭素源として白砂糖を添加すると、これを「エサ」にして白トリュフTuber 菌は生育大繁殖する。具体的には、1リットル当たり10gの糖を溶解した溶液を、月1回のペースで、10アール当たり200リットル程度、散布すればよい。 In order for the white truffle Tuber bacterium to propagate, a "carbon source" is required as an energy source. When white sugar is added as this carbon source, the white truffle Tuber bacterium grows and proliferates by using it as "feed". Specifically, a solution in which 10 g of sugar is dissolved per liter may be sprayed once a month at a pace of about 200 liters per 10 ares.
殺菌剤と殺虫剤の違いは、殺虫剤は白トリュフTuber 菌に対して重大な影響を与えないことである。また、白トリュフTuber 菌は散布24時間内では、殺虫剤成分を分解することはない。この特性を利用して殺虫剤と白トリュフTuber 菌懸濁液を混合して散布できる。殺虫剤のほとんどは散布24時間で殺虫効果が表れるので、それ以降は速やかに残留農薬を分解解毒、清浄にすることが望ましいが、混合することで、殺虫剤による殺虫と、その後の残留した殺虫剤の分解とを1回の散布で行なうことで可能である。 The difference between fungicides and pesticides is that pesticides do not have a significant effect on the white truffle Tuber bacterium. In addition, the white truffle Tuber bacterium does not decompose the insecticide component within 24 hours of spraying. This property can be used to mix and spray pesticides and white truffle Tuber suspensions. Most of the insecticides have an insecticidal effect in 24 hours after spraying, so it is desirable to quickly decompose, detoxify and clean the residual pesticides after that. It is possible to decompose the agent by spraying it once.
本発明では、白トリュフTuber 菌が植物ホルモン インドール 3 酢酸を産生する菌であることを新規発見した。このホルモン産生の発見によって、本発明者が目的とする安心安全な食糧生産を行うと同時に本ホルモンを白トリュフTuber 菌懸濁液にミックスして散布することで、生育中の残留農薬を分解しながら、同時に生育促進によって気候変動に負けない安定した生産が可能となるので、増産が期待できる。 In the present invention, it was newly discovered that the white truffle Tuber bacterium is a bacterium that produces the plant hormone indole-3-acetic acid. By discovering this hormone production, we can produce safe and secure foods, which is the purpose of the present invention, and at the same time, mix this hormone with the white truffle Tuber bacterium suspension and spray it to decompose residual pesticides during growth. At the same time, promotion of growth enables stable production that is resistant to climate change, so production can be expected to increase.
本発明の効果を以下列記する。
1.白トリュフTuber 菌による残留農薬の分解解毒作用により、残留農薬成分の少ない安全、安心な食物を生産供給できる。白トリュフTuber 菌は農薬(殺菌剤、殺虫剤、除草剤)に対して耐性であることから、多様な農薬を生育中でも分解出来き、収穫前に、作物に対する白トリュフTuber 菌懸濁の希釈液散布によって、消費者が希求する、より安全な残留農薬の少ない農産物を生産、供給できる。このことによって、食糧の安定確保と安全な食糧を両立でき、今後の人口増加に対応できる食糧確保が可能となる。
2.作物生育中の殺菌剤、殺虫剤、除草剤の農薬散布による作物生体内、及び外部に付着した残留農薬成分は、農薬散布12時間から48時間後に白トリュフTuber 菌懸濁液の30倍希釈液の地上部への葉面散布で分解、解毒することができる。このことによって、安心安全な食糧、生野菜の生産が可能となるだけでなく、栽培者の人体への農薬薬害を防止でき、ミツバチなどの訪花昆虫などへの薬害を防止し、生態系を保全できる。また、除草剤を速やかに分解できることから、土壌、河川、海の地球環境保全が出来る。
3.残留農薬分解と同時に、白トリュフTuber 菌懸濁液には白トリュフTuber 菌が産生する植物ホルモン「インドール 3.酢酸」が含有することで、残留農薬を分解すと同時に作物を生育促進させ、減肥料多収穫が可能となる。
4.多様な加工食品原料を白トリュフTuber 菌懸濁液希釈液に一定時間浸漬することで、加工原料に含有する残留農薬を分解、清浄化することが可能となった。このことにより、安心安全は加工食品、飲料、茶、生薬の製造が可能になった。
5.農薬の効果を減ずることなく、病害菌、害虫、雑草を防除した後に速やかに農薬成分を分解、解毒することで、安定した収穫を得ながら安心安全な作物栽培が可能となり、土壌も清浄化出来る。
6.白トリュフTuber は菌抗菌力と空中窒素固定能力を有しているので、栽培前及び生育中の作物に白トリュフTuber 菌懸濁液の散布することで、体内、土壌残留農薬分解解毒と同時に土壌に白トリュフTuber 菌が生息することで減肥料及び減農薬栽培ができる。
7.本発明の方法は、適用場所に制限がなく、農耕地以外のエリアで除草剤散布24時間から48時時間後に白トリュフTuber 菌懸濁液散布することで、残留除草剤成分を解毒出来るだけでなく、枯れた雑草も分解き、さらに人体への残留農薬の接触付着なども避けられ、これらのエリアをより安全なものとすることが出来る。
8.全世界の寒帯から熱帯エリア圃場、酸性、アルカリ土壌でも実施可能であることから、圃場の荒廃を防止することで食糧の安全性と、食糧確保を両立させることが出来る。
9.現在の圃場土壌の硝酸態窒素を浄化再生することで圃場の養分バランスを整え、健全な作物を育成できる圃場になる。この清浄土壌を永続的に保存することで、熱帯雨林の消失を防止できる。更に、土壌に残留した硝酸態窒素は還元され酸化窒素ガスとなって地球温暖化の原因になっているが、空中窒素固定能を有する白トリュフTuber 菌で、土壌を浄化することで温室効果ガス排出の問題を解決できる。
10.白トリュフTuber 菌は菌根菌であることから、地球温暖化による作物の光合成不足を補完することで作物生育が安定し、病害虫に強い作物となり、安全安定な食糧生産と同時に、安定した持続可能な農業経営が可能になる。
11.人畜及び生物に対し無害菌であり、白トリュフTuber 菌は地球のほとんどのエリアで生存繁殖できる菌であることから、全世界の圃場、非農耕地で残留農薬の無害化処理を実施でき、残留農薬による生態系破壊を防止できる。
12.食糧、生態系残留農薬成分を分解解毒することで、人類、生物の免疫力の減退を防止でき、今後の世界社会で最も重要な課題に浮上した「免疫力」の減退を抑制することで、疫病の大流行に抵抗力のある人体、生物、医療、社会にすることが出来る。
13.畜産排泄物に含有する抗生物質を分解解毒し、これを利用して製造された培養土を利用して抗生物質が含まれない農作物を栽培することにより、抗生物質の含有しない食糧で、抗生物質の効果を持続できる人体を維持できる。
14.畜産排泄物を利用してメタンガスを発生させ、メタンガス発電が世界的に脚光を浴びて普及段階に入っているが、含有する抗生物質がメタン菌の生育繁殖を抑止して、メタンガスが出来ないケースが多くなっている。畜産排泄物をメタンガス発生槽に投入する前に、白トリュフTuber 菌で抗生物質を分解することで、この問題を解決することができる。
15.全無農薬栽培が困難な作物、圃場では、これまでの農薬使用に白トリュフTuber 菌使用を組み合わせることにより、農薬を散布しても、その効果が発揮された後に散布した農薬を分解解毒することで無農薬栽培に近い安全な食糧生産が可能である。
16.殺虫剤の分解清浄化は殺虫剤と白トリュフTuber 菌懸濁液を混和して散布することが出来、一つの作業で殺虫と残留農薬分解を行なうことが可能である。
17.ウイルス共存、アフターコロナ社会は「免疫力」がキーワードの社会であるが、残留農薬含有食糧が人類の「免疫力」を低下させる要因の一つとされ、本発明により残留農薬を分解清浄化することで、人類の免疫力低下を防ぐことが可能である。
The effects of the present invention are listed below.
1. 1. By decomposing and detoxifying residual pesticides by the white truffle Tuber bacterium, it is possible to produce and supply safe and secure food with few residual pesticide components. Since White Truffle Tuber bacteria are resistant to pesticides (fungicides, pesticides, herbicides), various pesticides can be decomposed even during growth, and a diluted solution of white truffle Tuber bacteria suspension for crops before harvesting. By spraying, it is possible to produce and supply safer agricultural products with less residual pesticides that consumers want. As a result, it is possible to secure both stable food and safe food, and to secure food that can cope with future population growth.
2. 2. Residual pesticide components adhering to the inside and outside of the crop by spraying pesticides such as fungicides, pesticides and herbicides during crop growth are 30-fold diluted solution of white truffle Tuber fungus suspension 12 to 48 hours after pesticide spraying. It can be decomposed and detoxified by foliar spraying on the above-ground part of the plant. This not only enables the production of safe and secure food and raw vegetables, but also prevents pesticide damage to the human body of growers, prevents chemical damage to flower-visiting insects such as honeybees, and preserves the ecosystem. can. In addition, since the herbicide can be decomposed quickly, it is possible to protect the global environment of soil, rivers and the sea.
3. 3. At the same time as the decomposition of residual pesticides, the white truffle Tuber bacterium suspension contains the plant hormone "
4. By immersing various processed food raw materials in a diluted solution of white truffle Tuber bacterium suspension for a certain period of time, it became possible to decompose and purify residual pesticides contained in the processed raw materials. This has made it possible to manufacture processed foods, beverages, tea, and crude drugs for safety and security.
5. By quickly decomposing and detoxifying pesticide components after controlling pests, pests, and weeds without reducing the effects of pesticides, it is possible to cultivate safe and secure crops while obtaining stable harvests, and the soil can also be cleaned. ..
6. Since white truffle Tuber has antibacterial activity and air nitrogen fixing ability, spraying the white truffle Tuber bacterium suspension on pre-cultivated and growing crops can be used to decompose and detoxify residual pesticides in the body and soil, and at the same time, soil. By inhabiting the white truffle Tuber bacterium, it is possible to cultivate with reduced fertilizer and reduced pesticides.
7. The method of the present invention has no limitation on the place of application, and can only detoxify the residual herbicide component by spraying the white truffle Tuber fungus suspension 24 hours to 48 hours after spraying the herbicide in an area other than the agricultural land. No, dead weeds can be decomposed, and contact adhesion of residual pesticides to the human body can be avoided, making these areas safer.
8. Since it can be carried out in cold to tropical fields, acidic and alkaline soils all over the world, it is possible to achieve both food safety and food security by preventing the devastation of the fields.
9. By purifying and regenerating nitrate nitrogen in the current field soil, the nutrient balance of the field can be adjusted and the field can grow healthy crops. Permanent preservation of this clean soil can prevent the disappearance of rainforests. Furthermore, nitrate nitrogen remaining in the soil is reduced to nitrogen oxide gas, which is a cause of global warming. Can solve the problem of emissions.
10. Since the white truffle Tuber fungus is a mycorrhizal fungus, it makes crop growth stable by supplementing the lack of photosynthesis of crops due to global warming, making it a crop resistant to pests, safe and stable food production, and stable sustainability. Agricultural management becomes possible.
11. Since it is harmless to humans and animals and white truffle Tuber is a bacterium that can survive and propagate in most areas of the earth, it is possible to carry out detoxification of residual pesticides in fields and non-agricultural lands around the world, and it remains. It is possible to prevent the destruction of the ecosystem by pesticides.
12. By decomposing and detoxifying food and ecosystem residual pesticide components, it is possible to prevent the decline of immunity of human beings and living organisms, and by suppressing the decline of "immunity" that has emerged as the most important issue in the world society in the future. It can be a human body, living thing, medical care, and society that is resistant to the epidemic of epidemics.
