JP5288779B2 - 2,3-dicyanonaphthalene derivative - Google Patents
2,3-dicyanonaphthalene derivative Download PDFInfo
- Publication number
- JP5288779B2 JP5288779B2 JP2007307506A JP2007307506A JP5288779B2 JP 5288779 B2 JP5288779 B2 JP 5288779B2 JP 2007307506 A JP2007307506 A JP 2007307506A JP 2007307506 A JP2007307506 A JP 2007307506A JP 5288779 B2 JP5288779 B2 JP 5288779B2
- Authority
- JP
- Japan
- Prior art keywords
- dicyanonaphthalene
- reaction
- dicyano
- tms
- derivative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 C*c1c(c(*)c(c(C#N)c2*)C#N)c2c(*)c(C)c1* Chemical compound C*c1c(c(*)c(c(C#N)c2*)C#N)c2c(*)c(C)c1* 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、ナフタロシアニン製造の中間体等として有用な、新規な置換2, 3−ジシアノナフタレン誘導体に関する。 The present invention relates to a novel substituted 2,3-dicyanonaphthalene derivative useful as an intermediate for the production of naphthalocyanine and the like.
近年、近赤外領域に発振波長を持つ半導体レーザーの登場によってフタロシアニンの吸収長波長化の研究が盛んに行われるようになり、それに関連してナフタロシアニンの合成が注目を浴びている。ナフタロシアニンは、フタロシアニンよりも共役系が長く吸収波長が長波長領域であるため、光記録材料だけでなく熱線吸収剤としての利用が期待されているが、前駆体である2, 3−ジシアノナフタレン誘導体の合成が困難であるため報告例が少ない。 In recent years, with the advent of semiconductor lasers having an oscillation wavelength in the near-infrared region, research on increasing the absorption wavelength of phthalocyanine has been actively conducted, and the synthesis of naphthalocyanine has attracted attention in connection with this. Naphthalocyanine is expected to be used not only as an optical recording material but also as a heat ray absorber because its conjugated system is longer than that of phthalocyanine and its absorption wavelength is in the long wavelength region. However, 2,3-dicyanonaphthalene is a precursor. There are few reports because the synthesis of derivatives is difficult.
ナフタロシアニンの前駆体となる2, 3−ジシアノナフタレン誘導体の製造方法としては、1−置換−又は1,4−置換−2,3−ジメチルベンゼンを原料として、多段階反応により対応する5−置換、又は5,8−置換−2,3−ジシアノナフタレン誘導体を製造する方法が提案されている。(例えば、特許文献1参照)
また、1,4−ジヒドロキシ−2,3−ジシアノナフタレンをアルキル化剤と反応させることによってヒドロキシル基をアルキル化し、対応する2, 3−ジシアノナフタレン誘導体を製造する方法も提案されている。(例えば、特許文献2,非特許文献1参照)
Also proposed is a method of alkylating a hydroxyl group by reacting 1,4-dihydroxy-2,3-dicyanonaphthalene with an alkylating agent to produce a corresponding 2,3-dicyanonaphthalene derivative. (For example, see Patent Document 2 and Non-Patent Document 1)
しかしながら、これらの従来技術で得られる2, 3−ジシアノナフタレン誘導体の種類は限られていた。また、2, 3−ジシアノナフタレン環に結合した炭化水素基の数が少ないために有機溶媒に対する溶解性が小さく、これらの化合物をナフタロシアニン化合物等の原料として使用した場合には、所望の化合物を効率良く製造することは困難であった。 However, the types of 2,3-dicyanonaphthalene derivatives obtained by these conventional techniques are limited. In addition, since the number of hydrocarbon groups bonded to the 2,3-dicyanonaphthalene ring is small, the solubility in organic solvents is small, and when these compounds are used as raw materials for naphthalocyanine compounds, the desired compound is It was difficult to manufacture efficiently.
したがって、本発明は各種の炭化水素基により、2, 3−ジシアノナフタレン環の5〜8−位が置換された新規な2, 3−ジシアノナフタレン誘導体を提供することを目的とする。 Accordingly, an object of the present invention is to provide a novel 2,3-dicyanonaphthalene derivative in which the 5- to 8-positions of the 2,3-dicyanonaphthalene ring are substituted with various hydrocarbon groups.
本発明者等は鋭意検討した結果、置換フラン化合物を1, 4−ジアルコキシ−2, 3−ジシアノ−5, 6−ジハロゲン化ベンゼンと反応させることによって、対応する2, 3−ジシアノナフタレン環の5〜8−位が置換された新規な2,3−ジシアノナフタレン誘導体が得られることを発見し、本発明を完成させたものである。
すなわち、本発明の2, 3−ジシアノナフタレン誘導体は、つぎの1〜2の構成を有するものである。
1.下記の式(1)で表される2, 3−ジシアノナフタレン誘導体:
2.前記R 5 およびR 6 がペンチル基であることを特徴とする1に記載の2, 3−ジシアノナフタレン誘導体。
As a result of intensive studies, the present inventors have reacted a 1,4-dialkoxy-2,3-dicyano-5,6-dihalogenated benzene with a corresponding 2,3-dicyanonaphthalene ring. It was discovered that a novel 2,3-dicyanonaphthalene derivative substituted at the 5-8-position was obtained, and the present invention was completed.
