[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5296189B2 - アナログ処理用のシステム、装置、および方法 - Google Patents

アナログ処理用のシステム、装置、および方法 Download PDF

Info

Publication number
JP5296189B2
JP5296189B2 JP2011501018A JP2011501018A JP5296189B2 JP 5296189 B2 JP5296189 B2 JP 5296189B2 JP 2011501018 A JP2011501018 A JP 2011501018A JP 2011501018 A JP2011501018 A JP 2011501018A JP 5296189 B2 JP5296189 B2 JP 5296189B2
Authority
JP
Japan
Prior art keywords
qubits
qubit
superconducting
coupler
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011501018A
Other languages
English (en)
Other versions
JP2011524026A (ja
Inventor
ブニク,ポール
ニューフェルド,リチャード,デイビッド
マイバウム,フェリックス
Original Assignee
ディー−ウェイブ システムズ,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディー−ウェイブ システムズ,インコーポレイテッド filed Critical ディー−ウェイブ システムズ,インコーポレイテッド
Publication of JP2011524026A publication Critical patent/JP2011524026A/ja
Application granted granted Critical
Publication of JP5296189B2 publication Critical patent/JP5296189B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/82Architectures of general purpose stored program computers data or demand driven
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/805Constructional details for Josephson-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Hall/Mr Elements (AREA)