13. By decomposing and detoxifying antibiotics contained in livestock excrement and cultivating crops that do not contain antibiotics using the potting soil produced using this, antibiotics are used as foods that do not contain antibiotics. Can maintain the human body that can sustain the effect of.
14. Methane gas is generated using livestock excrement, and methane gas power generation is in the limelight worldwide and is entering the stage of widespread use. Is increasing. This problem can be solved by decomposing antibiotics with white truffle Tuber bacteria before putting livestock excrement into the methane gas generator.
15. For crops and fields where it is difficult to cultivate all pesticides, by combining the use of white truffle Tuber bacteria with the use of pesticides so far, even if pesticides are sprayed, the pesticides sprayed after the effects are exhibited are decomposed and detoxified. It is possible to produce safe food that is close to pesticide-free cultivation.
16. Decomposition and cleaning of pesticides can be done by mixing and spraying pesticides and white truffle Tuber suspension, and it is possible to kill pesticides and decompose residual pesticides in one operation.
17. Virus coexistence and after-corona society is a society where "immunity" is the keyword, but foods containing residual pesticides are considered to be one of the factors that reduce the "immunity" of human beings, and the present invention decomposes and purifies residual pesticides. Therefore, it is possible to prevent the weakening of human immunity.
以下、本発明の実施例を記載するが、本発明はこれに限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.
試験1<白トリュフTuber 菌菌糸体の液体培養試験>
白トリュフの培養はキノコ培養の中で「マツタケ」と並んで最も困難で、子実体、菌糸体の大量培養に世界での成功例はない。
図8(1)は、白トリュフ基本培地上に取り出した白トリュフ子実体溶解菌糸体。
図8(2)は、(1)の溶解菌糸体から伸びた菌糸を培養した分離コロニー(菌叢)
図8(3)は、(2)の分離コロニーから菌糸体を採取して大量培養した状態。
[白トリュフ菌Tuber基本培地の組成及び培養条件]
水 1000cc
ハイポネックス 3g (液体肥料、(株)ハイポネックス ジャパン社製)
白砂糖 30g
最低温度 5℃
最高 15℃
静置、明所培養。
上記写真に示されるように、白トリュフ子実体溶解菌糸体を上記基本培地で培養してコロニーを形成させ、得られたコロニーから白トリュフ菌Tuberを大量に培養することができた。
Culturing white truffles is the most difficult of all mushroom cultures, along with "Matsutake", and there is no successful mass cultivation of fruiting bodies and mycelia in the world.
FIG. 8 (1) shows the white truffle fruiting body lysed mycelium taken out on the white truffle basic medium.
FIG. 8 (2) shows an isolated colony (mycelium) in which hyphae grown from the lysed mycelium of (1) were cultured.
FIG. 8 (3) shows a state in which mycelium was collected from the isolated colony of (2) and cultured in large quantities.
[Composition and culture conditions of White Truffle Tuber basic medium]
Water 1000cc
Hyponex 3g (Liquid fertilizer, manufactured by Hyponex Japan Co., Ltd.)
White sugar 30g
Maximum 15 ℃
Standing, culturing in a bright place.
As shown in the above photograph, the white truffle fruiting body lysed mycelium was cultured in the above basal medium to form colonies, and a large amount of white truffle tuber could be cultured from the obtained colonies.
試験2<白トリュフ菌Tuber.単菌と、白トリュフ菌Tuber.根粒菌Rhizobium sp.菌の液体培養におけるバイオフィルム生産比較試験>
図8(4)は、白トリュフ菌Tuber培養基本培地の液体培地における白トリュフ菌Tuber単菌の場合(右)のバイオフィルムとRhizobium sp.と共存培養した場合(左)のバイオフィルム形状、生産画像。
図8(5)は、白トリュフ菌Tuber.と根粒菌Rhizobium sp.の共存培養で形成したバイオフィルム。(拡大写真)
図8(6)は、白トリュフ菌Tuber.単菌液体培養で形成したバイオフィルム画像(拡大写真)。
写真が示すように、白トリュフ菌Tuber.に根粒菌Rhizobium sp.(市販の根粒菌)を共利共生して形成する菌叢と比べ劣るものの、白トリュフ菌Tuber.単菌でも十分な量のバイオフィルムが形成される。
このようにして形成されたバイオフィルムをミキサーで破砕し、これを100倍の水で薄めたものを白トリュフ菌Tuber.100倍懸濁液として各種実験で使用した。
本試験で明らかなように、白トリュフ菌Tuber.は、液体培地で良好に生育する。本発明を世界的な規模で実施するためには、白トリュフ菌Tuber.を大量に生産する必要があるが、液体培地で簡単にバイオフィルムを生産できることは有利である。
FIG. 8 (4) shows the biofilm shape and production of white truffle bacterium Tuber monoculture in the liquid medium of white truffle bacterium Tuber culture basic medium (right) and co-cultured with Rhizobium sp. (Left). image.
FIG. 8 (5) is a biofilm formed by co-culture of white truffle fungus Tuber. And rhizobia Rhizobium sp. (Enlarged photo)
FIG. 8 (6) is a biofilm image (enlarged photograph) formed by a liquid culture of white truffle bacterium Tuber.
As shown in the photo, although it is inferior to the flora formed by symbiotic symbiosis of rhizobia Rhizobium sp. (commercially available rhizobia) with white truffle tuber. A biofilm is formed.
The biofilm thus formed was crushed with a mixer, diluted with 100 times water, and used as a 100 times suspension of white truffle fungus Tuber. In various experiments.
As is clear from this test, White Truffle Tuber. Grow well in liquid medium. In order to carry out the present invention on a global scale, it is necessary to produce a large amount of white truffle tuber., But it is advantageous to be able to easily produce a biofilm in a liquid medium.
試験3<白トリュフ菌Tuber.が植物に害を与えず、健康にする実験>
キャベツ(左)、白菜(右)(図10(1))及び菌根イソギク(図10(2))の幼苗に白トリュフ菌Tuber.の懸濁液を噴霧し、5日後の写真が図10(3)及び図10(4)である。いずれの幼苗も白トリュフ菌Tuberの影響を受けなかった。このことは、白トリュフ菌Tuber.が、菌根菌としての機能を有していることを示唆するものである。
The seedlings of cabbage (left), Chinese cabbage (right) (Fig. 10 (1)) and mycorrhiza chrysanthemum (Fig. 10 (2)) were sprayed with a suspension of white truffle fungus Tuber. (3) and FIG. 10 (4). None of the seedlings were affected by the white truffle fungus Tuber. This suggests that the white truffle bacterium Tuber. Has a function as a mycorrhizal fungus.
試験4<白トリュフ菌Tuber.が、植物や動物の細胞に速やかに浸透する実験>
蚊に刺され炎症を起こした皮膚(図11(1))に、白トリュフ菌Tuber.の懸濁液を塗布したところ、数分後には、炎症が治癒した(図11(2))。これは、白トリュフ菌Tuber.あるいはその分泌物が、皮膚細胞を速やかに浸透し、毒成分を分解したことを示すものすものである。
When a suspension of white truffle fungus Tuber. Was applied to the inflamed skin that was bitten by a mosquito (Fig. 11 (1)), the inflammation healed after a few minutes (Fig. 11 (2)). This indicates that the white truffle bacterium Tuber. Or its secretion rapidly penetrated the skin cells and decomposed the toxic component.
試験5<白トリュフ菌Tuber.の耐殺菌剤実験>
ビーカー内で培養した白トリュフ菌Tuber.に対し、ベンレート(図12(1))、プロシミドン(図12(2))を通常の希釈倍率で薄めて噴霧した。写真はそれぞれ噴霧後数日後の状態で、白トリュフ菌Tuber.は、いずれの殺菌剤に対しても影響を受けなかった。
Benlate (FIG. 12 (1)) and procymidone (FIG. 12 (2)) were diluted and sprayed on the white truffle bacterium Tuber. Cultured in a beaker at a normal dilution ratio. The photographs were taken several days after spraying, and the white truffle fungus Tuber. Was not affected by any of the fungicides.
試験6<白トリュフ菌Tuber.の微生物抗菌試験>
白トリュフ菌Tuber.本培地作成後無殺菌解放状態で室内に放置。培養温度最低15℃、最高25℃の条件で、空中浮遊微生物繁殖試験を行った。
図13(1)は、白トリュフ菌糸体をすり鉢で細かに砕いたもの10ccを水100ccに添加し懸濁液を作成(無殺菌溶液)し、これを無殺菌の上記培養基に添加した。写真は7日後の状態を示し、空中浮遊微生物の胞子が培養基上に常時落下しているはずであるが、全然微生物のコロニーが形成されていない。白トリュフ菌が、空中浮遊微生物の落下胞子を不活性化し、発芽できないようにしているものと推測できる。
図13(2)は、上記無殺菌の培養基に予め「クロカビ菌」を接種しコロニーを形成させた後、上記白トリュフ菌懸濁液を添加し培養して7日目の状態。
白トリュフ菌がクロカビのコロニーを食べているように、コロニーの上に菌糸を伸ばし、菌の下剋上を行なっている。
図13(3)は、(2)と同じように「アオカビ」を接種しコロニーを形成させた後、上記白トリュフ菌懸濁液を添加し培養して7日目の状態。
抗生物質ペニシリンを産生、阻止円を構築して他の菌のエリア侵入を防止するアオカビであるが、白トリュフ菌は、このアオカビの阻止機構を無にして、アオカビを溶解してエサにして、アオカビ菌叢上に白トリュフ菌叢を形成している。
White truffle bacterium Tuber. After making this medium, leave it indoors in a non-sterilized and released state. An airborne microbial reproduction test was conducted under the conditions of a culture temperature of a minimum of 15 ° C and a maximum of 25 ° C.
In FIG. 13 (1), 10 cc of finely crushed white truffle mycelium in a mortar was added to 100 cc of water to prepare a suspension (non-sterilized solution), which was added to the non-sterilized culture medium. The photograph shows the state after 7 days, and spores of airborne microorganisms should be constantly falling on the culture medium, but no microorganism colonies are formed. It can be inferred that the white truffle bacteria inactivate the falling spores of airborne microorganisms and prevent them from germinating.
FIG. 13 (2) shows the state on the 7th day after inoculating the non-sterilized culture medium with "black mold fungus" in advance to form colonies, and then adding the white truffle fungus suspension and culturing.
Just as the white truffle fungus eats the black mold colony, the hyphae are extended on the colony and the fungus is raised.
FIG. 13 (3) shows the state on the 7th day after inoculating "Penicillium" to form a colony in the same manner as in (2), and then adding and culturing the above-mentioned white truffle bacterium suspension.
Penicillium is a penicillium that produces the antibiotic penicillin and builds a blocking circle to prevent the invasion of other bacteria into the area. A white truffle flora is formed on the penicillium flora.
試験7<白トリュフ菌Tuber.によるアルコール醗酵酵母菌不活性化試験>
白トリュフ基本培地の殺菌培養基上に無菌的に白トリュフ菌Tuber.を接種し、その側に並行してアルコール醗酵酵母菌(酒粕由来酵母)を接種した。
培養温度25℃。静置、明所培養。写真(図14)は処理培養10日後の状態を示し、白トリュフ菌Tuber.の強い抗菌能力でアルコール醗酵酵母菌は、至適温度での培養であるが、生育は抑制され、コロニーを形成したがその後の生育は停止した。
本試験により、白トリュフ菌Tuber.が、糖をアルコール醗酵させる酵母菌を不活性化する能力を備えていることが実証されたことで、圃場に白トリュフ菌、根粒菌を定着、定住するための炭素源として「糖投与」が可能であることが証明された。
何故ならば、アルコール産生酵母をそのまま活性した状態の土壌に糖を投与すれば、糖をアルコールに転化して、白トリュフ菌Tuber.菌を痛め、更に作物の根に大きなダメージを与えるからである。
White truffle bacterium Tuber. Was aseptically inoculated on the sterilized culture medium of the white truffle basal medium, and alcohol-fermented yeast (yeast derived from sake lees) was inoculated in parallel with the sterilized culture medium.