That is, the 2,3-dicyanonaphthalene derivative of the present invention has the following configurations 1-2 .
1. 2,3-dicyanonaphthalene derivative represented by the following formula (1):
2. 2. The 2,3-dicyanonaphthalene derivative according to 1, wherein R 5 and R 6 are pentyl groups .
本発明の、2, 3−ジシアノナフタレン環の5〜8−位が置換された2, 3−ジシアノナフタレン誘導体は、有機溶媒に対して良好な溶解性を有する新規な化合物である。これらの化合物は、色素、半導体等として用いられるナフタロシアニン化合物の原料等として好適に用いられる。 The 2,3-dicyanonaphthalene derivative substituted in the 5-8-position of the 2,3-dicyanonaphthalene ring of the present invention is a novel compound having good solubility in an organic solvent. These compounds are suitably used as raw materials for naphthalocyanine compounds used as dyes, semiconductors and the like.
本発明の式(1)で表される2, 3−ジシアノナフタレン誘導体の具体例としては、例えばR 1 〜R 6 として次のような置換基を有する化合物が挙げられる。ここで、Meはメチル基、Phはフェニル基を表す。
R1=Me,R2=R3=R4=H,R 5 =R 6 =C5H11
R1=R2=Me,R3=R4=H,R 5 =R 6 =C5H11
R1=R2=Ph,R3=R4=H,R 5 =R 6 =C5H11
Specific examples of the 2,3-dicyanonaphthalene derivative represented by the formula (1) of the present invention include compounds having the following substituents as R 1 to R 6 , for example. Here, Me represents a methyl group, and Ph represents a phenyl group.
R 1 = Me, R 2 = R 3 = R 4 = H, R 5 = R 6 = C 5 H 11
R 1 = R 2 = Me, R 3 = R 4 = H, R 5 = R 6 = C 5 H 11
R 1 = R 2 = Ph, R 3 = R 4 = H, R 5 = R 6 = C 5 H 11
本発明の式(1)で表される2, 3−ジシアノナフタレン誘導体は、下記の式(2)で表されるフラン化合物を、
グリニヤール反応用の削状マグネシウムのような金属マグネシウムの存在下に、下記式(3)で表される2,3−ジシアノベンゼン誘導体と反応させることにより製造することができる。
It can be produced by reacting with a 2,3-dicyanobenzene derivative represented by the following formula (3) in the presence of metallic magnesium such as a milled magnesium for Grignard reaction.
上記式(2)で表されるフラン化合物において、好ましいR1〜R4としては、H、メチル基、フェニル基が挙げられる。 In the furan compound represented by the above formula (2), preferred R 1 to R 4 include H, a methyl group, and a phenyl group.
また、上記の式(3)で表される2,3−ジシアノベンゼン誘導体において、好ましいハロゲン原子としてはBr原子が、また、好ましいR 5 およびR 6 としては、Hおよび炭素数1〜4の低級アルキル基も用いることができるが、炭素数5〜12程度の高級アルキル基が好ましい。
これらの2,3−ジシアノベンゼン誘導体は、入手の容易な1,4−ジヒドロキシ−2,3−ジシアノベンゼン誘導体を原料として、NBSによるジブロモ化反応、および、後続する光延反応(DIAD及びPPh3の存在下での対応するアルコールR5OHおよび(または) R6OHとの反応)により、次の反応スキームにしたがって製造することができる。
These 2,3-dicyanobenzene derivatives can be obtained by using a readily available 1,4-dihydroxy-2,3-dicyanobenzene derivative as a raw material, dibromination reaction with NBS, and subsequent Mitsunobu reaction (of DIAD and PPh 3 ). By reaction with the corresponding alcohols R 5 OH and / or R 6 OH in the presence) according to the following reaction scheme:
上記反応スキームにおいて、NBSはN−ブロモこはく酸イミド、DIADははジイソプロピルアゾカルボキシレート、PPh3はトリフェニルホスフィン、THFはテトラヒドロフラン、r.t.は室温を意味し、65%及び97%は各反応における収率を表す。 In the above reaction scheme, NBS is N-bromosuccinimide, DIAD is diisopropyl azocarboxylate, PPh 3 is triphenylphosphine, THF is tetrahydrofuran, r.p. t. Means room temperature, 65% and 97% represent the yield in each reaction.
