[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5288441B2 - High thermal conductive composite material and its manufacturing method - Google Patents

High thermal conductive composite material and its manufacturing method Download PDF

Info

Publication number
JP5288441B2
JP5288441B2 JP2007526827A JP2007526827A JP5288441B2 JP 5288441 B2 JP5288441 B2 JP 5288441B2 JP 2007526827 A JP2007526827 A JP 2007526827A JP 2007526827 A JP2007526827 A JP 2007526827A JP 5288441 B2 JP5288441 B2 JP 5288441B2
Authority
JP
Japan
Prior art keywords
composite material
rolling
metal
sheet
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007526827A
Other languages
Japanese (ja)
Other versions
JPWO2006120803A1 (en
Inventor
一彰 片桐
篤 垣辻
豊弘 佐藤
輝光 今西
昭之 清水
克彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Technology Research Institute of Osaka Prefecture
Original Assignee
Sumitomo Precision Products Co Ltd
Technology Research Institute of Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd, Technology Research Institute of Osaka Prefecture filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2007526827A priority Critical patent/JP5288441B2/en
Publication of JPWO2006120803A1 publication Critical patent/JPWO2006120803A1/en
Application granted granted Critical
Publication of JP5288441B2 publication Critical patent/JP5288441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/025Aligning or orienting the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/005Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/006Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

This invention provides a composite material that can effectively utilize the properties of a metal powder base material per se or further added ceramic, and ceramic base material per se, and excellent electric conductivity and thermal conductivity and strength properties possessed by a fibrous carbon material formed of graphene. To this end, a fibrous carbon material formed of graphene such as carbon nanotubes or vapor phase grown carbon fibers is incorporated, followed by discharge plasma sintering for integration to produce a metal sinter or a mixed sinter composed of a metal and ceramic or a ceramic sinter. The incorporation of the fibrous carbon material formed of graphene can improve various properties such as thermal conductivity and electric conductivity possessed by the metal material. Although the rollability of the sinter is lower than a fibrous carbon material-free material, the sinter can be rolled. When the selection of various conditions, for example, rolling conditions such as rolling direction and rolling reduction and number of times of rolling, and annealing after rolling is taken into consideration, Young's modulus and elongation, residual stress or other ductile properties and various other properties can be regulated without causing a change in tensile strength after rolling.

Description

本発明は、金属材料やセラミックス材料が本来有する特徴に加えて、当該粉体からなる焼結体内に含有させるカーボンナノチューブ(CNT)や気相成長炭素繊維(VGCF)などの繊維状炭素材料によって、優れた電気伝導性、熱伝導性及び強度特性を付与した高熱伝導複合材料とその製造方法に関する。   In addition to the characteristics inherent to metal materials and ceramic materials, the present invention provides a fibrous carbon material such as carbon nanotube (CNT) or vapor grown carbon fiber (VGCF) contained in the sintered body made of the powder. The present invention relates to a high thermal conductive composite material imparted with excellent electrical conductivity, thermal conductivity and strength characteristics, and a method for producing the same.

今日、カーボンナノチューブを用いて種々の機能を持たせた複合材料が提案されている。例えば、アルミニウム合金材の熱伝導率、引っ張り強度を改善する目的で、アルミニウム合金材の含有成分である、Si,Mg,Mnの少なくとも一種を、カーボンナノ繊維と化合させ、カーボンナノ繊維をアルミニウム母材に含有させたアルミニウム合金材が提案されている。これは、カーボンナノ繊維を0.1〜5vol%溶融アルミニウム合金材内に混入し、混練した後ビレットとし、該ビレットを押出成形して得られたアルミニウム合金材の押出型材として提供(特許文献1)されている。   Today, composite materials having various functions using carbon nanotubes have been proposed. For example, for the purpose of improving the thermal conductivity and tensile strength of an aluminum alloy material, at least one of Si, Mg, and Mn, which are components contained in the aluminum alloy material, is combined with carbon nanofibers, and the carbon nanofibers are combined with an aluminum matrix. An aluminum alloy material included in the material has been proposed. This is obtained by mixing carbon nanofibers in 0.1-5 vol% molten aluminum alloy material, kneading and forming a billet, and providing it as an extrusion mold material of an aluminum alloy material obtained by extruding the billet (Patent Document 1). )

さらに、燃料電池のセパレータ等に適用できる成形性に優れた高導電性材料を目的として、PPSやLCP等の流動性に優れた熱可塑性樹脂に金属化合物(ホウ化物:TiB2 、WB、MoB、CrB、AlB2、MgB、炭化物:WC、窒化物:TiN等)およびカーボンナノチューブを適量配合することにより、成形性と導電性を両立させた樹脂成形体が提案(特許文献2)されている。Furthermore, for the purpose of a highly conductive material excellent in moldability that can be applied to a separator of a fuel cell and the like, a metal compound (boride: TiB 2 , WB, MoB, (Patent Document 2) has been proposed (Patent Document 2) in which moldability and conductivity are compatible by blending appropriate amounts of CrB, AlB2, MgB, carbide: WC, nitride: TiN, and the like.

カーボンナノチューブを含むフィールドエミッタとして、インジウム、ビスマスまたは鉛のようなナノチューブ濡れ性元素の金属合金、Ag,AuまたはSnの場合のように比較的柔らかくかつ延性がある金属粉体等の導電性材料粉体とカーボンナノチューブをプレス成形して切断や研摩後、表面に突き出しナノチューブを形成し、該表面をエッチングしてナノチューブ先端を形成、その後金属表面を再溶解し、突き出しナノチューブを整列させる工程で製造する方法が提案(特許文献3)されている。   As a field emitter containing carbon nanotubes, conductive material powders such as metal alloys of nanotube wettable elements such as indium, bismuth or lead, and relatively soft and ductile metal powders as in the case of Ag, Au or Sn After the body and carbon nanotubes are press-molded, cut and polished, the protruding nanotubes are formed on the surface, the surface is etched to form the nanotube tips, and then the metal surface is re-dissolved and aligned to align the protruding nanotubes. A method has been proposed (Patent Document 3).

特開2002−363716JP 2002-363716 A 特開2003−34751JP 2003-34751 A 特開2000−223004JP 2000-223044 A

上述の樹脂中やアルミニウム合金中に分散させようとするカーボンナノチューブは、得られる複合材料の製造性や所要の成形性を得ることを考慮して、できるだけ長さの短いものが利用されて、分散性を向上させており、カーボンナノチューブ自体が有するすぐれた電気伝導と熱伝導特性を有効に活用しようとするものでない。   The carbon nanotubes to be dispersed in the above-described resin or aluminum alloy are dispersed with the shortest possible length in consideration of obtaining manufacturability of the resulting composite material and obtaining the required moldability. It is not intended to effectively utilize the excellent electrical and thermal conductivity characteristics of the carbon nanotube itself.

また、上述のカーボンナノチューブ自体を活用しようとする発明では、例えばフィールドエミッタのように具体的かつ特定の用途に特化することができるが、他の用途には容易に適用できず、一方、ある機能を目的に多価金属元素の酸化物を選定して特定の柱状体からなるセラミックス複合ナノ構造体を製造する方法では、目的設定とその元素の選定と製造方法の確率に多大の工程、試行錯誤を要することが避けられない。   Further, in the invention that attempts to utilize the above-mentioned carbon nanotube itself, it can be specialized for a specific and specific use, for example, a field emitter, but cannot be easily applied to other uses. In the method of manufacturing ceramic composite nanostructures consisting of specific columnar bodies by selecting oxides of polyvalent metal elements for the purpose of function, it takes a lot of steps and trials to set the purpose and the probability of the element selection and manufacturing method It is unavoidable to make mistakes.

カーボンナノチューブ以外の繊維状炭素材料として以前より気相法炭素繊維が知られており、カーボンナノチューブより太いこの気相法炭素繊維も様々な基材と組み合わされて複合材料とされているが、同様の問題がある。   Vapor-grown carbon fiber has been known as a fibrous carbon material other than carbon nanotubes, and this vapor-grown carbon fiber, which is thicker than carbon nanotubes, is combined with various base materials to make a composite material. There is a problem.

本発明は、耐腐食性、耐熱性を有し、汎用性や延性等を有する金属材料等の特徴を純粋に生かし、これに電気伝導性と熱伝導性を付与あるいは向上させた複合材料の提供を目的とし、金属粉体基材自体あるいはさらに添加するセラミックス、更にはセラミックス粉体基材自体の有する特性とともに、繊維状炭素材料自体が本来的に有する優れた電気伝導、熱伝導特性及び強度特性を有効に活用した高熱伝導複合材料とその製造方法の提供を目的としている。   The present invention provides a composite material that has corrosion resistance, heat resistance, purely uses the characteristics of a metal material having versatility, ductility, etc., and imparts or improves electrical conductivity and thermal conductivity. In addition to the characteristics of the metal powder base material itself or further added ceramics, and the ceramic powder base material itself, the fibrous carbon material itself has excellent electrical and thermal conductivity and strength characteristics. The purpose is to provide a highly heat-conductive composite material that effectively utilizes the material and its manufacturing method.

本発明者らは、独立行政法人科学技術振興機構の開発委託に基づき、カーボンナノチューブ等の繊維状炭素材料を基材中に配合した複合材料において、繊維状炭素材料の電気伝導特性、熱伝導特性並びに強度特性を有効利用できる構成について種々検討した結果、以下の事実を知見した。   The present inventors, based on a contract commissioned by the Japan Science and Technology Agency, incorporated into a composite material in which a fibrous carbon material such as a carbon nanotube is blended in a base material, the electrical conduction characteristics and thermal conduction characteristics of the fibrous carbon material. In addition, as a result of various studies on configurations that can effectively use strength characteristics, the following facts have been found.

1)長鎖状のカーボンナノチューブ(カーボンナノチューブのみを予め放電プラズマ処理したものを含む)を焼成可能なセラミックスやアルミニウム粉末等の金属粉体とボールミル等で混練分散し、これを放電プラズマ焼結にて一体化することで、焼結体内に網状にカーボンナノチューブを巡らせることができる。 1) Long-chain carbon nanotubes (including those in which only carbon nanotubes are previously subjected to discharge plasma treatment) are kneaded and dispersed in a fireable ceramic powder or metal powder such as aluminum powder with a ball mill or the like, and this is used for discharge plasma sintering. By integrating them, the carbon nanotubes can be made to circulate in the sintered body.

2)アルミニウム基炭素繊維複合材料においては、界面にアルミニウム炭化物が生成され、この反応により炭素繊維がダメージを受けること、そして、この炭化物が脆く複合材料としての優れた特性を得ることができないと言われているが、放電プラズマ焼結を用いることにより、炭化物を生成することなく、優れた特性のアルミニウム基炭素繊維複合材料が得られる。 2) In an aluminum-based carbon fiber composite material, aluminum carbide is generated at the interface, the carbon fiber is damaged by this reaction, and the carbide is brittle and it cannot be said that excellent properties as a composite material can be obtained. However, by using spark plasma sintering, an aluminum-based carbon fiber composite material having excellent characteristics can be obtained without producing carbides.

3)具体的には、優れた熱伝導性と、問題のない塑性変形性が得られ、特に、塑性変形性については圧延やプレス成形をできないほどではなく、その塑性変形により様々な形状に加工することができ、更には、例えば圧延方向や圧化率、圧延回数などの圧延条件並びに圧延後の焼鈍等を種々選定、考慮することで、圧延後の引張り強さは変化することなく、ヤング率や伸び、残留応力などの延性や種々特性を制御することができ、また熱伝導性や電気伝導性などの特性を金属材料に新たにあるいは向上させて付与でき、それらの結果として多様な用途への適用が可能となる。 3) Specifically, excellent thermal conductivity and plastic deformation without problems are obtained. Especially, plastic deformation is not so difficult as to be rolled or press-molded, and it is processed into various shapes by the plastic deformation. Further, for example, by selecting and considering various rolling conditions such as rolling direction, compression ratio, number of rolling, and annealing after rolling, the tensile strength after rolling does not change. It is possible to control ductility and various properties such as rate, elongation, and residual stress, and to impart new or improved properties such as thermal conductivity and electrical conductivity to metal materials, resulting in various uses. Application to is possible.