Culture temperature 25 ° C. Standing, culturing in a bright place. The photograph (Fig. 14) shows the state after 10 days of the treatment culture. Due to the strong antibacterial ability of the white truffle fungus Tuber., The alcohol-fermented yeast was cultured at the optimum temperature, but the growth was suppressed and colonies were formed. However, the subsequent growth stopped.
This test demonstrated that the white truffle bacterium Tuber. Has the ability to inactivate yeast that ferments sugar with alcohol, so that the white truffle bacterium and rhizobia can be established and settled in the field. It has been proved that "sugar administration" is possible as a carbon source of.
This is because if sugar is administered to the soil in which the alcohol-producing yeast is still active, the sugar is converted into alcohol, which damages the white truffle fungus Tuber. And further damages the roots of the crop. ..
試験8<白トリュフ菌Tuber.の殺虫剤ネオニコチノイド分解解毒実験>
生物生態系における農薬残留で世界的に最も問題になっている農薬は「ネオニコチノイド剤」である。この農薬は残効性に優れた特性を具備していることから世界中で多くの害虫防除に使用されていた。しかし、この農薬の残留成分が多様な昆虫の生態系、特にミツバチに及ぼす大きな影響から、世界各国で使用禁止が拡がっている。
以上のことから、ネオニコチノイド剤系の農薬「ニテンピラム」を用いて「白トリュフ」Tuber菌懸濁液希釈液散布による残留農薬の分解解毒試験を行った。
[試験方法]
供試材料 菌根イソギク 2トレー。
農薬名 ニテンピラム剤 100倍希釈液
残留農薬分解解毒剤 白トリュフTuber 菌懸濁液100倍溶液
試験実施回数 2回(試験A,B)
菌根イソギク2トレーにニテンピラム1000倍希釈液を噴霧散布.
[試験A]
イ 無処理区 何もせず
ロ 処理区 ニテンピラム剤散布24時間後に白トリュフTuber 菌懸液を、殺虫剤と同じ方法で散布した(図15(1))。
[検体の採取及び分析]
無処理区、処理区のトレーからそれぞれ菌根イソギクの茎葉を、無処理区は1日後、処理区は6日後に採取し、すり鉢ですりつぶした検体から1gを、99ccのハチミツにミックスし100gの検体溶液を作成し(図15(2))、これを検体として、ニテンピラム剤散布24時間後の残留農薬濃度と、白トリュフTuber 菌懸濁液散布5日後のニテンピラム剤の残留農薬濃度を分析した。
[試験B]
試験Aにおける菌根イソギクの無処理区、白トリュフTuber 菌処理区の2トレーに夫々ニテンピラム剤1000倍希釈液を再度噴霧散布
イ 無処理区 何もせず
ロ 処理区 2度目のニテンピラム剤散布24時間後に白トリュフTuber 菌懸液散布
[検体採取及び分析]
白トリュフTuber 菌処理5日後に無処理区、処理区からそれぞれ菌根イソギクの茎葉を採集してすりつぶし、以下試験Aと同様な手順で残留農薬濃度を三重環境保全事業団において分析してもらった。
結果を以下の表2に示す。検査を行った10種の農薬中以下の2種が検出されたが、白トリュフTuber 菌懸液散布により殺虫剤の残留量が劇的に低下していることがわかる。
The world's most problematic pesticide residue in biological ecosystems is the "neonicotinoid agent". This pesticide has been used for pest control all over the world because of its excellent residual effect. However, due to the great impact of the residual components of this pesticide on various insect ecosystems, especially honeybees, bans are spreading around the world.
Based on the above, a decomposition and detoxification test of residual pesticides was conducted by spraying a diluted solution of "white truffle" Tuber bacteria using the neonicotinoid pesticide "nitempirum".
[Test method]
Test
Pesticide name Nitenpyram 100-fold diluted solution Residual pesticide decomposition antidote White truffle Tuber Bacterial suspension 100-fold solution Number of
Spray and spray nitenpyram 1000-fold diluted solution on 2 trays of mycorrhiza chrysanthemum.
[Test A]
B Unprocessed area Do nothing
(B) Treatment group 24 hours after spraying the nitenpyram agent, the white truffle Tuber suspension was sprayed in the same manner as the insecticide (Fig. 15 (1)).
[Sample collection and analysis]
The foliage of mycorrhizal truffles was collected from the trays of the untreated group and the treated group after 1 day for the untreated group and 6 days after the treated group, and 1 g of the sample ground in a mortar was mixed with 99 cc of honey to produce 100 g. A sample solution was prepared (Fig. 15 (2)), and using this as a sample, the concentration of residual pesticides 24 hours after spraying the nitempyram agent and the concentration of residual pesticides on the
[Test B]
In Test A, spray the 1000-fold diluted solution of nitenpyram again on the two trays of the untreated group of mycorrhizal chrysanthemum and the white truffle Tuber bacteria-treated group. Later spraying white truffle Tuber fungus suspension [sample collection and analysis]
Five days after the treatment with the white truffle Tuber fungus, the foliage of mycorrhiza chrysanthemum was collected from the untreated plot and the treated plot, respectively, and ground, and the residual pesticide concentration was analyzed by the Mie Environmental Conservation Corporation in the same procedure as in Test A below. ..
The results are shown in Table 2 below. The following two types of pesticides were detected among the 10 types of pesticides tested, and it can be seen that the residual amount of pesticide was dramatically reduced by spraying the white truffle Tuber suspension.
試験9<農薬散布茶葉の白トリュフTuber 菌懸液浸漬による農薬成分の分解解毒試験>
寒河江産茶葉A,Bを、図基本16-2の工程に従い、製茶工程中に白トリュフTuber 菌懸液に2時間浸漬し、完成した茶葉の残留農薬を三重環境保全事業団において分析してもらったところ、以下の表に示すように、検査を行った120種の農薬中以下の5種が検出されたが、いずれも基準値以下であった。
Test 9 <Decomposition and detoxification test of pesticide components by soaking white truffle Tuber bacteria in tea leaves sprayed with pesticides>
Tea leaves A and B from Kangawae were soaked in white truffle Tuber fungus suspension for 2 hours during the tea making process according to the process shown in Fig. 16-2, and the residual pesticides in the completed tea leaves were analyzed by the Mie Environmental Conservation Corporation. As a result, as shown in the table below, the following 5 types were detected among the 120 types of pesticides tested, but all of them were below the standard value.
試験10<サクランボ栽培における白トリュフTuber 菌による殺菌剤、殺虫剤の分解解毒試験>
温室内で栽培されるサクランボは図7のような装置で殺菌剤や殺虫剤が散布される。そこで、殺菌剤や殺虫剤が散布され、効果が発揮された24~48時間後に白トリュフTuber 菌懸濁液50倍希釈液を同じ装置で散布し、収穫された東根産サクランボの残留農薬を調べた。
つくば分析センターで分析してもらった結果、検査を行った250種の農薬中以下の3種が検出されたが、いずれも基準値以下であった。
The cherries cultivated in the greenhouse are sprayed with fungicides and insecticides using the equipment shown in FIG. Therefore, 24 to 48 hours after the fungicide and insecticide were sprayed and the effect was exhibited, a 50-fold diluted solution of white truffle Tuber bacterium suspension was sprayed with the same device, and the residual pesticides of the harvested cherries from Tone were investigated. rice field.
As a result of having the Tsukuba Analysis Center analyze, the following 3 types of pesticides were detected among the 250 types of pesticides tested, but all of them were below the standard value.
試験11<白トリュフTuber 菌による各種除草剤残留成分の土壌残留分解浄化試験>
現在、世界の農業は、地球温暖化で雑草繁茂が激しく、除草剤依存農業がおこなわれて、除草剤の発癌性の問題が深刻化している。本発明は、現在世界各国で問題になっている除草剤の土壌残留成分を白トリュフTuber 菌による分解解毒することを目的の一つにしている。土壌を清浄化することで作物体内も清浄化出来、安心安全な少量生産が可能になる。白トリュフTuber 菌による除草剤成分の分解の可能性検証試験を実施した。
[試験材料]
3,5号ポットに赤玉土小粒を入れ、これに各除草剤の散布基準濃度の希釈液を充分灌注して試験土壌とした。
これに「白トリュフ」Tuber菌懸濁液100倍希釈液をジョウロで散水し、10日間そのまま放置した。
10日後、各ポストにキャベツ種子を播種した。
図16(1)において、各ポストに灌注した除草剤は以下の通り。
1:MCPP区
2:カソロン区
3:ランドアップ区
4:バスタ区
5:2,4-D区
6:MCPP灌注・白トリュフTuber菌懸濁液無処理区
7:ラプチウロン区
8:クサトローゼ区
図16(2)から明らかなように、白トリュフTuber菌懸濁液100倍希釈液を散水しなかった6の無処理区以外のポストで発芽した。このように、白トリュフTuber菌は、上記複数の除草剤を分解無害化することができる。
Test 11 <Soil residual decomposition purification test of various herbicide residual components by white truffle Tuber bacteria>
At present, the world's agriculture is heavily weeded due to global warming, and herbicide-dependent agriculture is being carried out, and the problem of herbicide carcinogenicity is becoming more serious. One of the purposes of the present invention is to decompose and detoxify the soil residual component of the herbicide, which is currently a problem in various countries around the world, by the white truffle Tuber bacterium. By cleaning the soil, the inside of the crop can also be cleaned, enabling safe and secure small-quantity production. A test was conducted to verify the possibility of decomposition of the herbicide component by the white truffle Tuber bacterium.
[Test material]
Akadama soil granules were placed in No. 3 and 5 pots, and a diluted solution having a reference concentration for spraying each herbicide was sufficiently irrigated into the soil to prepare a test soil.
A 100-fold diluted solution of "white truffle" Tuber bacterium suspension was sprinkled on this with a watering can and left as it was for 10 days.
After 10 days, cabbage seeds were sown on each post.
In FIG. 16 (1), the herbicides irrigated to each post are as follows.
1: MCPP ward 2: Casoron ward 3: Land-up ward 4: Basta ward 5: 2,4-D ward 6: MCPP irrigation / white truffle Tuber bacterium suspension untreated ward 7: Raptiuron ward 8: Kusatrose ward Figure 16 As is clear from (2), the white truffle Tuber bacterium suspension 100-fold diluted solution was not sprinkled, and germination occurred at posts other than the untreated group of 6. In this way, the white truffle Tuber bacterium can decompose and detoxify the above-mentioned plurality of herbicides.