本発明の上記式(1)で表される化合物は、上記のように式(2)で表されるフラン化合物を、式(3)で表される2,3−ジシアノベンゼン誘導体と反応させることによって、一段階反応で効率良く製造することができる。この反応は、通常は有機溶媒、特にTHF、ジオキサン、シクロペンチルメチルエーテル、グライム類のようなエーテル系有機溶媒中で行うことが好ましい。他の好適な有機溶媒としては、トルエンやキシレンなどの非極性溶媒、およびN,N−ジメチルホルムアミドやN−メチル−2−ピロリドン等の非プロトン性極性溶媒が挙げられる。
また、反応温度は0℃〜リフラックス温度の範囲で、使用する原料等に応じて選択することができる。
The compound represented by the above formula (1) of the present invention is obtained by reacting the furan compound represented by the formula (2) with the 2,3-dicyanobenzene derivative represented by the formula (3) as described above. Thus, it can be efficiently produced in a one-step reaction. This reaction is usually preferably carried out in an organic solvent, particularly an ether organic solvent such as THF, dioxane, cyclopentylmethyl ether, glymes. Other suitable organic solvents include nonpolar solvents such as toluene and xylene, and aprotic polar solvents such as N, N-dimethylformamide and N-methyl-2-pyrrolidone.
Moreover, reaction temperature can be selected in the range of 0 degreeC-reflux temperature according to the raw material to be used.
次に実施例により本発明をさらに説明するが,以下の実施例は本発明を限定するものではない。
(製造例1:5, 6-ジブロモ-1, 4-ジヒドロキシ-2,3-ジシアノベンゼンの合成)
温度計と塩化カルシウム管を取り付けた500 mL三つ口フラスコに、1, 4-ジヒドロキシ-2,3-ジシアノベンゼン30.0 g(187 mmol)、tert-ブタノール 200 mLを導入し、50℃で加熱溶解した。そこへN-ブロモこはく酸イミド67.6 g(380 mmol, 2 eq.)を15分かけて加え、その後50℃で2時間加熱撹拌した。再びN-ブロモこはく酸イミド67.6 g(380 mmol, 2 eq.)を15分かけて加え、50℃で2時間加熱撹拌した。反応溶液は室温まで放冷した後、亜硫酸水素ナトリウム50 gを水200 mLに溶解した水溶液に加えた。生じた褐色沈殿を吸引ろ過で濾取および水洗した後、真空乾燥した。淡褐色粉末の5, 6-ジブロモ-1, 4-ジヒドロキシ-2,3-ジシアノベンゼンを39.0g(収率65%)得た。得られた化合物の物性値を以下に示す。
13C NMR (100 MHz, TMS, d6-DMSO)δ151.73, 124.87, 113.94,
102.09 ppm; IR(KBr) νmax 3314, 2250, 1716, 1561, 1439, 1331, 1275, 1173, 1052, 986,
931,844, 728, 681, 521, 419 cm-1; MS(APCI) m/z 318 [M + H]+
また、文献(Cook, M. J.;Heeney, M. J. Chem. Eur. J. 2000, 21, 3958)のスペクトルと照合し、目的化合物の生成を確認した。
EXAMPLES Next, although an Example demonstrates this invention further, the following Examples do not limit this invention.
(Production Example 1: Synthesis of 5,6-dibromo-1,4-dihydroxy-2,3-dicyanobenzene)
1,4-dihydroxy-2,3-dicyanobenzene (30.0 g, 187 mmol) and tert-butanol (200 mL) were introduced into a 500 mL three-necked flask equipped with a thermometer and a calcium chloride tube, and heated and dissolved at 50 ° C. did. Thereto, 67.6 g (380 mmol, 2 eq.) Of N-bromosuccinimide was added over 15 minutes, and then heated and stirred at 50 ° C. for 2 hours. Again 67.6 g (380 mmol, 2 eq.) Of N-bromosuccinimide was added over 15 minutes, and the mixture was heated and stirred at 50 ° C. for 2 hours. The reaction solution was allowed to cool to room temperature, and then added to an aqueous solution in which 50 g of sodium bisulfite was dissolved in 200 mL of water. The resulting brown precipitate was collected by suction filtration and washed with water, followed by vacuum drying. As a result, 39.0 g (yield 65%) of 5,6-dibromo-1,4-dihydroxy-2,3-dicyanobenzene was obtained as a light brown powder. The physical property values of the obtained compound are shown below.
13 C NMR (100 MHz, TMS, d 6 -DMSO) δ 151.73, 124.87, 113.94,
102.09 ppm; IR (KBr) ν max 3314, 2250, 1716, 1561, 1439, 1331, 1275, 1173, 1052, 986,
931,844, 728, 681, 521, 419 cm -1 ; MS (APCI) m / z 318 [M + H] +
Moreover, the production | generation of the target compound was confirmed by collating with the spectrum of literature (Cook, MJ; Heeney, MJ Chem. Eur. J.2000, 21, 3958).