Description

関連出願の相互参照
本出願は、2008年3月24日出願の米国特許仮出願第61/039041号「超伝導プローブカード用のシステム、方法および装置(Systems, Methods and Appratus for a Superconducting Probe Card)」を米国特許法第119(e)条に基づき優先権主張し、2008年3月26日出願の米国特許仮出願第61/039710号「アナログ処理用のシステム、装置、および方法(Systems, Devices, and Methods for Analog Processing)」を米国特許法第119(e)条に基づき優先権主張する。
背景
分野
本開示は一般に、アナログ計算およびアナログプロセッサ、例えば量子計算および量子プロセッサに関する。
関連技術の詳細
量子計算の方式
量子コンピュータを設計および操作するいくつかの一般的な方式がある。そのような方式の一つに、量子計算の「回路モデル」がある。この方式では、アルゴリズムのコンパイル済み表現である一連の論理的ゲートにより量子ビットに作用する。多くの研究が、回路モデル量子コンピュータの基本素子を形成すべく充分なコヒーレンスを有する量子ビットを開発することに着目してなされてきた。
量子計算の別の方式には、計算システムとして結合量子系のシステムの自然な物理的発展の利用が含まれる。この方式は、量子ゲートおよび回路を利用しない。その代わり、計算システムは容易にアクセスできる基底状態を有する既知の初期ハミルトニアンから出発して、基底状態が問題の解を表す最終ハミルトニアンへ制御可能に誘導される。この方式は、長い量子ビットコヒーレンス時間を必要とせず、回路モデルよりも堅牢であろう。この種の方法の例として断熱量子計算および量子アニーリングが含まれる。
超伝導量子ビット
超伝導量子ビットは、超伝導集積回路に含めることができる超伝導量子素子の一種である。超伝導量子ビットは、情報の符号化に用いる物理特性に応じていくつかのカテゴリに分類できる。例えば、電荷、磁束、および位相素子に分類できる。電荷素子は、情報を素子の電荷状態に保存して操作する。磁束素子は、素子の一部を介して磁束に関する変数に情報を保存する。位相素子は、位相素子の2個の領域の間の超伝導位相の差異に関する変数に情報を保存する。最近では、電荷、磁束、および位相自由度のうち2個以上を用いるハイブリッド素子が開発されている。
超伝導集積回路は、単一磁束量子(SFQ)素子を含んでいてよい。超伝導量子ビットを用いたSFQ素子の集積について米国特許出願第11/950,276号に記述されている。
簡単な概要
システムを要約すれば、第1量子ビットと、第1量子ビットの一部と交差する第2量子ビットと、第1量子ビットと第2量子ビットの間に結合を生じさせると共に第2量子ビットと交差する第1量子ビットの部分に近接する周辺部を有するカプラとを含んでいる。
第1量子ビットは第2量子ビットとほぼ垂直に交差していてよい。カプラの周辺部は第2量子ビットと交差する第1量子ビットの部分の、少なくとも一部を囲んでいてよい。カプラの周辺部は、第2量子ビットと交差しない第1量子ビットの第1部分および第1量子ビットと交差しない第2量子ビットの第2部分を囲んでいてよい。カプラの周辺部は、第1量子ビットの長さ方向とほぼ平行に伸長する第1アームおよび第2量子ビットの長さ方向とほぼ平行に伸長する第2アームを含んでいてよい。第1量子ビットは、第1臨界温度で超伝導性を示す超伝導材料の第1量子ビットループおよび少なくとも1個のジョセフソン接合を含んでいてよく、第2量子ビットは、第2臨界温度で超伝導性を示す超伝導材料の第2量子ビットループおよび少なくとも1個のジョセフソン接合を含み、カプラは、第3の臨界温度で超伝導性を示す超伝導材料の結合ループを含んでいる。結合ループは、少なくとも1個のジョセフソン接合により遮断されていてよい。カプラは、第1および第2量子ビットから分離された層にあってよい。カプラは、第1または第2量子ビットの一方と同じ層にあってよい。第1カプラは、第1量子ビットと第2量子ビットを強磁性的、反強磁性的および横方向のうち少なくとも一つの方式で結合すべく動作可能であってよい。
多層コンピュータチップを要約すれば、第1金属層内に少なくとも部分的に配置された第1の複数すなわちN個の量子ビットと、第2金属層内に少なくとも部分的に配置された第2の複数すなわちM個の量子ビットであって、各々が第1の複数量子ビットの各量子ビットと交差する第2の複数量子ビットと、第1の複数すなわちN×M個の結合素子であって、第1および第2の複数量子ビットからの各量子ビット対が互いに交差する場所に各々が近接している第1の複数結合素子である。
結合素子の少なくとも1個は、第1の複数すなわちN個の量子ビットの1個の量子ビットの長さ方向にほぼ平行に伸長する第1アーム、および第2の複数すなわちM個の量子ビットの第2量子ビットの長さ方向にほぼ平行に伸長する第2アームを含んでいてよい。これら複数の結合素子は、第2金属層内に少なくとも部分的に配置されていてよい。MはNに等しくてもよい。多層コンピュータチップは、量子ビットおよびカプラ周辺の磁気ノイズを減らすべく配置された金属保護層を含んでいてよい。第2の複数量子ビットが第2金属層および第1金属層の両方に配置されていてよく、複数のビアが第2金属層と第1金属層の間に個別の電流路を提供することができる。複数の結合素子が第2金属層および第1金属層の両方に配置されていてよく、複数のビアが第2金属層と第1金属層の間に個別の電流路を提供することができる。第1の複数量子ビットの量子ビットは互いに平行に配置されていてよく、第2の複数量子ビットの量子ビットは互いに平行に配置されていてよく、第2の複数量子ビットの量子ビットは第1の複数量子ビットの量子ビットに対して垂直に配置されていてよい。第1の複数量子ビットの量子ビットは第1から第n量子ビットまで連続的な順序で配置されていてよく、第2の複数量子ビットの量子ビットは第1量子ビットから第m量子ビットまで連続的な順序で配置されていて、第1の複数量子ビットの第1量子ビットは第2の複数量子ビットの第1量子ビットと強磁性的に結合されていて、第1の複数量子ビットの第2量子ビットは第2の複数量子ビットの第2量子ビットと強磁性的に結合されていて、第1の複数量子ビットの第3量子ビットは第2の複数量子ビットの第3量子ビットと強磁性的に結合されていて、第1の複数量子ビットの第4量子ビットは第2の複数量子ビットの第4量子ビットと強磁性的に結合されていて、第1の複数量子ビットの第1量子ビットは第2の複数量子ビットの第2、第3、および第4量子ビットの各々と制御可能に結合可能であって、第1の複数量子ビットの第2量子ビットは第2の複数量子ビットの第1、第3、および第4量子ビットの各々と制御可能に結合可能であって、第1の複数量子ビットの第3量子ビットは第2の複数量子ビットの第1、第2、および第4量子ビットの各々と制御可能に結合可能であって、第1の複数量子ビットの第4量子ビットは第2の複数量子ビットの第1、第2、および第3量子ビットの各々と制御可能に結合可能であって第1Kブロックを形成する。多層コンピュータチップは、第1金属層内に配置された第3の複数すなわちI個の量子ビットと、第2金属層内に少なくとも部分的に配置された第4の複数すなわちJ個の量子ビットであって、第1の複数量子ビットの各量子ビットと各々交差する第4の複数量子ビットと、第1金属層内に配置された第5の複数すなわちK個の量子ビットと、第2金属層内に少なくとも部分的に配置された第6の複数すなわちL個の量子ビットであって、第1の複数量子ビットの各量子ビットと各々交差する第6の複数量子ビットと、第2の複数すなわちI×J個の結合素子であって、当該第2の複数結合素子の各結合素子が第3および第4の複数量子ビットからの各量子ビット対が互いに交差する領域を少なくとも部分的に囲み、第3の複数量子ビットの量子ビットは第1から第n量子ビットまで連続的な順序で配置されていて、第4の複数量子ビットの量子ビットは第1量子ビットから第n量子ビットまで連続的な順序で配置されていて、第3の複数量子ビットの第1量子ビットは第4の複数量子ビットの第1、第2、第3および第4量子ビットの各々と制御可能に結合可能であって、第3の複数量子ビットの第2量子ビットは第4の複数量子ビットの第1、第2、第3、および第4量子ビットの各々と制御可能に結合可能であって、第3の複数量子ビットの第3量子ビットは第4の複数量子ビットの第1、第2、第3、および第4量子ビットの各々と制御可能に結合可能であって、第3の複数量子ビットの第4量子ビットは第4の複数量子ビットの第1、第2、第3、および第4量子ビットの各々と制御可能に結合可能であって第1の二分ブロック形成する第2の複数結合素子と、第3の複数すなわちK×L個の結合素子であって、当該第3の複数結合素子の各結合素子が第3および第4の複数の量子ビットからの各量子ビット対が互いに交差する領域を少なくとも部分的に囲み、第5の複数量子ビットの量子ビットは第1から第n量子ビットまで連続的な順序で配置されていて、第6の複数量子ビットの量子ビットは第1量子ビットから第n量子ビットまで連続的な順序で配置されていて、第5の複数量子ビットの第1量子ビットは第6の複数量子ビットの第1量子ビットと強磁性的に結合されていて、第5の複数量子ビットの第2量子ビットは第6の複数量子ビットの第2量子ビットと強磁性的に結合されていて、第5の複数量子ビットの第3量子ビットは第6の複数量子ビットの第3量子ビットと強磁性的に結合されていて、第5の複数量子ビットの第4量子ビットは第6の複数量子ビットの第4量子ビットと強磁性的に結合されていて、第5の複数量子ビットの第1量子ビットは第6の複数量子ビットの第2、第3、および第4量子ビットの各々と制御可能に結合可能であって、第5の複数量子ビットの第2量子ビットは第6の複数量子ビットの第1、第3、および第4量子ビットの各々と制御可能に結合可能であって、第5の複数量子ビットの第3量子ビットは第6の複数量子ビットの第1、第2、および第4量子ビットの各々と制御可能に結合可能であって、第5の複数量子ビットの第4量子ビットは第6の複数量子ビットの第1、第2、および第3量子ビットの各々と制御可能に結合可能であって第2Kブロックを形成する第3の複数結合素子とを含んでいて、第3の複数量子ビットの量子ビットは第1の複数量子ビットの量子ビットの各1個ずつと強磁性的に結合されていて、第4の複数量子ビットからの量子ビットは第6の複数量子ビットの量子ビットの各1個ずつと強磁性的に結合されて第1Kブロックを形成する。多層コンピュータチップは、第2Kブロックを形成すべく構成された追加的な複数の量子ビットおよび追加的な複数のカプラを含んでいてよく、第1Kブロックからの少なくとも1個の量子ビットは第2Kブロックからの少なくとも1個の量子ビットと制御可能に結合されている。これらカプラの少なくとも1個は、第1Kブロックからの少なくとも1個の量子ビットを、第5または第6の複数量子ビットの一方からの対応する個別量子ビットに結合すべく操作可能であるコーナーカプラであってよい。多層コンピュータチップは、当該多層コンピュータチップとデジタルコンピュータの間にインターフェースを確立する超伝導プローブカードを含んでいてよく、超伝導プローブカードは、臨界温度未満で超伝導性を示す材料により形成された少なくとも第1導電トレースと、臨界温度未満で超伝導性を示す材料により少なくとも部分的に形成された少なくとも第1導電針とを搭載する誘電体を含む印刷回路基板を含んでいて、第1導電針の第1端部は印刷回路基板上で第1導電トレースと通信可能に結合されていて、第1導電針の第2端部は尖端を形成すべく先細になっている。
超伝導プローブカードを要約すれば、臨界温度未満で超伝導性を示す材料により形成された少なくとも第1導電トレースと、臨界温度未満で超伝導性を示す材料により少なくとも部分的に形成された少なくとも第1導電針とを搭載する誘電体を含む印刷回路基板を含んでいて、第1導電針の第1端部は印刷回路基板上で第1導電トレースと通信可能に結合されていて、第1導電針の第2端部は尖端を形成すべく先細になっていて、第1導電トレースの臨界温度および第1導電針の臨界温度は共に超伝導プローブカードの動作温度にほぼ等しいか、より高い。印刷回路基板は、臨界温度未満で超伝導性を示す材料により形成された第1接触パッドを搭載していて、第1接触パッドは、第1導電トレースと超伝導通信可能に結合することにより、第1導電トレースと第1導電針の間の通信可能な結合は第1接触パッドを介して実現される。第1導電針の第1端部は、臨界温度未満で超伝導性を示すはんだ付け可能な材料でコーティングされていることにより、第1導電針の第1端部が、超伝導はんだ接続により印刷回路基板上の第1接触パッドと通信可能に結合されていてよい。はんだ付け可能な材料は亜鉛を含んでいてよい。はんだ付け可能な材料は錫と鉛の少なくとも一方を含んでいてよい。第1導電針はタングステンレニウム合金で形成されていて、合金内のレニウムの比率は4%より大きく50%未満であってよい。合金内のレニウムの比率は10%〜40%の範囲であってよい。合金内のレニウムの比率は約26%であってよい。印刷回路基板は、誘電体を貫通する穴を含んでいてよく、第1導電針は、第1導電針の第2端部の尖端がこの穴を貫通するように長さ方向に湾曲していてよい。第1導電針の第2端部は、超伝導通信可能に超伝導素子に結合されていてよい。超伝導素子は、超伝導集積回路を含んでいてよい。超伝導素子は超伝導プロセッサを含んでいてよい。超伝導プロセッサは超伝導量子プロセッサを含んでいてよい。超伝導量子プロセッサは、超伝導磁束量子ビット、超伝導位相量子ビット、超伝導電荷量子ビット、超伝導ハイブリッド量子ビット、超伝導結合素子、および超伝導読み出し素子からなるグループから選択された少なくとも1個の素子を含んでいてよい。
超伝導プローブカードは更に、各々が臨界温度未満で超伝導性を示す材料により形成されて誘電体に搭載されている複数の追加的な導電トレースと、各々が臨界温度未満で超伝導性を示す材料により形成された複数の追加的な導電針とを含んでいて、各々の追加的な導電針の第1端部は複数の追加的な導電トレースの少なくとも1個と通信可能に結合されていて、各々の追加的な導電針の各々の第2端部が尖端を形成すべく先細になっていて、複数の追加的な導電トレースの臨界温度および複数の追加的な導電針の臨界温度が共に超伝導プローブカードの動作温度にほぼ等しいか高い。印刷回路基板は、複数の接触パッドを搭載していてよく、各々の接触パッドは臨界温度未満で超伝導性を示す材料により形成されていて、各々の接触パッドは導電トレースの各1個と超伝導通信可能に結合することにより導電トレースと少なくとも1個の導電針の間の各通信可能な結合が各々の接触パッドにより実現される。各導電針の第1端部は、臨界温度未満で超伝導性を示すはんだ付け可能な材料でコーティングされていてよく、各導電針の第1端部は超伝導はんだ接続により印刷回路基板上の少なくとも1個の接触パッドと通信可能に結合されていてよい。印刷回路基板は誘電体を貫通する穴を含んでいてよく、各導電針は、各導電針の第2端部の尖端がこの穴を貫通するように長さ方向に湾曲している。各導電針の第2端部は、超伝導素子に搭載された少なくとも1個の接触パッドと超伝導通信可能に結合されていてよい。誘電体、第1導電トレース、および第1導電針は各々、実質的に非磁性である材料により形成されていてよい。超伝導プローブカードは、共に印刷回路基板上の同一導電トレースと通信可能に結合されている少なくとも2本の導電針を含んでいてよい。第1導電針は、臨界温度未満で超伝導性を示す材料のめっき層を含んでいてよい。
各図面の簡単な説明
各図面において、同一の参照番号は類似の要素または動作を識別する。図面内の要素のサイズおよび相対位置は必ずしも一定の縮尺で描かれている訳ではない。例えば、各種要素の形状および角度は一定の縮尺では描かれておらず、これらの要素のいくつかは図面を見やすくするために任意に拡大されて配置されている。更に、描かれた要素の特定の形状は、特定の要素の実際の形状に関する情報を伝達することは何ら意図しておらず、単に図面の認識を容易にすべく選択されているに過ぎない。
一例示的な実施形態による、計算問題を解決するシステムを示す機能図である。 一例示的な実施形態による、計算問題を解決するシステムを示す機能図である。 一例示的な実施形態による、計算問題を解決するシステムを示す概念図である。 一例示的な実施形態による、計算問題を解決するシステムを示す概念図である。 ソースグラフの概念図である。 ソースグラフの概念図である。 別の例示的な実施形態による、計算問題を解決するシステムを示す概念図である。 更なる例示的な実施形態による、計算問題を解決するシステムを示す概念図である。 一例示的な実施形態による超伝導プローブカードの平面図である。 一例示的な実施形態による、超伝導プローブカードで用いる超伝導針の側面図である。 一例示的な実施形態による、超伝導プローブカードで用いる長さ方向に湾曲している超伝導針の側面図である。
本発明の詳細な説明
以下の説明において、開示する各種実施形態が完全に理解されるよう特定の具体的な詳細事項を記載する。しかし、当業者には、これらの具体的な詳細事項または他の方法、構成要素、材料等のいずれかが存在しなくても実施形態を実施できることが理解されよう。他の例では、量子プロセッサ、量子ビット、カプラ、コントローラ、読み出し素子および/またはインターフェースに関連付けられた公知の構造は、実施形態の説明を無用に分かり難くしないよう、例示または詳述を省略している。
別途前後関係から必要でない限り、本明細書および添付の請求項を通じて、「含む」という用語およびその変化形、例えば「含まれる」や「含んでいる」は開いた包含的な意味、すなわち「含んでいるがこれに限定されない」意味に解釈するものである。
本明細書を通じて「一実施形態」または「ある実施形態」への言及は、実施形態との関連で記述された特定の特徴、構造、または特性が少なくとも1個の実施形態に含まれることを意味する。従って、本明細書を通じて様々な場所で「一実施形態において」または「ある実施形態において」という語句が出現しても、必ずしも全てが同一の実施形態に言及している訳ではない。更に、特定の特徴、構造、または特性は任意の適当な仕方で1個以上の実施形態にも組み込まれていてよい。
本明細書および添付の請求項おいて用いられているように、単数形「a」、「an」、および「the」は、別途明示しない限り複数の指示対象を含んでいる。また、「または」という用語は一般に、別途その内容が明示しない限り、「および/または」を含む意味で用いられている。
本明細書で提供する見出しおよび開示の要約は単に便宜上のものに過ぎず、実施形態の範囲または意味を解釈するものではない。
計算問題を解決するシステム
図1Aに例示的な問題解決システム100を示す。問題解決システム100は、コンピュータ102およびアナログプロセッサ150を含んでいてよい。アナログプロセッサは、物理的システムの基本特性を用いて計算問題の解を発見するプロセッサである。解を発見するアルゴリズムに続いてブール法に従い当該アルゴリズム内の各ステップの実行を必要とするデジタルプロセッサとは対照的に、アナログプロセッサはブール法を含まない。
コンピュータ102は、マイクロプロセッサ110、不揮発性ストレージコントローラ125、デジタル信号プロセッサ(DSP)(図示せず)、アナログプロセッサ150等、1個以上のコントローラを含んでいてよい。コンピュータ102は更に、1個以上のバス106を介してコントローラ110、125、150に結合された1個以上のメモリ126を含んでいてよい。1個以上のメモリの例として、システム制御プログラム(例:オペレーティングシステム128、不揮発性主記憶装置120からロードされたアプリケーションプログラム、データ等)を保存するための高速ランダムアクセスメモリ(RAM)、および読出し専用メモリ(ROM)等のシステムメモリ126が含まれる。コンピュータ102はまた、不揮発性主記憶装置120、ユーザインターフェース114、ネットワークインターフェースカード(NIC)124、通信回路、ネットワーク接続部118等を含んでいてよい。NIC124、通信回路、ネットワーク接続部118等は、1個以上の通信路を提供して、例えばシステムが1個以上の外部素子(例:外部コンピュータシステム、サーバコンピュータシステム、メモリ等)と通信できるようにする。ユーザインターフェース114はまた、ディスプレイ112、マウス、キーボード、および他の周辺装置を含む1個以上の入力装置116を含んでいてよい。
コンピュータ102は、ファイルサービス等各種のシステムサービスを扱うための、およびハードウェアに依存するタスクを実行するオペレーティングシステム128を含んでいてよい。オペレーティングシステム128の例として、UNIX(登録商標)、WindowsNT、WindowsXP、DOS、LINUX、VMX等が含まれる。あるいは、オペレーティングシステム128が存在せずに、命令を例えばデイジーチェーン方式で実行することができる。一実施形態において、コンピュータ102はデジタルコンピュータの形式であってよい。別の実施形態において、アナログプロセッサ150はコンピュータ102と通信状態にあってよい。
アナログプロセッサ150は、相互接続トポロジを形成する複数の量子ビット172a〜172d(図では4個のみ示す)、複数の結合素子174a〜174d(図では4個のみ示す)、読み出し素子160、量子ビット制御システム162、および結合素子制御システム164を含む図1Bに示す量子プロセッサ150aの形式であってよい。量子プロセッサ150aは、少なくとも2個の量子ビット172a、172b、少なくとも1個の結合素子174a、および少なくとも1個の局所バイアス素子を含んでいてよい。
量子ビット172の相互接続トポロジは集合的に、量子計算を実行する基盤として機能するものであって、超伝導量子ビットの形式であってよい。量子ビットの例として、量子分子、原子、電子、光子、イオン等が含まれる。典型的な超伝導量子ビットは、例えばスケーラビリティに利点があり、情報の符号化に利用される物理特性に応じて一般的に分類され、例えば電荷および位相素子、位相および磁束素子、ハイブリッド素子等が含まれる。
量子プロセッサ150aは更に、読み出し素子160を含んでいてよい。読み出し素子160は、各々が相互接続トポロジ172内で異なる量子ビットと誘導的に接続している複数のdc−SQUID磁力計を含んでいてよい。NIC124は、読み出し素子160から電圧または電流を受容すべく構成されていてよい。少なくとも1個のジョセフソン接合により遮断される超伝導材料のループを含むdc−SQUID磁力計が公知である。
量子ビット制御システム162は、量子ビット172の相互接続トポロジ用の1個以上のコントローラを含んでいてよい。結合素子制御システム164は、集合的に174で示す結合素子用の1個以上の結合コントローラを含んでいてよい。結合素子制御システム164内の各々の結合コントローラは、ゼロから最大値まで対応する結合素子174a〜174dの結合強度を調整すべく構成されていてよい。結合素子174は例えば、量子ビット172同士の強磁性または反強磁性結合を提供すべく調整することができる。
問題解決システム100は更に、多くのプログラムおよびデータ構造を含んでいてよい。通常、データ構造およびプログラムの一部または全てを、システムメモリ126、ランダムアクセスメモリ111、読出し専用メモリ113等を含む1個以上のメモリに保存することができる。そのようなものとして、制御可能な結合素子の少なくとも1個に対応する結合状態または量子素子の少なくとも1個に対応する初期基底状態の少なくとも一方に関する情報を保存するステップを含んでいてよい。同様に、これらのプログラムおよびデータ構造または情報は、1個以上のマイクロプロセッサ110、アナログプロセッサ150等を用いて処理することができる。しかし、本システム、装置、および方法の各種の特徴および利点を分かりやすく示すために、このようなデータ構造およびプログラムをシステムメモリ126の構成要素として描いている。しかし任意の所与の時点において、システムメモリ126内に描かれたプログラムおよびデータ構造または他の情報(例:制御可能な結合素子の少なくとも1個に対応する対応する結合状態または量子素子の少なくとも1個に対応する初期基底状態の少なくとも一方に関する情報)が、例えば不揮発性記憶装置120に保存されていてよい。いくつかの実施形態において、データ構造およびプログラムの一部または全ては、コンピュータ102により1個以上の遠隔コンピュータがアドレス指定可能であるとの前提で、図1Aに示さない1個以上の遠隔コンピュータに保存することができる。すなわち、通信プロトコル(例:FTP、telnet、SSH、IP等)を用いてデータネットワーク(例:インターネット、シリアル接続、パラレル接続、イーサネット(登録商標)等)を介してコンピュータ間でデータを交換可能なように、遠隔コンピュータとコンピュータ102との間に何らかの通信方法が存在する。他のいくつかの実施形態において、コンピュータ102により1個以上の遠隔コンピュータにアドレス指定可能であるとの前提で、データ構造およびプログラムの一部または全てを、1個以上遠隔コンピュータ(図示せず)において冗長保存および/または冗長処理することができる。
問題解決システム100は更に、レシーバ130、前処理マネージャ132、量子プロセッサインターフェース134a等のアナログプロセッサインターフェース134、および後処理マネージャ136を含んでいてよい。レシーバ130は、アナログプロセッサ150上で解決したい問題を受信すべく構成されていてよい。レシーバ130は更に、計算問題処理リクエストへの応答を送るべく構成されていてよい。
一実施形態において、レシーバ130、前処理マネージャ132、量子プロセッサインターフェース134a、および後処理マネージャ136は全て1個以上のデジタルコンピュータシステムに実装されている。別の実施形態において、レシーバ130、前処理マネージャ132、量子プロセッサインターフェース134a、および後処理マネージャ136の少なくとも1個は、量子プロセッサ150aから離れた場所にあってよい。
マイクロプロセッサ110は、同程度の複雑さの問題との比較に部分的に基づいて計算問題処理リクエストに対する1個以上の解を生成するための推定値を判定すべく構成されていてよい。
アナログプロセッサ150は、計算問題処理リクエストにより識別される計算問題に対する1個以上の解を与えるべく動作可能であってよい。いくつかの実施形態において、アナログプロセッサ150は、アナログプロセッサの物理的発展を通じて計算問題の1個以上の解を得るべく動作可能であってよい。別の実施形態において、問題解決システム100は、計算問題処理リクエストにより識別される計算問題に対する1個以上の解を冗長的に共同処理すべく動作可能な追加的アナログプロセッサ150を含んでいてよい。