4)繊維状炭素材料として、カーボンナノチューブに代えて気相成長炭素繊維を使用した場合、その複合材料は同様に熱伝導性が高く、また圧延などの塑性変形が可能である。ちなみに、カーボンナノチューブや気相成長炭素繊維と比べて太く且つ結晶構造に規則性がないカーボンファイバーを使用した複合材料の場合は、熱伝導性が低い上に、圧延等の塑性変形により界面で剥離が生じ、複合材料としての機能が失われる。 4) When a vapor-grown carbon fiber is used as the fibrous carbon material instead of the carbon nanotube, the composite material similarly has high thermal conductivity, and can be plastically deformed such as rolling. By the way, in the case of composite materials using carbon fibers that are thicker than carbon nanotubes and vapor-grown carbon fibers and have no regular crystal structure, they have low thermal conductivity and peel at the interface due to plastic deformation such as rolling. And the function as a composite material is lost.

本発明の高熱伝導複合材料は、これらの知見を基礎として完成されたものであり、金属粉体、又は金属とセラミックスと混合粉体、若しくはセラミックス粉体からなる放電プラズマ焼結体を基材としており、単層又は多層のグラフェンにより構成された極細のチューブ状構成物からなる繊維状炭素材料、特に気相成長炭素繊維からなるシート、より具体的には、気相成長炭素繊維の分散液を固化させることにより作製され、繊維の方向がシート表面に平行な方向に配向した気相成長炭素繊維配向シートが前記基材中に複数の層をなして存在している積層体である。


The high thermal conductive composite material of the present invention has been completed on the basis of these findings, and is based on a metal powder, or a mixed powder of metal and ceramics, or a discharge plasma sintered body made of ceramic powder. A fibrous carbon material composed of an ultra-thin tubular structure composed of single-layer or multilayer graphene, particularly a sheet composed of vapor-grown carbon fiber, more specifically, a vapor-grown carbon fiber dispersion. It is a laminate in which a vapor-grown carbon fiber oriented sheet produced by solidification and oriented in the direction parallel to the sheet surface is formed in a plurality of layers in the substrate.


グラフェンとは、6個の炭素原子が二次元的に規則的に配列して構成されたハニカム構造のネットであって、炭素六角網面とも呼ばれ、このグラフェンが規則性をもって積層したものはグラファイトと呼ばれる。このグラフェンにより構成された単層又は多層で且つ極細のチューブ状構成物が、本発明で言う繊維状炭素材料であり、カーボンナノチューブも気相成長炭素繊維も含んでいる。 Graphene is a honeycomb-structured net consisting of six carbon atoms arranged two-dimensionally regularly, and is also called a carbon hexagonal mesh surface. Called. The single-layer or multi-layered and ultrafine tube-like structure made of this graphene is the fibrous carbon material referred to in the present invention , and includes both carbon nanotubes and vapor-grown carbon fibers.

すなわち、カーボンナノチューブは、グラフェンが円筒形状に丸まったシームレスのチューブであり、単層のものと同心円状に積層した複数層のものがある。単層のものは単層ナノチューブと呼ばれ、複数層のものは多層ナノチューブと呼ばれている。また、気相成長炭素繊維は、グラフェンが円筒形状に丸まった単層又は複数層のグラフェンチューブ、すなわちカーボンナノチューブを芯部に有しており、その芯部を多重に且つ多角形状に取り囲むようにグラファイトがグラフェンチューブの径方向に積層されたものであり、その構造から超多層カーボンナノチューブとも呼ばれる。換言すれば、気相成長炭素繊維の中心部に存在する単層又は多層のカーボンチューブがカーボンナノチューブである。   That is, the carbon nanotube is a seamless tube in which graphene is rounded into a cylindrical shape, and there are a single-walled tube and a multi-walled tube that is concentrically stacked. Single-walled ones are called single-walled nanotubes, and multiple-walled ones are called multi-walled nanotubes. In addition, the vapor grown carbon fiber has a single-layer or multiple-layer graphene tube in which graphene is rounded into a cylindrical shape, that is, a carbon nanotube in the core, and surrounds the core in multiple and polygonal shapes. Graphite is laminated in the radial direction of the graphene tube, and it is also called ultra-multi-walled carbon nanotube due to its structure. In other words, the single-layer or multi-layer carbon tube present at the center of the vapor-grown carbon fiber is a carbon nanotube.

繊維状炭素材料の製造方法は特に問わない。アーク放電法、レーザー蒸発法、熱分解法、化学気相成長法等のいずれでもよいが、気相成長炭素繊維は化学気相成長法により製造される。気相成長炭素繊維を表すVGCFはVapor Growth Carbon Fiber の略である。   The manufacturing method in particular of a fibrous carbon material is not ask | required. Although any of an arc discharge method, a laser evaporation method, a thermal decomposition method, a chemical vapor deposition method, and the like may be used, the vapor grown carbon fiber is manufactured by a chemical vapor deposition method. VGCF, which stands for vapor growth carbon fiber, is an abbreviation for Vapor Growth Carbon Fiber.

繊維状炭素材料は、シート状にして粉体層と交互に重ね合わせて積層体を構成するThe fibrous carbon material is formed into a sheet shape and alternately stacked with the powder layer to constitute a laminate.

繊維状炭素材料は又、シート表面に平行な方向に配向する。配向の形態としては2種類あり、一つは繊維状炭素材料が特定の位置方向に配向する3次元配向であり、今一つは特定の平面に平行な方向に配向し、その平面内ではランダムな2次元配向である。無配向は繊維状炭素材料が3次元でランダムな方向を向く3次元ランダムの形態である。繊維状炭素材料により構成されたシートは、その表面に平行な方向への配向が容易であり、同一方向への配向も容易である。繊維状炭素材料の配向により、炭素材料含有金属材料においては配向方向における熱伝導性を向上させることができる。 The fibrous carbon material is also oriented in a direction parallel to the sheet surface . There are two types of orientation, one is a three-dimensional orientation in which the fibrous carbon material is oriented in a specific position direction, and the other is oriented in a direction parallel to a specific plane, and 2 random in that plane. Dimensional orientation. Non-orientation is a three-dimensional random form in which the fibrous carbon material is oriented in a three-dimensional and random direction. A sheet made of a fibrous carbon material can be easily oriented in a direction parallel to the surface, and can be easily oriented in the same direction. Due to the orientation of the fibrous carbon material, the thermal conductivity in the orientation direction can be improved in the carbon material-containing metal material.

放電プラズマ焼結体は塑性加工を施すことが可能である。塑性加工、例えば圧延による繰り返し応力により、粉末境界や結晶粒界にあるカーボンナノチューブが配向し、さらに転位集積によっても、自己組織化が進む。ただし、塑性加工により、熱伝導性は低下することがある。   The spark plasma sintered body can be subjected to plastic working. Carbon nanotubes at the powder boundaries and grain boundaries are oriented by repetitive stress due to plastic working, for example, rolling, and self-organization also proceeds by dislocation accumulation. However, thermal conductivity may decrease due to plastic working.

また、本発明の高熱伝導複合材料の製造方法は、金属粉体層、又は金属粉体とセラミックス粉体の混合粉体層、若しくはセラミックス粉体層と、繊維状炭素材料により構成されたシート、特に気相成長炭素繊維配向シートとを交互に積層する工程と、得られた積層体を放電プラズマ焼結する工程とを含むものである。 Further, the method for producing a high thermal conductive composite material of the present invention includes a metal powder layer, or a mixed powder layer of metal powder and ceramic powder, or a ceramic powder layer, and a sheet composed of a fibrous carbon material , In particular, the method includes a step of alternately laminating vapor-grown carbon fiber oriented sheets and a step of spark plasma sintering of the obtained laminate.

本発明の高熱伝導複合材料の製造方法では、金属粉体又は金属とセラミックスの混合粉体若しくはセラミックス粉体の放電プラズマ焼結体中に、気相成長炭素繊維の配向シートが所定間隔で配列された積層構造の高熱伝導複合材料が製造される。 In the method for producing a high thermal conductive composite material of the present invention, oriented sheets of vapor-grown carbon fibers are arranged at predetermined intervals in a discharge plasma sintered body of metal powder, mixed powder of metal and ceramics, or ceramic powder. A highly heat-conductive composite material having a laminated structure is produced.

本発明の高熱伝導複合材料の製造方法においては、シートを構成する繊維状炭素材料をシート表面に平行な方向に配向させる。この場合、その平面内で繊維状炭素材料がランダムな場合と同一方向に配向する場合がある。繊維状炭素材料の配向により、炭素材料含有金属材料の配向方向における熱伝導性が向上することは前述したとおりである。 In the production method of the high heat conduction composite material of the present invention, it causes orientation of the fibrous carbon material constituting the sheet in a direction parallel to the sheet surface. In this case, the fibrous carbon material may be oriented in the same direction as that in the case where the fibrous carbon material is random. As described above, the orientation of the fibrous carbon material improves the thermal conductivity in the orientation direction of the carbon material-containing metal material.

この配向操作は、繊維状炭素材料のシートを製造する段階で行うことができる。繊維状炭素材料を所定方向へ配向させる方法としては、繊維状炭素材料の分散液を作製し、当該分散液を磁場中又は電場中で固化させる方法が簡易で配向性もよく、好ましい。極短い繊維状炭素材料が径方向に二次元的に集合した平面状の繊維集合体において、繊維状炭素材料を一方向へ押し倒すことにより、配向シートを作製することもできる。 This orientation operation can be performed at the stage of producing a sheet of fibrous carbon material. As a method for orienting the fibrous carbon material in a predetermined direction, a method of preparing a dispersion of the fibrous carbon material and solidifying the dispersion in a magnetic field or an electric field is preferable because it is simple and has good orientation. In a planar fiber assembly in which extremely short fibrous carbon materials are gathered two-dimensionally in the radial direction, an oriented sheet can be produced by pushing down the fibrous carbon material in one direction.

本発明で使用される金属粉体としては、アルミニウム、アルミニウム合金、チタン、チタン合金、銅、銅合金、ステンレス鋼のうち1種または2種以上が好ましく、汎用性や多用途性に優れて種々特性の工業製品の製造が可能になる。   The metal powder used in the present invention is preferably one or more of aluminum, aluminum alloy, titanium, titanium alloy, copper, copper alloy, and stainless steel, and has excellent versatility and versatility. This makes it possible to produce industrial products with special characteristics.

金属粉体の平均粒径は200μm以下、セラミックス粉体の平均粒径が10μm以下がそれぞれ好ましく、焼結性や延性に優れて目的の特性を容易に得ることを可能にする。   The average particle diameter of the metal powder is preferably 200 μm or less, and the average particle diameter of the ceramic powder is preferably 10 μm or less, respectively, and it is possible to easily obtain the desired characteristics with excellent sinterability and ductility.

セラミックス粉体としては、アルミナ、ジルコニアなどの酸化物、窒化アルミニウム、窒化チタン、窒化けい素などの窒化物、炭化けい素、炭化チタン、炭化タンタル、炭化タングステンなどの炭化物、ホウ化チタン、ホウ化ジルコニア、ホウ化クロムなどのホウ化物のうち1種または2種以上が好ましい。このセラミックス粉体は単独で基材を構成することができる。また、金属粉体への混合により圧延時の粒界滑りがよくなり、汎用性や多用途性に優れて種々特性の工業製品の製造が可能になる。   Ceramic powders include oxides such as alumina and zirconia, nitrides such as aluminum nitride, titanium nitride, and silicon nitride, carbides such as silicon carbide, titanium carbide, tantalum carbide, and tungsten carbide, titanium boride, and boride. One or more borides such as zirconia and chromium boride are preferred. This ceramic powder can constitute a base material alone. In addition, mixing with metal powder improves grain boundary sliding during rolling, which makes it possible to produce industrial products having various characteristics with excellent versatility and versatility.

繊維状炭素材料の含有量は重量比で20wt%以下が好ましく、これにより焼結性や延性に優れて目的の特性を容易に得ることが可能になる。ただし、炭素材料配合金属材料が粉末層とシート状炭素材料の積層構造の場合は、塑性加工を行う必要がなければ50wt%以下の含有も許容される。   The content of the fibrous carbon material is preferably 20 wt% or less by weight, and this makes it possible to easily obtain the desired characteristics with excellent sinterability and ductility. However, in the case where the carbon material-mixed metal material has a laminated structure of a powder layer and a sheet-like carbon material, a content of 50 wt% or less is allowed unless plastic processing is required.

金属とセラミックスの混合粉体におけるセラミックスの含有量については重量比で20wt%以下が好ましく、焼結性や延性に優れて目的の特性を容易に得ることが可能になる。   The ceramic content in the mixed powder of metal and ceramic is preferably 20 wt% or less in terms of weight ratio, so that the desired characteristics can be easily obtained with excellent sinterability and ductility.