(製造例2:5, 6-ジブロモ-2,3-ジシアノ-1,4-ジペンチルオキシベンゼンの合成)
滴下漏斗、塩化カルシウム管、窒素導入管、温度計を取り付けた1000 mL四つ口フラスコに、窒素雰囲気下にて上記製造例1で得られた5, 6-ジブロモ-1, 4-ジヒドロキシ-2,3-ジシアノベンゼン 37.1 g(117 mmol)、トリフェニルホスフィン 73.5 g(280 mmol, 2.4 eq.)、1-ペンタノール 25.7 g(292 mmol, 2.5 eq.)、テトラヒドロフラン 170 mLを導入した。反応溶液を氷浴で0℃に冷却し、そこへ滴下漏斗からジイソプロピルアゾジカルボキシレート 59.4 g(294 mmol, 2.5 eq.)をテトラヒドロフラン 250 mLに溶解した溶液を30分かけて滴下した。滴下後、氷浴を外して反応溶液を室温に戻し、室温で5時間撹拌した。反応溶液中のテトラヒドロフランをロータリーエバポレーターで留去した。得られた褐色粘調液体にジエチルエーテル100 mLを加え、析出した無色固体(トリフェニルホスフィンオキシド)を吸引ろ過で濾取した。濾液をロータリーエバポレーターで濃縮して褐色固体の粗成生物を94.0 g得た。これをシリカゲルカラムクロマトグラフィー(シリカゲル 800 mL,、展開溶媒 ジクロロメタン:ヘキサン = 1 : 5)で精製し、無色結晶の5,6-ジブロモ-2,3-ジシアノ-1,4-ジペンチルオキシベンゼンを51.9g(収率97%)得た。なお、テトラヒドロフランは金属ナトリウムを用いて蒸留したものを用いた(以下の例でも、同様である。)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3)δ4.20(t, 4H, J= 6.4 Hz), 1.94
- 1.87(m, 4H), 1.56-1.36(m, 8H), 0.95(t, 6H, J= 7.2 Hz) ppm; 13C NMR
(100 MHz, TMS, CDCl3)δ156.38, 129.62, 112.36, 109.21, 76.69, 29.63, 27.73,
22.34, 13.93 ppm; IR(KBr) νmax 2959, 2858, 2234, 1548, 1466, 1423, 1361, 1231, 1072, 1044,
1006, 936, 889, 835, 729, 536, 499 cm-1; MS(APCI) m/z 459 [M + H]+;
mp 68.8 - 69.9 ℃
(Production Example 2: Synthesis of 5,6-dibromo-2,3-dicyano-1,4-dipentyloxybenzene)
In a 1000 mL four-necked flask equipped with a dropping funnel, a calcium chloride tube, a nitrogen inlet tube, and a thermometer, the 5,6-dibromo-1,4-dihydroxy-2 obtained in Production Example 1 was obtained under a nitrogen atmosphere. , 3-dicyanobenzene 37.1 g (117 mmol), triphenylphosphine 73.5 g (280 mmol, 2.4 eq.), 1-pentanol 25.7 g (292 mmol, 2.5 eq.) And tetrahydrofuran 170 mL were introduced. The reaction solution was cooled to 0 ° C. with an ice bath, and a solution prepared by dissolving 59.4 g (294 mmol, 2.5 eq.) Of diisopropyl azodicarboxylate in 250 mL of tetrahydrofuran was added dropwise from the dropping funnel over 30 minutes. After the dropwise addition, the ice bath was removed and the reaction solution was allowed to return to room temperature and stirred at room temperature for 5 hours. Tetrahydrofuran in the reaction solution was distilled off with a rotary evaporator. Diethyl ether (100 mL) was added to the resulting brown viscous liquid, and the precipitated colorless solid (triphenylphosphine oxide) was collected by suction filtration. The filtrate was concentrated on a rotary evaporator to obtain 94.0 g of a brown solid crude product. This was purified by silica gel column chromatography (silica gel 800 mL, developing solvent dichloromethane: hexane = 1: 5) to give colorless crystals of 5,6-dibromo-2,3-dicyano-1,4-dipentyloxybenzene in 51.9. g (yield 97%) was obtained. Tetrahydrofuran used was distilled using sodium metal (the same applies to the following examples). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) δ 4.20 (t, 4H, J = 6.4 Hz), 1.94
-1.87 (m, 4H), 1.56-1.36 (m, 8H), 0.95 (t, 6H, J = 7.2 Hz) ppm; 13 C NMR
(100 MHz, TMS, CDCl 3 ) δ156.38, 129.62, 112.36, 109.21, 76.69, 29.63, 27.73,
22.34, 13.93 ppm; IR (KBr) ν max 2959, 2858, 2234, 1548, 1466, 1423, 1361, 1231, 1072, 1044,