計算問題は、電話モデム、無線モデム、ローカルエリアネットワーク接続、広域ネットワーク接続、携帯デジタルデータ機器を介して問題解決システム100が受信することができる。レシーバ130が受信する情報には、量子ビット172同士の結合の初期値、量子ビット172の局所バイアス、実行時制御パラメータ等が含まれていてよい。あるいは、レシーバ130が受信する情報には、計算問題を表すグラフ、計算問題を定義するAMPL等のマクロ言語命令、その他が含まれていてよい。
レシーバ130は、問題の解を得ることと合わせて、計算をスケジューリングする命令を提供すべく動作可能であってよい。一実施形態において、計算の解は、量子プロセッサ150aからの出力として収集される。別の実施形態において、レシーバ130はオプションとして、グラフィカルユーザインターフェース(GUI)、コマンドラインインターフェース(CLI)、テキストユーザインターフェース(TUI)等を含んでいてよい。別の実施形態において、レシーバ130は、計算問題のグラフ表現を受信すべく動作可能である。
問題解決システム100は更に、レシーバ130、前処理マネージャ132、量子プロセッサインターフェース134a、量子プロセッサ150a、および後処理マネージャ136の少なくとも2個の間でデータを送受信するネットワーク接続部118等、1個以上の通信リンクを含んでいてよい。通信リンクは更に、暗号化インターフェース(図示せず)を含んでいてよい。
前処理マネージャ132は、レシーバ130から計算問題処理リクエストを受信し、当該計算問題処理リクエストを第1の命令列に変換すべく構成されていてよい。前処理マネージャ132は更に、第1ハミルトニアンを決定すべく構成されていてよい。一実施形態において、前処理マネージャ132は、計算問題を複雑度が等価なクラスの問題にマッピングすべく構成されている。別の実施形態において、前処理マネージャ132は、計算問題を複雑度が等価、より複雑、より簡単なクラスの問題の少なくとも1個にマッピングする論理を含んでいる。一実施形態において、計算問題をアナログプロセッサ150にマッピングする論理は、計算問題をトポロジカルな表現にマッピングして、トポロジカルな表現をアナログプロセッサ150に組み込む命令を含んでいる。一実施形態において、トポロジカルな表現は、平面グラフまたは非平面グラフの少なくとも一方の形式である。別の実施形態において、トポロジカルな表現は、複数の頂点および1個以上の辺の形式をなすグラフである。別の実施形態において、トポロジカルな表現は、量子ビットの相互接続トポロジと同一構造の相互接続されたグラフである。
別の実施形態において、前処理マネージャ132は、計算問題をアナログプロセッサ150、例えば量子プロセッサ150aにマッピングすべく構成されている。計算問題をアナログプロセッサ150にマッピングするステップは、例えば、計算問題をグラフにマッピングしてアナログプロセッサ150にグラフを埋め込むステップを含んでいてよい。
量子プロセッサインターフェース134aは、前処理マネージャ132から第1の命令列を受信すべく動作可能であってよい。量子プロセッサ150aは、量子プロセッサインターフェース134aから第2命令列を受信して、アナログプロセッサの物理的発展により、計算問題処理リクエストに対する解を得るべく構成されていてよい。後処理マネージャ136は、当該解を後処理された解に変換すべく構成されていてよい。
前処理マネージャ132は、解くべき計算問題をアナログプロセッサ150により解くことができる対応問題記述にマッピングすべく構成されたマッパーインターフェースを含んでいてよい。マッパーインターフェースは、問題を1個のグラフ表現からアナログプロセッサ150の特定の構成に必要な対象グラフ表現にマッピングすべく構成されていてよい。一実施形態において、対象グラフ表現は相互接続トポロジを含んでいてよく、アナログプロセッサ150は量子ビット172に結合素子174の格子を含む量子プロセッサ150aの形式であってよく、各結合素子174は2個の量子ビット172を互いに結合すべく構成されていてよい。
マッパーインターフェースは、いくつかのNP問題(例:最大独立集合、最大クリーク、最大カットまたはk−SAT等の数学的問題、または整数計画問題、制約最適化問題、因数分解問題、予測モデル問題、オペレーションズリサーチ問題、金融ポートフォリオ選択問題、スケジューリング問題、供給管理問題、回路設計問題、移動経路最適化問題、ビジネスプロセスシミュレーション問題、生態学的生息環境シミュレーション問題、タンパク質折りたたみシミュレーション問題、分子基底状態シミュレーション問題または量子系シミュレーション問題等の問題)をイジングスピングラス問題または既に言及した他の問題等の他のNP問題にマッピングすべく構成されていてよい。
所望の問題を解くために必要な対象グラフ表現がマッパーインターフェースによりマップされたならば、量子プロセッサインターフェース134aを用いて、当該表現を量子プロセッサ150aにマッピングするために、結合素子174および相互接続された量子ビット172用の結合値および局所バイアス値を設定する。一実施形態において、3個の別々のプログラムモジュール、すなわち初期化モジュール140、発展モジュール142、および出力モジュール144により量子プロセッサインターフェース134aの機能を提供することができる。
初期化モジュール140は、結合素子174用の結合Jijの適当な値、および相互接続された量子ビット172用の局所バイアスhの値を決定すべく構成されていてよい。初期化モジュール140は、問題定義の概念を結合強度値および量子ビットバイアス値等の物理的な値に変換すべく構成されていてよく、これは量子プロセッサ150aにプログラムすることができる。初期化モジュール140は次いで、適当な信号を1個以上の内部バス106に沿ってNIC124に送るべく構成されていてよい。NIC124は次いで、そのようなコマンドを量子ビット制御システム162および結合素子制御システム164に送るべく構成されていてよい。
任意の所与の問題に対して、発展モジュール142は、結合素子174用の結合Jijおよび相互接続された量子ビット172用の局所バイアスhの値の計算を行なう間の各時点において、何らかの所定の発展スケジュール(すなわちどのように発展が生じるかのスケジュール)を実現するための適切な値を決定すべく構成されていてよい。発展スケジュール用の適切な結合素子値および局所バイアス値が決定されたならば、1個以上のバス106を介してNIC124へ信号として送られる。NIC124は次いで、そのようなコマンドを量子装置制御システム162および結合素子制御システム164へ送るべく構成されている。
アナログプロセッサ150の計算は、例えば、断熱発展またはアニーリング発展として動作すべく構成されていてよい。断熱発展は断熱アナログコンピューティングに用られる発展であり、発展モジュール142は断熱量子計算で用いる発展に応じてアナログプロセッサ150の状態を発展させるべく構成されていてよい。例えば各々が「超伝導量子ビットを有する断熱量子計算」と題された米国特許出願公開第2005−0256007号、第2005−0250651号、および第2005−0224784号を参照されたい。アニーリングは、いくつかのアナログプロセッサ150に適用可能な発展の別の形式であり、発展モジュール142はアニーリング発展に応じてアナログプロセッサ150の状態を発展させるべく構成されていてよい。
量子プロセッサ150aは、初期化モジュール140および発展モジュール142が与える信号に基づいて量子問題を解くべく構成されていてよい。問題が解かれたならば、問題に対する解を、読み出し素子160により相互接続された量子ビット172の状態から測定することができる。出力モジュール144は、この解を読むべく読み出し素子160と連動的に構成されていてよい。
システムメモリ126は更に、アナログプロセッサ150に信号を出力すべく構成されたドライバモジュール146を含んでいてよい。NIC124は、相互接続された量子ビット172および結合素子174と、直接または読み出し素子160、量子ビット制御システム162、および/または結合素子制御システム164を介してインターフェースを提供すべく構成されていてよい。あるいは、NIC124は、ドライバモジュール146からのコマンドを相互接続された量子ビット172および結合素子174に直接印加される信号(例:電圧、電流)に変換するソフトウェアおよび/またはハードウェアを含んでいてよい。一実施形態において、NIC124は、相互接続された量子ビット172および結合素子174からの信号(問題に対する解または他の何らかの形式のフィードバックを表す)を、出力モジュール144がそれらを解釈できるように変換するソフトウェアおよび/またはハードウェアを含んでいてよい。いくつかの実施形態において、初期化モジュール140、発展モジュール142、および/または出力モジュール144は、直接NIC124とではなく、ドライバモジュール146と通信して、アナログプロセッサ150との間で信号を送受信することができる。
NIC124の機能は二つのクラス、すなわちデータ取得および制御に分類することができる。各々別個の機能クラスを扱うために異なる種類のチップを用いてよい。データ取得を用いて、量子プロセッサ150aが計算を終了した後の相互接続された量子ビット172の物理特性を測定する。そのようなデータは、AD132、AD136、MF232、MF236、AD142、AD218、CF241カード等を含むElan Digital Systems (Fareham, UK)社製のデータ取得カードを含む任意の数の特注または市販のデータ取得マイクロコントローラを用いて測定することができる。あるいは、Elan社D403CまたはD480C等の単一種類のマイクロプロセッサによりデータ取得および制御を扱うことができる。相互接続された量子ビット172および結合素子174を充分に制御するため、および量子プロセッサ150aに対する量子計算の結果を判断するために、複数のNIC124があってよい。
コンピュータ102は更に、電話モデム、無線モデム、ローカルエリアネットワーク(LAN)接続、広域ネットワーク(WAN)接続、携帯デジタルデータ機器等を介して、計算問題を受信したり、アナログプロセッサ150により処理された計算問題の解を他のシステムに送信すべく構成されていてよい。コンピュータ102は、内蔵アナログプロセッサ150により処理される計算問題の解と共に、データ信号を実現する搬送波を生成すべく構成されていてよい。
アナログプロセッサ150は、例として量子ビットレジスタを含む超伝導量子コンピュータ、読み出し素子、および補助的素子の形式であってよい。超伝導量子コンピュータは通常、ミリケルビン温度で動作し、多くの場合、希釈冷凍機内で動作する。希釈冷凍機の例として、Leiden Cryogenics B.V.社のMNK126シリーズ(Galgewater No. 21, 2311 VZ Leiden, The Netherlands)がある。量子プロセッサ150aの要素の全部または一部が希釈冷凍機に収納されていてよい。例えば、量子ビット制御システム162および結合素子制御システム164を希釈冷凍機の外部に収納し、量子プロセッサ150aの残りの要素が希釈冷凍機内に収納されていてもよい。
レシーバ130、量子プロセッサインターフェース134a、およびドライバモジュール146、またはこれらの任意の組合せを既存のソフトウェアパッケージを介して実装できる。適当なソフトウェアパッケージとして、例えば、MATLAB(The MathWorks, Natick, Massachusetts)、LabVIEW(National Instruments, Austin, Texas)、Maple(Waterloo Maple Inc., Waterloo, Ontario, Canada)、Mathematica(Wolfram Research, Inc., Champaign, Illinois)等が含まれる。
一実施形態において、レシーバ130は計算問題処理リクエストを受信し、受信した計算問題処理リクエストに対して責任を負う(例:金銭的責任を負う)主体を示す識別情報を提供すべく構成されていてよい。
一実施形態において、本システム、装置、および方法は、計算機可読の記憶媒体に組み込まれたコンピュータプログラム機構を含むコンピュータプログラム製品として実装されていてよい。例えば、コンピュータプログラム製品は、量子プロセッサインターフェース134a、オペレーティングシステム128、レシーバ130、前処理マネージャ132、後処理マネージャ136等の態様を含んでいてよい。各種のインターフェース、マネージャ、およびモジュールの態様は、CD−ROM、DVD、磁気ディスクストレージ製品、その他任意の計算機可読なデータまたはプログラムストレージ製品に保存することができ、また、インターネットを介して、あるいは別途搬送波等に実装されたコンピュータデータ信号(ソフトウエアモジュールは組み込まれた)の送信により電子的に配信できる。
一実施形態において、問題解決システム100は、マイクロプロセッサ110、レシーバ130、前処理マネージャ136、および量子プロセッサインターフェース134aを含んでいてよい。レシーバ130は、計算問題処理リクエストを受信し、受信した計算問題処理リクエストに対して責任を負う主体を示す識別情報を提供すべく構成されていてよい。量子プロセッサインターフェース134aは、計算問題処理リクエストに対する解を得る、および/または計算問題に対する解を送信するために、計算問題処理リクエストを量子プロセッサ150aにより受信可能な命令列に変換すべく構成されていてよい。
他の実施形態において、問題解決システム100は、計算問題処理リクエストの処理を通じて、処理変数、解のパラメータ、シミュレーション軌道、チェックポイント等を含む実行データを保存すべく構成された追加的なプロセッサ110を含んでいてよい。例えば、所定の時点で、または所定の動作の後で実行データを保存することにより、問題解決システム100を所定の位置またはチェックポイントに戻すことが可能であろう。所定の時点で実行データを保存するステップは、例えば一定の間隔で、またはユーザが決めたスケジュールに従い実行データを保存するステップを含んでいてよい。
一実施形態において、問題解決システム100への電力が遮断した、および/またはアプリケーションまたはオペレーティングシステムが期待された機能の実行を止めた、および/またはアプリケーションまたはオペレーティングシステムの一部がシステムの他の部分に応答するのを止めた場合、保存された処理変数、解のパラメータ、シミュレーション軌道、および/またはチェックポイント等を用いて、問題解決システム100を所定の位置またはチェックポイントに戻してもよい。
相互接続トポロジ
n個の頂点(Kと表記)を有する完全グラフは、各頂点が他の各々と(各頂点対の間に1本の辺で)接続しているn個の頂点を有するグラフである。いくつかの実施形態において、各頂点対の間の辺は、重み無しまたは重み付きで接続されていてよい。
図2Aに、量子ビット210a〜d(集合的に210と表記)および量子ビット220a〜d(集合的に220と表記)を含むトポロジ200aを示す。量子ビット210は図2Aで垂直に配置され、量子ビット220は図2Aで水平に配置されている。当業者には、4個の量子ビットが水平および垂直両方向に描かれているが、この数が任意であって実施形態により4個より多くのまたは少ない量子ビットを含んでいてよいことが理解されよう。量子ビット210、220は超伝導量子ビットであってよい。量子ビット210と量子ビット220の間のクロストークは、本システムおよび方法のいくつかの実施形態には存在し得ない。クロストーク、すなわち量子ビットの意図しない結合が存在するためには、2個の個別量子ビットから出る2本の電流搬送導線が、第1導線内の電流からの磁束が第2導線内で電流を誘導させるようにある程度平行でなければならない。量子ビット210と量子ビット220が互いに垂直であるため、量子ビット210と量子ビット220の間のクロストークを制限できる。従って、量子ビット210と量子ビット220が互いに近接していながら、第3の構造が介在しない限り量子ビット210と量子ビット220から量子ビット対の間に結合は存在しない。各量子ビット210a〜dは、少なくとも1個の個別ジョセフソン接合215a〜dにより遮断された超伝導材料212a〜dの個別ループであってよい。各量子ビット220a〜dは、少なくとも1個の個別ジョセフソン接合225a〜dにより遮断される超伝導材料222a〜dの個別ループであってよい。カプラ230a〜230p(集合的に230と表記)は量子ビット210、220を結合する。各量子ビット210a〜dは、各量子ビット210a〜dの一部が量子ビット220a〜dの一部と交差する箇所に近接する領域内のカプラ230から4個の個別カプラを介して各量子ビット220a〜dに結合されている。各カプラ230a〜pは、超伝導材料の個別ループであって、ループまたは超伝導材料が結合領域の周辺部を画定していてよい。各カプラ230a〜pは、少なくとも1個の個別ジョセフソン接合により遮断される超伝導材料の個別ループであって、ループまたは超伝導材料が結合領域の周辺部を画定し、超伝導材料212a〜d、222a〜dのループ等の電流搬送導線を、超伝導材料212a〜d、222a〜dのループ内の電流からの磁束がカプラ230a〜p内で電流を誘導するようにカプラ230a〜pとある程度平行に配置することにより周辺部に沿って結合が生じ、逆も同様である。カプラ230は、2個の個別量子ビット210、220の間でカプラ230により生じる結合がアナログプロセッサの動作中に変化できる点で調整可能であってよい。計算中に結合が変化してもよい。アナログプロセッサに問題を組み込むべく計算毎に結合が変化してもよい。
図2Bに、量子ビット210a〜d(集合的に210と表記)および量子ビット220a〜d(集合的に220と表記)を含むトポロジ200Bを示す。量子ビット210は図2Bで垂直に配置され、量子ビット220は図2Bで水平に配置されている。当業者には、4個の量子ビットが水平および垂直両方向に描かれているが、この数が任意であって実施形態により4個より多くのまたは少ない量子ビットを含んでいてよいことが理解されよう。量子ビット210、220は超伝導量子ビットであってよい。量子ビット210と量子ビット220の間のクロストークは、本システムおよび方法のいくつかの実施形態には存在し得ない。クロストーク、すなわち量子ビットの意図しない結合が存在するためには、2個の個別量子ビットから出る2本の電流搬送導線が、第1導線内の電流からの磁束が第2導線内で電流を誘導させるようにある程度平行でなければならない。量子ビット210と量子ビット220が互いに垂直であるため、量子ビット210と量子ビット220の間のクロストークを制限できる。従って、量子ビット210と量子ビット220が互いに近接していながら、第3の構造が介在しない限り量子ビット210と量子ビット220から量子ビット対の間に結合は存在しない。各量子ビット210a〜dは、少なくとも1個の個別ジョセフソン接合215a〜dにより遮断された超伝導材料212a〜dの個別ループであってよい。各量子ビット220a〜dは、少なくとも1個の個別ジョセフソン接合225a〜dにより遮断される超伝導材料222a〜dの個別ループであってよい。カプラ240a〜240p(集合的に240と表記)は量子ビット210、220を結合する。各量子ビット210a〜dは、各量子ビット210a〜dの一部が量子ビット220a〜dの一部と交差する箇所に近接する領域内のカプラ240から4個の個別カプラを介して各量子ビット220a〜dに結合されている。各カプラ240a〜pは、超伝導材料の個別ループであって、ループまたは超伝導材料が結合領域の周辺部を画定していてよく、周辺部は2本のアームを有し、第1アームは量子ビット210の個別量子ビットとほぼ平行に伸長していて、第2アームは量子ビット220の個別量子ビットとほぼ平行に伸長している。周辺部は、互いに交差する量子ビット210と量子ビット220の各対の部分の一部を含んでいても含んでいなくてもよい。各カプラ240a〜pは、少なくとも1個の個別ジョセフソン接合により遮断される超伝導材料の個別ループであって、ループまたは超伝導材料が結合領域の周辺部を画定し、超伝導材料212a〜d、222a〜dのループ等の電流搬送導線を、超伝導材料212a〜d、222a〜dのループ内の電流からの磁束がカプラ240a〜p内で電流を誘導するようにカプラ240a〜pとある程度平行に配置することにより周辺部に沿って結合が生じ、逆も同様である。カプラ240は、2個の個別量子ビット210、220の間でカプラ240により生じる結合がアナログプロセッサの動作中に変化できる点で調整可能であってよい。計算中に結合が変化してもよい。結合は、アナログプロセッサに問題を組み込むべく計算毎に変化してもよい。
カプラ230、240は、量子ビット210および220により画定される格子の頂点を表し、量子ビット210、220が互いに近接する箇所に存在することにより効率的な結合を実現できる。対角線上のカプラ230a、230f、230k、230pまたはカプラ240a、240f、240k、240pに沿った強磁性的結合により、図3に示すような完全接続されたKグラフ300がトポロジ200a、200bに埋め込まれていてよい。一実施形態において、ノード301は量子ビット210a、220aに埋め込まれていてよく、カプラ230a、240aは、量子ビット210aの状態が量子ビット220aの状態と同じになるように量子ビット210a、220aを互いと強磁性的に結合する。ノード302は量子ビット210b、220bに埋め込まれていてよく、カプラ230f、240fは、量子ビット210bの状態が量子ビット220bの状態と同じになるように量子ビット210b、220bを互いと強磁性的に結合する。ノード303は量子ビット210c、220cに埋め込まれていてよく、カプラ230k、240kは、量子ビット210cの状態が量子ビット220cの状態と同じになるように量子ビット210c、220cを互いと強磁性的に結合する。ノード304は量子ビット210d、220dに埋め込まれていてよく、カプラ230p、240pは、量子ビット210dの状態が量子ビット220dの状態と同じになるように量子ビット210d、220dを互いと強磁性的に結合する。辺312は、カプラ230b、230eまたは240b、240eに埋め込まれていてよい。辺313は、カプラ230c、230iまたは240c、240iに埋め込まれていてよい。辺314は、カプラ230d、230mまたは240d、240mに埋め込まれていてよい。辺323は、カプラ230g、230jまたは240g、240jに埋め込まれていてよい。辺324は、カプラ230h、230nまたは240h、240nに埋め込まれていてよい。辺334は、カプラ230l、230oまたは240l、240oに埋め込まれていてよい。
トポロジ200a、200bはアナログコンピュータチップ内に配置されていてよい。アナログコンピュータチップは多層であってよい。アナログコンピュータチップ内に少なくとも2個の金属層があってよい。超伝導材料212a〜dのループは、アナログコンピュータチップの低位金属層内に配置されていてよい。超伝導材料222a〜dのループは、アナログコンピュータチップの上位金属層内に配置されていてよい。カプラ230a〜p、240a〜pは、上位金属層および低位金属層の両方に存在していてよい。カプラ230a〜p、240a〜pは量子ビット210a〜dに近接している場合には上位金属層内に存在し、量子ビット220a〜dに近接している場合には低位金属層内に存在していてよい。カプラ230a〜p、240a〜p内のビアを用いて、上位金属層と低位金属層を架橋することができる。
トポロジ200aは、超伝導材料212a〜dのループが低位金属層内に配置でき、カプラ230a〜p、240a〜pが上位および下位の両金属層内に存在でき、且つ超伝導材料222a〜dのループが上位金属層および低位金属層の両方に配置できるように別の多層アナログコンピュータチップに配置されていてよい。超伝導材料220a〜dのループは主に低位金属内に存在してよいが、超伝導材料210a〜dのループに近接する場合には、ビアを用いて上位金属層内に存在してもよい。アナログコンピュータチップ内における遮蔽に利用可能な追加的な金属層も存在していてよい。
超伝導量子ビットの例として、超伝導磁束量子ビット、超伝導電荷量子ビット等が含まれる。例えば、Makhlin et al., 2001, Reviews of Modern Physics 73, pp. 357-400を参照されたい。利用可能な磁束量子ビットの例として、1個のジョセフソン接合により遮断される超伝導ループを含むrf−SQUIDs、3個のジョセフソン接合により遮断される超伝導ループを含む永久電流量子ビット等が含まれる。例えばMooij et al., 1999, Science 285, 1036、および Orlando et al., 1999, Phys. Rev. B 60, 15398を参照されたい。超伝導量子ビットの他の例は、例えばIl’ichev et al., 2003, Phys. Rev. Lett. 91, 097906、および Blatter et al., 2001, Phys. Rev. B 63, 174511、および Friedman et al., 2000, Nature 406, 43に見ることができる。また、ハイブリッド電荷位相量子ビットを用いてもよい。
いくつかの実施形態において、量子素子は、超伝導材料のループである磁束量子ビットである。ループの実際の形状は重要でない。これは、ほぼ円形ループが細長い「やせた」ループより良くも悪くもないことを意味する。
オンチップ制御回路が、量子ビット210、220により画定される格子内の領域内に効率的に配置されていてよい。オンチップ制御回路の例は、米国特許出願公開第2008−0215850号、米国特許出願第12/109,847号、米国特許出願第12/120,354号、および米国特許出願第12/236,040号に見られる。
相互接続トポロジの例として、米国特許出願公開第2006−0225165号、米国特許出願第2008−0176750号、および米国特許出願第12/266,378号が含まれる。
量子ビット210、220は相互作用する。これは、量子ビット210、220とカプラ230、240の間に相互インダクタンスが生起することによる。この相互インダクタンスは、トポロジ200a、200bが配置されたチップ上で相当の物理スペース、および総量子ビット導線長の相当な割合を占有する。
一般に、より短くて細い導線を有する量子ビットの方が(所与のβにおける)インダクタンスと静電容量の比が大きい。ここで、量子ビットのインダクタンスと静電容量の比は量子ビットの量子レベル間隔を決定する。β
Figure 0005296189