試験12<白トリュフTuber 菌によるランドアップ耐性試験>
ラウンドアップ(英語: Roundup)とは、1970年にアメリカ企業のモンサントが開発した除草剤(農薬の一種)で、有効成分名はグリホサートイソプロピルアミン塩(グリシンの窒素原子上にホスホノメチル基が置換した構造を持つ)である。
この除草剤は、5-エノールピルビルシキミ酸-3-リン酸合成酵素(EPSPS)阻害剤で、植物体内での5-エノールピルビルシキミ酸-3-リン酸の合成を阻害し、ひいては芳香族アミノ酸(トリプトファン、フェニルアラニン、チロシン)やこれらのアミノ酸を含むタンパク質や代謝産物の合成を阻害し、接触した植物の全体を枯らす(茎葉)吸収移行型で、ほとんどの植物にダメージを与える非選択型である。
シキミ酸回路を具備しない細菌が発見され、この細菌の遺伝子を作物に導入して、ランドアップで枯死しない作物を創り出し、ランドアップ農業が世界的に普及した。その結果、この除草剤の残留農薬食糧が大きな問題になっているのである。
白トリュフTuber 菌は、ランドアップで死ぬ菌であれば、白トリュフTuber 菌を使用してランドアップ残留成分を分解出来ないばかりか、菌自体が死滅してしまう。この理由で本試験を実施した。
[試験方法]
ハイポネックス基本培地 オートクレーブし冷却後ランドアップの50倍溶液を5cc添加し、培養基上にランドアップ溶液でマルチングした。2個作製。
この培養基に白トリュフTuber 菌懸濁液1ccを添加し、培養温度 最低 5℃ 最高20℃ 室内明所で静置させて培養した。
図17(1)は、処理後約3月後の状態で、ランドアップ培地に白トリュフTuber 菌コロニーが形成した状態を示す。図17(2)はその上方からの写真である。
ランドアップ添加ハイポネックス培地で白トリュフTuber 菌が生育繁殖した。死滅しないで逆に生育したことで白トリュフTuber 菌はタンパク質合成に「シキミ酸回路」を用いないで行う菌であることが証明された。
Test 12 <Roundup resistance test with white truffle Tuber bacteria>
Roundup (English: Roundup) is a herbicide (a type of pesticide) developed by the American company Monsanto in 1970, and the active ingredient name is glyphosate isopropylamine salt (a structure in which a phosphonomethyl group is substituted on the nitrogen atom of glycine). Has).
This herbicide is a 5-enolpylvir shikimate-3-phosphate synthase (EPSPS) inhibitor that inhibits the synthesis of 5-enolpylvir shikimate-3-phosphate in plants and thus aromas. It is a non-selective type that inhibits the synthesis of group amino acids (tryptophane, phenylalanine, tyrosine) and proteins and metabolites containing these amino acids, and kills the entire contacted plant (stem and foliage), and damages most plants. Is.
Bacteria that do not have a shikimic acid circuit were discovered, and the gene for this bacterium was introduced into crops to create crops that did not die by land-up, and land-up agriculture became widespread worldwide. As a result, the pesticide residue food of this herbicide has become a major problem.
If the white truffle Tuber bacterium is a bacterium that dies in Roundup, not only the white truffle Tuber bacterium cannot be used to decompose the residual components of the landup, but also the bacterium itself is killed. This test was conducted for this reason.
[Test method]
Hyponex basic medium After autoclaving and cooling, 5 cc of a 50-fold solution of Roundup was added, and the culture medium was mulched with the Roundup solution. Two pieces are made.
1 cc of white truffle Tuber bacterium suspension was added to this culture medium, and the culture was allowed to stand at a culture temperature of at least 5 ° C and at a maximum of 20 ° C in a bright room.
FIG. 17 (1) shows a state in which white truffle Tuber colonies were formed on the Landup medium in a state about 3 months after the treatment. FIG. 17 (2) is a photograph from above.
White truffle Tuber bacteria grew and propagated in Hyponex medium with Roundup. By growing in reverse without dying, it was proved that the white truffle Tuber bacterium is a bacterium that does not use the "shikimate circuit" for protein synthesis.
試験13<白トリュフTuber 菌懸濁液の除草剤残留農薬分解の最適散布時間試験>
本発明は除草剤を散布した後、「白トリュフ」Tuber菌懸濁液を散布して、土壌、生態系の残留成分を分解、解毒して環境を浄化するものである。現在使用されている除草剤の多くは、植物の生理活性機能に作用して、生存できないようにして枯死させるものであり、葉に散布された除草剤が細胞に吸収され、植物組織全体に移行し生理活性物資生産機能に作用するまでの間に、「白トリュフ」Tuber菌の酵素群が、体内の除草剤成分を分解すれば、殺菌剤、殺虫剤の体内残留成分を分解出来る。
そこで、除草剤散布後、何時間の後に「白トリュフ」Tuber 菌懸濁液を散布すれば、最も有効に農薬成分を分解するかを探るために試験を行った。
[試験方法]
農薬としてランドアップ マックスロードを使用し、菌根イソギク14鉢にランドアップを1000cc当たり100cc添加した溶液(通常の使用濃度10倍高濃度溶液)を噴霧葉面散布した。
これに「白トリュフ」Tuber菌懸濁液100倍希釈液を、所定の時間、A区:無処理、B区:4時間後、C区:6時間後、D区:12時間後、E区:24時間後、F区:60時間後、に、夫々の2鉢に「白トリュフ」Tuber 菌の懸濁液を噴霧して、その後の菌根イソギクの状態を観察した。
図18は、1月後の菌根イソギクの状態であり、左から2鉢ずつ A区、B区、C区、D区、E区、F区である。
図試験実施6から明らかなように、ランドアップ散布後、無処理区、4時間後、6時間後、の時間に「白トリュフ」Tuber 菌懸濁液散布は、体内のランドアップ残留成分を分解、解毒できなかったために、処理30日後に2鉢ともに枯死した。12時間後処理区では1鉢が枯れ、1鉢が生き残り、24時間後、48時間後、60時間後、72時間後散布区では、「白トリュフ」Tuber菌が体内に浸透した残留成分を分解解毒したことにより菌根イソギクは生き残った。
本試験によって、農薬散布後24時間から60時間の間に「白トリュフ」Tuber 菌懸濁液100倍希釈液を葉面散布することで、作物体内に残留した農薬成分を分解解毒することが判明した。
Test 13 <Optimal spraying time test for decomposition of herbicides residual pesticides in white truffle Tuber suspension>
In the present invention, after spraying a herbicide, a suspension of "white truffle" Tuber bacteria is sprayed to decompose and detoxify residual components of soil and ecosystem to purify the environment. Many of the herbicides currently in use act on the physiologically active functions of plants to prevent them from surviving and kill them, and the herbicides sprayed on the leaves are absorbed by the cells and transferred to the entire plant tissue. By the time it acts on the function of producing physiologically active substances, if the enzyme group of "white truffle" Tuber bacteria decomposes the herbicide components in the body, the residual components in the body of fungicides and insecticides can be decomposed.
Therefore, a test was conducted to find out how many hours after spraying the herbicide, spraying the "white truffle" Tuber bacterial suspension would decompose the pesticide component most effectively.
[Test method]
Roundup Max Road was used as a pesticide, and a solution containing 100 cc of Roundup per 1000 cc (a high-
A 100-fold diluted solution of "white truffle" Tuber bacterium suspension was added to this for a predetermined time, group A: no treatment, group B: 4 hours later, group C: 6 hours later, group D: 12 hours later, group E. : 24 hours later, F group: 60 hours later, a suspension of "white truffle" Tuber bacteria was sprayed on each of the two pots, and the state of mycorrhizal isogiku was observed thereafter.
FIG. 18 shows the state of mycorrhiza chrysanthemum after January, and two pots from the left are A, B, C, D, E, and F wards.
As is clear from
This test revealed that the pesticide components remaining in the crop were decomposed and detoxified by foliar spraying a 100-fold diluted solution of "white truffle" Tuber fungus suspension between 24 and 60 hours after spraying the pesticide. did.
試験14<白トリュフTuber 菌の家畜排泄物残留抗生物質に対する耐性試験>
家畜の排泄物には飼料由来の抗生物質が残留している。これを原料にして製造される堆肥、培養土製造では嫌気性細菌が使用されていることから、殆ど抗生物質を分解出来ない。そのため、堆肥、培養土には抗生物質が含有する。これを圃場などに施与することで、作物により吸収されることで、作物体内に残留する。これを人が食べることで人体に蓄積され、病気になった時、抗生物質が効かないという場面が出てくる。これを防ぐには、畜産排泄物を白トリュフTuber 菌で速やかに分解し抗生物質を分解解毒することが望ましい。
抗生物資は主に放線菌など細菌が、他の微生物から生活圏を護るために産生する。自然界が作る生物活性物質は、通常、木材腐朽菌によって分解解毒される。大自然には生物が産生したものは全て自然界が分解するというシステムが構築されており抗生物質も例外ではない。白トリュフTuber 菌によって排泄物の植物繊維のリグニン、セルロースに含有する抗生物質がリグニン、セルロース分解によって同時に分解解毒される可能性が高い。
供試材料 乳牛糞。(湿分:約70から80%)
試験方法 2kgの牛糞を3cmの厚さに平らにして、これに白トリュフTuber 菌
懸濁液30倍液を噴霧。ビニール被覆。
最低8℃ 最高20℃ 室内培養
写真撮影 処理後10日後に撮影(図19)
図19から明らかなように、白トリュフTuber 菌は抗生物質を含有する乳牛糞でも生育し、抗生物質に対する耐性を有することがわかる。また、上述した自然の摂理からも白トリュフTuber 菌は、セルロースやリグニンだけでなく、抗生物質も分解していると考えられる。
Test 14 <Resistance test against residual antibiotics in livestock excrement of white truffle Tuber>
Feed-derived antibiotics remain in livestock excrement. Since anaerobic bacteria are used in compost and potting soil produced from this material, antibiotics can hardly be decomposed. Therefore, compost and potting soil contain antibiotics. By applying this to a field or the like, it is absorbed by the crop and remains in the crop. When a person eats this, it accumulates in the human body, and when he gets sick, there are scenes where antibiotics do not work. To prevent this, it is desirable to rapidly decompose livestock excrement with white truffle Tuber bacteria and decompose and detoxify antibiotics.
Bacteria such as actinomycetes are mainly produced by antibiotics to protect the living area from other microorganisms. Biologically active substances produced by nature are usually decomposed and detoxified by wood-rotting fungi. In the wilderness, a system has been constructed in which everything produced by living organisms is decomposed by the natural world, and antibiotics are no exception. It is highly possible that the white truffle Tuber bacteria simultaneously decompose and detoxify the excrement of plant fiber lignin and the antibiotics contained in cellulose by decomposing lignin and cellulose.
Test material Milk cow dung. (Moisture content: about 70 to 80%)
Test method Flatten 2 kg of cow dung to a thickness of 3 cm and add white truffle Tuber bacteria to it.
Spray the suspension 30 times liquid. Vinyl coating.
Minimum 8 °
As is clear from FIG. 19, it can be seen that the white truffle Tuber bacterium also grows in dairy cow dung containing an antibiotic and has resistance to the antibiotic. In addition, from the above-mentioned natural providence, it is considered that the white truffle Tuber bacterium decomposes not only cellulose and lignin but also antibiotics.
試験15<白トリュフTuber 菌懸濁液希釈液散布による露地イチゴ減農薬栽培試験>
本発明は白トリュフTuber 菌懸濁液希釈液散布による作物栽培中における体内残留農薬成分を分解解毒して安心安全な食糧生産を可能にする技術であるが、同時に、白トリュフTuber 菌の強力な抗菌作用によって、作物の病害菌を不活性化(休眠)させることで病害の発生を抑止して、大幅な農薬散布回数、使用量を減少させることが可能であるかを試験した。
本試験は、世界の作物栽培で最も農薬散布回数、使用量(約50回から70回農薬散布)の多いイチゴを用いて減農薬栽培を行った。
供試材料 露地イチゴ 宝幸早生 露地2年据え置き圃場(図20(1)、図20(2)(拡大図))
試験方法 4月1日から白トリュフTuber 菌懸濁液50倍希釈液を、10日置きに10回噴霧葉面散布した。3か月後、農薬を全く使用しないにもかかわらず、イチゴを立派に実らせることができた(図20(3))。
Test 15 <Pesticide-reduced cultivation test of open-field strawberry by spraying diluted solution of white truffle Tuber bacterium>
The present invention is a technique for decomposing and detoxifying residual pesticide components in the body during crop cultivation by spraying a diluted solution of white truffle Tuber bacterium suspension to enable safe and secure food production, but at the same time, it is powerful for white truffle Tuber bacterium. It was tested whether it is possible to suppress the occurrence of diseases by inactivating (sleeping) the disease-causing bacteria of crops by the antibacterial action, and to significantly reduce the number of times of spraying pesticides and the amount of pesticides used.