塑性加工としては圧延、プレス成形等を挙げることができ、圧延は冷間圧延、温間圧延、熱間圧延のいずれかでもよい。塑性加工の後には焼鈍を行うことができる。金属種や混合するセラミックス種、繊維状炭素材料の種類及び量等に応じて最適な圧延方法を選定し、さらに得られる金属材料の残量応力を焼鈍により減少させて圧延効果を一層向上させて目的の特性を容易に得ることが可能になる。   Examples of plastic working include rolling and press forming, and the rolling may be any of cold rolling, warm rolling, and hot rolling. Annealing can be performed after plastic working. Select the optimum rolling method according to the type of metal, ceramics to be mixed, type and amount of fibrous carbon material, etc., and further reduce the residual stress of the resulting metal material by annealing to further improve the rolling effect The desired characteristics can be easily obtained.

基材中へ配合する前の繊維状炭素材料には、予め放電プラズマ処理を施すことができ、これにより繊維状炭素材料の金属基体内への均一な分散性を著しく向上させることができる。   The fibrous carbon material before blending into the substrate can be preliminarily subjected to a discharge plasma treatment, whereby the uniform dispersibility of the fibrous carbon material in the metal substrate can be remarkably improved.

繊維状炭素材料は短く、現状ではカーボンナノチューブの長さは数100μm、気相成長炭素繊維でも高々2〜3cmである。これら繊維状炭素材料は、通常、繊維同士が連なり長鎖状を呈しており、これらが絡まったりさらには繭のような塊を形成しているもの、あるいは繊維状炭素材料のみを放電プラズマ処理して得られる繭や網のような形態を有するものであるが、これらのカーボンナノチューブや気相成長炭素繊維も比較的長い真直なものが開発されており、特にその形状を限定するものではない。   The fibrous carbon material is short. At present, the length of the carbon nanotube is several hundred μm, and even the vapor grown carbon fiber is at most 2 to 3 cm. These fibrous carbon materials usually have long chains formed by continuous fibers, and those in which they are entangled or further forming a lump-like lump, or only the fibrous carbon material is subjected to a discharge plasma treatment. These carbon nanotubes and vapor-grown carbon fibers have been developed to be relatively long and straight, and the shape is not particularly limited.

(削除)(Delete)

放電プラズマ焼結工程においては、低圧下で低温のプラズマ放電を行い、その後高圧下で低温の放電プラズマ焼結を行う2段工程が、長鎖状の繊維状炭素材料の分散性を確保しながら、良好な焼結体を得るのに有効である。   In the discharge plasma sintering process, a two-stage process in which low temperature plasma discharge is performed under low pressure and then low temperature discharge plasma sintering is performed under high pressure while ensuring the dispersibility of the long-chain fibrous carbon material. It is effective to obtain a good sintered body.

本発明の高熱伝導複合材料は、耐食性や放熱性にすぐれた純アルミニウム、アルミニウム合金、チタンなどの金属粉末の焼結体やセラミックス粉体の焼結体を基体とすることで、前記材料自体が本来的に有する腐食性や高温環境下でのすぐれた耐久性を生かし、この基体中に気相成長炭素繊維の配向シート複数の層をなして存在させたことにより、気相成長炭素繊維自体が有する優れた電気伝導と熱伝導特性並びに強度とを併せて、所要特性の増強、相乗効果、あるいは新たな機能を発揮させることができる。 The high thermal conductive composite material of the present invention uses a sintered body of a metal powder or a ceramic powder of pure aluminum, aluminum alloy, titanium or the like excellent in corrosion resistance and heat dissipation as a base, so that the material itself is Taking advantage of the inherent corrosiveness and excellent durability under high temperature environment, the vapor-grown carbon fiber itself is formed by making the oriented sheet of vapor-grown carbon fiber form a plurality of layers in this substrate. In combination with the excellent electric conduction, heat conduction characteristics and strength of the material, the required characteristics can be enhanced, synergistic effects, or new functions can be exhibited.

本発明の高熱伝導複合材料は、繊維状炭素材料を配合した金属粉末焼結体の板材、棒材やブロック材等の所要形状材料を得た後、プレス成形により所要形状に加工することができる。また、圧延により薄板や線材などの目的用途に応じた形態を得ることができる。   The highly heat-conductive composite material of the present invention can be processed into a required shape by press molding after obtaining a required shape material such as a plate material, a bar material or a block material of a metal powder sintered body containing a fibrous carbon material. . Moreover, the form according to the objective uses, such as a thin plate and a wire, can be obtained by rolling.

本発明の高熱伝導複合材料は、上述の焼結体を得る際に例えば耐腐食性、耐熱性に優れるアルミナ、ジルコニア等のセラミックス粉体を分散させることが可能であり、選定する金属基体とセラミックスの特性を組合せたり相乗させることができ、例えば、腐食、高温環境下での電極や発熱体、配線材料、熱伝導度を向上させた熱交換器やヒートシンンク材料、ブレーキ部品、あるいは燃料電池の電極やセパレータ等として応用することができる。また、上述の焼結体を得る際に炭化けい素、窒化けい素などの微粒子を分散させることで、塑性変形時の粒界滑りが良くなり、超塑性を発現させることが可能となる。   The high thermal conductive composite material of the present invention can disperse, for example, ceramic powders such as alumina and zirconia which are excellent in corrosion resistance and heat resistance when obtaining the above-mentioned sintered body. For example, corrosion, electrodes and heating elements in high temperature environments, wiring materials, heat exchangers and heat sink materials with improved thermal conductivity, brake components, or fuel cell electrodes Or as a separator. Further, by dispersing fine particles such as silicon carbide and silicon nitride when obtaining the above-mentioned sintered body, grain boundary sliding during plastic deformation is improved and superplasticity can be expressed.

本発明において、使用する金属粉体には、純アルミニウム、公知のアルミニウム合金、チタン、チタン合金、銅、銅合金、ステンレス鋼等を採用することができる。焼結と塑性変形が可能な例えば耐腐食性、熱伝導性、耐熱性等の必要とする機能を発揮する公知の機能性金属を採用するとよい。   In the present invention, pure aluminum, a known aluminum alloy, titanium, a titanium alloy, copper, a copper alloy, stainless steel, or the like can be used as the metal powder to be used. For example, a known functional metal that can perform sintering and plastic deformation and exhibits necessary functions such as corrosion resistance, thermal conductivity, and heat resistance may be employed.

金属粉体の粒子径としては、必要な焼結体を形成できる焼結性、並びに繊維状炭素材料との混練分散時の解砕能力を有するおよそ100μm以下、さらに50μm以下の粒子径のものが好ましく、大小数種の粒径とすることもでき、粉体種が複数でそれぞれ粒径が異なる構成も採用でき、単独粉体の場合は10μm以下が好ましい。また、粉体には球体以外に繊維状、不定形、樹木状や種々形態のものも適宜利用することができる。なお、アルミニウムなどは50μm〜150μmが好ましい。   As the particle size of the metal powder, those having a particle size of about 100 μm or less, further 50 μm or less, having sinterability capable of forming a necessary sintered body and crushing ability at the time of kneading dispersion with a fibrous carbon material. Preferably, the particle size can be large or small, and a configuration in which the particle size is plural and the particle size is different can be adopted. In the case of a single powder, the particle size is preferably 10 μm or less. In addition to the spheres, the powders can be appropriately used in the form of fibers, irregular shapes, trees, and various forms. In addition, as for aluminum etc., 50 micrometers-150 micrometers are preferable.

本発明において、使用するセラミックス粉体には、アルミナ、ジルコニアなどの酸化物、窒化アルミニウム、窒化チタン、窒化けい素などの窒化物、炭化けい素、炭化チタン、炭化タンタル、炭化タングステンなどの炭化物、ホウ化チタン、ホウ化ジルコニア、ホウ化クロムなどのホウ化物等の公知の各種機械的機能や塑性変形時の粒界滑りを向上させる機能を有するセラミックスを採用することができる。例えば耐腐食性、耐熱性等の必要とする機能を発揮する公知の機能性セラミックスを採用するとよい。   In the present invention, the ceramic powder used includes oxides such as alumina and zirconia, nitrides such as aluminum nitride, titanium nitride, and silicon nitride, carbides such as silicon carbide, titanium carbide, tantalum carbide, and tungsten carbide, Ceramics having various known mechanical functions such as borides such as titanium boride, zirconia boride, and chromium boride, and a function of improving grain boundary sliding at the time of plastic deformation can be employed. For example, a known functional ceramic that exhibits necessary functions such as corrosion resistance and heat resistance may be employed.

セラミックス粉体の粒子径としては、必要な焼結体を形成できる焼結性を考慮したり、カーボンナノチューブとの混練分散時の解砕能力を考慮したり、塑性変形時の粒界滑り能力を考慮して決定するが、およそ10μm以下が好ましく、例えば大小数種の粒径とすることもでき、粉体種が複数でそれぞれ粒径が異なる構成も採用でき、単独粉体の場合は5μm以下、さらに1μm以下が好ましい。また、粉体には球体以外に繊維状、不定形や種々形態のものも適宜利用することができる。   As for the particle size of ceramic powder, considering the sinterability that can form the required sintered body, considering the crushing ability when kneading and dispersing with carbon nanotubes, and the grain boundary sliding ability during plastic deformation Although determined in consideration, it is preferably about 10 μm or less, for example, it can be a large or small particle size, a configuration in which a plurality of powder types and different particle sizes can be adopted, and in the case of a single powder, 5 μm or less Further, it is preferably 1 μm or less. In addition to spheres, powders, irregular shapes, and various forms can be used as appropriate.

高熱伝導複合材料おいて、繊維状炭素材料の含有量は、所要形状や強度を有する焼結体が形成できれば特に限定されるものでないが、セラミックス粉体又は金属粉体の種や粒径を適宜選定することで、例えば重量比で20wt%以下を含有させることが可能である。特に、金属材料の均質性を目的とする場合は、例えば繊維状炭素材料の含有量を3wt%以下、必要に応じて0.05wt%程度まで少なくし、粒度の選定等の混練条件と混練分散方法を工夫する必要がある。   In the high thermal conductive composite material, the content of the fibrous carbon material is not particularly limited as long as a sintered body having a required shape and strength can be formed. By selecting, it is possible to contain 20 wt% or less by weight ratio, for example. In particular, when aiming at homogeneity of the metal material, for example, the content of the fibrous carbon material is reduced to 3 wt% or less, and to about 0.05 wt% if necessary, and kneading conditions such as selection of the particle size and kneading dispersion It is necessary to devise a method.

また、高熱伝導複合材料において、セラミックスは、重量比で20wt%以下の含有であることが好ましい。   In the high thermal conductive composite material, the ceramic content is preferably 20 wt% or less by weight.

本発明の前提として、金属粉体又は金属とセラミックスの混合粉体若しくはセラミックス粉体の放電プラズマ焼結体中に繊維状炭素材料が分散した炭素材料含有金属材料を製造する方法が存在する。この方法は、
(P)長鎖状の繊維状炭素材料を放電プラズマ処理する工程、
(1)セラミックス粉体又は金属粉体あるいはセラミックスと金属との混合粉体と、長鎖状の繊維状炭素材料とを、収納した容器を回転させてメディアを用いることなく重力を印加して混練分散する工程、
(2)分散剤を用いて前記粉体とカーボンナノチューブとを湿式分散させる工程、すなわち分散液を作成し固化させる工程。
(3)混練分散材を放電プラズマ処理する工程、
(4)乾燥した混練分散材を放電プラズマ焼結する工程
を含むものであり、(1)+(4)、(P)+(1)+(4)、(1)+(2)+(4)、(P)+(1)+(2)+(4)、(1)+(3)+(4)、(P)+(1)+(3)+(4)、(1)+(2)+(3)+(4)、(P)(1)+(2)+(3)+(4)の各工程が可能である。なお、(1)(2)の工程は、いずれが先でもこれを複数工程適宜組み合せてもよい。
As a premise of the present invention , there is a method for producing a carbon material-containing metal material in which a fibrous carbon material is dispersed in a metal powder, a mixed powder of metal and ceramics, or a discharge plasma sintered body of ceramic powder . This method
(P) a step of subjecting the long-chain fibrous carbon material to discharge plasma treatment,
(1) Kneading ceramic powder or metal powder or mixed powder of ceramic and metal with a long-chain fibrous carbon material by applying gravity without rotating the container in which the container is stored Dispersing step,
(2) A step of wet-dispersing the powder and the carbon nanotube using a dispersant, that is, a step of creating and solidifying a dispersion.
(3) a step of subjecting the kneaded dispersion to a discharge plasma treatment,
(4) It includes a step of spark plasma sintering of the dried kneaded dispersion material. (1) + (4), (P) + (1) + (4), (1) + (2) + ( 4), (P) + (1) + (2) + (4), (1) + (3) + (4), (P) + (1) + (3) + (4), (1) Each process of + (2) + (3) + (4) and (P) (1) + (2) + (3) + (4) is possible. Note that any of the steps (1) and (2) may be combined first, and a plurality of steps may be appropriately combined.