として定義され、式中、Lは各々の個別量子ビットのインダクタンスであり、
Figure 0005296189

は各々の個別量子ビットの臨界電流であり、Φは磁束量子である。レベルの間隔が大きいほど、量子ビットが示す量子効果がより識別しやすい。結合性がより高い量子ビットを有するプロセッサは(所与の数の量子ビットに対して)より強力であると考えられるが、結合性がより高い量子ビットは本質的に量子レベル間隔が狭い。
米国特許出願公開第2006−0225165号および米国特許出願第12/266,378号は、比較的小さい量子ビットおよび大きなカプラを使用する。アナログおよび量子プロセッサトポロジは、比較的大きい量子ビットおよび小型カプラを用いて量子効果が増大した量子系を生成することができる。各量子ビットのβは約3.5(量子ビットのインダクタンスと量子ビットの臨界電流の積に比例する)であってよいのに対し、各カプラのβは1〜1.5であってよい。線幅およびジョセフソン接合サイズが同一ならば、アナログプロセッサトポロジ内で量子効果を発揮するには量子ビットはカプラの物理サイズの約3倍でなければならない。量子ビットはその線幅を増すことによっても大きくできるため、量子ビットのインダクタンスと静電容量の比を低下させる不必要な静電容量を加えることにより、量子ビットが発揮する量子効果が減少する。カプラは同一手段により長くすることができるため、各カプラインダクタンスと静電容量の比が減少する。
本装置、システム、および方法は、短い導線および小さいジョセフソン接合(インダクタンと静電容量の大きい比に対応する)を有する量子ビットを可能にする。カプラは、量子ビットが交差または接触する任意の箇所に配置され、量子ビットの上に必要なだけ長い距離カプラを伸長させることでカプラおよび量子ビットに対する所望の相互インダクタンスおよびβを生成することができる。
強磁性結合は平行な磁束がエネルギー的に有利なことを意味し、反強磁性結合は逆平行磁束がエネルギー的に有利なことを意味する。結合素子の例は、例えば、米国特許出願公開第2006−0147154号、米国特許出願公開第2008−0238531号、米国特許出願公開第2008−0274898号、米国特許出願第12/238,147号および米国特許出願第12/242,133号に見られる。あるいは、電荷に基づく結合素子を用いてもよい。
図4に完全接続されたKソースグラフ400を示し、ソースグラフ内の各ノードが辺によりソースグラフ他の全てのノードに接続している。図5にトポロジ500を示す。トポロジ500は3個のサブトポロジ501、502、503を含んでいて、全てのサブトポロジがトポロジ200aと同様である。トポロジ500はトポロジ200bと同様のサブトポロジを含んでいてよい。
サブトポロジ501、503を用いて2個の異なるKグラフを埋め込むことができる。サブトポロジ502を用いて二分グラフを符号化することができる。二分グラフは、頂点またはノードが2個の互いに素な集合VおよびVに分割して二分グラフの全ての辺がVのノードおよびVのノードを接続することが可能なグラフである。すなわち、同一集合内の2個のノード間に辺が存在しない。サブトポロジ502は、Vの各ノードとVの各ノードの間に辺が存在するように完全二分グラフを埋め込むことができる。ここで、Vの各ノードはサブトポロジ501に埋め込まれたノードに関連付けられていて、Vの各ノードはサブトポロジ503に埋め込まれたノードに関連付けられている。
サブトポロジ501は、量子ビット510a〜d(集合的に510と表記)および量子ビット520a〜d(集合的に520と表記)を含んでいてよい。量子ビット510は垂直に配置されていて量子ビット520は水平に配置されている。量子ビット510、520は超伝導量子ビットであってよい。各量子ビット510a〜dは、少なくとも1個の個別ジョセフソン接合により遮断される超伝導材料の個別ループであってよい。各量子ビット520a〜dは、少なくとも1個の個別ジョセフソン接合により遮断される超伝導材料の個別ループであってよい。カプラ530a〜530p(集合的に530と表記)は量子ビット510、520を結合する。各量子ビット510a〜dは、カプラ530からの4個の個別カプラを介して各量子ビット520a〜dに結合されている。各カプラ530a〜pは超伝導材料の個別ループであってよい。各カプラ530a〜pは、少なくとも1個の個別ジョセフソン接合により遮断される超伝導材料の個別ループであってよい。
カプラ530は量子ビット510および520により画定される格子の頂点を表し、量子ビット510、520が互いに近接する箇所に存在することにより、効率的な結合を実現する。対角線上のカプラ530a、530f、530k、530pに沿った強磁性的な結合により、完全接続されたKグラフをサブトポロジ501に埋め込むことができる。一実施形態において、ノード401は量子ビット510a、520aに埋め込まれていてよく、カプラ530aは量子ビット510aの状態が量子ビット520aの状態と同じになるように量子ビット510a、520aを互いと強磁性的に結合する。ノード402は量子ビット510b、520bに埋め込まれていてよく、カプラ530fは量子ビット510bの状態が量子ビット520bの状態と同じになるように量子ビット510b、520bを互いと強磁性的に結合する。ノード403は量子ビット510c、520cに埋め込まれていてよく、カプラ530kは量子ビット510cの状態が量子ビット520cの状態と同じになるように量子ビット510c、520cを互いと強磁性的に結合する。ノード404は量子ビット510d、520dに埋め込まれていてよく、カプラ530pは量子ビット510dの状態が量子ビット520dの状態と同じになるように量子ビット510d、520dを互いと強磁性的に結合する。辺412はカプラ530b、530eに埋め込まれていてよい。辺413はカプラ530c、530iに埋め込まれていてよい。辺414はカプラ530d、530mに埋め込まれていてよい。辺423はカプラ530g、530jに埋め込まれていてよい。辺424はカプラ530h、530nに埋め込まれていてよい。辺434はカプラ530l、530oに埋め込まれていてよい。
サブトポロジ503は、量子ビット570a〜d(集合的に570と表記)および量子ビット580a〜d(集合的に580と表記)を含んでいてよい。量子ビット570は垂直に配置されていて量子ビット580は水平に配置されている。量子ビット570、580は超伝導量子ビットであってよい。各量子ビット570a〜dは、少なくとも1個の個別ジョセフソン接合により遮断される超伝導材料の個別ループであってよい。各量子ビット580a〜dは、少なくとも1個の個別ジョセフソン接合により遮断される超伝導材料の個別ループであってよい。カプラ590a〜590p(集合的に590と表記)は量子ビット570、580を結合する。各量子ビット570a〜dは、カプラ590からの4個の個別カプラを介して各量子ビット580a〜dに結合されている。各カプラ590a〜pは超伝導材料の個別ループであってよい。各カプラ590a〜pは、少なくとも1個の個別ジョセフソン接合により遮断される超伝導材料の個別ループであってよい。
カプラ590は量子ビット570および580により画定される格子の頂点を表し、量子ビット570、580が互いに近接する箇所に存在することにより、効率的な結合を実現する。対角線上のカプラ590a、590f、590k、590pに沿った強磁性的な結合により、完全接続されたKグラフをサブトポロジ503に埋め込むことができる。一実施形態において、ノード405は量子ビット570a、580aに埋め込まれていてよく、カプラ590aは量子ビット570aの状態が量子ビット580aの状態と同じになるように量子ビット570a、580aを互いと強磁性的に結合する。ノード406は量子ビット570b、580bに埋め込まれていてよく、カプラ590fは量子ビット570bの状態が量子ビット580bの状態と同じになるように量子ビット570b、580bを互いと強磁性的に結合する。ノード407は量子ビット570c、580cに埋め込まれていてよく、カプラ590kは量子ビット570cの状態が量子ビット580cの状態と同じになるように量子ビット570c、580cを互いと強磁性的に結合する。ノード408は量子ビット570d、580dに埋め込まれていてよく、カプラ590pは量子ビット570dの状態が量子ビット580dの状態と同じになるように量子ビット570d、580dを互いと強磁性的に結合する。辺456はカプラ590b、590eに埋め込まれていてよい。辺457はカプラ590c、590iに埋め込まれていてよい。辺458はカプラ590d、590mに埋め込まれていてよい。辺467はカプラ590g、590jに埋め込まれていてよい。辺468はカプラ590h、590nに埋め込まれていてよい。辺478はカプラ590l、590oに埋め込まれていてよい。
サブトポロジ502は、量子ビット540a〜d(集合的に540と表記)および量子ビット550a〜d(集合的に550と表記)を含んでいてよい。量子ビット540は垂直に配置されていて量子ビット550は水平に配置されている。量子ビット540、550は超伝導量子ビットであってよい。各量子ビット540a〜dは、少なくとも1個の個別ジョセフソン接合により遮断される超伝導材料の個別ループであってよい。各量子ビット550a〜dは、少なくとも1個の個別ジョセフソン接合により遮断される超伝導材料の個別ループであってよい。カプラ560a〜560p(集合的に560と表記)は量子ビット540、550を結合する。各量子ビット540a〜dは、カプラ560からの4個の個別カプラを介して各量子ビット550a〜dに結合されている。各カプラ560a〜pは超伝導材料の個別ループであってよい。各カプラ560a〜pは、少なくとも1個の個別ジョセフソン接合により遮断される超伝導材料の個別ループであってよい。各量子ビット540a〜dは、量子ビット510a〜dからの対応する量子ビットと強磁性的または反強磁性的に結合されていて、量子ビット510aが540aに結合することによりノード401を量子ビット540aに埋め込み、量子ビット510bが540bに結合することによりノード402を量子ビット540bに埋め込み、量子ビット510cが540cに結合することによりノード403を量子ビット540cに埋め込み、量子ビット510dが540dに結合することによりノード404を量子ビット540dに埋め込むようにできる。各量子ビット550a〜dは、量子ビット580a〜dからの対応する量子ビットと強磁性的または反強磁性的に結合されていて、量子ビット580aが550aに結合することによりノード405を量子ビット550aに埋め込み、量子ビット580bが550bに結合することによりノード406を量子ビット550bに埋め込み、量子ビット580cが550cに結合することによりノード407を量子ビット550cに埋め込み、量子ビット580dが550dに結合することによりノード408を量子ビット550dに埋め込むようにできる。サブトポロジ間結合は、カプラ512、523により実現できる。カプラ512は、サブトポロジ501の量子ビット510をサブトポロジ502の量子ビット540に結合させることができる一連の結合素子であってよい。カプラ523は、サブトポロジ502の量子ビット550をサブトポロジ503の量子ビット580に結合させることができる一連の結合素子であってよい。各カプラ512、523は超伝導材料の個別ループであってよい。各カプラ512、523は、少なくとも1個の個別ジョセフソン接合により遮断される超伝導材料の個別ループであってよい。
2個のサブトポロジの量子ビット間の線形距離を結合しないサブトポロジ間カプラが存在してもよい。逆に、互いに垂直な2個の異なるサブトポロジの量子ビットの対を結合するコーナーカプラが存在してもよく、当該コーナーカプラはカプラの長さ方向に約90度の角を設けることによりこれら2個の垂直な量子ビットを結合する。
カプラ560は量子ビット540および550により画定される格子の頂点を表し、量子ビット540、550が互いに近接する箇所に存在することにより、効率的な結合を実現する。辺415は、カプラ560aに埋め込まれていてよい。辺425はカプラ560bに埋め込まれていてよい。辺435はカプラ560cに埋め込まれていてよい。辺445はカプラ560dに埋め込まれていてよい。辺416はカプラ560eに埋め込まれていてよい。辺426はカプラ560fに埋め込まれていてよい。辺436はカプラ560gに埋め込まれていてよい。辺446はカプラ560hに埋め込まれていてよい。辺417はカプラ560iに埋め込まれていてよい。辺427はカプラ560jに埋め込まれていてよい。辺437はカプラ560kに埋め込まれていてよい。辺447はカプラ560lに埋め込まれていてよい。辺418はカプラ560mに埋め込まれていてよい。辺428はカプラ560nに埋め込まれていてよい。辺438はカプラ560oに埋め込まれていてよい。辺448はカプラ560pに埋め込まれていてよい。
追加的なKおよび完全二分グラフをトポロジ500に加えることにより、より多くのノードを有するグラフを埋め込むことができる。2個のトポロジ500および2×2正方形に構成れた4個のサブトポロジ503からなる二分グラフを生成することにより、完全K16グラフを埋め込むことができる。
トポロジ200a、200b、500に埋め込まれたグラフは完全である必要はない。まばらに構成されたグラフもまた、より大きいトポロジに埋め込まれていてよい。
図6にトポロジ600を示す。トポロジ600は、図5のサブトポロジ501、502、503に加えてサブトポロジ601、602、603を含んでいる。サブトポロジ間カプラ511、512、523、531、533、612、623もまたトポロジ600内に配置されていてよい。サブトポロジ501、503は、2×Kグラフをトポロジ600に埋め込むことができるように、カプラ511、531、533を介してサブトポロジ601、603に結合されている。図4のソースグラフ400等、各Kグラフまたはその一部は、第2Kグラフの変数に結合されていてよい。1個のKグラフがサブトポロジ501、502、503に埋め込まれていて、第2Kグラフがサブトポロジ601、602、603に埋め込まれていてよい。サブトポロジ501、503およびサブトポロジ601、603の量子ビット間のカプラ511、512、523、531、533、612、623は、隣接する量子ビット対の間に強磁性結合、反強磁性結合、ゼロ結合、および横結合の全てを生成できるように制御可能であってよい。
超伝導プローブカード
本明細書に記述する各種の実施形態は、超伝導プローブカード用のシステムおよび装置を提供する。超伝導プローブカードは、超伝導集積回路との超伝導接続を確立できる少なくとも1個の超伝導針を含んでいてよい。常伝導金属および非超伝導プローブカードが当該技術分野で公知である(例えば、Wentworth Laboratories, Inc. of 500 Federal Road, Brookfield, CT 06804, USAから販売されている)が、超伝導プローブカードに関する過去の記述または実装を本発明者は知らない。
トポロジ200a、200b、500、600に模式的に示すようなトポロジを組み込んだ集積回路のような集積回路の動作において、電子機器の別個のシステムへのインターフェースが典型的に確立される。このようなインターフェースを介して、電力配送、通信、システムプログラミング、較正、測定、システム監視、回路制御、フィードバック、計算、運用等を含むがこれらに限定されない各種の目的で集積回路との間で信号を伝達することができる。超伝導集積回路(「SIC」)の要素と通信する際に、非超伝導通信インターフェースではなく超伝導通信インターフェースを確立することが望ましいだろう。超伝導通信インターフェースは、冷凍システム)の熱負荷を減らす(超伝導温度に到達するために必要)ことができ、且つSICに結合されている信号ノイズのレベルを下げることができるため、いくつかのアプリケーションで有用である。後者の利点は、超伝導プロセッサおよび/または超伝導量子プロセッサ等、極めて高感度のSICに関わるアプリケーションにおいて特に重要である。
SICと通信するための超伝導インターフェースの実装は当該技術分野で知られている。一般的な技術は、アルミニウム導線等の超伝導導線を用いてSICに配線することである。超伝導配線に関するシステムの更なる詳細については、米国特許出願第12/016,801号を参照されたい。
手作業による配線は有効ではあるが、遅く且つ労働集約的な工程である。SICとの通信インターフェースは、任意の数の個別通信路を含んでいてよく、そのような多くの経路(すなわち約100以上)を含むアプリケーションを手作業で配線するのは長い時間を要する。更に、配線は、容易には元に戻せない工程である。上述のように、いくつかのアプリケーションテストにおいて、SICのシステムからの取り外しおよび/または交換が容易であれば、分析および/または修復を簡素化できる。SICの取り外しまたは交換が容易に行なえるままで、超伝導プローブカードの実装によりSICとの超伝導接続を迅速且つ簡単に行なうことができる。
プローブカードは、集積回路との通信インターフェースを迅速に提供すべく設計された装置である。典型的なプローブカードは、そこから突出している複数の導電針に通信可能に接続された印刷回路基板(PCB)を含んでいてよい。導電針は、集積回路に隣接して配置された際に、プローブカードの各々の針が集積回路上の特定の要素または接触パッドと整列するように配置されている。プローブカード針は次いで、集積回路の対応要素または接触パッドと集合的に接触させられる、それらの間で通信接続が確立される。プローブカード針が集積回路の対応要素または接触パッドと接触し続けている間、通信接続を維持することができる。プローブカードは、現在さまざまな形式で利用できるが、本明細書に記述する各種の実施形態は、極低温度で超伝導集積回路への超伝導接続を提供することを目的とするプローブカードを最初に記述するものである。
タングステン3%レニウムは、非超伝導接続を必要とするアプリケーションにおいて常伝導金属プローブカードの針を形成すべく典型的に用いられる標準的な合金である。この材料は、延性および耐久性を有するため、少なくとも部分的に用いられることが多い。プローブカード針において耐久性が特に重要である理由は、動作中に針が集積回路の要素または接触パッドに強く押し付けられるためである。実際、その圧力は、往々にして針が接触パッドの一部を削り取ってしまうほどである。従って、針は、反復使用に耐え、且つ連続使用時に信頼性が保証される耐久性がなければならない。
タングステン3%レニウム合金は、1K未満の極低温に限って超伝導可能であってよい。しかし、Blaugher et al., “The Superconductivity of Some Intermetallic Compounds”, IBM Journal (1992), pp. 117-118に記述されているように、合金の臨界温度(すなわち、それ以下の温度では合金が超伝導性を示す)は、レニウムの比が約40%まで増えると上昇する。従って、本システムおよび装置によれば、当該技術分野で従来使用されているよりも大幅に高い含有率のレニウムを含むタングステンレニウム合金で形成された針を使用する超伝導プローブカードが記述されている。いくつかの実施形態において、タングステン26%レニウムの合金を用いて超伝導プローブカード針を形成する。