In this test, pesticide-reduced cultivation was carried out using strawberries, which have the highest number of times and amount of pesticides applied (approx. 50 to 70 times pesticide application) in the world's crop cultivation.
Test material Strawberry open field Hoko
Test method From April 1st, a 50-fold diluted solution of white truffle Tuber bacterium suspension was sprayed 10 times every 10 days and sprayed on the foliage. After 3 months, the strawberries were able to grow well even though no pesticides were used (Fig. 20 (3)).
試験16<白トリュフTuber 菌の空中窒素固定.試験>
本試験は、試験1で得られた白トリュフTuber 菌を以下に示す極少窒素培地で育成試験を行った。
リン酸第一カリウム 3g 和光純薬試薬1級
水 1000cc 精製水
グルコース 30g 和光純薬試薬1級
寒天 15g 和光純薬試薬1級
[試験方法]
オートクレーブ冷却後 白トリュフTuber 菌接種し、培養条件、最低温度5℃ 最高温度 18℃の室内、明所で静置培養した。
和光純薬試薬1級の試薬には極少量の窒素を含有するが、この極少量窒素培地で白トリュフTuber菌が生育しコロニーを形成した(図21)。これにより、子嚢菌白色木材腐朽菌、菌根菌である白トリュフTuber 菌が、単独で窒素固定することが実証された。
Test 16 <Aerial nitrogen fixation of white truffle Tuber bacteria. Test>
In this test, the white truffle Tuber bacterium obtained in
Primary Potassium Phosphorus 3g Wako Pure
[Test method]
After cooling in the autoclave, white truffle Tuber bacteria were inoculated, and the cells were statically cultured in a room with a minimum temperature of 5 ° C and a maximum temperature of 18 ° C in a bright place.
Wako Pure Chemical Industries, Ltd. The first-class reagent contains a very small amount of nitrogen, and white truffle Tuber bacteria grew and formed colonies in this very small amount of nitrogen medium (Fig. 21). This demonstrated that the ascomycete white wood-rotting fungus and the mycorrhizal fungus, the white truffle Tuber fungus, fix nitrogen alone.
試験17<白トリュフ菌Tuber.による有機物分解試験>
図22(1)の写真は、雑草を刈り取り、保存ビンに入れ白トリュフTuber ssp.菌懸濁液を散布して、25℃で培養した。写真は処理後5日目の分解状態である。
図22(2)の写真は、有機物産業廃棄物の段ボール、古紙をペレット化したものを300ccフラスコに入れ、白トリュフ菌Tuber.懸濁液を噴霧した後、25℃で培養した。写真は処理後20日の状態である。
白トリュフ菌Tuber.は子嚢菌白色木材腐朽菌であり、有機物産業廃棄物のリグニンを分解出来る地球上で唯一の菌であるが、本試験で白トリュフ菌Tuber.にリグニン分解能力があることが示唆された。
Test 17 <Organic matter decomposition test by white truffle bacterium Tuber.>
In the photograph of FIG. 22 (1), weeds were cut, placed in a storage bottle, sprayed with a suspension of white truffle Tuber ssp., And cultured at 25 ° C. The photograph shows the disassembled state on the 5th day after processing.
In the photograph of FIG. 22 (2), corrugated cardboard of organic industrial waste and pelletized recycled paper were placed in a 300 cc flask, sprayed with a Tuber. Suspension of White Truffle, and then cultured at 25 ° C. The photo is 20 days after processing.
White truffle fungus Tuber. Is an ascomycete white wood-rotting fungus and is the only fungus on the earth that can decompose lignin of organic industrial waste. It was suggested.
試験18<白トリュフ菌Tuber.の土壌生育試験>
圃場土壌に白トリュフ菌及び汎用根粒菌の懸濁液溶液を1m2当たり1m2500cc散布し、その後糖溶液(水1000cc 白砂糖10g)を散布したところ、25日後に、図23の写真のように、土壌に白トリュフ菌Tuberが生育繁殖した。
白トリュフ菌Tuber.は、カシなどの固葉広葉樹などの樹木と共生する「菌根菌」であり、相利共生する樹木の根が無い状態では生息、生育できない菌とされてきたが、本試験の結果、窒素源、ミネラル源、温度、水分、酸素が存在する土壌では良好な生育をすることを示唆するものである。
Test 18 <Soil growth test of white truffle fungus Tuber.>
A suspension solution of white truffle bacteria and general-purpose rhizobia was sprayed on the field soil at 1 m 2500 cc per 1 m 2 , and then a sugar solution (1000 cc of water, 10 g of white sugar) was sprayed. In addition, the white truffle fungus Tuber grew and propagated in the soil.
White truffle fungus Tuber. Is a "mycorrhizal fungus" that coexists with trees such as hard-leaved broad-leaved trees such as oak, and has been considered to be a fungus that cannot live or grow without the roots of trees that coexist with mutualism. As a result, it is suggested that the soil grows well in the soil where the nitrogen source, the mineral source, the temperature, the water content and the oxygen are present.
試験19<強酸性条件下での白トリュフ菌Tuber.菌生育試験>
図24(1)は、白トリュフ菌Tuber.の基本培地で培養した白トリュフ菌Tuber.のコロニー(菌叢)を示す。
[白トリュフ菌Tuber培地組成及び培養条件]
水 1000cc
ハイポネックス 3g
糖 30g
寒天 15g
最低温度 5℃
最高 15℃
静置、明所培養。
図24(2)は、白トリュフ菌Tuber.基本培地で形成したコロニー形成培養基に、PH3.5のピルビン酸溶液を5cc添加し、フラスコ内を強酸性条件にして培養した。写真は培養7日後の白トリュフ菌Tuber.の生育繁殖状態を示す。
世界の圃場には酸性土壌のエリアが非常に大きな面積を占めている(図1)が、白トリュフ菌Tuber.はこのような圃場でも良好に生育、繁殖し、放線菌のエサである菌糸体キチンを常時生産できることを示唆している。
Test 19 <Piedmont white truffle Tuber. Bacterial growth test under strong acid conditions>
FIG. 24 (1) shows a colony (bacterial flora) of white truffle bacterium Tuber. Cultured in a basal medium of white truffle bacterium Tuber.
[White Truffle Tuber Medium Composition and Culture Conditions]
Water 1000cc
Hyponex 3g
Sugar 30g
Agar 15g
Maximum 15 ℃
Standing, culturing in a bright place.
In FIG. 24 (2), 5 cc of a pyruvic acid solution of PH3.5 was added to the colony-forming culture group formed in the Tuber. Basic medium of white truffle, and the inside of the flask was cultured under strongly acidic conditions. The photograph shows the growth and reproduction state of the white truffle bacterium Tuber. 7 days after culturing.
The area of acidic soil occupies a very large area in the fields of the world (Fig. 1), but the white truffle fungus Tuber. Grow and propagate well in such fields, and mycelia that are the food for actinomycetes. It suggests that chitin can be produced at all times.
試験20<強塩基性アルカリ条件下における白トリュフ菌Tuber.生育試験>
図25(1)は、白トリュフ菌Tuber.の基本培地に生育繁殖したコロニーを示す。
図25(2)は、写真(1)の状態のフラスコ内に「生石灰粒」を添加投入した状態(培養温度25℃)。これでフラスコ内は生石灰で強アルカリPH11になった。
図25(3)は、生石灰粒投入7日後の状態。白トリュフ菌Tuber.の菌糸は、驚くことに生石灰の粒子上でも生育した(培養温度25℃)。
白トリュフの原産は、石灰岩土壌のヨーロッパ、中国であることから、強いアルカリを示す土壌でも生育可能であることは予想されたことであるが、それを確認することができた。
FIG. 25 (1) shows colonies that grew and propagated in the basal medium of the white truffle fungus Tuber.
FIG. 25 (2) shows a state in which "quick lime grains" are added and charged into the flask in the state of the photograph (1) (culture temperature 25 ° C.). With this, the inside of the flask was made of quicklime and became a strong alkaline PH11.
FIG. 25 (3) shows the
Since the origin of white truffles is limestone soils in Europe and China, it was expected that they could grow even in soils showing strong alkalinity, but we were able to confirm this.
試験21<白トリュフ菌Tuber.の低温、雪中条件下の生育試験>
図26(1)は、殺菌した白トリュフ菌Tuber.基本培地に白トリュフ菌を接種し、培養フラスコを雪の中に埋めた状態。雪の中の温度は0℃から5℃であった。
図26(2)は、処理7日後の状態、右上の写真は拡大写真。写真のように巨大なコロニーを形成した。本試験によれば、世界の寒帯、温帯の冬期間においても、白トリュフ菌が繁殖することを示唆している。
Test 21 <Growth test of white truffle fungus Tuber. Under low temperature and snow conditions>
FIG. 26 (1) shows a state in which the sterilized white truffle bacterium Tuber. Basic medium was inoculated with the white truffle bacterium and the culture flask was buried in snow. The temperature in the snow was 0 ° C to 5 ° C.
FIG. 26 (2) shows the state after 7 days of processing, and the upper right photograph is an enlarged photograph. A huge colony was formed as shown in the photograph. This study suggests that white truffles can propagate even in the cold and temperate winters of the world.
試験22<白トリュフ菌Tuber.の高温条件下による生育繁殖試験> (38)
図27(1)は、白トリュフ基本培地に白トリュフ菌Tuber.を接種し、この培養フラスコを温室内の棚に静置した状態を示す。この上に透明ビニールを被せ、フラスコ温度を日中、最高温度50℃、朝、最低25℃にした。
図27(2)は、上記フラスコの10日後の白トリュフ菌Tuber.の生育状態。全く高温の影響がなく至適温度である22℃の時と同じ生育、繁殖速度であった。
本試験により世界の熱帯、温帯の夏期でも高温の影響を受けないで白トリュフ菌Tuber.が生育できることが実証された。
Test 22 <Growth and reproduction test of white truffle fungus Tuber. Under high temperature conditions> (38)
FIG. 27 (1) shows a state in which the white truffle basal medium is inoculated with the white truffle fungus Tuber. And the culture flask is allowed to stand on a shelf in a greenhouse. A transparent vinyl was put on this, and the flask temperature was set to a maximum temperature of 50 ° C during the day and a minimum of 25 ° C in the morning.
FIG. 27 (2) shows the growth state of the white truffle fungus Tuber. 10 days after the flask. The growth and reproduction rate were the same as at 22 ° C, which was the optimum temperature without any influence of high temperature.
This test demonstrated that the white truffle bacterium Tuber. Can grow without being affected by high temperatures even in the tropical and temperate summers of the world.
試験23<白トリュフTuber 菌の多種類の殺虫剤1000倍希釈液における生育繁殖試験>
多様な殺虫剤1000倍希釈液に白トリュフTuber 菌を添加し、最低温度10℃ 最高温度 25℃ 室内、明所 静置で、培養した。
図28(1)は、左からスプラサイド、アセフェート、ニテンピラム、ハイポネックスの1000倍溶液、図28(2)は、左からPMP、エチプロールフロアブル ブプロフェジン、ハイポネックスの1000倍溶液、における7日後の白トリュフTuber 菌育成状況を示す。
全ての殺虫剤1000倍希釈液溶液で白トリュフTuber 菌の培養培地であるハイポネックス培地での生育繁殖と同等の生育繁殖スピードを示した。
これは、殺虫剤成分を白トリュフTuber 菌が「エサ」にして生育繁殖したことであり、殺虫剤成分を分解して殺虫能力を「失活」させたことを示唆するものである。
更に、白トリュフTuber 菌が殺虫剤成分により悪影響を受けていないことは、殺虫剤と白トリュフTuber 菌懸濁液を混合して散布できることを示している。
このような実施態様を採用すれば、殺虫剤が白トリュフTuber 菌により分解される間に、殺虫能が発揮されるので、殺虫剤の残留量大幅に低減できる。
Test 23 <Growth and reproduction test in 1000-fold diluted solution of various insecticides of white truffle Tuber>
White truffle Tuber bacteria were added to a 1000-fold diluted solution of various insecticides, and the cells were cultured at a minimum temperature of 10 ° C and a maximum temperature of 25 ° C indoors and in a bright place.