1006, 936, 889, 835, 729, 536, 499 cm -1 ; MS (APCI) m / z 459 [M + H] + ;
mp 68.8-69.9 ° C
(参考例1:2, 3-ジシアノ-1, 4-ジペンチルオキシナフタレンの合成)
10 mLナス型フラスコにy字管、滴下漏斗、還流冷却器、塩化カルシウム管、窒素導入管を取り付けた。窒素雰囲気下で、ナス型フラスコにグリニャール反応用削状マグネシウム0.1 g(4.1 mmol, 2 eq.)、フラン (2.0 mmol, 1 eq.)、テトラヒドロフラン 2 mLを入れ加熱還流した。そこへ滴下漏斗から上記の製造例2で得られた5, 6-ジブロモ-2,3
-ジシアノ-1,4-ジペンチルオキシベンゼン0.92 g(2.0 mmol)をテトラヒドロフラン 2 mLに溶解した溶液を30分かけて滴下した。1時間加熱還流し、反応溶液を飽和塩化アンモニウム水溶液100 mLに加え、15分間撹拌した。反応溶液を分液ロートに移し、50 mLのジクロロメタンで3回抽出し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾取し、濾液をロータリーエバポレーターで濃縮し、黒色油状の粗成生物を得た。これをシリカゲルカラムクロマトグラフィーで精製し、2, 3-ジシアノ-1, 4-ジペンチルオキシナフタレンを得た(収率97%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) δ8.23(dd,
2H, J=2.8, 6.2 Hz), 7.79(dd, 2H, J= 3.2, 6.2 Hz), 4.42(t, 4H, J= 6.8 Hz), 1.97(quint,
4H, J= 6.8 Hz), 1.60 - 1.40(m, 8H), 0.97(t, 6H, J= 7.2 Hz) ppm; 13C
NMR (100 MHz, TMS, CDCl3)δ157.23, 130.45, 130.15, 123.53, 114.41, 98.70, 76.34,
29.76, 27.83, 22.32, 13.86 ppm; IR(KBr) νmax 2934, 2869, 2222, 1570, 1502, 1406,
1348, 1241, 1102, 1027, 965, 905, 789, 731, 678, 604, 515 cm-1;
MS(APCI) m/z 351 [M + H]+; mp 52.6 - 53.1 ℃
(Reference Example 1: Synthesis of 2,3-dicyano-1,4-dipentyloxynaphthalene)
A 10 mL eggplant type flask was equipped with a y-shaped tube, a dropping funnel, a reflux condenser, a calcium chloride tube, and a nitrogen introduction tube. Under a nitrogen atmosphere, 0.1 g (4.1 mmol, 2 eq.) Of ground magnesium for Grignard reaction, 2 mL of furan (2.0 mmol, 1 eq.), And 2 mL of tetrahydrofuran were placed in a round flask and heated to reflux. There, 5, 6-dibromo-2,3 obtained in Production Example 2 above from the dropping funnel
A solution prepared by dissolving 0.92 g (2.0 mmol) of -dicyano-1,4-dipentyloxybenzene in 2 mL of tetrahydrofuran was added dropwise over 30 minutes. The mixture was heated to reflux for 1 hour, and the reaction solution was added to 100 mL of a saturated aqueous ammonium chloride solution and stirred for 15 minutes. The reaction solution was transferred to a separatory funnel, extracted three times with 50 mL of dichloromethane, and the organic layer was dried over anhydrous magnesium sulfate. The desiccant was collected by filtration, and the filtrate was concentrated by a rotary evaporator to obtain a crude product of black oil. This was purified by silica gel column chromatography to obtain 2,3-dicyano-1,4-dipentyloxynaphthalene (yield 97%). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) δ8.23 (dd,
2H, J = 2.8, 6.2 Hz), 7.79 (dd, 2H, J = 3.2, 6.2 Hz), 4.42 (t, 4H, J = 6.8 Hz), 1.97 (quint,
4H, J = 6.8 Hz), 1.60-1.40 (m, 8H), 0.97 (t, 6H, J = 7.2 Hz) ppm; 13 C
NMR (100 MHz, TMS, CDCl 3 ) δ157.23, 130.45, 130.15, 123.53, 114.41, 98.70, 76.34,
29.76, 27.83, 22.32, 13.86 ppm; IR (KBr) ν max 2934, 2869, 2222, 1570, 1502, 1406,
1348, 1241, 1102, 1027, 965, 905, 789, 731, 678, 604, 515 cm -1 ;
MS (APCI) m / z 351 [M + H] + ; mp 52.6-53.1 ° C
(実施例1:2, 3-ジシアノ-5-メチル-1, 4-ジペンチルオキシナフタレンの合成)
参考例1において、フランに換えて2−メチルフランを使用し、滴下および反応を室温で行い、反応時間を4時間とした以外は、参考例1と同様にして2, 3-ジシアノ-5-メチル-1, 4-ジペンチルオキシナフタレンを得た(収率35%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) δ8.08(1H,