超伝導プローブカードは特に、2種類の温度、すなわちシステムテスト温度および完全実施温度のうち少なくとも一方の付近で動作すべく設計されていてよい。通常、完全実施温度はシステムテスト温度より低い。システムテストにおいて、超伝導プローブカードを用いて、SICの臨界温度より低いが、それにもかかわらず完全実施する場合にはSICが動作する筈の温度よりも高い温度でSICをテストおよび分析することができる。これを行なう理由は、SICを完全実施温度まで冷却すべくリソースを投入する前にSICの超伝導下における電気的挙動を分析および確認するためである。例えば、SICが超伝導量子プロセッサ等の超伝導プロセッサを含んでいる場合、超伝導量子計算に望ましいミリケルビン環境までSICを確実に冷却する前に超伝導状態におけるSIC挙動をテストすることが望ましいだろう。超伝導状態まで装置を冷却するための最も簡単且つ速い方法の一つは、液体ヘリウム等の液体冷却剤に浸たすことである。液体ヘリウム4の浴は、断熱デュワーに保存された場合、約4.2Kの温度を維持することができる。4.2Kは、いくつかの超伝導材料(例:鉛およびニオブ)の臨界温度を下回り、従って多くのSICアプリケーションにとって充分なテスト温度を提供する。更に、気化冷却(すなわち、デュワーからヘリウム蒸気をポンプ排気すること)により、ある量の液体ヘリウム4を、他の多くの超伝導材料(例:スズおよびアルミニウム)の臨界温度を下回る約1Kの温度範囲まで容易に冷却することができる。従って、SICの超伝導下での電気的挙動は、SICを(必要ならばポンプされた)液体ヘリウム4浴に浸たすことにより容易にテストできる。
システムテスト用に実装された超伝導プローブカードは、テストが実行される冷凍システムの基準温度を超える臨界温度を有する少なくとも1個の超伝導材料を用いてもよい。例えば、液体ヘリウム4の浴で用いられる超伝導プローブカードは、液体ヘリウム4の温度を超える臨界温度を有する少なくとも1個の超伝導材料を用いてよい。本システムおよび装置によれば、超伝導プローブカードは、約1K〜5Kの範囲で超伝導性を示す材料で形成された針を含んでいてよい。Blaugherらが示すように、これは約10%〜30%のレニウム(すなわちタングステン10%レニウムからタングステン30%レニウムまで)を含むタングステンレニウム合金に対応する。この範囲内で、タングステン26%レニウムは、一般に高温熱電対装置で使用されるため、導線の形で簡単に入手できる合金である。
システムを完全実施する際に用いる超伝導プローブカードは、完全実施のために用いる冷凍システムの基準温度を超える臨界温度を有する少なくとも1個の超伝導材料を用いてよい。例えば、超伝導量子プロセッサ等の超伝導プロセッサとの超伝導通信インターフェースを提供すべく用いられる超伝導プローブカードは、超伝導量子プロセッサの動作温度を超える臨界温度を有する超伝導材料を用いてよい。通常、超伝導量子プロセッサは、ミリケルビン範囲で動作可能であり、従って超伝導プローブカードは、この範囲を超える臨界温度を有する超伝導材料を使用すべきである。システムテスト用の温度範囲は通常、完全システム実施用の温度より高く、従って、システムテスト温度に適した超伝導プローブカードもまた全システム実施温度に適しているが、必ずしもその逆は成り立たない。
図7に、一例示的な実施形態による超伝導プローブカード700を示す。プローブカード700はPCB701を含んでいて、この例示的な実施形態では4個のアーム701a〜701dを含んでいる。当業者には、代替的な実施形態において、PCB701が任意の形式または形状であってよいことが理解されよう。図示しないが、PCB701は複数の超伝導トレースを含んでいてよく、その各々が個別超伝導接触パッド711a、711b(図7では2個のみ示し、集合的に711と表記)に結合されている。超伝導トレース(図示せず)は、超伝導材料により直接形成されていても、あるいは超伝導材料にめっきされた非超伝導材料により形成されていてもよい。接触パッド711は、超伝導針720(図では1個のみ示す)の接続箇所を提供することができる。PCB701はまた、穴730を含んでいて、超伝導針720がその穴を通り抜けて超伝導素子740と超伝導通信接続を確立することができる。いくつかの実施形態において、各々の針720は、穴730を貫通するように各々の長さ方向に沿ってある箇所で湾曲していてよい。
プローブカード700の例示的な実施形態は単純化されていて、アーム701aだけに接続している接触パッド711および針720を示し、アーム701b〜701dに接続している同様の構造は描かれていない。これは、図7を煩雑にしないことを意図しており、当業者にはアーム701b〜701dがアーム701aに関して図示および説明されているものと同様の構造および特徴を含んでいることが理解されよう。同様の理由により、図7ではPCB701上の超伝導トレースが省略されている。当業者には、そのようなトレースがPCB701の内側層を含む、PCB701の絶縁材の任意の表面または部分に形成でき、最終的に別個の信号配信システムへの超伝導通信接続を提供できることが理解されよう。更に、図7の例示的な実施形態は、いくつかの針を白く、いくつかの針を黒く示している。図において、黒色を用いて、個別接触パッド711に対してPCB701上の接地点に接続された針を表している。しかし、当業者には、アプリケーションの必要に応じて、プローブカード700が、接地針が無い実施形態を含め、任意の数の針720および任意の数の対応する接地針(黒で示す)を含んでいてよいことが理解されよう。
上述のように、超伝導針720は、超伝導プローブカード700の意図された動作温度を超える臨界温度を有する超伝導材料で形成されていてよい。そのような材料の例として、タングステン26%レニウム等、タングステンレニウムの合金がある。各々の超伝導針720の第1端部は、超伝導通信可能にPCB701上の個別接触パッド711に結合されている。いくつかの実施形態において、この結合は、例えばはんだ接続により実現される固定接続である。各々の超伝導針720の第2端部は、超伝導素子740上の個別接触パッド741と超伝導通信可能に結合されている。いくつかの実施形態において、この結合は、各々の針の先端および接触パッド741の各々の1個との間の直接的な物理接触により実現される自由接続であってよい。従って、針の先端の全ては、いくつかの実施形態において同一平面上に整列配置されていてよく、プローブカード700は平面接触パッド741の組を有する超伝導素子740と共に用いられる。他の実施形態において、針の先端は、例えばプローブカード700が同一平面上にない接触パッド741の組を有する超伝導素子740と共に用いられる箇所で、同一平面にない仕方で整列配置されていてよい。いくつかの実施形態において、針の先端の第1組が第1平面に置かれ、針の先端の第2組が第1平面とは異なる第2平面に置かれていてよい。そのような実施形態のいくつかでは、第1および第2平面は互いにほぼ平行であってよい。
超伝導素子740は、さまざまな形式であってよく、超伝導集積回路を含んでいてよい。いくつかの実施形態において、超伝導素子740は、超伝導量子プロセッサ等の超伝導プロセッサを含んでいてよい。そのような超伝導量子プロセッサは、トポロジ200a、200b、500、600のうち1個と類似している回路を含んでいてよい。そのような実施形態において、各々の接触パッド741は、個別装置または超伝導量子プロセッサ740の構成要素と超伝導通信可能に結合されていてよい。超伝導量子プロセッサ740に含まれ得る素子または要素の例として、超伝導磁束量子ビット、超伝導位相量子ビット、超伝導電荷量子ビット、超伝導ハイブリッド量子ビット、超伝導結合素子、超伝導読み出し素子、および超伝導オンチッププログラミング装置が含まれるが、これらに限定されない。超伝導オンチッププログラム素子の更なる詳細は、米国特許出願公開第2008−215850号に開示されている。
上述のように、いくつかの実施形態において、各々の針720の第1端部は、はんだ接続によりPCB701上の個別接触パッド711と超伝導通信可能に結合されていてよい。しかし、タングステンレニウムの合金は、はんだ付けが容易でない。当該技術分野において、(低レニウム組成の)タングステンレニウムは非超伝導電気用途に用いられることが多く、はんだ接続が望ましい場合、タングステンレニウムはニッケル層によりめっきが施される。しかし、ニッケルは超伝導材料ではなく、従って超伝導プローブカードにおいてそのようなニッケルコーティングは信号の超伝導性を遮断するであろう。本システムおよび装置によれば、各々の超伝導針720の少なくとも一部は、亜鉛等のはんだ付け可能な超伝導材料によりめっきを施すことができる。
図8Aに、一例示的な実施形態による、超伝導プローブカードで用いる超伝導針800aを示す。上述のように、針800aは、プローブカードの動作温度に等しいか高い温度で超伝導性を発揮できる材料で形成できる。例えば、針800aは、タングステンレニウムの合金で形成することができ、合金の臨界温度は当該合金のタングステン対レニウムの比率に依存する。タングステンレニウムの合金は、非常に硬く、従ってSICと繰り返し接触しても損傷し難いため、プローブカード針としての使用に適している。実際、タングステンレニウムの合金は、当該技術分野においてプローブカード針を形成するために既に用いられている。しかし、これらの用途(例えば、“Probe Needle Part Number Clarification, Terminology, Tolerances and Material Properties” Point Technologies Inc. により出版(http://www.pointtech.com/pdf/def_mat_number.pdf)参照)は、半導体および非超伝導用途に限られている。本システムおよび装置によれば、針800aは、超伝導プローブカードを形成するという新たな目的のために、当該技術分野で従来実施されていたものよりもレニウムの含有率が高いタングステンレニウムの合金で形成できる。
超伝導針800aは本体またはシャフト801および尖端または針の先端810に至る先細端部802を含んでいる。先細端部802を用いて、図7の超伝導素子740等、超伝導素子上の接触パッドとの物理的且つ超伝導的電気接続を確立する。シャフト801の長さ方向のどこかで、好適には端部811またはその近くで、針800aが超伝導プローブカードのPCB部分の上の超伝導接触パッドに接続(例:はんだ付け)されていてよい。この接続を容易にするために、シャフト801の少なくとも一部が、超伝導であって容易にはんだ付け可能な材料でコーティングされていてよい。亜鉛はそのような材料の例である。いくつかの実施形態において、亜鉛めっきはシャフト801だけに用いられ、先細端部802または尖端810では用いられない。これにより、針800aの表面において亜鉛とタングステンレニウムの間の境界803が画定される。当業者には、別の実施形態において、境界803が、端部811、尖端810、および先細端部802に対して図8Aに示すものとは異なる位置に配置できることが理解されよう。当業者にはまた、図8Aに示すように、別の実施形態ではシャフト801と先細端部802の間の相対的な長さが変化することが理解されよう。針800aは、半導体および非超伝導目的でタングステンレニウムプローブカード針に使用するものと同様の仕様に化学エッチングを施されてよい。しかし、本システムおよび装置によれば、タングステンレニウム合金は、針800aの臨界温度が典型的な半導体プローブカード針の温度より高くなるように、レニウム(例:タングステン26%レニウム)の含有率がより高い。
上述のように、超伝導プローブカード針は、針の尖端がプローブカードPCBの(穴730のような)穴を貫通するように長さ方向に少なくとも1箇所の湾曲を含んでいてよい。図8Bに、一例示的な実施形態による、超伝導プローブカードで用いる超伝導針800bを示す。針800bは、針800bが長さ方向に湾曲820を含んでいること以外は図8Aの針800aと同様である。当業者には、針800bの相対比率が実施形態毎に異なり得ることが理解されよう。例えば、湾曲820は必要に応じて端部830に近い側で、または先端部831に近い側で生じてよい。同様に、湾曲820が約90度であるように示しているが、当業者には、代替的な実施形態において90度より広いかまたは狭い異なる角度の湾曲を用いてよいことが理解されよう。更に、針800bの表面における亜鉛とタングステンレニウムの境界833は、各種の実施形態において湾曲820に対して異なる位置に生じてよい。いくつかの実施形態において、針800bは、特定の導電トレースまたはプローブカードPCB上の接触パッドとの接触を容易にすべく、端部830の近傍に湾曲820と同様の第2湾曲を含んでいてよい。
当業者には、本システムおよび装置が図8A、8Bに示すプローブカード針の設計だけでなく、さまざまなプローブカード針の設計で実装できることが理解されよう。例えば、本システムおよび装置は、ブレードプローブカード針および/またはケルビンプローブカード針を用いて実装できる。
上述のように、公知の半導体および非超伝導プローブカードの設計において、はんだ付けを容易にすべく針にニッケルめっきが施されていてよい。本システムおよび装置によれば、超伝導プローブカード針は、はんだ付けを容易にすべく、ニッケルではなく亜鉛めっきが施されていてよい。超伝導プローブカードの設計において亜鉛がニッケルより好適である理由は、亜鉛が超伝導材料であるのに対しニッケルはそうでないからである。更に、超伝導量子計算等の超伝導電子素子の多くのアプリケーションは、特に磁場の影響を受けやすい。そのようなアプリケーションにおいて、実質的に非磁性な材料を専ら使用することが望ましいだろう。亜鉛およびタングステンレニウム合金は、実質的に非磁性であって磁気的に静かな環境での使用に適している。
当業者には、本現在のシステムおよび装置において記述する超伝導プローブカード針が、代替的な超伝導で容易にはんだ付け可能な材料によりめっきを施すことができる点が理解されよう。例えば、いくつかの実施形態において、超伝導プローブカード針の少なくとも一部に、鉛、スズ、またはスズ/鉛の合金によりめっきが施されていてよい。スズ/鉛の合金の方が亜鉛よりも高い臨界温度を有し、このためより高い極低温(例:液体ヘリウム4の温度)で動作する実施形態において好適である。当業者には、亜鉛の臨界温度が、液体ヘリウム4温度では亜鉛が超伝導性を示さない温度であることを認識されよう。しかし、そのようなアプリケーションでは亜鉛層の厚さが約数ミクロンであるため、いくつかのアプリケーションにおいて無視できる程度の抵抗が生じるに過ぎない。
本システムおよび装置の更なる態様は、超伝導プローブカードにおける超伝導PCBの利用である。図7のPCB701等の超伝導PCBは、超伝導材料により形成(またはめっき)された導電トレースを含んでいる。そのようなトレースは、PCB701上の接触パッド711と何らかの外部信号配信システムとの間を接続する超伝導通信導管として用いられる。例えば、システムテスト用の実装において、PCB701上の超伝導トレースは、液冷媒浴内の回路の高速テストに用いられるディッププローブの入出力システムに接続されていてよい。あるいは、完全システム実装において、PCB701上の超伝導トレースは、米国特許出願第12/016,801号および/または米国特許出願第12/256,332号に記載されているようなフルスケール入出力システムの超伝導通信導管に接続していてよい。
本システムおよび装置のいくつかの実施形態において、少なくとも2本の超伝導プローブカード針が、超伝導PCB上の同一導電トレースまたは接触パッドと超伝導通信可能に結合されていてよい。そのような実施形態は特に、単一のプローブカード素子を用いて通信導管に複数のチップを提供することに適しているだろう。そのようなアプリケーションにおいて、超伝導PCB上の同一導電トレースに結合された少なくとも2本の超伝導プローブカード針の各々もまた、個別SICと超伝導通信可能に結合されていてよい。
本明細書に記述する各種の実施形態は、超伝導プローブカード用のシステムおよび装置を提供する。超伝導プローブカードは、SICの完全実施に関するアプリケーションだけでなく、SICのテストに関するアプリケーションにおいて利点を有する。プローブカード方式は、プローブカードと集積回路の接続(および分離)を極めて迅速に行なうことができるため、集積回路との通信接続を確立する配線等の他の手段よりも優れている。本明細書に記述する超伝導プローブカードは、SICとの実質的に非磁性な通信インターフェースを提供し、通信インターフェースは複数の通信導管を含んでいてよく、各通信導管はプローブカードを介してSICとの間で実質的に遮断されない超伝導経路を提供する。
本明細書および添付の請求項を通じて、「超伝導」という用語は、「超伝導針」等の物理構造を記述するために用いた場合、適切な温度で超伝導体として振舞うことができる材料を示すために用いている。超伝導材料は、必ずしも、本システムおよび装置の全ての実施形態において常に超伝導体として機能する訳ではない。
例示的な実施形態の上の説明は、要約に記載されているものを含め、網羅的ではなく、且つこれらの実施形態を開示された形式に厳密に限定することを意図していない。本明細書に具体的な実施形態および実施例を説明目的で記述しているが、当業者には認識されるように、本開示の趣旨および範囲から逸脱することなく各種の等価な変更を行なうことが可能である。本明細書で提示する各種実施形態の開示内容は、必ずしも上述の例示的な量子プロセッサだけでなく、他のアナログプロセッサにも適用できる。
上述の各種実施形態を組み合わせて更なる実施形態を提供することができる。本明細書における具体的な開示内容および定義事項と矛盾しない範囲で、本明細書で参照したおよび/または本出願の出願人に譲渡されている2008年3月24日出願の米国特許仮出願第61/039041号「超伝導プローブカード用のシステム、方法および装置(Systems, Methods And Apparatus for a Superconducting Probe Card)」および2008年3月26日出願の米国特許仮出願第61/039710号「アナログ処理用のシステム、装置、および方法(Systems, Devices, And Methods for Analog Processing)」を含むがこれら限定されない出願データシートに掲載した全ての米国特許、米国特許出願公開、米国特許出願について、その全文を本明細書に引用している。また更なる実施形態を提供するために各種の特許、出願特許、および公開特許のシステム、回路、および概念を利用するために、必要ならば上記実施形態の態様は変更可能である。
上の詳細説明を考慮して、これらおよび他の変更を実施形態に行なうことができる。一般に、添付の請求項において使用する用語が、当該請求項を明細書および請求項に開示された具体的な実施形態に限定するものと解釈してはならず、当該請求項が権利を有する等価物のあらゆる範囲と共に全ての可能な実施形態を含むものと解釈すべきである。従って、当該請求項は本開示内容に限定されない。