混練分散する工程は、前述の長鎖状の繊維状炭素材料をセラミックス粉体又は金属粉体あるいはセラミックスと金属との混合粉体において、これをほぐし解砕することが重要である。混練分散するには、公知の粉砕、破砕、解砕を行うための各種のミル、クラッシャー、シェイカー装置が適宜採用でき、その機構も回転衝撃式、回転剪断式、回転衝撃剪断式、媒体撹拌式、撹拌式、撹拌羽根のない撹拌式、気流粉砕式など公知の機構を適宜利用できる。   In the kneading and dispersing step, it is important to loosen and crush the long-chain fibrous carbon material described above in ceramic powder, metal powder, or a mixed powder of ceramic and metal. For kneading and dispersing, various mills, crushers, and shaker devices for performing known crushing, crushing, and crushing can be appropriately employed, and the mechanisms thereof are also rotary impact type, rotary shear type, rotary impact shear type, medium stirring type Well-known mechanisms such as a stirring type, a stirring type without a stirring blade, and an airflow grinding type can be used as appropriate.

特にボールミルは、公知の横型や遊星型、撹拌型等のミルの如く、ボール等のメディアを使用して粉砕、解砕を行う構成であればいずれの構造であっても利用できる。また、メディアもその材質、粒径を適宜選定することができる。予めカーボンナノチューブのみを放電プラズマ処理した場合は、特に粉体粒径やボール粒径を選定して解砕能を向上させる条件設定を行う必要がある。   In particular, the ball mill can be used in any structure as long as it is configured to pulverize and disintegrate using a medium such as a ball, such as a known horizontal type, planetary type, or stirring type mill. Further, the material and particle size of the media can be appropriately selected. When only the carbon nanotubes are previously subjected to the discharge plasma treatment, it is necessary to set conditions for improving the crushing ability by selecting the powder particle diameter and the ball particle diameter.

特に遊星ミルは、収納容器の自転と公転が同時に行われ、通常はボール等のメディアを使用して粉砕、解砕を行う構成であるが、この発明ではメディアを使用することなく、容器容量とそれに収納する量、繊維状炭素材料やセラミックス、金属などの粒度とその量並びに容器の回転数(印加する重力)を適宜選定することで、セラミックスや金属粒子への繊維状炭素材料の分散、付着が効率的にかつ確実に実行できる。すなわち、印加する重力は、容器容量への収納量繊維状炭素材料やセラミックス、金属の粒度とその量並びに容器の回転数に応じ処理時間とともに適宜選定される。   In particular, the planetary mill is configured such that the storage container rotates and revolves at the same time and is usually pulverized and crushed using a medium such as a ball. Dispersion and adhesion of fibrous carbon material to ceramics and metal particles by appropriately selecting the amount to be stored, the particle size and amount of fibrous carbon material, ceramics, metal, etc. and the rotation speed of the container (applied gravity) Can be executed efficiently and reliably. That is, the gravitational force to be applied is appropriately selected along with the processing time according to the storage amount in the container capacity, the fibrous carbon material, ceramics, the particle size and amount of the metal, and the rotation speed of the container.

湿式分散させる工程は、公知の非イオン系分散剤、陽陰イオン系分散剤を添加して超音波式分散装置、ボールミルを始め前述の各種ミル、クラッシャー、シェイカー装置を用いて分散させることができ、前記の乾式分散時間の短縮や高効率化を図ることができる。また、湿式分散後のスラリーを乾燥させる方法は、公知の熱源やスピン法を適宜採用できる。 In the wet dispersion process, known nonionic dispersants and cationic anionic dispersants can be added and dispersed using the above-described various mills, crushers and shakers, including an ultrasonic dispersing device and a ball mill. The dry dispersion time can be shortened and the efficiency can be improved. In addition, as a method of drying the slurry after the wet dispersion, a known heat source or a spin method can be appropriately employed.

混練分散する工程と湿式分散させる工程は、ドライで混練分散後に湿式分散させる場合の他、湿式分散させてからドライで混練分散したり、ドライ、ウエット、ドライと組み合せるなど種々の混練分散工程パターンを採用することができる。また、同じドライで混練分散する際に、例えば先にカーボンナノチューブとセラミックスを混練分散し、次にこれらに金属粉を混練分散したり、粉体の粒度毎に混練分散を繰り返すこともできる。さらに、ウエットとドライの組み合せにおいて、例えば先に繊維状炭素材料とセラミックスを湿式混練分散し、次に乾燥させた分散材に金属粉をドライ混練分散させるなどの種々の混練分散工程パターンを採用することができる。 There are various kneading and dispersing process patterns, such as kneading and dispersing, and wet dispersing, in addition to dry kneading and dispersing, wet dispersing and then dry kneading and mixing with dry, wet, and dry. Can be adopted. Further, when kneading and dispersing in the same dry, for example, carbon nanotubes and ceramics can be kneaded and dispersed first, and then metal powder can be kneaded and dispersed, or kneading and dispersing can be repeated for each particle size of the powder. Furthermore, in the combination of wet and dry, for example, various kneading and dispersing process patterns are adopted such as wet kneading and dispersing the fibrous carbon material and ceramics first, and then dry kneading and dispersing the metal powder in the dried dispersion material. be able to.

混練分散材において繊維状炭素材料を配向させる工程は、例えば上述した湿式分散工程を利用する。具体的には、金属粉体または金属とセラミックスの混合粉体もしくはセラミックス粉体へ繊維状炭素材料を混合分散させた混合分散材の分散液を作製する。分散液には固化のためのバインダーとしてゼラチンなどを配合する。この分散液を溶液状態(加熱状態)で例えば3000ガウスといった強磁場中に配置し、冷却により固化させる。3000ガウスといった強磁場は、ネオジウム鉄ボロン磁石等により形成可能である。これにより、繊維状炭素材料が金属粉体中または金属とセラミックスの混合粉体中もしくはセラミックス粉体中に分散し、且つその繊維状炭素材料が特定方向へ配向した混合粉体固形物が形成される。磁場を使う以外には、電場を使うことができる。 The step of orienting the fibrous carbon material in the kneading and dispersing material uses, for example, the wet dispersion step described above. Specifically, a dispersion liquid of a mixed dispersion material in which a fibrous carbon material is mixed and dispersed in a metal powder, a mixed powder of metal and ceramics, or a ceramic powder is prepared. Gelatin or the like is blended in the dispersion as a binder for solidification. This dispersion is placed in a strong magnetic field such as 3000 gauss in a solution state (heated state) and solidified by cooling. A strong magnetic field such as 3000 gauss can be formed by a neodymium iron boron magnet or the like. This forms a mixed powder solid in which the fibrous carbon material is dispersed in the metal powder, the mixed powder of metal and ceramics or in the ceramic powder, and the fibrous carbon material is oriented in a specific direction. The Besides using a magnetic field, you can use an electric field.

本発明における繊維状炭素材料のシートにおいて、その繊維状炭素材料を配向させる場合も、同様に分散液を使用し、磁場や電場を印加する方法が利用可能である。また、分散液を注射器のような射出機に入れておいて一方向に何列も押し出す方法、立て板に分散液を流す方法、分散液中に板を浸漬しゆっくりと引き上げる方法といった物理的な方法によっても繊維状炭素材料が特定方向へ配向したシートを形成することができる。 When the fibrous carbon material is oriented in the sheet of the fibrous carbon material in the present invention, a method of applying a magnetic field or an electric field using the dispersion liquid can be used. Also, physical methods such as placing the dispersion in an injection machine such as a syringe and extruding several rows in one direction, flowing the dispersion on a standing plate, and slowly immersing the plate in the dispersion and pulling it up slowly A sheet in which the fibrous carbon material is oriented in a specific direction can also be formed by the method.

本発明において、放電プラズマ焼結(処理)する工程は、カーボン製のダイとパンチの間に乾燥した混練分散材の粉体又は固形物を装填し、上下のパンチで加圧しながら直流パルス電流を流すことにより、ダイ、パンチ、および被処理材にジュール熱が発生し、混練分散材を焼結する方法であり、パルス電流を流すことで粉体と粉体、繊維状炭素材料の間で放電プラズマが発生し、粉体と繊維状炭素材料表面の不純物などが消失して活性化されるなど等の作用により焼結が円滑に進行する。   In the present invention, the step of spark plasma sintering (treatment) is carried out by loading a dry kneaded dispersion powder or solid material between a carbon die and a punch, and applying a direct current pulse current while pressing with the upper and lower punches. This is a method in which Joule heat is generated in the die, punch, and material to be processed, and the kneaded dispersion material is sintered. Discharging between powder, powder, and fibrous carbon material by applying a pulse current Sintering proceeds smoothly by the action of plasma being generated and the impurities on the surface of the powder and the fibrous carbon material disappearing and being activated.

繊維状炭素材料のみに施す放電プラズマ処理条件は、特に限定されるものでないが、例えば温度は200〜1400℃、時間1〜2時間程度、圧力は0〜10MPaの範囲から適宜選定することができる。   The discharge plasma treatment conditions applied only to the fibrous carbon material are not particularly limited. For example, the temperature can be appropriately selected from the range of 200 to 1400 ° C., the time of about 1 to 2 hours, and the pressure of 0 to 10 MPa. .

乾式又は湿式あるいはその両方で得た混練分散材を、さらに放電プラズマ処理する工程は、放電プラズマ焼結工程前に行うもので、混練分散材の解砕をより進行させたり、カーボンナノチューブの延伸作用、表面活性化、粉体物の拡散等の作用効果が生じ、後の放電プラズマ焼結の円滑な進行ととともに焼結体に付与する熱伝導性、導電性が向上する。   The step of further subjecting the kneaded dispersion material obtained by the dry method or wet method to the discharge plasma treatment is performed before the discharge plasma sintering step to further proceed the crushing of the kneaded dispersion material or to extend the carbon nanotubes. In addition, effects such as surface activation and powder diffusion occur, and the thermal conductivity and conductivity imparted to the sintered body are improved along with the smooth progress of subsequent discharge plasma sintering.

混練分散材への放電プラズマ処理条件は、特に限定されるものでないが、被処理材料の焼結温度を考慮して、例えば温度は200〜1400℃、時間1〜15分程度、圧力は0〜10MPaの範囲から適宜選定することができる。   The discharge plasma treatment conditions for the kneaded dispersion are not particularly limited, but considering the sintering temperature of the material to be treated, for example, the temperature is 200 to 1400 ° C., the time is about 1 to 15 minutes, and the pressure is 0 to 0. It can select suitably from the range of 10 MPa.

本発明において、放電プラズマ焼結は、用いるセラミックス粉体や金属粉体の通常の焼結温度より低温で処理することが好ましい。また、特に高い圧力を必要とせず、焼結時、比較的低圧、低温処理となるように条件設定することが好ましい。   In the present invention, the discharge plasma sintering is preferably performed at a temperature lower than the normal sintering temperature of the ceramic powder or metal powder used. In addition, it is preferable to set conditions so that a relatively low pressure and a low temperature treatment are required during sintering without requiring a particularly high pressure.

また、上記の混練分散材を放電プラズマ焼結する工程において、まず低圧下で低温のプラズマ放電を行い、その後高圧下で低温の放電プラズマ焼結を行う2工程とすることも好ましい。該焼結後の析出硬化、各種熱処理による相変態を利用することも可能である。なお、圧力と温度の高低は、前記2工程間で相対的なものであり、両工程間で高低の差異を設定できればよい。   Further, in the step of performing discharge plasma sintering of the above kneaded dispersion material, it is also preferable to perform two steps in which low temperature plasma discharge is first performed under low pressure and then low temperature discharge plasma sintering is performed under high pressure. It is also possible to use precipitation hardening after sintering and phase transformation by various heat treatments. Note that the pressure and temperature levels are relative between the two steps, and it is only necessary to set a difference in height between the two steps.