d, J=8.4 Hz), 7.62(t, 1H, J= 7.2 Hz), 7.53(d, 1H, J= 7.2 Hz), 4.35(t, 2H, J=
6.4 Hz), 4.22(t, 2H, J= 6.8 Hz), 2.88(s, 3H), 2.02 - 1.92(m, 4H), 1.59- 1.40(m,
8H), 0.97(dt, 6H, J= 2.0, 7.4 Hz) ppm; 13C NMR (100 MHz, TMS, CDCl3)δ159.35, 157.42, 136.30,
133.94, 131.68, 129.75, 121.69, 114.44, 114.07, 101.29, 98.92, 77.00, 29.68,
27.72, 23.46, 22.28, 13.78 ppm; IR(KBr) νmax 2939, 2872, 2228, 1571, 1496, 1459, 1409,
1350, 1330, 1208, 1044, 1021, 972, 888, 810, 782 cm-1; MS(APCI) m/z
365 [M + H]+; mp 62.0 - 63.8 ℃
(Example 1: Synthesis of 2,3-dicyano-5-methyl-1,4-dipentyloxynaphthalene)
In Reference Example 1, 2,3-dicyano-5- was used in the same manner as in Reference Example 1, except that 2-methylfuran was used instead of furan, the dropping and reaction were performed at room temperature, and the reaction time was 4 hours. Methyl-1,4-dipentyloxynaphthalene was obtained (35% yield). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) δ8.08 (1H,
d, J = 8.4 Hz), 7.62 (t, 1H, J = 7.2 Hz), 7.53 (d, 1H, J = 7.2 Hz), 4.35 (t, 2H, J =
6.4 Hz), 4.22 (t, 2H, J = 6.8 Hz), 2.88 (s, 3H), 2.02-1.92 (m, 4H), 1.59-1.40 (m,
8H), 0.97 (dt, 6H, J = 2.0, 7.4 Hz) ppm; 13 C NMR (100 MHz, TMS, CDCl 3 ) δ159.35, 157.42, 136.30,
133.94, 131.68, 129.75, 121.69, 114.44, 114.07, 101.29, 98.92, 77.00, 29.68,
27.72, 23.46, 22.28, 13.78 ppm; IR (KBr) ν max 2939, 2872, 2228, 1571, 1496, 1459, 1409,
1350, 1330, 1208, 1044, 1021, 972, 888, 810, 782 cm -1 ; MS (APCI) m / z
365 [M + H] + ; mp 62.0-63.8 ° C
(実施例2:2, 3-ジシアノ-5, 8-ジメチル-1, 4-ジペンチルオキシナフタレンの合成)
参考例1において、フランに換えて2,5−ジメチルフランを使用した以外は、参考例1と同様にして2, 3-ジシアノ-5, 8-ジメチル-1, 4-ジペンチルオキシナフタレンを得た(収率39%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) d 7.37(s, 2H), 4.14(t, 4H, J= 6.8 Hz), 2.83(s, 6H),
1.97(quint, 4H, J= 6.8 Hz) ppm; 13C NMR (100 MHz, TMS, CDCl3)δ159.70, 134.12, 133.71,
131.39, 114.22, 101.66, 77.64, 29.37, 27.68, 23.80, 22.33, 13.76 ppm; IR(KBr) νmax 2938, 2872, 2226, 1459,
1338, 1214, 1042, 1015, 962, 850, 729, 566 cm-1; MS(APCI) m/z 379 [M
+ H]+ ; mp95.0 - 95.3 ℃
(Example 2: Synthesis of 2,3-dicyano-5,8-dimethyl-1,4-dipentyloxynaphthalene)
In Reference Example 1, 2,3-dicyano-5,8-dimethyl-1,4-dipentyloxynaphthalene was obtained in the same manner as Reference Example 1, except that 2,5-dimethylfuran was used instead of furan. (Yield 39%). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) d 7.37 (s, 2H), 4.14 (t, 4H, J = 6.8 Hz), 2.83 (s, 6H),
1.97 (quint, 4H, J = 6.8 Hz) ppm; 13 C NMR (100 MHz, TMS, CDCl 3 ) δ159.70, 134.12, 133.71,
131.39, 114.22, 101.66, 77.64, 29.37, 27.68, 23.80, 22.33, 13.76 ppm; IR (KBr) ν max 2938, 2872, 2226, 1459,
1338, 1214, 1042, 1015, 962, 850, 729, 566 cm -1 ; MS (APCI) m / z 379 [M
+ H] + ; mp95.0-95.3 ° C
(実施例3:2, 3-ジシアノ-5, 8-ジフェニル-1, 4-ジペンチルオキシナフタレンの合成)
参考例1において、フランに換えて2,5−ジフェニルフランを使用した以外は、参考例1と同様にして2, 3-ジシアノ-5, 8-ジフェニル-1, 4-ジペンチルオキシナフタレンを得た(収率24%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) δ7.54(s,
2H), 7.44-7.35(m, 10H), 3.61(t, 4H, J= 6.8 Hz), 1.16(quint, 4H, J= 6.8 Hz),