Claims (22)

  1. 第1超伝導量子ビットと、
    第2超伝導量子ビットであって、当該第2超伝導量子ビットの一部が前記第1超伝導量子ビットの一部とほぼ垂直に交差する第2超伝導量子ビットと、
    周辺部を有し、前記第1超伝導量子ビットと前記第2超伝導量子ビットの間に通信結合を提供し、前記第2超伝導量子ビットと交差する前記第1超伝導量子ビットの前記一部に物理的に近接しているカプラと
    を含むシステム。
  2. 前記カプラの周辺部が、前記第2超伝導量子ビットの前記一部と交差する前記第1超伝導量子ビットの前記一部の少なくとも一部を含む、請求項1に記載のシステム。
  3. 前記カプラの周辺部が、前記第2超伝導量子ビットと交差しない前記第1超伝導量子ビットの第1部分および前記第1超伝導量子ビットと交差しない前記第2超伝導量子ビットの第2部分を含む、請求項1に記載のシステム。
  4. 前記カプラの周辺部が、前記第1超伝導量子ビットの長さ方向とほぼ平行に伸長する第1アームおよび前記第2超伝導量子ビットの長さ方向とほぼ平行に伸長する第2アームを含む、請求項1に記載のシステム。
  5. 前記第1超伝導量子ビットが、臨界温度で超伝導性を示す超伝導材料の第1超伝導量子ビットループおよび少なくとも1個のジョセフソン接合を含み、前記第2超伝導量子ビットが、臨界温度で超伝導性を示す超伝導材料の第2超伝導量子ビットループおよび少なくとも1個のジョセフソン接合を含み、前記カプラが、臨界温度で超伝導性を示す超伝導材料の結合ループを含む、請求項1に記載のシステム。
  6. 前記結合ループが少なくとも1個のジョセフソン接合により遮断される、請求項に記載のシステム。
  7. 前記カプラが前記第1および第2超伝導量子ビットから分離された層にある、請求項に記載のシステム。
  8. 前記カプラが前記第1または第2超伝導量子ビットの一方と同じ層にある、請求項に記載のシステム。
  9. 記カプラが、前記第1超伝導量子ビットと前記第2超伝導量子ビットを強磁性的、反強磁性的および横方向のうち少なくとも一つの方式で結合すべく動作可能である、請求項1に記載のシステム。
  10. 第1金属層内に少なくとも部分的に配置された第1の複数すなわちN個の量子ビットと、
    第2金属層内に少なくとも部分的に配置された第2の複数すなわちM個の量子ビットであって、各々が前記第1の複数量子ビットの各量子ビットと交差する第2の複数量子ビットと、
    第1の複数すなわちN×M個の結合素子であって、前記第1および第2の複数量子ビットからの各量子ビット対が互いに交差する場所に各々が近接している第1の複数結合素子と
    を含む多層コンピュータチップ。
  11. 前記結合素子の少なくとも1個が、前記第1の複数すなわちN個の量子ビットの1個の量子ビットの長さ方向にほぼ平行に伸長する第1アーム、および前記第2の複数すなわちM個の量子ビットの第2量子ビットの長さ方向にほぼ平行に伸長する第2アームを含む、請求項10に記載の多層コンピュータチップ。
  12. 前記複数の結合素子が前記第2金属層内に少なくとも部分的に配置されている、請求項10に記載の多層コンピュータチップ。
  13. MがNに等しい、請求項10に記載の多層コンピュータチップ。
  14. 前記量子ビットおよび前記カプラ周辺の磁気ノイズを減らすべく配置された金属保護層を更に含む、請求項10に記載の多層コンピュータチップ。
  15. 前記第2の複数量子ビットが、前記第2金属層および前記第1金属層の両方に配置されていて、複数のビアが前記第2金属層と前記第1金属層の間に個別の電流路を提供する、請求項10に記載の多層コンピュータチップ。
  16. 前記複数の結合素子が、前記第2金属層および前記第1金属層の両方に配置されていて、複数のビアが前記第2金属層と前記第1金属層の間に個別の電流路を提供する、請求項10に記載の多層コンピュータチップ。
  17. 前記第1の複数量子ビットの量子ビットが互いに平行に配置されていて、前記第2の複数量子ビットの量子ビットが互いに平行に配置されていて、前記第2の複数量子ビットの量子ビットが前記第1の複数量子ビットの量子ビットに対して垂直に配置されている、請求項10に記載の多層コンピュータチップ。
  18. 前記第1の複数量子ビットの量子ビットが第1から第n量子ビットまで連続的な順序で配置されていて、前記第2の複数量子ビットの量子ビットが第1量子ビットから第m量子ビットまで連続的な順序で配置されていて、前記第1の複数量子ビットの第1量子ビットが前記第2の複数量子ビットの第1量子ビットと強磁性的に結合されていて、前記第1の複数量子ビットの第2量子ビットが前記第2の複数量子ビットの第2量子ビットと強磁性的に結合されていて、前記第1の複数量子ビットの第3量子ビットが前記第2の複数量子ビットの第3量子ビットと強磁性的に結合されていて、前記第1の複数量子ビットの第4量子ビットが前記第2の複数量子ビットの第4量子ビットと強磁性的に結合されていて、前記第1の複数量子ビットの第1量子ビットが前記第2の複数量子ビットの第2、第3、および第4量子ビットの各々と制御可能に結合可能であって、前記第1の複数量子ビットの第2量子ビットが前記第2の複数量子ビットの第1、第3、および第4量子ビットの各々と制御可能に結合可能であって、前記第1の複数量子ビットの第3量子ビットが前記第2の複数量子ビットの第1、第2、および第4量子ビットの各々と制御可能に結合可能であって、前記第1の複数量子ビットの第4量子ビットが前記第2の複数量子ビットの第1、第2、および第3量子ビットの各々と制御可能に結合可能であって第1Kブロックを形成する、請求項10に記載の多層コンピュータチップ。
  19. 第1金属層内に配置された第3の複数すなわちI個の量子ビットと、
    第2金属層内に少なくとも部分的に配置された第4の複数すなわちJ個の量子ビットであって、前記第1の複数量子ビットの各量子ビットと各々交差する第4の複数量子ビットと、
    前記第1金属層内に配置された第5の複数すなわちK個の量子ビットと、
    第2金属層内に少なくとも部分的に配置された第6の複数すなわちL個の量子ビットであって、前記第1の複数量子ビットの各量子ビットと各々交差する第6の複数量子ビットと、
    第2の複数すなわちI×J個の結合素子であって、前記第2の複数結合素子の各結合素子が前記第3および第4の複数量子ビットからの各量子ビット対が互いに交差する領域を少なくとも部分的に囲み、
    前記第3の複数量子ビットの量子ビットが第1から第n量子ビットまで連続的な順序で配置されていて、前記第4の複数量子ビットの量子ビットが第1量子ビットから第n量子ビットまで連続的な順序で配置されていて、前記第3の複数量子ビットの第1量子ビットが前記第4の複数量子ビットの第1、第2、第3および第4量子ビットの各々と制御可能に結合可能であって、前記第3の複数量子ビットの第2量子ビットが前記第4の複数量子ビットの第1、第2、第3、および第4量子ビットの各々と制御可能に結合可能であって、前記第3の複数量子ビットの第3量子ビットが前記第4の複数量子ビットの第1、第2、第3、および第4量子ビットの各々と制御可能に結合可能であって、前記第3の複数量子ビットの第4量子ビットが前記第4の複数量子ビットの第1、第2、第3、および第4量子ビットの各々と制御可能に結合可能であって第1の二分ブロック形成する、第2の複数結合素子と、
    第3の複数すなわちK×L個の結合素子であって、前記第3の複数結合素子の各結合素子が前記第3および第4の複数の量子ビットからの各量子ビット対が互いに交差する領域を少なくとも部分的に囲み、
    前記第5の複数量子ビットの量子ビットが第1から第n量子ビットまで連続的な順序で配置されていて、前記第6の複数量子ビットの量子ビットが第1量子ビットから第n量子ビットまで連続的な順序で配置されていて、前記第5の複数量子ビットの第1量子ビットが前記第6の複数量子ビットの第1量子ビットと強磁性的に結合されていて、前記第5の複数量子ビットの第2量子ビットが前記第6の複数量子ビットの第2量子ビットと強磁性的に結合されていて、前記第5の複数量子ビットの第3量子ビットが前記第6の複数量子ビットの第3量子ビットと強磁性的に結合されていて、前記第5の複数量子ビットの第4量子ビットが前記第6の複数量子ビットの第4量子ビットと強磁性的に結合されていて、前記第5の複数量子ビットの第1量子ビットが前記第6の複数量子ビットの第2、第3、および第4量子ビットの各々と制御可能に結合可能であって、前記第5の複数量子ビットの第2量子ビットが前記第6の複数量子ビットの第1、第3、および第4量子ビットの各々と制御可能に結合可能であって、前記第5の複数量子ビットの第3量子ビットが前記第6の複数量子ビットの第1、第2、および第4量子ビットの各々と制御可能に結合可能であって、前記第5の複数量子ビットの第4量子ビットが前記第6の複数量子ビットの第1、第2、および第3量子ビットの各々と制御可能に結合可能であって第2Kブロックを形成する第3の複数結合素子とを更に含み、
    前記第3の複数量子ビットの量子ビットが前記第1の複数量子ビットの量子ビットの各1個ずつと強磁性的に結合されていて、前記第4の複数量子ビットからの量子ビットが前記第6の複数量子ビットの量子ビットの各1個ずつと強磁性的に結合されて第1Kブロックを形成する、請求項18に記載の多層コンピュータチップ。
  20. 第2Kブロックを形成すべく構成された追加的な複数の量子ビットおよび追加的な複数のカプラを更に含み、前記第1Kブロックからの少なくとも1個の量子ビットが前記第2Kブロックからの少なくとも1個の量子ビットと制御可能に結合されている、請求項19に記載の多層コンピュータチップ。
  21. 前記カプラの少なくとも1個が、前記第1Kブロックからの少なくとも1個の量子ビットを、前記第5または前記第6の複数量子ビットの一方からの対応する個別量子ビットに結合すべく操作可能であるコーナーカプラである、請求項19に記載の多層コンピュータチップ。
  22. 前記多層コンピュータチップとデジタルコンピュータの間にインターフェースを確立する超伝導プローブカードを更に含み、前記超伝導プローブカードが、
    臨界温度未満で超伝導性を示す材料により形成された少なくとも第1導電トレースを搭載する誘電体を含む印刷回路基板と、
    臨界温度未満で超伝導性を示す材料により少なくとも部分的に形成された少なくとも第1導電針と
    を含んでいて、前記第1導電針の第1端部が前記印刷回路基板上で前記第1導電トレースと通信可能に結合されていて、前記第1導電針の第2端部が尖端を形成すべく先細になっていて、
    前記第1導電トレースの前記臨界温度および前記第1導電針の前記臨界温度が共に前記超伝導プローブカードの動作温度にほぼ等しいか高い、請求項10に記載の多層コンピュータチップ。
JP2011501018A 2008-03-24 2009-03-23 アナログ処理用のシステム、装置、および方法 Active JP5296189B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US3904108P 2008-03-24 2008-03-24
US61/039,041 2008-03-24
US3971008P 2008-03-26 2008-03-26
US61/039,710 2008-03-26
PCT/US2009/037984 WO2009120638A2 (en) 2008-03-24 2009-03-23 Systems, devices, and methods for analog processing