本発明の一つの特徴である、得られた放電プラズマ焼結体を塑性変形する工程は、公知のプレス成形のほか、冷間圧延、温間圧延、熱間圧延のいずれの圧延方法であってもよい。例えば、金属焼結体の金属種や混合するセラミックス種や繊維状炭素材料量に応じて最適な圧延方法を選定する。また、複数パスの圧延を施す際に、例えば冷間圧延、温間圧延を組み合せることも可能である。   The step of plastically deforming the obtained spark plasma sintered body, which is one of the features of the present invention, is any rolling method of cold rolling, warm rolling, and hot rolling in addition to known press forming. Also good. For example, an optimum rolling method is selected according to the metal species of the sintered metal, the ceramic species to be mixed, and the amount of fibrous carbon material. In addition, when performing multiple passes of rolling, for example, cold rolling and warm rolling can be combined.

冷間圧延は、得られたブロック状、板状、線状の焼結体をそのまま圧延するもので、所要の圧下率で1パスから複数パスを繰り返して所要の厚みの板材、薄板、線材に加工することができる。1回の圧下率や総圧下率ならびに圧延ロール径などは、金属種や混合するセラミックス種や繊維状炭素材料量に応じて、圧延材料にクラックなどが生じないように適宜選定される。   Cold rolling is a process in which the obtained block, plate, and linear sintered bodies are rolled as they are, and a plurality of passes are repeated from a single pass at a required reduction rate to obtain a plate, thin plate, or wire having a required thickness. Can be processed. The rolling reduction ratio, total rolling reduction ratio, rolling roll diameter, and the like are appropriately selected according to the metal species, the ceramic species to be mixed, and the amount of fibrous carbon material so that cracks do not occur in the rolling material.

温間又は熱間によるプレス成形や圧延は、必要とする形態と材質に応じて適宜選定でき、例えば金属焼結体の性状に応じて冷間圧延が容易でないかあるいは圧延効率を向上させる目的で採用することが可能で、金属焼結体の金属種や混合するセラミックス種や繊維状炭素材料量に応じて、1回の圧下率や総圧下率ならびにパス回数、圧延ロール径などを考慮し、材料の加熱温度を適宜選定するものである。   The hot or hot press forming or rolling can be appropriately selected according to the required form and material. For example, cold rolling is not easy or the rolling efficiency is improved depending on the properties of the sintered metal. Depending on the metal type of the sintered metal, the type of ceramics to be mixed and the amount of fibrous carbon material, it is possible to take into consideration the rolling reduction ratio, total rolling reduction ratio, number of passes, rolling roll diameter, etc. The heating temperature of the material is appropriately selected.

プレス成形や圧延後の焼鈍工程は、必要に応じて施すものであり、例えば前述のとおり、金属種や混合するセラミックス種やカーボンナノチューブ量に応じて最適な圧延方法や組合せ、圧延条件が選定されるが、さらに圧延金属材料の残量応力を減少させて圧延効果を一層向上させたり、所要の特性を容易に得る目的など、選定した圧延方法や組合せ、圧延条件等に応じて、焼鈍の時期、温度条件、回数等が適宜選定される。   The annealing process after press forming and rolling is performed as necessary.For example, as described above, the optimum rolling method, combination, and rolling conditions are selected according to the metal species, the ceramic species to be mixed, and the amount of carbon nanotubes. However, depending on the selected rolling method, combination, rolling conditions, etc., such as the purpose of further reducing the residual stress of the rolled metal material to further improve the rolling effect and easily obtaining the required characteristics, The temperature condition, the number of times, etc. are appropriately selected.

塑性変形あるいは塑性変形と焼鈍処理されたこの発明の金属材料は、さらに機械加工することが容易であり、目的の用途や形態に応じた種々形状に加工でき、さらには加工した金属材料同士や異材質とをろう材等で接合加工することも可能である。   The metal material of the present invention that has been subjected to plastic deformation or plastic deformation and annealing treatment can be further machined easily, can be processed into various shapes according to the intended use and form, and further, the processed metal materials can be different from each other. It is also possible to bond the material with a brazing material or the like.

本発明において、金属粉体又は金属とセラミックスの混合粉体もしくはセラミックス粉体の放電プラズマ焼結体中に、繊維状炭素材料からなるシートが所定間隔で配列された積層構造の高熱伝導複合材料を製造する場合は、まず、繊維状炭素材料のシートを作製する。例えば、繭状にからまった繊維の塊を解きほぐしてその分散液をつくり、薄く固化させることによりシートが作製される。分散液に磁場や電場を印加することにより、繊維を配向させることができるのは前述したとおりである。また、分散液を注射器のような射出機に入れておいて一方向に何列も押し出す方法、立て板に分散液を流す方法、分散液中に板を浸漬しゆっくりと引き上げる方法といった物理的な方法によっても繊維状炭素材料が特定方向へ配向したシートを作製できるのも前述のとおりである。 In the present invention, a highly heat-conductive composite material having a laminated structure in which sheets of fibrous carbon material are arranged at predetermined intervals in a discharge plasma sintered body of metal powder or a mixed powder of metal and ceramics or ceramic powder. When manufacturing, the sheet | seat of a fibrous carbon material is produced first. For example, a sheet is prepared by unraveling a lump of fibers entangled to make a dispersion and solidifying it thinly. As described above, the fibers can be oriented by applying a magnetic field or an electric field to the dispersion. Also, physical methods such as placing the dispersion in an injection machine such as a syringe and extruding several rows in one direction, flowing the dispersion on a standing plate, and slowly immersing the plate in the dispersion and pulling it up slowly As described above, a sheet in which the fibrous carbon material is oriented in a specific direction can also be produced by the method.

繊維状炭素材料のシートが作製されると、そのシートの両面又は片面に金属粉体又は金属とセラミックスの混合粉体もしくはセラミックス粉体を付着させる。これを重ねて加圧し放電プラズマ焼結することにより、積層構造の高熱伝導複合材料が製造される。繊維状炭素材料が同一方向に配向したシートを使用する場合、その配向方向を揃えることが重要である。放電プラズマ焼結加工、その後の塑性加工、繊維状炭素材料に対する事前の放電プラズマ処理については、繊維分散構造の高熱伝導複合材料の製造で説明したとおりである。   When a sheet of fibrous carbon material is produced, metal powder, a mixed powder of metal and ceramics, or ceramic powder is adhered to both surfaces or one surface of the sheet. A high thermal conductive composite material having a laminated structure is manufactured by applying pressure and sintering by discharge plasma. When using a sheet in which the fibrous carbon material is oriented in the same direction, it is important to align the orientation direction. The discharge plasma sintering process, the subsequent plastic process, and the prior discharge plasma process for the fibrous carbon material are as described in the production of the high thermal conductive composite material having a fiber dispersion structure.

以下に実施例を述べる。実施例1〜実施例7は本発明の前提となる実施例であり、実施例8及び9が本発明の実施例、実施例10〜13は参考例である。
実施例1−1
平均粒子径30μmのアルミニウム合金(3003)粉体と、0.5wt%の長鎖状のカーボンナノチューブとの混練解砕において、カーボンナノチューブのみを予め放電プラズマ焼結装置のダイ内に装填し、575℃で5分間の放電プラズマ処理したものと同処理を行わないものを用意し、それぞれアルミナ製の容器を用いた遊星ミルで、分散メディアを使用することなくドライ状態で2時間以下の種々時分単位と容器の回転数を組み合せた混練分散を行った。
Examples will be described below. Examples 1 to 7 are examples on which the present invention is based. Examples 8 and 9 are examples of the present invention, and Examples 10 to 13 are reference examples.
Example 1-1
In kneading and crushing an aluminum alloy (3003) powder having an average particle size of 30 μm and 0.5 wt% long-chain carbon nanotubes, only the carbon nanotubes were previously loaded in a die of a discharge plasma sintering apparatus. Prepare a plasma mill that does not perform the same treatment as a discharge plasma treatment at 5 ° C for 5 minutes. Each planetary mill uses a container made of alumina. The kneading dispersion was performed by combining the unit and the rotation speed of the container.

混練分散材を放電プラズマ焼結装置のダイ内に装填し、575℃で60分間の放電プラズマ焼結した。その際、昇温速度は100℃/minとし、50MPaの圧力を付加し続けた。   The kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to discharge plasma sintering at 575 ° C. for 60 minutes. At that time, the temperature rising rate was 100 ° C./min, and a pressure of 50 MPa was continuously applied.

得られた複合材料の熱伝導率を測定した結果、約200W/mK(198W/mK)であった。なお、アルミニウム合金粉体のみを上記条件の放電プラズマ焼結して得た固化体の熱伝導率は、157W/mKであり、この発明による複合材料の熱伝導率は、約21%上昇したことが分かる。   As a result of measuring the thermal conductivity of the obtained composite material, it was about 200 W / mK (198 W / mK). The thermal conductivity of the solidified body obtained by spark plasma sintering of only the aluminum alloy powder under the above conditions was 157 W / mK, and the thermal conductivity of the composite material according to the present invention increased by about 21%. I understand.

実施例1−2 平均粒子径30μmのアルミニウム合金(3003)粉体と、2.5wt%の長鎖状のカーボンナノチューブとの混練解砕において、カーボンナノチューブのみを予め放電プラズマ焼結装置のダイ内に装填し、800℃で5分間の放電プラズマ処理したものと同処理を行わないものを用意し、それぞれアルミナ製の容器を用いた遊星ミルで、分散メディアを使用することなくドライ状態で2時間以下の種々時分単位と容器の回転数を組み合せた混練分散を行った。   Example 1-2 In kneading and crushing of aluminum alloy (3003) powder having an average particle diameter of 30 μm and long-chain carbon nanotubes of 2.5 wt%, only the carbon nanotubes were previously stored in the die of the discharge plasma sintering apparatus. A non-dispersed sample that was charged with a discharge plasma at 800 ° C. for 5 minutes and was not subjected to the same treatment was used. Each planetary mill using an alumina container was used for 2 hours in a dry state without using dispersion media. The kneading dispersion was carried out by combining the following various time units and the number of rotations of the container.

混練分散材は、放電プラズマ焼結装置のダイ内に装填し、800℃で5分間の放電プラズマ処理した。その後、混練分散材を放電プラズマ焼結装置内で、600℃で5分間の放電プラズマ焼結した。その際、昇温速度は100℃/minとし、50MPaの圧力を付加し続けた。   The kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to a discharge plasma treatment at 800 ° C. for 5 minutes. Thereafter, the kneaded dispersion was subjected to spark plasma sintering at 600 ° C. for 5 minutes in a spark plasma sintering apparatus. At that time, the temperature rising rate was 100 ° C./min, and a pressure of 50 MPa was continuously applied.

得られた複合材料の熱伝導率を測定した結果、221W/mKであった。なお、上記条件のカーボンナノチューブと混練分散材への各放電プラズマ処理を行うことなく、放電プラズマ焼結して得た固化体の熱伝導率は94.1W/mKであった。   As a result of measuring the thermal conductivity of the obtained composite material, it was 221 W / mK. In addition, the thermal conductivity of the solidified body obtained by performing discharge plasma sintering without performing each discharge plasma treatment on the carbon nanotubes and the kneading dispersion material under the above conditions was 94.1 W / mK.

実施例1−3 平均粒子径30μmのアルミニウム粉体と、0.25wt%の長鎖状のカーボンナノチューブとの混練解砕において、カーボンナノチューブのみを予め放電プラズマ焼結装置のダイ内に装填し、800℃で5分間の放電プラズマ処理し、ステンレス製の容器を用いた遊星ミルで、分散メディアを使用することなくドライ状態で2時間以下の種々時分単位と容器の回転数を組み合せた混練分散を行った。   Example 1-3 In kneading and pulverization of aluminum powder having an average particle diameter of 30 μm and long-chain carbon nanotubes of 0.25 wt%, only carbon nanotubes were previously loaded in a die of a discharge plasma sintering apparatus, Dispersion plasma treatment at 800 ° C. for 5 minutes, a planetary mill using a stainless steel container, and kneading and dispersing in various dry time units of 2 hours or less and the rotational speed of the container without using a dispersion medium Went.

混練分散材は、放電プラズマ焼結装置のダイ内に装填し、400℃で5分間の放電プラズマ処理した。その後、混練分散材を放電プラズマ焼結装置内で、600℃で5分間の放電プラズマ焼結した。   The kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to discharge plasma treatment at 400 ° C. for 5 minutes. Thereafter, the kneaded dispersion was subjected to spark plasma sintering at 600 ° C. for 5 minutes in a spark plasma sintering apparatus.