1.06(quint, 4H, J= 7.2 Hz) 0.93(quint, 4H, J= 6.8 Hz), 0.82(t, 6H, J= 7.2 Hz)
ppm; 13C NMR (100 MHz, TMS, CDCl3)δ158.80, 141.99, 139.74,
133.64, 129.50, 128.84, 127.38, 127.13, 113.92, 102.95, 77.05, 28.21, 27.28,
22.18, 13.75 ppm; IR(KBr) νmax 3057, 2956, 2870, 2230, 1599, 1573, 1489, 1411, 1353, 1280,
1233, 1074, 1027, 960, 855, 758, 699 cm-1; MS(APCI) m/z 503 [M + H]+;
mp 192.5 - 194.4 ℃
(Example 3: Synthesis of 2,3-dicyano-5,8-diphenyl-1,4-dipentyloxynaphthalene)
In Reference Example 1, 2,3-dicyano-5,8-diphenyl-1,4-dipentyloxynaphthalene was obtained in the same manner as Reference Example 1, except that 2,5-diphenylfuran was used instead of furan. (Yield 24%). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) δ7.54 (s,
2H), 7.44-7.35 (m, 10H), 3.61 (t, 4H, J = 6.8 Hz), 1.16 (quint, 4H, J = 6.8 Hz),
1.06 (quint, 4H, J = 7.2 Hz) 0.93 (quint, 4H, J = 6.8 Hz), 0.82 (t, 6H, J = 7.2 Hz)
ppm; 13 C NMR (100 MHz, TMS, CDCl 3 ) δ158.80, 141.99, 139.74,
133.64, 129.50, 128.84, 127.38, 127.13, 113.92, 102.95, 77.05, 28.21, 27.28,
22.18, 13.75 ppm; IR (KBr) ν max 3057, 2956, 2870, 2230, 1599, 1573, 1489, 1411, 1353, 1280,
1233, 1074, 1027, 960, 855, 758, 699 cm -1 ; MS (APCI) m / z 503 [M + H] + ;
mp 192.5-194.4 ° C
(実施例4:2, 3-ジシアノ-6, 7-ジフェニル-1, 4-ジペンチルオキシナフタレンの合成)
参考例1において、フランに換えて3,4−ジフェニルフランを使用した以外は、参考例1と同様にして2, 3-ジシアノ-6, 7-ジフェニル-1, 4-ジペンチルオキシナフタレンを得た(収率54%)。得られた化合物の物性値を以下に示す。
1H NMR(400 MHz, TMS, CDCl3) δ8.12(s,
2H), 7.18-7.09(m, 10H), 4.33(t, 4H, J=6.4 Hz), 1.83(quint, 4H, J= 6.8 Hz), 1.47
- 1.25(m, 8H), 0.82(t, 6H, J= 7.2 Hz) ppm; 13C NMR (100 MHz, TMS,
CDCl3)δ157.08,
143.66, 139.75, 129.64, 129.22, 128.10, 127.48, 125.12, 114.44, 98.78, 76.31,
29.73, 27.87, 22.27, 13.86 ppm; IR(KBr) νmax 3061, 2956, 2870, 2223, 1565, 1495,
1340, 1041, 1025, 965, 908, 781, 768, 702, 565, 532 cm-1; MS(APCI)
m/z 503 [M + H]+; mp 119.5 - 121.3 ℃
(Example 4: Synthesis of 2,3-dicyano-6,7-diphenyl-1,4-dipentyloxynaphthalene)
In Reference Example 1, 2,3-dicyano-6,7-diphenyl-1,4-dipentyloxynaphthalene was obtained in the same manner as in Reference Example 1, except that 3,4-diphenylfuran was used instead of furan. (Yield 54%). The physical property values of the obtained compound are shown below.
1 H NMR (400 MHz, TMS, CDCl 3 ) δ8.12 (s,
2H), 7.18-7.09 (m, 10H), 4.33 (t, 4H, J = 6.4 Hz), 1.83 (quint, 4H, J = 6.8 Hz), 1.47
-1.25 (m, 8H), 0.82 (t, 6H, J = 7.2 Hz) ppm; 13 C NMR (100 MHz, TMS,
CDCl 3 ) δ157.08,
143.66, 139.75, 129.64, 129.22, 128.10, 127.48, 125.12, 114.44, 98.78, 76.31,
29.73, 27.87, 22.27, 13.86 ppm; IR (KBr) ν max 3061, 2956, 2870, 2223, 1565, 1495,
1340, 1041, 1025, 965, 908, 781, 768, 702, 565, 532 cm -1 ; MS (APCI)
m / z 503 [M + H] + ; mp 119.5-121.3 ° C
上記の各例における反応経路は、下記のスキームのように、5, 6-ジブロモ-2,3
-ジシアノ-1, 4-ジペンチルオキシベンゼン1からベンザイン中間体2が生成し、置換フランとのDiels-Alder型[4+2]付加反応により不安定な含酸素環状体3を経由して2,3−ジシアノナフタレン誘導体4が生成すると考えられる。
-Dicyano-1,4-dipentyloxybenzene 1 produces benzyne intermediate 2 via Diels-Alder type [4 + 2] addition reaction with substituted furan via unstable oxygenated cyclic 3 It is thought that 3-dicyanonaphthalene derivative 4 is formed.