Publications (2)

Publication Number Publication Date
JP2011524026A JP2011524026A (ja) 2011-08-25
JP5296189B2 true JP5296189B2 (ja) 2013-09-25

Family

ID=41114619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011501018A Active JP5296189B2 (ja) 2008-03-24 2009-03-23 アナログ処理用のシステム、装置、および方法

Country Status (6)

Country Link
US (5) US8421053B2 (ja)
EP (1) EP2263166B1 (ja)
JP (1) JP5296189B2 (ja)
CN (1) CN101978368A (ja)
CA (1) CA2719343C (ja)
WO (1) WO2009120638A2 (ja)

Families Citing this family (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7533068B2 (en) 2004-12-23 2009-05-12 D-Wave Systems, Inc. Analog processor comprising quantum devices
US7615385B2 (en) 2006-09-20 2009-11-10 Hypres, Inc Double-masking technique for increasing fabrication yield in superconducting electronics
US7605600B2 (en) 2007-04-05 2009-10-20 D-Wave Systems Inc. Systems, methods and apparatus for anti-symmetric qubit-coupling
EP2263166B1 (en) 2008-03-24 2020-02-19 D-Wave Systems Inc. Systems, devices, and methods for analog processing
CN102037475B (zh) 2008-05-20 2015-05-13 D-波系统公司 用于校准、控制并且运行量子处理器的系统、方法和装置
US8229863B2 (en) 2008-05-28 2012-07-24 D-Wave Systems Inc. Method and apparatus for evolving a quantum system using a mixed initial hamiltonian comprising both diagonal and off-diagonal terms
WO2009149086A2 (en) 2008-06-03 2009-12-10 D-Wave Systems Inc. Systems, methods and apparatus for superconducting demultiplexer circuits
WO2009152180A2 (en) 2008-06-10 2009-12-17 D-Wave Systems Inc. Parameter learning system for solvers
CA3029949C (en) 2008-09-03 2020-06-02 D-Wave Systems Inc. Systems, methods and apparatus for active compensation of quantum processor elements
CA2738669C (en) 2008-10-09 2019-02-26 D-Wave Systems, Inc. Systems, methods and apparatus for measuring magnetic fields
CN109626323B (zh) 2009-02-27 2020-12-01 D-波系统公司 超导集成电路
US8700689B2 (en) 2009-06-17 2014-04-15 D-Wave Systems Inc. Systems and methods for solving computational problems
US8494993B2 (en) 2009-06-26 2013-07-23 D-Wave Systems Inc. Systems and methods for quantum computation using real physical hardware
US8738105B2 (en) 2010-01-15 2014-05-27 D-Wave Systems Inc. Systems and methods for superconducting integrated circuts
JP2014504057A (ja) 2010-11-11 2014-02-13 ディー−ウェイブ システムズ,インコーポレイテッド 超伝導磁束量子ビット読出しのためのシステム及び方法
US8977576B2 (en) 2010-11-19 2015-03-10 D-Wave Systems Inc. Methods for solving computational problems using a quantum processor
EP3745322A1 (en) 2011-07-06 2020-12-02 D-Wave Systems Inc. Quantum processor based systems and methods that minimize an objective function
US9026574B2 (en) 2011-11-15 2015-05-05 D-Wave Systems Inc. Systems and methods for solving computational problems
US9192085B2 (en) 2012-01-20 2015-11-17 D-Ware Systems Inc. Systems, methods and apparatus for planar expulsion shields
US8841764B2 (en) * 2012-01-31 2014-09-23 International Business Machines Corporation Superconducting quantum circuit having a resonant cavity thermalized with metal components
JP6326379B2 (ja) 2012-03-08 2018-05-16 ディー−ウェイブ システムズ,インコーポレイテッド 超伝導集積回路の製作のためのシステムおよび方法
US9396440B2 (en) 2012-04-19 2016-07-19 D-Wave Systems Inc. Systems and methods for solving combinatorial problems
KR20130126337A (ko) * 2012-05-11 2013-11-20 에스케이하이닉스 주식회사 반도체 장치의 테스트 장비, 반도체 장치의 테스트 시스템 및 반도체 장치의 테스트 방법
US9064067B2 (en) * 2012-08-06 2015-06-23 Microsoft Technology Licensing, Llc Quantum gate optimizations
US9178154B2 (en) 2012-10-09 2015-11-03 D-Wave Systems Inc. Quantum processor comprising a second set of inter-cell coupling devices where a respective pair of qubits in proximity adjacent unit cells crossed one another
US9865648B2 (en) 2012-12-17 2018-01-09 D-Wave Systems Inc. Systems and methods for testing and packaging a superconducting chip
US9875215B2 (en) 2012-12-18 2018-01-23 D-Wave Systems Inc. Systems and methods that formulate problems for solving by a quantum processor using hardware graph decomposition
US9501747B2 (en) 2012-12-18 2016-11-22 D-Wave Systems Inc. Systems and methods that formulate embeddings of problems for solving by a quantum processor
US9207672B2 (en) 2013-01-25 2015-12-08 D-Wave Systems Inc. Systems and methods for real-time quantum computer-based control of mobile systems
US9870277B2 (en) 2013-02-05 2018-01-16 D-Wave Systems Inc. Systems and methods for error correction in quantum computation
US8865537B2 (en) 2013-03-14 2014-10-21 International Business Machines Corporation Differential excitation of ports to control chip-mode mediated crosstalk
US8972921B2 (en) * 2013-03-14 2015-03-03 International Business Machines Corporation Symmetric placement of components on a chip to reduce crosstalk induced by chip modes
US9159033B2 (en) 2013-03-14 2015-10-13 Internatinal Business Machines Corporation Frequency separation between qubit and chip mode to reduce purcell loss
US9489634B2 (en) 2013-03-15 2016-11-08 Microsoft Technology Licensing, Llc Topological quantum computation via tunable interactions
US9471880B2 (en) * 2013-04-12 2016-10-18 D-Wave Systems Inc. Systems and methods for interacting with a quantum computing system
US9424526B2 (en) 2013-05-17 2016-08-23 D-Wave Systems Inc. Quantum processor based systems and methods that minimize a continuous variable objective function
WO2014197001A1 (en) 2013-06-07 2014-12-11 Amin Mohammad H S Systems and methods for operating a quantum processor to determine energy eigenvalues of a hamiltonian
US10318881B2 (en) 2013-06-28 2019-06-11 D-Wave Systems Inc. Systems and methods for quantum processing of data
EP3014534A4 (en) 2013-06-28 2017-03-22 D-Wave Systems Inc. Systems and methods for quantum processing of data
US9727823B2 (en) 2013-07-23 2017-08-08 D-Wave Systems Inc. Systems and methods for achieving orthogonal control of non-orthogonal qubit parameters
US9495644B2 (en) 2013-07-24 2016-11-15 D-Wave Systems Inc. Systems and methods for improving the performance of a quantum processor by reducing errors
WO2015013532A1 (en) 2013-07-24 2015-01-29 D-Wave Systems Inc. Systems and methods for increasing the energy scale of a quantum processor
US9183508B2 (en) 2013-08-07 2015-11-10 D-Wave Systems Inc. Systems and devices for quantum processor architectures
US10037493B2 (en) 2013-10-22 2018-07-31 D-Wave Systems Inc. Universal adiabatic quantum computing with superconducting qubits
WO2015060256A1 (ja) 2013-10-22 2015-04-30 富士フイルム株式会社 撮像モジュールの製造方法及び撮像モジュールの製造装置
US9588940B2 (en) 2013-12-05 2017-03-07 D-Wave Systems Inc. Sampling from a set of spins with clamping
CA2936114C (en) * 2014-01-06 2023-10-10 Google Inc. Constructing and programming quantum hardware for quantum annealing processes
US9634224B2 (en) 2014-02-14 2017-04-25 D-Wave Systems Inc. Systems and methods for fabrication of superconducting circuits
EP3111379B1 (en) 2014-02-28 2020-06-24 Rigetti & Co., Inc. Housing qubit devices in an electromagnetic waveguide system
US10002107B2 (en) 2014-03-12 2018-06-19 D-Wave Systems Inc. Systems and methods for removing unwanted interactions in quantum devices
US9710758B2 (en) 2014-04-23 2017-07-18 D-Wave Systems Inc. Quantum processor with instance programmable qubit connectivity
US10769545B2 (en) 2014-06-17 2020-09-08 D-Wave Systems Inc. Systems and methods employing new evolution schedules in an analog computer with applications to determining isomorphic graphs and post-processing solutions
JP6785219B2 (ja) 2014-08-13 2020-11-18 ディー−ウェイブ システムズ インコーポレイテッド 低磁気雑音の超伝導配線層を形成する方法
US9881256B2 (en) 2014-08-22 2018-01-30 D-Wave Systems Inc. Systems and methods for problem solving, useful for example in quantum computing
US10552755B2 (en) 2014-08-22 2020-02-04 D-Wave Systems Inc. Systems and methods for improving the performance of a quantum processor to reduce intrinsic/control errors
JP5851570B1 (ja) * 2014-08-29 2016-02-03 株式会社日立製作所 半導体装置
JP5901712B2 (ja) * 2014-08-29 2016-04-13 株式会社日立製作所 半導体装置および情報処理装置
JP5865456B1 (ja) 2014-08-29 2016-02-17 株式会社日立製作所 半導体装置
US10031887B2 (en) 2014-09-09 2018-07-24 D-Wave Systems Inc. Systems and methods for improving the performance of a quantum processor via reduced readouts
CA2881033C (en) 2015-02-03 2016-03-15 1Qb Information Technologies Inc. Method and system for solving lagrangian dual of a constrained binary quadratic programming problem
US11797641B2 (en) 2015-02-03 2023-10-24 1Qb Information Technologies Inc. Method and system for solving the lagrangian dual of a constrained binary quadratic programming problem using a quantum annealer
WO2016179419A1 (en) 2015-05-05 2016-11-10 Kyndi, Inc. Quanton representation for emulating quantum-like computation on classical processors
US10938346B2 (en) 2015-05-14 2021-03-02 D-Wave Systems Inc. Frequency multiplexed resonator input and/or output for a superconducting device
JP6476292B2 (ja) * 2015-06-09 2019-02-27 株式会社日立製作所 情報処理装置及びその制御方法
ES2850151T3 (es) * 2015-06-29 2021-08-25 Parity Quantum Computing GmbH Dispositivo y procedimiento de procesamiento cuántico
EP4002228A1 (en) 2015-08-13 2022-05-25 D-Wave Systems Inc. Systems and methods for creating and using higher degree interactions between quantum devices
US11157817B2 (en) 2015-08-19 2021-10-26 D-Wave Systems Inc. Discrete variational auto-encoder systems and methods for machine learning using adiabatic quantum computers
CN108351987A (zh) 2015-08-19 2018-07-31 D-波系统公司 用于使用绝热量子计算机进行机器学习的系统和方法
JP6728234B2 (ja) * 2015-09-30 2020-07-22 グーグル エルエルシー 共面導波管の磁束量子ビット
CN108475352B (zh) 2015-10-27 2022-05-27 D-波系统公司 用于量子处理器中的简并减轻的系统和方法
KR102247626B1 (ko) 2015-12-16 2021-05-03 구글 엘엘씨 동평면 도파관 플럭스 큐비트를 이용한 프로그램 가능한 범용 양자 어닐링
US10755190B2 (en) 2015-12-21 2020-08-25 D-Wave Systems Inc. Method of fabricating an electrical filter for use with superconducting-based computing systems
US10268622B2 (en) 2016-01-29 2019-04-23 D-Wave Systems Inc. Systems and methods for increasing analog processor connectivity
US10484479B2 (en) 2016-01-31 2019-11-19 QC Ware Corp. Integration of quantum processing devices with distributed computers
US10614370B2 (en) 2016-01-31 2020-04-07 QC Ware Corp. Quantum computing as a service
US10599988B2 (en) 2016-03-02 2020-03-24 D-Wave Systems Inc. Systems and methods for analog processing of problem graphs having arbitrary size and/or connectivity
US10817796B2 (en) 2016-03-07 2020-10-27 D-Wave Systems Inc. Systems and methods for machine learning
EP4036708A1 (en) 2016-03-11 2022-08-03 1QB Information Technologies Inc. Methods and systems for quantum computing
CA2927171C (en) * 2016-04-13 2017-05-02 1Qb Information Technologies Inc. Quantum processor and its use for implementing a neural network
US10789540B2 (en) 2016-04-18 2020-09-29 D-Wave Systems Inc. Systems and methods for embedding problems into an analog processor
WO2017192733A2 (en) 2016-05-03 2017-11-09 D-Wave Systems Inc. Systems and methods for superconducting devices used in superconducting circuits and scalable computing
GB2569702A (en) 2016-05-09 2019-06-26 1Qb Inf Tech Inc Method and system for improving a policy for a stochastic control problem
US9870273B2 (en) 2016-06-13 2018-01-16 1Qb Information Technologies Inc. Methods and systems for quantum ready and quantum enabled computations
US10044638B2 (en) * 2016-05-26 2018-08-07 1Qb Information Technologies Inc. Methods and systems for quantum computing
JP7002477B2 (ja) * 2016-06-07 2022-01-20 ディー-ウェイブ システムズ インコーポレイテッド 量子プロセッサトポロジ用のシステム及び方法
CN109716360B (zh) 2016-06-08 2023-08-15 D-波系统公司 用于量子计算的系统和方法
DE102016110780B4 (de) * 2016-06-13 2024-10-10 Infineon Technologies Austria Ag Chipkartenmodul und Verfahren zum Herstellen eines Chipkartenmoduls
CN109792840B (zh) * 2016-09-15 2022-03-04 谷歌有限责任公司 用于减少量子信号串扰的多层印刷电路板
JP7134949B2 (ja) 2016-09-26 2022-09-12 ディー-ウェイブ システムズ インコーポレイテッド サンプリングサーバからサンプリングするためのシステム、方法、及び装置
WO2018063139A1 (en) * 2016-09-27 2018-04-05 Intel Corporation Tileable arrays of qubits
US11042811B2 (en) 2016-10-05 2021-06-22 D-Wave Systems Inc. Discrete variational auto-encoder systems and methods for machine learning using adiabatic quantum computers
WO2018104861A1 (en) 2016-12-05 2018-06-14 1Qb Information Technologies Inc. Method for estimating the thermodynamic properties of a quantum ising model with transverse field
CA3045487A1 (en) 2016-12-07 2018-06-14 D-Wave Systems Inc. Superconducting printed circuit board related systems, methods, and apparatus
US11127892B2 (en) 2016-12-29 2021-09-21 Google Llc Reducing parasitic capacitance and coupling to inductive coupler modes
US10346508B2 (en) 2017-01-12 2019-07-09 D-Wave Systems Inc. Re-equilibrated quantum sampling
US11023821B2 (en) 2017-01-27 2021-06-01 D-Wave Systems Inc. Embedding of a condensed matter system with an analog processor
US11263547B2 (en) 2017-01-30 2022-03-01 D-Wave Systems Inc. Quantum annealing debugging systems and methods
EP3577700B1 (en) 2017-02-01 2022-03-30 D-Wave Systems Inc. Systems and methods for fabrication of superconducting integrated circuits
US10133603B2 (en) 2017-02-14 2018-11-20 Bank Of America Corporation Computerized system for real-time resource transfer verification and tracking
US10454892B2 (en) 2017-02-21 2019-10-22 Bank Of America Corporation Determining security features for external quantum-level computing processing
US10447472B2 (en) * 2017-02-21 2019-10-15 Bank Of America Corporation Block computing for information silo
US10243976B2 (en) 2017-02-24 2019-03-26 Bank Of America Corporation Information securities resource propagation for attack prevention
US10489726B2 (en) 2017-02-27 2019-11-26 Bank Of America Corporation Lineage identification and tracking of resource inception, use, and current location
WO2018160599A1 (en) * 2017-03-01 2018-09-07 QC Ware Corp. Quantum computing as a service
US10929294B2 (en) 2017-03-01 2021-02-23 QC Ware Corp. Using caching techniques to improve graph embedding performance
US10284496B2 (en) 2017-03-03 2019-05-07 Bank Of America Corporation Computerized system for providing resource distribution channels based on predicting future resource distributions
US10440051B2 (en) 2017-03-03 2019-10-08 Bank Of America Corporation Enhanced detection of polymorphic malicious content within an entity
US10270594B2 (en) 2017-03-06 2019-04-23 Bank Of America Corporation Enhanced polymorphic quantum enabled firewall
US10437991B2 (en) 2017-03-06 2019-10-08 Bank Of America Corporation Distractional variable identification for authentication of resource distribution
US10412082B2 (en) 2017-03-09 2019-09-10 Bank Of America Corporation Multi-variable composition at channel for multi-faceted authentication
US11120356B2 (en) 2017-03-17 2021-09-14 Bank Of America Corporation Morphing federated model for real-time prevention of resource abuse
US10440052B2 (en) 2017-03-17 2019-10-08 Bank Of America Corporation Real-time linear identification of resource distribution breach
US11055776B2 (en) 2017-03-23 2021-07-06 Bank Of America Corporation Multi-disciplinary comprehensive real-time trading signal within a designated time frame
US10796240B2 (en) 2017-07-22 2020-10-06 QC Ware Corp. Performing fault tree analysis on quantum computers
US10381708B2 (en) * 2017-10-30 2019-08-13 International Business Machines Corporation Superconducting resonator to limit vertical connections in planar quantum devices
WO2019118644A1 (en) 2017-12-14 2019-06-20 D-Wave Systems Inc. Systems and methods for collaborative filtering with variational autoencoders
US11494683B2 (en) 2017-12-20 2022-11-08 D-Wave Systems Inc. Systems and methods for coupling qubits in a quantum processor
CN111989686B (zh) 2018-01-22 2023-12-29 D-波系统公司 用于提高模拟处理器的性能的系统和方法
US11074382B2 (en) 2018-01-30 2021-07-27 International Business Machines Corporation Quantum computing device design
US11424521B2 (en) 2018-02-27 2022-08-23 D-Wave Systems Inc. Systems and methods for coupling a superconducting transmission line to an array of resonators
US11100418B2 (en) 2018-02-28 2021-08-24 D-Wave Systems Inc. Error reduction and, or, correction in analog computing including quantum processor-based computing
US11481354B2 (en) 2018-04-24 2022-10-25 D-Wave Systems Inc. Systems and methods for calculating the ground state of non-diagonal Hamiltonians
CN112424800B (zh) 2018-05-11 2024-06-18 D-波系统公司 用于投影测量的单通量量子源
US11105866B2 (en) 2018-06-05 2021-08-31 D-Wave Systems Inc. Dynamical isolation of a cryogenic processor
WO2020036673A2 (en) * 2018-06-14 2020-02-20 Rigetti & Co., Inc. Modular quantum processor architectures
JP7182173B2 (ja) * 2018-06-20 2022-12-02 株式会社デンソー 変数埋込方法及び処理システム
US11386346B2 (en) 2018-07-10 2022-07-12 D-Wave Systems Inc. Systems and methods for quantum bayesian networks
US10811588B2 (en) 2018-08-06 2020-10-20 International Business Machines Corporation Vertical dispersive readout of qubits of a lattice surface code architecture
US11847534B2 (en) 2018-08-31 2023-12-19 D-Wave Systems Inc. Systems and methods for operation of a frequency multiplexed resonator input and/or output for a superconducting device
US11678433B2 (en) 2018-09-06 2023-06-13 D-Wave Systems Inc. Printed circuit board assembly for edge-coupling to an integrated circuit
JP7173804B2 (ja) * 2018-09-14 2022-11-16 株式会社東芝 電子回路、発振器、及び計算装置
US11593174B2 (en) 2018-10-16 2023-02-28 D-Wave Systems Inc. Systems and methods for scheduling programs for dedicated execution on a quantum processor
US10474960B1 (en) 2018-10-25 2019-11-12 International Business Machines Corporation Approximate gate and supercontrolled unitary gate decompositions for two-qubit operations
US20200152851A1 (en) 2018-11-13 2020-05-14 D-Wave Systems Inc. Systems and methods for fabricating superconducting integrated circuits
US11461644B2 (en) 2018-11-15 2022-10-04 D-Wave Systems Inc. Systems and methods for semantic segmentation
US11468293B2 (en) 2018-12-14 2022-10-11 D-Wave Systems Inc. Simulating and post-processing using a generative adversarial network
US11526795B1 (en) 2019-01-14 2022-12-13 QC Ware Corp. Executing variational quantum algorithms using hybrid processing on different types of quantum processing units
US11537926B2 (en) 2019-01-17 2022-12-27 D-Wave Systems Inc. Systems and methods for hybrid algorithms using cluster contraction
US11900264B2 (en) 2019-02-08 2024-02-13 D-Wave Systems Inc. Systems and methods for hybrid quantum-classical computing
US11625612B2 (en) 2019-02-12 2023-04-11 D-Wave Systems Inc. Systems and methods for domain adaptation
WO2020168097A1 (en) 2019-02-15 2020-08-20 D-Wave Systems Inc. Kinetic inductance for couplers and compact qubits
WO2020170392A1 (ja) * 2019-02-21 2020-08-27 Mdr株式会社 量子計算素子
US11567779B2 (en) 2019-03-13 2023-01-31 D-Wave Systems Inc. Systems and methods for simulation of dynamic systems
US11593695B2 (en) 2019-03-26 2023-02-28 D-Wave Systems Inc. Systems and methods for hybrid analog and digital processing of a computational problem using mean fields
WO2020210536A1 (en) 2019-04-10 2020-10-15 D-Wave Systems Inc. Systems and methods for improving the performance of non-stoquastic quantum devices
US11288073B2 (en) * 2019-05-03 2022-03-29 D-Wave Systems Inc. Systems and methods for calibrating devices using directed acyclic graphs
US11422958B2 (en) 2019-05-22 2022-08-23 D-Wave Systems Inc. Systems and methods for efficient input and output to quantum processors
US12039465B2 (en) 2019-05-31 2024-07-16 D-Wave Systems Inc. Systems and methods for modeling noise sequences and calibrating quantum processors
WO2020252157A1 (en) 2019-06-11 2020-12-17 D-Wave Systems Inc. Input/output systems and methods for superconducting devices
US11647590B2 (en) 2019-06-18 2023-05-09 D-Wave Systems Inc. Systems and methods for etching of metals
WO2020255076A1 (en) 2019-06-19 2020-12-24 1Qb Information Technologies Inc. Method and system for mapping a dataset from a hilbert space of a given dimension to a hilbert space of a different dimension
US11839164B2 (en) 2019-08-19 2023-12-05 D-Wave Systems Inc. Systems and methods for addressing devices in a superconducting circuit
US11714730B2 (en) 2019-08-20 2023-08-01 D-Wave Systems Inc. Systems and methods for high availability, failover and load balancing of heterogeneous resources
US11425841B2 (en) * 2019-09-05 2022-08-23 International Business Machines Corporation Using thermalizing material in an enclosure for cooling quantum computing devices
US11790259B2 (en) 2019-09-06 2023-10-17 D-Wave Systems Inc. Systems and methods for tuning capacitance in quantum devices
US12033996B2 (en) 2019-09-23 2024-07-09 1372934 B.C. Ltd. Systems and methods for assembling processor systems
EP4070205A4 (en) 2019-12-03 2024-05-01 1QB Information Technologies Inc. SYSTEM AND METHOD FOR ACCESSING A PHYSICS-INSPIRED COMPUTER AND A PHYSICS-INSPIRED COMPUTER SIMULATOR
WO2021126875A1 (en) 2019-12-20 2021-06-24 D-Wave Systems Inc. Systems and methods for tuning capacitance of qubits
JP6773359B1 (ja) * 2020-01-16 2020-10-21 Mdr株式会社 量子計算素子
USD1002664S1 (en) 2020-02-24 2023-10-24 D-Wave Systems Inc. Display screen or portion thereof with graphical user interface
US11409426B2 (en) 2020-02-24 2022-08-09 D-Wave Systems Inc. User in interface, programmer and/or debugger for embedding and/or modifying problems on quantum processors
JP7080927B2 (ja) * 2020-07-01 2022-06-06 グーグル エルエルシー 共面導波管の磁束量子ビット
CN112329298B (zh) * 2020-10-30 2024-05-07 中国科学院高能物理研究所 一种高方向性矩形波导定向耦合器的仿真优化方法及装置
CN113033812B (zh) * 2021-04-01 2022-03-18 腾讯科技(深圳)有限公司 量子操作执行方法、装置及量子操作芯片
CN115423108B (zh) * 2021-05-31 2024-07-16 本源量子计算科技(合肥)股份有限公司 量子线路切割处理方法、装置及量子计算机操作系统
AU2022289736A1 (en) 2021-06-11 2024-02-01 Caleb JORDAN System and method of flux bias for superconducting quantum circuits
EP4443171A1 (en) * 2023-04-06 2024-10-09 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Probe for use in a probe system for probing a superconductive circuit, method of probing and of manufacturing a probe
EP4443172A1 (en) * 2023-04-06 2024-10-09 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Method of and sensing probe device for measuring a parameter of a quantum chip