得られた複合材料の強制破断面の電子顕微鏡写真図を図5に示す。スケールが100μmオーダーの図5Aを5.0μmオーダーに拡大した際の網状のカーボンナノチューブの電子顕微鏡写真図を図5Bに示す。   FIG. 5 shows an electron micrograph of the forced fracture surface of the obtained composite material. FIG. 5B shows an electron micrograph of a net-like carbon nanotube when FIG. 5A having a scale of the order of 100 μm is enlarged to the order of 5.0 μm.

混練解砕する前のアルミニウム粒子の電子顕微鏡写真図を図6A、図6Bに示す。遊星高速ミルで混練解砕した後のアルミニウム粒子の電子顕微鏡写真図を図7Aに、図7Aに示す凹部の10μmオーダーの拡大電子顕微鏡写真図を図7Bに示す。さらに図7Aに示す凹部の1μmオーダー、500nmオーダーの拡大電子顕微鏡写真図を図8A、図8Bに示す。また、図7Aに示す平滑部の10μmオーダー、1μmオーダー、500nmオーダーの拡大電子顕微鏡写真図を図9A、図9B並びに図10に示す。   6A and 6B show electron micrographs of the aluminum particles before kneading and crushing. FIG. 7A shows an electron micrograph of the aluminum particles after kneading and pulverizing with a planetary high-speed mill, and FIG. 7B shows an enlarged electron micrograph of the concave portion shown in FIG. 7A on the order of 10 μm. Furthermore, enlarged electron micrographs of the order of 1 μm and 500 nm of the recesses shown in FIG. 7A are shown in FIGS. 8A and 8B. 9A, 9B, and 10 show enlarged electron micrographs of the smooth portion shown in FIG. 7A in the order of 10 μm, 1 μm, and 500 nm.

図6〜図10の電子顕微鏡写真図より、遊星高速ミルで混練解砕することでアルミニウム粒子表面へカーボンナノチューブが均等に付着し、特に図8、図9で明らかなようにカーボンナノチューブが立体的に縦横にアルミニウム粒子表面へ付着していることが明らかである。   From the electron micrographs of FIGS. 6 to 10, the carbon nanotubes uniformly adhere to the surface of the aluminum particles by kneading and crushing with a planetary high-speed mill. In particular, the carbon nanotubes are three-dimensional as is apparent from FIGS. It is clear that the particles adhere to the surface of the aluminum particles vertically and horizontally.

実施例2−1
平均粒子径30μmのアルミニウム粉体と、0.05wt%、0.25wt%、0.5wt%の各添加量の長鎖状カーボンナノチューブとの混練解砕において、カーボンナノチューブのみを予め放電プラズマ焼結装置のダイ内に装填し、800℃で5分間の放電プラズマ処理し、ステンレス製の容器を用いた遊星ミルで、分散メディアを使用することなくドライ状態で2時間以下の混練分散を行った。得られた混練分散材は、放電プラズマ焼結装置のダイ内に装填し、400℃で5分間の放電プラズマ処理した後、混練分散材を放電プラズマ焼結装置内で、600℃で5分間の放電プラズマ焼結した。
Example 2-1
In kneading and crushing aluminum powder with an average particle diameter of 30 μm and long-chain carbon nanotubes with addition amounts of 0.05 wt%, 0.25 wt%, and 0.5 wt%, only the carbon nanotubes are preliminarily spark plasma sintered. The sample was loaded into a die of the apparatus, subjected to discharge plasma treatment at 800 ° C. for 5 minutes, and kneaded and dispersed in a dry state for 2 hours or less in a planetary mill using a stainless steel container without using a dispersion medium. The obtained kneading and dispersing material is loaded into a die of a discharge plasma sintering apparatus and subjected to a discharge plasma treatment at 400 ° C. for 5 minutes, and then the kneading dispersion material is placed in a discharge plasma sintering apparatus at 600 ° C. for 5 minutes. Spark plasma sintering was performed.

得られた放電プラズマ焼結体は、高さ10mm、外径60mmの短円柱体であった。これを厚みが1mmとなるまで2パスの冷間圧延を実施した。図1Aにカーボンナノチューブを0.05wt%含むアルミニウム焼結体の圧延後の状態写真図、図1Bに圧延後の組織の2μmオーダーの拡大電子顕微鏡写真図を示す。実施例の金属材料は良好な圧延が達成されたことが明らかである。   The obtained spark plasma sintered body was a short cylindrical body having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled for 2 passes until the thickness became 1 mm. FIG. 1A shows a state photograph after rolling of an aluminum sintered body containing 0.05 wt% of carbon nanotubes, and FIG. 1B shows an enlarged electron micrograph of 2 μm order of the structure after rolling. It is clear that the metal material of the example achieved good rolling.

実施例2−2
実施例2−1と同様の製造方法で製造するが、焼結体の圧延条件(圧延方向)を変えて圧延し、カーボンナノチューブの含有量が0.05wt%、0.5wt%、0.25wt%、0.25wt%、0.25wt%である試料R2、R3、R4、R5の4種の圧延金属材料を作製した。図2に示すごとく、試験片は、製作条件の異なる4種類の試料R2、R3、R4、R5から圧延方向、幅方向に試験片軸を合わせ切り出し、それぞれT、Lの添え字記号で表した。
Example 2-2
Although it manufactures with the manufacturing method similar to Example 2-1, it rolls by changing the rolling conditions (rolling direction) of a sintered compact, and the content of a carbon nanotube is 0.05 wt%, 0.5 wt%, 0.25 wt%. Four types of rolled metal materials of samples R2, R3, R4, and R5 that are%, 0.25 wt%, and 0.25 wt% were manufactured. As shown in FIG. 2, the test pieces were cut out from four types of samples R2, R3, R4, and R5 having different production conditions by aligning the test piece axes in the rolling direction and the width direction, and represented by T and L subscripts, respectively. .

圧延効果を確認するために、試料ごとの応力−ひずみ関係を調べたところ、図3に示すごとく、全ての試料で圧延方向と幅方向の応力−ひずみ関係はほぼ一致していた。すなわち、圧延により異方性の発達は見られなかった。また、圧延方向と幅方向の試験片の応力−ひずみ関係を調べたところ、圧延方向および板幅方向で製作条件による応力−ひずみ関係の違いがほとんど見られなかった。これは、圧延により材料が安定したためと考えられる。   In order to confirm the rolling effect, when the stress-strain relationship for each sample was examined, as shown in FIG. 3, the stress-strain relationship in the rolling direction and the width direction was almost the same in all samples. That is, the development of anisotropy was not observed by rolling. Moreover, when the stress-strain relationship of the test piece of the rolling direction and the width direction was investigated, the difference of the stress-strain relationship by a manufacturing condition was hardly seen by the rolling direction and the board width direction. This is considered because the material was stabilized by rolling.

さらに、圧延前の焼結体材料に施した引張り試験と、上記の圧延後の試験から得られたヤング率と引張り強さの比較を行ったところ、圧延後の試験片のヤング率はカーボンナノチューブの含有率が大きくなると減少すること、引張り強さはカーボンナノチューブの含有率の影響を受けないことを確認した。また、圧延によりヤング率および引張り強さが大きくなり圧延効果が見られることを確認した。これは、圧延により試料内部にあった欠陥が少なくなったためと考えられる。   Furthermore, when the Young's modulus obtained from the tensile test performed on the sintered body material before rolling and the above-mentioned test after rolling were compared with the tensile strength, the Young's modulus of the test piece after rolling was a carbon nanotube. It has been confirmed that the content decreases with increasing content, and that the tensile strength is not affected by the content of carbon nanotubes. Also, it was confirmed that the rolling effect was increased by increasing the Young's modulus and tensile strength by rolling. This is thought to be because the defects inside the sample were reduced by rolling.

実施例2−3
実施例2−2で製造した試料R2、R3、R4、R5の4種の圧延金属材料に、温度400℃×1時間の焼鈍を施した。圧延、焼鈍後の試料ごとの応力−ひずみ関係を調べたところ、図4に示すごとく、圧延方向と幅方向の図3の焼鈍なしの試験片の応力−ひずみ関係と比較すると、焼鈍により最大応力が減少し全伸びが増していることが分かる。これは、圧延時の生じた残留応力・ひずみが焼鈍しにより回復したためと考えられる。
Example 2-3
The four types of rolled metal materials of samples R2, R3, R4, and R5 manufactured in Example 2-2 were annealed at a temperature of 400 ° C. × 1 hour. When the stress-strain relationship for each sample after rolling and annealing was examined, as shown in FIG. 4, when compared with the stress-strain relationship of the test piece without annealing in FIG. It can be seen that decreases and the overall growth increases. This is thought to be because the residual stress and strain generated during rolling recovered by annealing.

カーボンナノチューブを含有しない純アルミ焼結材を圧延した後の応力−ひずみ関係と比較すると、焼鈍により引張り強さが減少し、全伸びが増すことが分かる。焼鈍によりヤング率に変化が見られ、特に、含有率の多い試料R3は焼鈍によりヤング率が増大する。これは、焼鈍によりカーボンナノチューブ界面状況が改善されたか、カーボンナノチューブの配向方向に変化があったためと考えられる。   Compared with the stress-strain relationship after rolling a pure aluminum sintered material containing no carbon nanotubes, it can be seen that annealing reduces the tensile strength and increases the total elongation. The Young's modulus is changed by annealing. In particular, the sample R3 having a high content increases the Young's modulus by annealing. This is considered to be because the interface state of the carbon nanotube was improved by annealing, or the orientation direction of the carbon nanotube was changed.

カーボンナノチューブの含有率が少ない試料R2の全伸びは焼鈍しにより大幅に増加する。しかしながら、含有率の多い試料R3は焼鈍し前後で大きな差は見られない。すなわち、含有率が少ないほど焼鈍しにより全伸びが増加する割合が大きいと考えられる。   The total elongation of the sample R2 having a small carbon nanotube content is greatly increased by annealing. However, the sample R3 having a high content rate is not significantly different between before and after annealing. That is, it is considered that the smaller the content rate, the larger the rate at which the total elongation increases due to annealing.

実施例2−4
実施例2−2での試料R2、R3、R4、R5の4種の圧延金属材料の製造に際し、冷間圧延に換えて温度380℃に加熱する温間圧延を行った。全ての試験片の応力ひずみ関係を調べたところ、応力ひずみ関係はほぼ一致しており、温間圧延により異方性の発達は見られないことを確認した。
Example 2-4
In producing the four types of rolled metal materials of Samples R2, R3, R4, and R5 in Example 2-2, warm rolling was performed by heating to a temperature of 380 ° C. instead of cold rolling. When the stress-strain relationship of all the specimens was examined, the stress-strain relationship was almost the same, and it was confirmed that the development of anisotropy was not observed by warm rolling.

冷間圧延でカーボンナノチューブ含有量が等しいR2、R2A試験片の結果との比較より、冷間圧延後焼鈍なしの応力ひずみ関係と冷間圧延後焼鈍ありの応力ひずみ関係の間に、温間圧延による応力ひずみ関係が位置することが分かる。また、ヤング率は温間圧延によりさほど変化しないこと、引張強さは冷間焼鈍し前と冷間焼鈍し後の中間の値となることを確認した。   Compared with the results of R2 and R2A specimens with the same carbon nanotube content in cold rolling, the warm rolling between the stress strain relationship without annealing after cold rolling and the stress strain relationship with annealing after cold rolling It can be seen that the stress-strain relationship due to is located. Further, it was confirmed that the Young's modulus did not change so much by warm rolling, and the tensile strength became an intermediate value before and after the cold annealing.

実施例3−1
平均粒子径10〜20μmの純チタン粉体と、0.1〜0.25wt%の長鎖状のカーボンナノチューブ(CNT)を、チタン製の容器を用いた遊星ミルで、分散メディアを使用することなくドライ状態で2時間以下の種々時分単位と容器の回転数を組み合せた混練分散を行った。
Example 3-1
Use a dispersion medium in a planetary mill using pure titanium powder with an average particle diameter of 10 to 20 μm and 0.1 to 0.25 wt% long-chain carbon nanotubes (CNT) using a titanium container. In a dry state, kneading dispersion was performed by combining various time units of 2 hours or less and the rotation speed of the container.

得られた混練分散材を放電プラズマ焼結装置のダイ内に装填し、900℃で10分間の放電プラズマ焼結した。その際、昇温速度は100℃/minとし、60MPaの圧力を付加し続けた。   The obtained kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus, and was subjected to discharge plasma sintering at 900 ° C. for 10 minutes. At that time, the temperature increase rate was 100 ° C./min, and a pressure of 60 MPa was continuously applied.