FIG. 28 (1) shows a 1000-fold solution of spraside, acephate, nitenpyram, and Hyponex from the left, and FIG. 28 (2) shows a white truffle after 7 days in a 1000-fold solution of PMP, ethiprol flowable buprofezin, and Hyponex from the left. Tuber Shows the bacterial growth status.
All pesticides in a 1000-fold diluted solution showed the same growth and reproduction speed as the growth and reproduction in Hyponex medium, which is a culture medium for white truffle Tuber bacteria.
This suggests that the white truffle Tuber bacterium grew and propagated using the insecticidal component as "food", and decomposed the insecticidal component to "inactivate" the insecticidal ability.
Furthermore, the fact that the white truffle Tuber bacterium is not adversely affected by the pesticide component indicates that the pesticide and the white truffle Tuber bacterium suspension can be mixed and sprayed.
If such an embodiment is adopted, the insecticidal ability is exhibited while the insecticide is decomposed by the white truffle Tuber bacterium, so that the residual amount of the insecticide can be significantly reduced.
試験24<白トリュフTuber 菌による多様な殺虫剤分解解毒済み溶液による殺虫効果試験>
試験23と同様な条件で、多様な殺虫剤の1000倍希釈液に白トリュフTuber 菌を添加培養し、多様な殺虫剤成分の分解解毒状況を調べた。
[試験方法]
培養開始3日後、白トリュフTuber 菌を培養した殺虫剤溶液を青虫に噴霧し、24時間後の生存の有無を目視観察して白トリュフTuber 菌の殺虫剤分解解毒効果を判定した。
図29(1A)は、白トリュフTuber 菌を培養したスプラサイド溶液を散布した青虫の画像
図29(1B)は、散布24時間後の青虫の状態で、生存していた。
図29(2A)は、白トリュフTuber 菌を培養したアセフェート溶液を散布した青虫の画像
図29(2B)は、散布24時間後の青虫の状態で、生存していた。
図29(3A)は、白トリュフTuber 菌を培養したニテンピラム溶液を散布した青虫の画像
図29(3B)は、散布24時間後の青虫の状態で、生存していた。
図29(4A)は、白トリュフTuber 菌を培養したPMP溶液を散布した青虫の画像
図29(4B)は、散布24時間後の青虫の状態で、生存していた。
図29(5A)は、白トリュフTuber 菌を培養したエチプロール溶液を散布した青虫の画像
図29(5B)は、散布24時間後の青虫の状態で、生存していた。
図29(6A)は、白トリュフTuber 菌を培養したブフロアブル溶液を散布した青虫の画像
図29(6B)は、散布24時間後の青虫の状態で、生存していた。
以上の試験から、白トリュフTuber 菌が多様な殺虫剤成分を3日間という短時間で、多様な殺虫剤を分解解毒することが判った。
このことは、殺虫剤と白トリュフTuber 菌混合液の散布で、殺虫剤の効果発現後、速やかに残留殺虫剤を分解することができることを示す。
Test 24 <Insecticide effect test with various insecticide decomposition and detoxified solutions by white truffle Tuber bacteria>
Under the same conditions as in Test 23, white truffle Tuber bacteria were added and cultured in a 1000-fold diluted solution of various insecticides, and the decomposition and detoxification status of various insecticide components was investigated.
[Test method]
Three days after the start of the culture, an insecticide solution in which the white truffle Tuber bacterium was cultured was sprayed on the green worm, and the presence or absence of survival after 24 hours was visually observed to determine the insecticidal decomposition and detoxification effect of the white truffle Tuber bacterium.
FIG. 29 (1A) is an image of a green worm sprayed with a Supraside solution in which the white truffle Tuber bacterium was cultured. FIG. 29 (1B) was alive in the state of a green worm 24 hours after spraying.
FIG. 29 (2A) is an image of a green worm sprayed with an acephate solution in which the white truffle Tuber bacterium was cultured. FIG. 29 (2B) was alive in the state of the green worm 24 hours after spraying.
FIG. 29 (3A) is an image of a green worm sprayed with a nitenpyram solution in which the white truffle Tuber bacterium was cultured. FIG. 29 (3B) was alive in the state of the green worm 24 hours after spraying.
FIG. 29 (4A) is an image of a green worm sprayed with a PMP solution in which the white truffle Tuber bacterium was cultured. FIG. 29 (4B) was alive in the state of the green worm 24 hours after spraying.
FIG. 29 (5A) is an image of a green worm sprayed with an ethiprol solution in which the white truffle Tuber bacterium was cultured. FIG. 29 (5B) was alive in the state of the green worm 24 hours after spraying.
FIG. 29 (6A) is an image of a green worm sprayed with a flowable solution in which the white truffle Tuber bacterium was cultured. FIG. 29 (6B) was alive in the state of the green worm 24 hours after spraying.
From the above tests, it was found that the white truffle Tuber bacterium decomposes and detoxifies various insecticide components in a short time of 3 days.
This indicates that the residual insecticide can be decomposed promptly after the effect of the insecticide appears by spraying the insecticide and the white truffle Tuber bacterium mixture.
試験25<白トリュフTuber 菌による下水浄化残渣の含有硝酸態窒素分解浄化試験>
脱炭素社会における人間、家畜の排泄物は農業圃場に還すべきである。なぜならの動物、植物由来の食品は、太陽エネルギーと作物の炭素循環で作られたものであり、焼却などしないで土壌に還して、食糧の再生産に循環させることが望ましい姿である。
現在、人間、家畜の排泄物は下水処理場で、バシルス菌、アスピディスカ、エピスティリス、アメーバ、コルレラ、その他の微生物によって分解され一定基準まで浄化される。
しかし、下水にはそれらの菌、微生物では分解不可能なリグニンなどを含有した難分解性有機物が含まれ、これが残渣汚泥として残る。この残渣の処理に、農業圃場への還元、焼却など行われているが、多大なコスト要するばかりか、農業資材化では、作物が良く育たないという問題があり、圃場への利用が進んでいない現状である。この原因として、脱窒素に多くのコストがかかるために脱窒素化がなされないまま、農業資材として供給されているため、硝酸態窒素過剰で作物の根に大きな影響を与えていることがあげられる。
本発明者は、白トリュフTuber 菌の高濃度イオン溶液でも繁殖できる特性を生かして、下水場残渣に白トリュフTuber 菌を担持させ、生息繁殖試験を行った。更に白トリュフTuber 菌繁殖後の硝酸態窒素を「エサ」として食べた後の残渣を、土壌にミックスして、イチゴ、白菜の栽培試験を行なった。以下、試験の状況を図試験実施16-1~6に示す。
図30(1) 下水場残渣 画像
図30(2) 写真1の下水場残渣に白トリュフTuber 菌を担持させ生育した画像
図30(3) 下水場残渣で栽培したチンゲンサイ 生育不良 画像
図30(4) 写真2の白トリュフTuber 菌生育により硝酸態窒素浄化残渣を赤玉土に10%混合して栽培したチンゲンサイ 生育良好 画像
図30(5) 赤玉土に10%写真2の浄化残渣をミックスして栽培した白菜
図30(6) 赤玉土に10%写真2の浄化残渣をミックスして栽培したイチゴ
白トリュフTuber 菌は土壌病害菌に対して強い抗菌作用を具備している。
この抗菌性は白トリュフTuber 菌が土壌40cmもの深さに子実体を形成するキノコ菌である。土壌中に子孫を残す子実体を形成するためには、既に土壌中に生息している多様な微生物、病害菌を殺菌、又は休眠抑止しなければならない。
白トリュフTuber 菌生息残渣を培養土に混和した場合、土壌病害菌の生育繁殖抑止することを期待して本試験を実施したが、期待通り本試験栽培では、作物に軟腐病、炭疽病、フザリュウムなどの病害は見られなかった。
更に、下水残渣で問題なる高濃度硝酸態窒素含有による生育障害もなく順調な生育をみたことから、本発明の目的の一つである、下水残渣、畜産排泄物、土壌に含有する硝酸態窒素を「エサ」として食べ、菌糸を繁茂させることで、下水残渣、畜産排泄物、硝酸態窒素残留土壌を優良な農業資材とすることを達成できることが判った。
本発明は、これまでのような細菌利用ではなく、子嚢菌木材腐朽菌でありながら、植物、作物と共生する「菌根菌」の特性を具備した白トリュフTuber 菌を用いたことで達成できたものである。
Test 25 <Nitrate nitrogen decomposition purification test containing sewage purification residue by white truffle Tuber bacteria>
Human and livestock excrement in a decarbonized society should be returned to agricultural fields. This is because foods derived from animals and plants are made from solar energy and the carbon cycle of crops, and it is desirable to return them to the soil without incineration and circulate them for food reproduction.
Currently, human and livestock excrement is decomposed by Bacillus, Aspidisca, Epistilis, Amoeba, Corrella and other microorganisms in sewage treatment plants and purified to a certain standard.
However, sewage contains persistent organic matter containing these bacteria, lignin, which cannot be decomposed by microorganisms, and this remains as residual sludge. Treatment of this residue involves reduction to agricultural fields, incineration, etc., but not only does it require a large amount of cost, but there is also the problem that crops do not grow well when used as agricultural materials, and its use in fields has not progressed. The current situation. The reason for this is that the excess nitrate nitrogen has a great impact on the roots of crops because it is supplied as an agricultural material without being denitrified due to the high cost of denitrification. ..
The present inventor carried out a habitat reproduction test by carrying the white truffle Tuber bacterium on the sewage residue by taking advantage of the property that the white truffle Tuber bacterium can propagate even in a high-concentration ion solution. Furthermore, the residue after eating the nitrate nitrogen after breeding the white truffle Tuber as "food" was mixed with the soil, and the cultivation test of strawberries and Chinese cabbage was conducted. Hereinafter, the status of the test is shown in Figure Test Implementation 16-1 to 16.
Fig. 30 (1) Image of sewage field residue Fig. 30 (2) Image of growing white truffle Tuber bacteria on the sewage field residue of
White truffle Tuber has a strong antibacterial effect against soil diseases.
This antibacterial property is a mushroom bacterium in which the white truffle Tuber bacterium forms fruiting bodies at a depth of 40 cm in the soil. In order to form fruiting bodies that leave offspring in the soil, it is necessary to sterilize or suppress dormancy of various microorganisms and disease-causing bacteria that already inhabit the soil.
When the white truffle Tuber bacterium habitat residue was mixed with the culture soil, this test was conducted with the expectation that the growth and reproduction of soil disease bacteria would be suppressed. No such diseases were found.
Further, since the sewage residue grew smoothly without any growth disorder due to the high concentration nitrate nitrogen content, which is one of the objects of the present invention, the sewage residue, livestock excrement, and nitrate nitrogen contained in the soil. It was found that sewage residue, livestock excrement, and nitrate nitrogen residual soil can be used as excellent agricultural materials by eating as "food" and growing mycelia.
The present invention can be achieved by using the white truffle Tuber bacterium, which has the characteristics of "mycorrhizal fungus" that coexists with plants and crops, although it is a wood-rotting fungus of ascomycete, instead of utilizing bacteria as in the past. It is a thing.