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343979A (en) * 1965-10-22 1967-09-26 Jr Charles E Hamrin Method for depositing a tungsten-rhenium metal alloy on a substrate
US4660061A (en) * 1983-12-19 1987-04-21 Sperry Corporation Intermediate normal metal layers in superconducting circuitry
CA2084394C (en) * 1991-12-02 1997-06-24 Takao Nakamura Superconducting multilayer interconnection formed of oxide superconductor material and method for manufacturing the same
US5394556A (en) * 1992-12-21 1995-02-28 Apple Computer, Inc. Method and apparatus for unique address assignment, node self-identification and topology mapping for a directed acyclic graph
US7025710B2 (en) 1998-07-23 2006-04-11 Unisen, Inc. Elliptical exercise device and arm linkage
US6987282B2 (en) * 2000-12-22 2006-01-17 D-Wave Systems, Inc. Quantum bit with a multi-terminal junction and loop with a phase shift
CA2515497A1 (en) * 2003-02-14 2004-09-02 Clearsight Systems Inc. Method and programmable apparatus for quantum computing
US6926921B2 (en) * 2003-05-05 2005-08-09 Hewlett-Packard Development Company, L.P. Imprint lithography for superconductor devices
US20050250651A1 (en) * 2004-03-29 2005-11-10 Amin Mohammad H S Adiabatic quantum computation with superconducting qubits
US7109593B2 (en) * 2004-07-30 2006-09-19 Microsoft Corporation Systems and methods for performing quantum computations
US7268576B2 (en) * 2004-11-08 2007-09-11 D-Wave Systems Inc. Superconducting qubit with a plurality of capacitive couplings
CN100585629C (zh) * 2004-12-23 2010-01-27 D-波系统公司 包括量子装置的模拟处理器
US7533068B2 (en) * 2004-12-23 2009-05-12 D-Wave Systems, Inc. Analog processor comprising quantum devices
US7619437B2 (en) * 2004-12-30 2009-11-17 D-Wave Systems, Inc. Coupling methods and architectures for information processing
US20080238531A1 (en) * 2007-01-23 2008-10-02 Harris Richard G Systems, devices, and methods for controllably coupling qubits
JP4836028B2 (ja) * 2006-02-09 2011-12-14 日本電気株式会社 超伝導量子演算回路
US7778951B2 (en) * 2006-08-02 2010-08-17 The Mitre Corporation Efficient construction of quantum computational clusters using Hadamard rotations
US7756485B2 (en) * 2006-11-13 2010-07-13 Research In Motion Limited System, method and mobile device for displaying wireless mode indicators
US7687938B2 (en) * 2006-12-01 2010-03-30 D-Wave Systems Inc. Superconducting shielding for use with an integrated circuit for quantum computing
CA2669816C (en) * 2006-12-05 2017-03-07 D-Wave Systems, Inc. Systems, methods and apparatus for local programming of quantum processor elements
WO2008083498A1 (en) * 2007-01-12 2008-07-17 D-Wave Systems, Inc. Systems, devices and methods for interconnected processor topology
US7843209B2 (en) * 2007-04-25 2010-11-30 D-Wave Systems Inc. Architecture for local programming of quantum processor elements using latching qubits
WO2008134875A1 (en) * 2007-05-02 2008-11-13 D-Wave Systems, Inc. Systems, devices, and methods for controllably coupling qubits
US8098179B2 (en) * 2007-05-14 2012-01-17 D-Wave Systems Inc. Systems, methods and apparatus for digital-to-analog conversion of superconducting magnetic flux signals
CN101868802B (zh) * 2007-09-24 2013-12-25 D-波系统公司 用于量子位状态读出的系统、方法以及装置
WO2009039663A1 (en) * 2007-09-25 2009-04-02 D-Wave Systems Inc. Systems, devices, and methods for controllably coupling qubits
US8159313B2 (en) * 2007-10-22 2012-04-17 D-Wave Systems Inc. Systems, methods, and apparatus for electrical filters and input/output systems
US8190548B2 (en) * 2007-11-08 2012-05-29 D-Wave Systems Inc. Systems, devices, and methods for analog processing
US8102185B2 (en) * 2008-01-28 2012-01-24 D-Wave Systems Inc. Systems, devices, and methods for controllably coupling qubits
EP2263166B1 (en) 2008-03-24 2020-02-19 D-Wave Systems Inc. Systems, devices, and methods for analog processing

Also Published As

Publication number Publication date
CA2719343A1 (en) 2009-10-01
US8772759B2 (en) 2014-07-08
US20160314407A1 (en) 2016-10-27
US20140329687A1 (en) 2014-11-06
CN101978368A (zh) 2011-02-16
CA2719343C (en) 2017-03-21
EP2263166B1 (en) 2020-02-19
WO2009120638A3 (en) 2009-12-17
EP2263166A4 (en) 2014-07-30
US9170278B2 (en) 2015-10-27
US9779360B2 (en) 2017-10-03
JP2011524026A (ja) 2011-08-25
EP2263166A2 (en) 2010-12-22
US20110022820A1 (en) 2011-01-27
US9406026B2 (en) 2016-08-02
WO2009120638A2 (en) 2009-10-01
US8421053B2 (en) 2013-04-16
US20130005580A1 (en) 2013-01-03
US20160019468A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP5296189B2 (ja) アナログ処理用のシステム、装置、および方法
US9129224B2 (en) Systems and methods for increasing the energy scale of a quantum processor
US8854074B2 (en) Systems and methods for superconducting flux qubit readout
US7932515B2 (en) Quantum processor
JP5584691B2 (ja) 磁場測定用のシステム、方法および装置
Rosenberg et al. Solid-state qubits: 3D integration and packaging
US20100133514A1 (en) Superconducting shielding for use with an integrated circuit for quantum computing
Martínez-Pérez et al. Three-axis vector nano superconducting quantum interference device
US20090121215A1 (en) Systems, devices, and methods for analog processing
JP2019508819A (ja) 共面導波管の磁束量子ビットを有するプログラム可能な汎用量子アニーリング
Golod et al. Reconfigurable Josephson phase shifter
Bhatia et al. Nanoscale domain wall engineered spin-triplet Josephson junctions and SQUID
CN112567393A (zh) 包括基于自旋二极管效应的自旋电子谐振器的突触链及包括这种突触链的神经网络
CN112567392A (zh) 包括自旋电子谐振器的神经网络
Raghu et al. Vortex-dynamics approach to the Nernst effect in extreme type-II superconductors dominated by phase fluctuations
JP2023507785A (ja) 量子ビットの容量をチューニングするためのシステム及び方法
Pesin et al. Scattering theory of transport in coherent quantum Hall bilayers
de Araujo et al. Circular single domains in hemispherical Permalloy nanoclusters
Linek et al. On the coupling of magnetic moments to superconducting quantum interference devices
Nam et al. Effect of magnetic field direction on the remanent resistance levels and vortex chirality of a multilayered magnetic ring
RU2120142C1 (ru) Магнитный инвертор
Patchett Ferromagnetic dynamics in coupled systems
Tuohimaa et al. Magnetic flux pinning in high-Tc grain boundary junctions in low magnetic fields
Tuohimaa et al. Three-dimensional Josephson junction networks with coupling inhomogeneities in magnetic fields
Weinberger* Tunnelling, non-collinearity and current-induced switching in metal/heterojunctions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5296189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250