得られた複合材料(CNT:0.25wt%添加)の強制破断面の電子顕微鏡写真図を図11に示す。スケールが10μmオーダーの図11Aを1.0μmオーダーに拡大した際の網状のカーボンナノチューブの電子顕微鏡写真図を図11Bに示す。   FIG. 11 shows an electron micrograph of the forced fracture surface of the obtained composite material (CNT: 0.25 wt% added). FIG. 11B shows an electron micrograph of the net-like carbon nanotubes when FIG. 11A having a scale of the order of 10 μm is enlarged to the order of 1.0 μm.

得られた複合材料の熱伝導率を測定した結果、18.4W/mKであった。なお、純チタン粉体のみを上記条件の放電プラズマ焼結して得た固化体の熱伝導率は、13.8W/mKであり、この発明による複合材料の熱伝導率は、約30%上昇したことが分かる。   It was 18.4 W / mK as a result of measuring the heat conductivity of the obtained composite material. The thermal conductivity of the solidified body obtained by subjecting only pure titanium powder to spark plasma sintering under the above conditions is 13.8 W / mK, and the thermal conductivity of the composite material according to the present invention is increased by about 30%. I understand that.

実施例3−2
平均粒子径10〜20μm純チタン粉体と、0.05〜0.5wt%の長鎖状のカーボンナノチューブとの混練解砕において、カーボンナノチューブのみを予め放電プラズマ焼結装置のダイ内に装填し、575℃で5分間の放電プラズマ処理したものと同処理を行わないものを用意し、それぞれチタン製の容器を用いた遊星ミルで、分散メディアを使用することなくドライ状態で60分以下の種々分単位と容器の回転数を組み合せた混練分散を行った。
Example 3-2
In kneading and crushing pure titanium powder having an average particle size of 10 to 20 μm and long-chain carbon nanotubes of 0.05 to 0.5 wt%, only the carbon nanotubes are previously loaded in the die of the discharge plasma sintering apparatus. Prepared for 5 minutes discharge plasma treatment at 575 ° C., which is not subjected to the same treatment, each planetary mill using a titanium container, various kinds of 60 minutes or less in a dry state without using dispersion media The kneading dispersion was performed by combining the minute unit and the rotation speed of the container.

混練分散材を放電プラズマ焼結装置のダイ内に装填し、900℃で10分間の放電プラズマ焼結した。その際、昇温速度は100℃/minとし、60MPaの圧力を付加し続けた。得られた複合材料の熱伝導率を測定した結果、カーボンナノチューブのみを予め放電プラズマ処理した場合は17.2W/mKであった。   The kneaded and dispersed material was loaded into a die of a discharge plasma sintering apparatus, and was subjected to discharge plasma sintering at 900 ° C. for 10 minutes. At that time, the temperature increase rate was 100 ° C./min, and a pressure of 60 MPa was continuously applied. As a result of measuring the thermal conductivity of the obtained composite material, it was 17.2 W / mK when only the carbon nanotubes were previously subjected to the discharge plasma treatment.

混練解砕する前のチタン粒子と、遊星高速ミルで混練解砕した後のチタン粒子の電子顕微鏡写真図を図12A、図12Bに示す。遊星高速ミルで混練解砕した後の図12Bに示すチタン粒子表面の1μmオーダー、500nmオーダーの拡大電子顕微鏡写真図を図13A、図13Bに示す。図12〜図13の電子顕微鏡写真図より、遊星高速ミルで混練解砕することでチタン粒子表面へカーボンナノチューブが均等にかつ立体的に縦横に付着していることが明らかである。   Electron micrographs of the titanium particles before kneading and crushing and the titanium particles after kneading and crushing with a planetary high speed mill are shown in FIGS. 12A and 12B. 13A and 13B show enlarged electron micrographs of the order of 1 μm and 500 nm on the surface of the titanium particles shown in FIG. 12B after kneading and pulverizing with a planetary high-speed mill. From the electron micrographs of FIGS. 12 to 13, it is clear that the carbon nanotubes are uniformly and three-dimensionally and vertically attached to the surface of the titanium particles by kneading and crushing with a planetary high-speed mill.

実施例3−3
実施例3−2にて得られたカーボンナノチューブの含有量が0.05wt%、0.25wt%、0.5wt%の放電プラズマチタン焼結体は、高さ10mm、外径60mmの短円柱体であった。これを厚みが8mmとなるまで4パスの冷間圧延を実施した。チタニウム焼結体の圧延後の状態並びに圧延後の組織を1〜5μmオーダーで電子顕微鏡観察したところ、実施例の金属材料は良好な圧延が達成されたことを確認した。
Example 3-3
The spark plasma titanium sintered body having a carbon nanotube content of 0.05 wt%, 0.25 wt%, and 0.5 wt% obtained in Example 3-2 is a short cylindrical body having a height of 10 mm and an outer diameter of 60 mm. Met. This was cold-rolled for 4 passes until the thickness became 8 mm. When the state of the titanium sintered body after rolling and the structure after rolling were observed with an electron microscope on the order of 1 to 5 μm, it was confirmed that the metal material of the example achieved good rolling.

実施例4−1
平均粒子径20〜30μmの無酸素銅粉(三井金属アトマイズ粉)と、0.5wt%の長鎖状のカーボンナノチューブとを、ステンレス鋼製の容器を用いた遊星ミルで、分散メディアを使用することなくドライ状態で2時間以下の種々時分単位と容器の回転数を組み合せた混練分散を行った。
Example 4-1
An oxygen-free copper powder (Mitsui Metal atomized powder) with an average particle size of 20 to 30 μm and a long-chain carbon nanotube of 0.5 wt% are used in a planetary mill using a stainless steel container and a dispersion medium is used. Without mixing, kneading dispersion was performed by combining various time units of 2 hours or less and the rotation speed of the container in a dry state.

次いで、混練分散材を放電プラズマ焼結装置のダイ内に装填し、575℃で5分間の放電プラズマ処理した。その後、混練分散材を放電プラズマ焼結装置内で、800℃、15分間の放電プラズマ焼結した。その際、昇温速度は100℃/minとし、60MPaの圧力を負荷し続けた。   Next, the kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus, and subjected to discharge plasma treatment at 575 ° C. for 5 minutes. Thereafter, the kneaded and dispersed material was subjected to discharge plasma sintering at 800 ° C. for 15 minutes in a discharge plasma sintering apparatus. At that time, the rate of temperature increase was 100 ° C./min, and a pressure of 60 MPa was continuously applied.

得られた複合材料の強制破断面の電子顕微鏡写真図を図14に示す。スケールが50μmオーダーの図14Aを1.0μmオーダーに拡大した際の網状のカーボンナノチューブの電子顕微鏡写真図を図14Bに示す。   An electron micrograph of the forced fracture surface of the obtained composite material is shown in FIG. FIG. 14B shows an electron micrograph of the net-like carbon nanotubes when FIG. 14A having a scale of the order of 50 μm is enlarged to the order of 1.0 μm.

得られた複合材料の電気抵抗率を測定した結果、無酸素銅粉体のみを上記条件の放電プラズマ焼結して得た固化体の電気抵抗率は、約5×10-3Ωmであり、この発明による複合材料の電気抵抗率は、約56%(導電率は約1.7倍に上昇)となった。なお、導電率の単位に関して、Siemens/m=(Ωm)-1の関係にある。As a result of measuring the electrical resistivity of the obtained composite material, the electrical resistivity of the solidified body obtained by subjecting only the oxygen-free copper powder to spark plasma sintering under the above conditions is about 5 × 10 −3 Ωm, The electrical resistivity of the composite material according to the present invention was about 56% (conductivity increased about 1.7 times). Note that Siemens / m = (Ωm) −1 in terms of conductivity units.

混練解砕する前の銅粒子と、遊星高速ミルで混練解砕した後の銅粒子の電子顕微鏡写真図を図15A、図15Bに示す。遊星高速ミルで混練解砕した後の図15Bに示す銅粒子表面の1μmオーダー、500nmオーダーの拡大電子顕微鏡写真図を図16A、図16Bに示す。図15〜図16の電子顕微鏡写真図より、遊星高速ミルで混練解砕することで銅粒子表面へカーボンナノチューブが均等にかつ立体的に縦横に付着していることが明らかである。   Electron micrographs of the copper particles before kneading and crushing and the copper particles after kneading and crushing with a planetary high-speed mill are shown in FIGS. 15A and 15B. 16A and 16B show enlarged electron micrographs of the order of 1 μm and 500 nm on the surface of the copper particles shown in FIG. 15B after kneading and pulverizing with a planetary high-speed mill. It is clear from the electron micrographs of FIGS. 15 to 16 that the carbon nanotubes are evenly and three-dimensionally attached to the surface of the copper particles by kneading and crushing with a planetary high-speed mill.

実施例4−2
実施例4−1にて得られたカーボンナノチューブの含有量が0.5wt%の放電プラズマ銅焼結体は、高さ10mm、外径60mmの短円柱体であった。これを厚みが8mmとなるまで3パスの冷間圧延を実施した。銅焼結体の圧延後の状態並びに圧延後の組織を1〜5μmオーダーで電子顕微鏡観察したところ、実施例の金属材料は良好な圧延が達成されたことを確認した。
Example 4-2
The discharge plasma copper sintered body having a carbon nanotube content of 0.5 wt% obtained in Example 4-1 was a short cylindrical body having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled for 3 passes until the thickness reached 8 mm. When the state of the copper sintered body after rolling and the structure after rolling were observed with an electron microscope in the order of 1 to 5 μm, it was confirmed that the metal material of the example achieved good rolling.

実施例5−1
平均粒子径20〜30μmのステンレス鋼粉(SUS316L)と、0.5wt%の長鎖状のカーボンナノチューブとを、ステンレス鋼製の容器を用いた遊星ミルで、分散メディアを使用することなくドライ状態で2時間以下の種々時分単位と容器の回転数を組み合せた混練分散を行った。
Example 5-1
Stainless steel powder (SUS316L) with an average particle size of 20-30 μm and 0.5 wt% long-chain carbon nanotubes in a dry state without using dispersion media in a planetary mill using a stainless steel container And kneading and dispersing in which various time units of 2 hours or less and the rotation speed of the container were combined.

次いで、混練分散材を放電プラズマ焼結装置のダイ内に装填し、575℃で5分間の放電プラズマ処理した。その後、混練分散材を放電プラズマ焼結装置内で、900℃、10分間の放電プラズマ焼結した。その際、昇温速度は100℃/minとし、60MPaの圧力を付加し続けた。   Next, the kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus, and subjected to discharge plasma treatment at 575 ° C. for 5 minutes. Thereafter, the kneaded dispersion material was subjected to discharge plasma sintering at 900 ° C. for 10 minutes in a discharge plasma sintering apparatus. At that time, the temperature increase rate was 100 ° C./min, and a pressure of 60 MPa was continuously applied.

得られた複合材料の熱伝導率を測定した結果、ステンレス鋼粉のみを上記条件の放電プラズマ焼結して得た固化体の熱伝導率に対し、この発明による複合材料は、約18%上昇した。   As a result of measuring the thermal conductivity of the obtained composite material, the composite material according to the present invention has an increase of about 18% with respect to the thermal conductivity of the solidified body obtained by spark plasma sintering of only the stainless steel powder under the above conditions. did.

また、得られた複合材料の電気抵抗率を測定した結果、ステンレス鋼粉体のみを上記条件の放電プラズマ焼結して得た固化体の電気抵抗率に対し、この発明による複合材料の電気抵抗率は、約60%(導電率は約1.65倍に上昇)となった。   Moreover, as a result of measuring the electrical resistivity of the obtained composite material, the electrical resistance of the composite material according to the present invention was compared with the electrical resistivity of the solidified body obtained by spark plasma sintering of only the stainless steel powder under the above conditions. The rate was about 60% (conductivity increased to about 1.65 times).

実施例5−2
実施例5−1にて得られたカーボンナノチューブの含有量が0.5wt%の放電プラズマSUS焼結体は、高さ10mm、外径60mmの短円柱体であった。これを厚みが8mmとなるまで5パスの冷間圧延を実施した。SUS焼結体の圧延後の状態並びに圧延後の組織を1〜5μmオーダーで電子顕微鏡観察したところ、実施例の金属材料は良好な圧延が達成されたことを確認した。
Example 5-2
The discharge plasma SUS sintered body having a carbon nanotube content of 0.5 wt% obtained in Example 5-1 was a short cylindrical body having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled for 5 passes until the thickness became 8 mm. When the state of the SUS sintered body after rolling and the structure after rolling were observed with an electron microscope in the order of 1 to 5 μm, it was confirmed that the metal material of the example achieved good rolling.