この反応経路においては、1, 4位のジペンチルオキシ基は、ナフタレン環の形成反応に関与するものではない。したがって、上記の各例では一般式(1)において、R5およびR6がペンチル基である化合物を製造する例について説明したが、R5およびR6として他のアルキル基をした場合にも、同様にナフタレン環の形成反応は進行する。
In this reaction route, the 1,4-position dipentyloxy group does not participate in the formation reaction of the naphthalene ring. Therefore, in each of the above examples, in the general formula (1), an example in which a compound in which R 5 and R 6 are pentyl groups has been described, but when other alkyl groups are used as R 5 and R 6 , Similarly, the naphthalene ring formation reaction proceeds.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007307506A JP5288779B2 (en) | 2007-11-28 | 2007-11-28 | 2,3-dicyanonaphthalene derivative |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007307506A JP5288779B2 (en) | 2007-11-28 | 2007-11-28 | 2,3-dicyanonaphthalene derivative |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009132624A JP2009132624A (en) | 2009-06-18 |
JP5288779B2 true JP5288779B2 (en) | 2013-09-11 |
Family
ID=40864888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007307506A Expired - Fee Related JP5288779B2 (en) | 2007-11-28 | 2007-11-28 | 2,3-dicyanonaphthalene derivative |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5288779B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7036299B1 (en) | 2020-10-21 | 2022-03-15 | 日本精工株式会社 | Centering tool, centering device, machine tool, circular work centering method, circular work manufacturing method, ring member manufacturing method, bearing manufacturing method, machine manufacturing method, vehicle manufacturing method, and program. |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5408822B2 (en) * | 2008-11-28 | 2014-02-05 | 国立大学法人長岡技術科学大学 | 5,6,7,8-Tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and method for producing the same |
JP5408820B2 (en) * | 2008-11-28 | 2014-02-05 | 国立大学法人長岡技術科学大学 | 5,6,7,8-Tetra-substituted-1,4-dialkoxy-2,3-dicyano-naphthalene derivatives |
JP5408821B2 (en) * | 2008-11-28 | 2014-02-05 | 国立大学法人長岡技術科学大学 | Naphthalocyanine compound and method for producing the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH089714B2 (en) * | 1989-05-12 | 1996-01-31 | 三井東圧化学株式会社 | Near infrared absorber and display / recording material using the same |
JPH0372481A (en) * | 1989-08-10 | 1991-03-27 | Nippon Jiyouriyuu Kogyo Kk | Naphthalocyanine derivative and its production |
-
2007
- 2007-11-28 JP JP2007307506A patent/JP5288779B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7036299B1 (en) | 2020-10-21 | 2022-03-15 | 日本精工株式会社 | Centering tool, centering device, machine tool, circular work centering method, circular work manufacturing method, ring member manufacturing method, bearing manufacturing method, machine manufacturing method, vehicle manufacturing method, and program. |
Also Published As
Publication number | Publication date |
---|---|
JP2009132624A (en) | 2009-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9260451B2 (en) | Method for producing aromatic compound | |
US20080161574A1 (en) | Diazafluorene compound | |
US20130137881A1 (en) | Method for producing a methylene disulfonate compound | |
JP5288779B2 (en) | 2,3-dicyanonaphthalene derivative | |
JPS6139949B2 (en) | ||
JP5207516B2 (en) | Method for producing 2,3-dicyanonaphthalene derivative | |
US7273937B2 (en) | Process for the preparation of Tazarotene | |
KR101728443B1 (en) | Method for Producing Benzyl Ester 2-aminonicotinicotinate Derivative | |
JP5408820B2 (en) | 5,6,7,8-Tetra-substituted-1,4-dialkoxy-2,3-dicyano-naphthalene derivatives | |
JP5008404B2 (en) | Method for producing methylene disulfonate compound | |
JP5408822B2 (en) | 5,6,7,8-Tetra-substituted-1,4-dialkoxy-5,8-epoxy-2,3-dicyano-5,8-dihydronaphthalene derivative and method for producing the same | |
JP5586000B2 (en) | Indacene derivative and method for producing the same, carbon bridged p-phenylene vinylene derivative and method for producing the same | |
JPS63316757A (en) | 3-amino-2-substituted benzoylacrylic acid derivative | |
JP5408821B2 (en) | Naphthalocyanine compound and method for producing the same | |
JP2019043941A (en) | Carbazole derivative and biphenyl derivative production method and novel biphenyl derivative | |
JP5036198B2 (en) | Phthalimides containing fluorene skeleton and diamines derived therefrom | |
JP2008081418A (en) | 9,9-bis(4-aminophenyl)fluorene compound | |
JP2010180173A (en) | Compound having dimethoxynaphthalene skeleton and method for producing the same | |
WO2014024769A1 (en) | Method for synthesizing anti-anthradichalcogenophene | |
JP5408824B2 (en) | Naphthalocyanine compound and method for producing the same | |
JP4210753B2 (en) | Metal complex dendrimer and its use | |
JP4157361B2 (en) | Method for producing 9-spirofluorene compound | |
WO2022113850A1 (en) | Near-infrared absorbing material | |
JP3109903B2 (en) | Asymmetric 9-aminostyryl-10-styrylanthracene derivatives and process for producing the same | |
BR112019009804A2 (en) | 4 - ((6-bromopyridin-3-yl) oxy) benzonitrile and preparation processes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130315 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130514 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130604 |
|
LAPS | Cancellation because of no payment of annual fees |