試験26<白トリュフTuber 菌が浄化した下水残渣投与使用したイチゴ高設栽培及び白菜圃場栽培試験>
試験25で、下水残渣が作に良好な生育、病害抑止効果が実証されたことから、白トリュフTuber 菌で浄化した下水残渣を使用して実際の大面積圃場で「ハウスイチゴ高設栽培」「露地白菜栽培」を実施したところ、素晴らしく良好な生育となった。
いずれも、白トリュフTuber 菌懸濁液30から100倍希釈液の葉面散布、土壌灌注で病害菌を休眠させることで殺菌剤使用無し、殺虫剤の残留成分は白トリュフTuber 菌懸濁液散布で分解解毒することで、殆ど「農薬を含まない」イチゴと白菜を収穫出来た。
栽培方法
イチゴ、白菜共に白トリュフTuber 菌生息下水残渣を10a当たり200kg土壌表面にマルチングした。
その他の栽培管理は慣行に従った
イチゴは、育苗時から収穫終了時まで、白トリュフTuber 菌懸濁液30から100倍希釈液を10から15日間隔で当面散布を実施した。
殺虫剤を数回散布したが、散布24時間後に必ず白トリュフTuber 菌懸濁液希釈液の30倍溶液をハウス全体に噴霧散布して、残留農薬の分解解毒を行なった。
白菜は、圃場直播で行い、農薬は慣行栽培に従ったが、農薬散布後、必ず、散布24時間後に必ず白トリュフTuber 菌懸濁液希釈液の30倍溶液をハウス全体に噴霧散布して、残留農薬の分解解毒を行なった。
図31(1) ハウス 高設栽培イチゴ栽培の画像
図31(2) 露地圃場における白菜栽培の画像
Test 26 <Strawberry elevated cultivation and Chinese cabbage field cultivation test using sewage residue administration purified by white truffle Tuber bacteria>
In Test 25, the sewage residue was demonstrated to have good growth and disease control effect. Therefore, using the sewage residue purified with white truffle Tuber bacterium, "house strawberry elevated cultivation" and "house strawberry elevated cultivation" When "open-field Chinese cabbage cultivation" was carried out, the growth was excellent and good.
In both cases, foliar spraying of a 100-fold diluted solution from 30 to 100-fold diluted white truffle Tuber bacterium suspension, no fungicide is used by dormant the diseased bacteria by soil irrigation, and the residual component of the insecticide is sprayed with the white truffle Tuber bacterium suspension. By decomposing and detoxifying with, we were able to harvest almost "pesticide-free" strawberries and white truffles.
Cultivation method For both strawberries and Chinese cabbage, 200 kg of white truffle Tuber sewage residue per 10 a was mulched on the soil surface.
Other cultivation management followed customs
Strawberries were sprayed with a 100-fold diluted solution of white truffle Tuber bacterium suspension 30 to 100 times at intervals of 10 to 15 days from the time of raising seedlings to the end of harvesting for the time being.
The insecticide was sprayed several times, but 24 hours after spraying, a 30-fold solution of the diluted solution of white truffle Tuber suspension was sprayed over the entire house to decompose and detoxify residual pesticides.
The white vegetables were sown directly in the field, and the pesticides were cultivated according to the conventional cultivation. Decomposition and detoxification of residual pesticides were performed.
Fig. 31 (1) Image of house elevated strawberry cultivation Fig. 31 (2) Image of Chinese cabbage cultivation in open field
試験27<白トリュフTuber 菌培養懸濁液葉面散布が植物、作物生育に及ぼす影響試験(植物ホルモン産生試験)>
白トリュフTuber 菌は植物ホルモン、インドール 3 酢酸を産生する。
本試験は、白トリュフTuber 菌の培養残渣液の30から100倍希釈液を葉面散布することによって、白トリュフTuber 菌が液体培養中に、液中の培養基に添加する糖を原料にして、グルコース → インドール ピルビン酸 → インドール 3 ピルビン酸 → インドール 3 酢酸 (オーキシン)を産生することを確かめることを目的とする。
[ナデシコ]
白トリュフTuber 菌液体培養残渣液の30から100倍希釈液を「ナデシコ」、「イネ」に葉面散布したところ、約20%背丈が高くなり、「ナデシコ」では花の大きさも一回り大きくなった。
図32(1) 鉢植えナデシコの側面 画像で、左鉢が白トリュフTuber 菌培養残渣液散布(開花直前から10日置きに2回)、右鉢が無処理。
図32(2) 真上からの画像 白トリュフTuber 菌培養残渣液散布鉢のナデシコの花は、無処理鉢と比べ一回り大きくなった。
[イネ]
赤玉土 中粒 単用
肥料 イネ用緩効性肥料 ロング 6g 基肥施肥
6号鉢、鉢底吸水法で栽培
白トリュフTuber 菌培養懸濁液(熱失活)50倍希釈液散布(苗植えから15日置きに8月中旬の出穂期まで実施)
図32(3) イネ試験 画像(8月上旬 幼穂形成期 画像)、左3列 無処理区、右3列 白トリュフTuber 菌培養残渣液散布区
[結果]
図の写真から明らかなように、無処理区は肥料切れと高温障害で黄変した葉になっているが、白トリュフTuber 菌培養残渣液散布区では、草丈が無処理区に比べて約20%伸び、葉色も緑で「肥料切れ」に見えない健康な生育であった。
本試験の結果は、白トリュフTuber 菌懸濁液の葉面散布で、減肥料でしかも安定した収穫が出来ることを示唆するもので、施肥することなく草花や作物の成長を促していることは、白トリュフTuber 菌が植物ホルモン インドール 3 酢酸を産生していることを示唆するものである。このことは、減肥料栽培において白トリュフTuber 菌懸濁液散布によって、約20%程度の収穫増加が期待される。
Test 27 <Effect test of foliar spraying of white truffle Tuber culture suspension on plant and crop growth (plant hormone production test)>
The white truffle Tuber bacterium produces the plant hormone indole-3-acetic acid.
In this test, a 30 to 100-fold diluted solution of the culture residue of white truffle Tuber was sprayed on the foliage, and the sugar added to the culture medium of the white truffle Tuber during liquid culture was used as a raw material. Glucose → indole pyruvate →
[Nadeshiko]
When 30 to 100-fold diluted solution of white truffle Tuber bacterium liquid culture residue was sprayed on the leaves of "Nadeshiko" and "Rice", the height became about 20%, and the size of the flower became one size larger in "Nadeshiko". rice field.
Fig. 32 (1) In the side image of the potted dianthus, the left pot is sprayed with the white truffle Tuber culture residue liquid (twice every 10 days from just before flowering), and the right pot is untreated.
FIG. 32 (2) Image from directly above The flowers of the dianthus in the white truffle Tuber bacterium culture residue spraying pot were one size larger than those in the untreated pot.
[Rice]
Akatama soil medium grain single use fertilizer Slow-release fertilizer for rice Long 6g Base fertilizer No. 6 pot, cultivated by pot bottom water absorption method White truffle Tuber fungus culture suspension (heat deactivation) 50 times diluted liquid spray (15 from seedling planting) Every other day until the heading period in mid-August)
Fig. 32 (3) Rice test image (early August panicle formation image), left 3 columns untreated plot, right 3 rows white truffle Tuber culture residue spraying plot
[result]
As is clear from the photograph in the figure, the untreated plot has yellowed leaves due to lack of fertilizer and high temperature damage, but the plant height in the white truffle Tuber bacterium culture residue spraying plot is about 20 compared to the untreated plot. It grew by%, the leaf color was green, and it was a healthy growth that did not look like "out of fertilizer".
The results of this test suggest that foliar spraying of the white truffle Tuber fungus suspension can achieve stable harvesting with reduced fertilizer, and that it promotes the growth of flowers and crops without fertilization. , White truffle Tuber suggests that it produces the plant hormone indole-3-acetic acid. This is expected to increase the yield by about 20% by spraying the white truffle Tuber fungus suspension in the reduced fertilizer cultivation.
試験28<白トリュフTuber 菌培養懸濁液散布イネの生育試験(植物ホルモン産生試験2)>
[試験方法]
品種 つやひめ
・イネの苗を6号鉢に植え、1鉢にイネ用ロング肥料5g投与(この施肥量では1ヶ月後に肥料切れを起こす)。
・肥料切れになった状態のイネに、白トリュフTuber 菌培養懸濁液希釈50倍液を15日間隔で2ヶ月葉面散布(処理区)、対照区として無処理区を、それぞれ6鉢用意した。
白トリュフTuber 菌培養によって、培養懸濁液中には植物ホルモン「インドール 3 酢酸」が産生されていれば、葉面散布によって、何らかの変化が起こるはずである。
図33(1) 葉面散布終了時の画像で、左3列 無処理区、右3列 処理区
写真が示す様に、処理区と無処理区には大きな生育、草丈の差異が認められ処理区の草丈は約55cm、無処理区の草丈は45cmである。
葉の色にも大きな差異が現れ、無処理区では「肥料切れ」で黄緑色であったのに対し、処理区は「肥料切れ」が見られない緑色である。
このような現象は、白トリュフTuber 菌培懸濁液により、作物にアンチエイジング効果が生じたことを示唆している。
図33(2) 葉面散布終了3週間後の無処理区の画像で、無処理区(右側)「つやひめ」は出穂が見られず、肥料切れで生育不良となり、この生育ではほとんど収穫が期待できない。
一方、処理区のイネ(左側)は、水田圃場栽培と変わらない生育で出穂し、肥料切れが見られなかった。この生育では10a換算で約500kgの収穫が見込める。
本試験は、白トリュフTuber 菌懸濁液葉面散布作物の「減肥料栽培」が可能であることを示唆している。更に肥料切れで起こる老化現象、生育不良を防止することをも示唆している。
本発明の白トリュフTuber 菌は、格別な設備を必要としないで手軽に培養できるので、開発途上国において、本発明の白トリュフTuber 菌を培養し、その培養液を生産し作物の葉面に散布すれば、高価な化学肥料や、農薬を使用することなく、安定した収穫が期待できる。
Test 28 <White truffle Tuber culture suspension sprayed Rice growth test (plant hormone production test 2)>
[Test method]
Variety Shinyhime / rice seedlings are planted in No. 6 pot, and 5 g of long fertilizer for rice is administered to one pot (at this fertilization amount, fertilizer runs out after one month).
・
If the white truffle Tuber culture produces the plant hormone "indole-3-acetic acid" in the culture suspension, foliar application should cause some changes.
Fig. 33 (1) In the image at the end of foliar spraying, left 3 columns untreated plot, right 3 rows treated plot As shown in the photograph, large growth and plant height difference were observed between the treated plot and the untreated plot. The plant height of the plot is about 55 cm, and the plant height of the untreated plot is 45 cm.
There was a big difference in the color of the leaves, and in the untreated plot, it was yellowish green due to "out of fertilizer", whereas in the treated plot, it was green with no "out of fertilizer".
This phenomenon suggests that the white truffle Tuber culture suspension produced an anti-aging effect on the crops.
Fig. 33 (2) In the image of the
On the other hand, the rice (left side) in the treated area had the same growth as the paddy field cultivation, and no shortage of fertilizer was observed. With this growth, a harvest of about 500 kg can be expected in terms of 10a.
This study suggests that "reduced fertilizer cultivation" of white truffle Tuber suspension foliar spray crops is possible. It also suggests that it prevents the aging phenomenon and poor growth caused by running out of fertilizer.
Since the white truffle Tuber bacterium of the present invention can be easily cultivated without the need for special equipment, the white truffle Tuber bacterium of the present invention is cultivated in developing countries, and the culture solution thereof is produced on the leaf surface of the crop. If sprayed, stable harvest can be expected without using expensive chemical fertilizers and pesticides.
試験29<牧草エンドファイトに対する白トリュフTuber 菌培養懸濁液散布による解毒分解試験>
エンドファイト(内生菌)は植物体内で共生的に生活している真菌や細菌のことで、endo(within)とphyte(plant)からの造語である。一般にはイネ科植物に寄生する麦角病菌科の真菌を指すことが多い。家畜の中毒との関連では、トールフェスクに寄生する(以前はAcremoniumと呼ばれていた) coenophialumとペレニアルライグラスに寄生するN. loliiが問題となり、アメリカ、オーストラリア、ニュージーランドなどの牧草にエンドファイトが寄生し、これを食べた多くの家畜が中毒を起こしている。このように、エンドファイトなどの微生物、キノコなどに生物活性物質として毒性を現わす成分を具備しているものが多い。しかし、自然界の生物が産生する有機化合物である有毒成分は、木材腐朽菌によって全て分解され土壌に還ることが知られており、本発明の子嚢菌白色木材腐朽菌である白トリュフTuber 菌は、作物体内に残留する有機化合物の多様な農薬成分を分解することから、エンドファイトが産生する毒性成分を分解することが期待される。
図34(1) アメリカの牧草生産圃場における灌水及び農薬散布の実態であるが、この灌水又は農薬溶液(殺虫剤)に白トリュフTuber 菌懸濁液を混和して散布した。
図34(2) 白トリュフTuber 菌懸濁液散布によってエンドファイトNeotyphodium菌が産生する「カビ毒」を分解解毒、清浄化した牧草の収穫風景の画像(アメリカ シアトル市郊外 本発明試験実施 牧草栽培圃場)
Test 29 <Detoxification and decomposition test by spraying white truffle Tuber culture suspension against grass endophyte>
Endophyte (endophyte) is a fungus or bacterium that lives symbioticly in a plant, and is a coined word from endo (within) and phyte (plant). In general, it often refers to a fungus of the ergotaceae family that parasitizes grasses. In the context of livestock poisoning, coenophialum (formerly known as Acremonium) parasitizing tall fescue and N. lolii parasitizing perennial ryegrass became a problem, and endophyte parasitized pastures in the United States, Australia, New Zealand, etc. , Many livestock that ate this are addicted. As described above, many of them have components that are toxic to microorganisms such as endophyte and mushrooms as bioactive substances. However, it is known that all toxic components, which are organic compounds produced by living organisms in the natural world, are decomposed by wood-rotting fungi and returned to the soil. Since it decomposes various pesticide components of organic compounds remaining in the crop body, it is expected to decompose the toxic components produced by endophyte.
Fig. 34 (1) The actual situation of irrigation and pesticide spraying in the pasture production field in the United States. The white truffle Tuber bacterium suspension was mixed with this irrigation or pesticide solution (insecticide) and sprayed.
Fig. 34 (2) Image of harvesting landscape of grass that has been detoxified and cleaned by decomposing and detoxifying the "mycotoxin" produced by Endophyte Neotyphodium by spraying the white truffle Tuber bacterium suspension. )
試験30<作物、植物組織の白トリュフTuber 菌培養懸濁液30培希釈液噴霧浸透時間試験>
本発明は生育中及び収穫後の加工食品原料の残留農薬を、白トリュフTuber 菌培養懸濁液を噴霧又は浸漬して、組織内の残留農薬成分を分解解毒、清浄化することを目的としている。そのためには白トリュフTuber 菌懸濁液希釈液が速やかに植物組織内に浸透することが絶対必須要件である。浸透に要する時間の試験を実施した。
[試験方法]
温度 15℃ 湿度90%の条件下で、供試材料として白菜の葉に、白トリュフTuber 菌懸濁液30倍希釈液を散布し、浸透状況を経時的に観察した。
図35(1) 白菜の葉に白トリュフTuber 菌懸濁液30倍希釈液散布直後 画像
図35(2) 5分後の状態:葉の細胞に浸透を始めている。
図35(3) 10分後の状態:葉の表面に希釈液は殆どなくなるまで浸透している。
Test 30 <White truffle Tuber culture suspension of crops and plant tissues 30 Diluted solution spray permeation time test>
It is an object of the present invention to decompose and detoxify and purify residual pesticide components in tissues by spraying or immersing white truffle Tuber bacterium culture suspension on residual pesticides of processed food raw materials during growth and after harvesting. .. For that purpose, it is absolutely essential that the diluted solution of white truffle Tuber suspension penetrates into the plant tissue promptly. A test of the time required for penetration was performed.
[Test method]
Under the condition of temperature 15 ° C. and humidity 90%, a 30-fold diluted solution of white truffle Tuber bacterium suspension was sprayed on the leaves of white truffles as a test material, and the permeation state was observed over time.
Fig. 35 (1) Immediately after spraying a 30-fold diluted solution of white truffle Tuber bacteria on Chinese cabbage leaves Image Fig. 35 (2) State after 5 minutes: Penetration into leaf cells has begun.
FIG. 35 (3) State after 10 minutes: The diluted solution has permeated the surface of the leaves until almost disappeared.
試験31<白トリュフTuber 菌懸濁液30倍希釈液皮膚浸透性試験>
作物への農薬散布は、仕事中に体の農薬が吸引、付着して、場合によっては急性中毒を引き起こす。この皮膚に付着した農薬成分は皮膚浸透して体内に取り込まれ体内残留農薬となり、免疫力低下を起こす原因にもなる。本発明の白トリュフTuber 菌懸濁液が、作物だけでなく、農業、植物栽培従事者の皮膚に浸透し皮膚に残留している体内残留農薬の分解解毒、清浄化にも有効であることを確認した。
[試験方法]
白トリュフTuber 菌懸濁液30倍希釈液を人間の腕の表面に噴霧し、皮膚への浸透状況を経時的に観察した。気温20℃ 湿度90%であった。
図36(1) 白トリュフTuber 菌懸濁液30倍希釈液 左腕に噴霧直後の濡れた皮膚の状態
図36(2) 噴霧5分経過後の皮膚 画像 皮膚浸透が始まっている。
図36(3) 噴霧10分後の皮膚 画像 ほとんど浸透し皮膚に液、水分は残っていない。
本試験結果から、農薬散布後、作業者の顔、手などの農薬付着部を水洗いした後、白トリュフTuber 菌濁液30倍希釈液を噴霧することで、皮膚細胞内の残留農薬を分解清浄化出来る。
Test 31 <White truffle Tuber bacterial suspension 30-fold diluted skin permeability test>
Pesticide application to crops causes the body's pesticides to be inhaled and adhered during work, sometimes causing acute poisoning. The pesticide component adhering to the skin permeates the skin and is taken into the body to become a residual pesticide in the body, which also causes a decrease in immunity. The white truffle Tuber bacterium suspension of the present invention is effective not only for crops but also for decomposition, detoxification and purification of pesticide residues in the body that have penetrated into the skin of agricultural and plant growers and remain on the skin. confirmed.
[Test method]
A 30-fold diluted solution of white truffle Tuber bacterium suspension was sprayed on the surface of a human arm, and the state of penetration into the skin was observed over time. The temperature was 20 ° C and the humidity was 90%.
Fig. 36 (1) 30-fold diluted solution of white truffle Tuber bacterium suspension Condition of wet skin immediately after spraying on the left arm Fig. 36 (2) Skin image after 5 minutes of spraying Skin penetration has started.
FIG. 36 (3)
From the results of this test, after spraying pesticides, the pesticide-attached parts such as the worker's face and hands are washed with water, and then sprayed with a 30-fold diluted solution of white truffle Tuber turbid solution to decompose and clean the residual pesticides in the skin cells. Can be transformed into.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020216308A JP2022101921A (en) | 2020-12-25 | 2020-12-25 | A method for decomposing and cleaning residual pesticides and soil nitrate nitrogen decomposition and cleaning of crops and soil and processed foods, beverages, crude drug raw materials and sewage residue by wood-rotting fungi. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020216308A JP2022101921A (en) | 2020-12-25 | 2020-12-25 | A method for decomposing and cleaning residual pesticides and soil nitrate nitrogen decomposition and cleaning of crops and soil and processed foods, beverages, crude drug raw materials and sewage residue by wood-rotting fungi. |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022101921A true JP2022101921A (en) | 2022-07-07 |
Family
ID=82273197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020216308A Pending JP2022101921A (en) | 2020-12-25 | 2020-12-25 | A method for decomposing and cleaning residual pesticides and soil nitrate nitrogen decomposition and cleaning of crops and soil and processed foods, beverages, crude drug raw materials and sewage residue by wood-rotting fungi. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022101921A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023135998A1 (en) | 2022-01-14 | 2023-07-20 | 株式会社日立製作所 | Method for detecting structural polymorphism mutations |
-
2020
- 2020-12-25 JP JP2020216308A patent/JP2022101921A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023135998A1 (en) | 2022-01-14 | 2023-07-20 | 株式会社日立製作所 | Method for detecting structural polymorphism mutations |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5410640B2 (en) | Plant growth method and composition used therefor | |
Stevens et al. | Integration of soil solarization with chemical, biological and cultural control for the management of soilborne diseases of vegetables | |
KR101431787B1 (en) | Organic Ginseng and the Method of Cultivation thereof | |
KR101132712B1 (en) | Environment-friendly organic agricultural products for soil insect pest control | |
JP2018513133A (en) | Enhancer composition and agrochemical composition for agricultural chemicals (AGRICULTURAL CHEMICALS) | |
US20170197891A1 (en) | Quantum carrier for improving soil function and method of preparation thereof | |
Ram et al. | Organic Aapproaches for sustainable production of horticultural crops: A review | |
Melero-Vara et al. | Use of poultry manure combined with soil solarization as a control method for Meloidogyne incognita in carnation | |
CN106508991A (en) | Biological pesticide and preparation method thereof | |
Abid et al. | Integrated pest management (IPM) for Ectomyelois ceratoniae on date palm | |
JP2022101921A (en) | A method for decomposing and cleaning residual pesticides and soil nitrate nitrogen decomposition and cleaning of crops and soil and processed foods, beverages, crude drug raw materials and sewage residue by wood-rotting fungi. | |
WO2002087344A1 (en) | Biological control of soil dwelling pests | |
Cheramgoi et al. | Efficacy and mode of application of local Beauveria bassiana isolates in the control of the tea weevil | |
KR101782842B1 (en) | Pro-environment Cultivation Method of herb Plants with herb complex fertilizer | |
Hammam et al. | Management of pests and pathogens affecting citrus yield in egypt with special emphasis on nematodes | |
JP2024003927A (en) | Multifunctional slow-release solid chemical fertilizer | |
JP2021040525A (en) | Novel ascomycetous pezizales sp., and cultivation method with reduced amounts of fertilizers and agricultural chemicals or with no agricultural chemicals using the symbiosis of novel ascomycetous pezizales sp. and rhizobial rhizobium sp. | |
EP1384405B1 (en) | Bactericidal, bacteriostatic and fungicidal composition comprising two or more live species of trichoderma | |
Suryaminarsih et al. | Study of Humic Acid and Multiantagonis of Streptomyces Sp, Trichoderma Sp Application Techniques for Horticulture Plant on Marginal Soil | |
Rubin et al. | Soil solarization: An environmentally-friendly alternative | |
KR100713059B1 (en) | Novel Ryzopus Oligosporus KCCM 10624 and Plant Growth Promoters and Plant Disease Resistance Enhancers Comprising the Same | |
Pandey et al. | Plant protection measures to promote organic farming in Nepal: prospects and challenges | |
KR100758007B1 (en) | Burkholderia spp.003 strain and method for inhibiting turf growth and turf disease | |
Lazim | The effectiveness of the Fungus Beauveria bassiana in reducing the infection of okra plant Abelmosechus eseulentus with fungal root diseases. | |
KR100773148B1 (en) | Soil Nematode Control Agent Using Neem Powder and Soil Microorganisms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230721 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241029 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241106 |