実施例6−1
平均粒子径100μmの純アルミニウム粉体と平均粒子径0.6μmのアルミナ粉体の混合粉体(95wt%、アルミニウム粉体:アルミナ粉体=95;5)と、長鎖状のカーボンナノチューブ(5wt%)とをアルミナ製の容器を用いた遊星ミルで分散させた。
Example 6-1
A mixed powder (95 wt%, aluminum powder: alumina powder = 95; 5) of pure aluminum powder having an average particle diameter of 100 μm and alumina powder having an average particle diameter of 0.6 μm, and long-chain carbon nanotubes (5 wt. %) Was dispersed in a planetary mill using an alumina container.

まず、カーボンナノチューブを配合し、分散剤として非イオン性界面活性剤(トリトンX−100)を加えてアルミナ粉体との混合分散材を作製し、これを乾燥させた。次に、純アルミニウム粉体とそれらの乾燥分散材をドライ状態で、分散メディアを使用することなくドライ状態で2時間以下の種々時分単位と容器の回転数を組み合せた混練分散を行った。   First, carbon nanotubes were blended, a non-ionic surfactant (Triton X-100) was added as a dispersant to prepare a mixed dispersion material with alumina powder, and this was dried. Next, pure aluminum powders and their dry dispersions were kneaded and dispersed in a dry state in combination with various time units of 2 hours or less and the rotation speed of the container in a dry state without using a dispersion medium.

混練分散材を放電プラズマ焼結装置のダイ内に装填し、500〜600℃で7分間のプラズマ固化した。その際、昇温速度は100℃/min、230℃/minとし、14〜40MPaの圧力を付加し続けた。得られた複合材料の熱伝導率を測定したところ、300〜450W/mKとなった。   The kneaded and dispersed material was loaded into a die of a discharge plasma sintering apparatus, and plasma solidified at 500 to 600 ° C. for 7 minutes. At that time, the heating rate was 100 ° C./min and 230 ° C./min, and a pressure of 14 to 40 MPa was continuously applied. When the thermal conductivity of the obtained composite material was measured, it was 300 to 450 W / mK.

実施例6−2
実施例6−1と同様方法にて得られたカーボンナノチューブの含有量が0.5wt%の放電プラズマ金属複合焼結体は、高さ10mm、外径60mmの短円柱体であった。これを厚みが8mmとなるまで5パスの冷間圧延を実施した。この焼結体の圧延後の状態並びに圧延後の組織を1〜5μmオーダーで電子顕微鏡観察したところ、実施例の金属材料は良好な圧延が達成されたことを確認した。
Example 6-2
The discharge plasma metal composite sintered body having a carbon nanotube content of 0.5 wt% obtained by the same method as in Example 6-1 was a short cylindrical body having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled for 5 passes until the thickness became 8 mm. When the state of this sintered body after rolling and the structure after rolling were observed with an electron microscope in the order of 1 to 5 μm, it was confirmed that the metal material of the example achieved good rolling.

実施例7−1
平均粒子径50μmの無酸素銅粉(三井金属アトマイズ粉)と平均粒子径0.6μmのアルミナ粉体との混合粉体と、10wt%の長鎖状のカーボンナノチューブとを、ステンレス鋼製の容器を用いた遊星ミルで分散させた。まず、カーボンナノチューブを配合し、予め十分に分散処理した無酸素銅粉とアルミナ粉体との混合粉体を配合し、それらの粉末同士をドライ状態で、分散メディアを使用することなくドライ状態で2時間以下の種々時分単位と容器の回転数を組み合せた混練分散を行った。
Example 7-1
A stainless steel container containing a mixed powder of oxygen-free copper powder (Mitsui Metal atomized powder) with an average particle size of 50 μm and alumina powder with an average particle size of 0.6 μm, and 10 wt% long-chain carbon nanotubes It was dispersed with a planetary mill using First, carbon nanotubes are blended, and a mixed powder of oxygen-free copper powder and alumina powder that has been sufficiently dispersed in advance is blended, and these powders are in a dry state without using a dispersion medium. The kneading dispersion was performed by combining various time units of 2 hours or less and the rotational speed of the container.

混練分散材を放電プラズマ焼結装置のダイ内に装填し、700〜900℃で5分間の放電プラズマ焼結した。その際、昇温速度は250℃/minとし、10MPaの圧力を付加し続けた。得られた2種の複合材料の熱伝導率を測定した結果、いずれも500〜800W/mKとなった。   The knead-dispersed material was loaded into a die of a discharge plasma sintering apparatus and subjected to discharge plasma sintering at 700 to 900 ° C. for 5 minutes. At that time, the rate of temperature increase was 250 ° C./min, and a pressure of 10 MPa was continuously applied. As a result of measuring the thermal conductivity of the obtained two types of composite materials, both were 500 to 800 W / mK.

実施例7−2
実施例7−1と同様方法にて得られたカーボンナノチューブの含有量が0.5wt%の放電プラズマ金属複合焼結体は、高さ10mm、外径60mmの短円柱体であった。これを厚みが8mmとなるまで8パスの冷間圧延を実施した。この焼結体の圧延後の状態並びに圧延後の組織を1〜5μmオーダーで電子顕微鏡観察したところ、実施例の金属材料は良好な圧延が達成されたことを確認した。
Example 7-2
The discharge plasma metal composite sintered body having a carbon nanotube content of 0.5 wt% obtained by the same method as in Example 7-1 was a short cylindrical body having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled for 8 passes until the thickness became 8 mm. When the state of this sintered body after rolling and the structure after rolling were observed with an electron microscope in the order of 1 to 5 μm, it was confirmed that the metal material of the example achieved good rolling.

以上は繊維状炭素材料としてカーボンナノチューブを使用した複合材料、特に繊維無配向の複合材料の製造例である。次に、繊維状炭素材料として気相成長炭素繊維を使用した複合材料の製造例を、繊維配向及び無配向の場合について説明し、合わせてカーボンナノチューブを使用した繊維配向型複合材料の製造例を説明する。   The above is an example of manufacturing a composite material using carbon nanotubes as a fibrous carbon material, particularly a composite material having no fiber orientation. Next, an example of producing a composite material using vapor-grown carbon fibers as the fibrous carbon material will be described for the case of fiber orientation and non-orientation, and an example of producing a fiber oriented composite material using carbon nanotubes together. explain.

実施例8
長さが約2〜3mmの繊維状炭素材料からなり、その繊維の方向を表面に平行で且つ同一の方向に配向させた厚みが100μmオーダーの配向シートを用意した。その繊維配向シートから直径が10mmの円形繊維シートを多数打ち抜いた。それらの円形繊維シートの両面に、金属粉末として平均粒子径が30μmのアルミニウム粉体を付着させながら、円形シートを厚み方向に積層し、直径10mm×高さ20mmの円柱状積層体を作製した。
Example 8
An oriented sheet made of a fibrous carbon material having a length of about 2 to 3 mm and having a fiber orientation parallel to the surface and oriented in the same direction was prepared in the order of 100 μm. A large number of circular fiber sheets having a diameter of 10 mm were punched from the fiber oriented sheet. While attaching aluminum powder having an average particle diameter of 30 μm as metal powder to both surfaces of the circular fiber sheets, the circular sheets were laminated in the thickness direction to prepare a cylindrical laminate having a diameter of 10 mm × height of 20 mm.

このとき、円形シートの両面に付着させるアルミニウム粉体の付着量の調整により、繊維状炭素材料の含有量を2.5wt%以上、30wt%強以下の範囲内で様々に変更した。すなわち、アルミニウム粉体の付着量を多くすることにより、繊維状炭素材料の含有量は低下し、円柱状積層体における円形シートの積層枚数も減少する。反対に、アルミニウム粉体の付着量を少なくすることにより、繊維状炭素材料の含有量は増大し、円柱状積層体における円形シートの積層枚数は増加する。その結果として、円柱状積層体における円形シートの積層枚数は約100〜250枚の範囲内で変化した。円形シートを重ねる際には繊維の配向方向が同一方向を向くように注意した。   At this time, the content of the fibrous carbon material was variously changed within the range of 2.5 wt% or more and 30 wt% or less by adjusting the adhesion amount of the aluminum powder adhered to both surfaces of the circular sheet. That is, by increasing the adhesion amount of the aluminum powder, the content of the fibrous carbon material is reduced, and the number of laminated circular sheets in the cylindrical laminate is also reduced. On the contrary, by reducing the adhesion amount of the aluminum powder, the content of the fibrous carbon material is increased, and the number of laminated circular sheets in the cylindrical laminate is increased. As a result, the number of stacked circular sheets in the cylindrical laminate changed within the range of about 100 to 250. When stacking circular sheets, care was taken that the fiber orientation direction was the same.

作製された種々の円柱状積層体を放電プラズマ焼結装置のダイ内に装填し、高さ方向に加圧した。これによりダイ内の円柱状積層体は高さ約15mmまで圧縮された。この状態で、ダイ内の円柱状積層体を575℃×60分間の条件で放電プラズマ焼結した。その際、昇温速度は100℃/minとし、50MPaの圧力を付加し続けた。その結果、円柱状のアルミニウム粉末焼結体の中に中心線に直角な炭素繊維層が中心線方向に所定間隔で幾層にも積層された円柱状のアルミニウムと繊維状炭素材料の複合材料が製造された。   The produced various cylindrical laminates were loaded into a die of a discharge plasma sintering apparatus and pressurized in the height direction. Thereby, the cylindrical laminated body in the die was compressed to a height of about 15 mm. In this state, the cylindrical laminate in the die was subjected to discharge plasma sintering under the condition of 575 ° C. × 60 minutes. At that time, the temperature rising rate was 100 ° C./min, and a pressure of 50 MPa was continuously applied. As a result, a composite material of cylindrical aluminum and a fibrous carbon material in which carbon fiber layers perpendicular to the center line are laminated at predetermined intervals in the center line direction in a cylindrical aluminum powder sintered body is obtained. manufactured.

製造された複合材料の直径は10mm、高さは加圧焼結過程での収縮により約11〜12mmになっていた。炭素繊維層における繊維は、層表面に平行(複合材料の中心線に直角)で、且つ同じ方向に配向している。   The manufactured composite material had a diameter of 10 mm and a height of about 11 to 12 mm due to shrinkage during the pressure sintering process. The fibers in the carbon fiber layer are parallel to the layer surface (perpendicular to the center line of the composite material) and oriented in the same direction.

繊維配向方向の熱伝導率を測定するために、複合材料から直交方向に円盤状の試験片を採取した。試験片の直径は10mm、厚みは2〜3mmであり、試験片の中心線は複合材料の中心線に直角で、且つ繊維層における繊維配向方向に一致している。すなわち、各試験片では、その中心線に平行な繊維層が、中心線に直角な方向に所定間隔で積層されており、各繊維層における繊維配向方向は試験片の中心線方向に一致しているのである。   In order to measure the thermal conductivity in the fiber orientation direction, a disk-shaped test piece was taken in the orthogonal direction from the composite material. The test piece has a diameter of 10 mm and a thickness of 2 to 3 mm. The center line of the test piece is perpendicular to the center line of the composite material and coincides with the fiber orientation direction in the fiber layer. That is, in each test piece, a fiber layer parallel to the center line is laminated at a predetermined interval in a direction perpendicular to the center line, and the fiber orientation direction in each fiber layer coincides with the center line direction of the test piece. It is.

繊維状炭素材料の含有率が13wt%及び15wt%の複合材料については、金属粉末として、アルミニウム粉末中にシリコン粉末を1wt%含有するAl─Si合金粉末を使用した。   For the composite material having a fibrous carbon material content of 13 wt% and 15 wt%, an Al—Si alloy powder containing 1 wt% of silicon powder in aluminum powder was used as the metal powder.

製造された複合材料から採取された試験片により中心線方向、すなわち繊維配向方向の熱伝導率を測定した。結果を図17中に○印で示す。黒丸は金属粉末としてAl─Si合金粉末を使用したものである。純アルミニウムの熱伝導率は244W/mKであるが、実際の複合材料使用機器、例えば熱交換器等ではアルミニウム合金が使用されるのが通例であり、熱伝導率が下がる。このことを考慮すると、実用レベルでのアルミニウムの熱伝導率は200W/mK程度となる。本実施例で製造された複合材料は、繊維状炭素材料として一方向に配向した気相成長炭素繊維を有しており、全ての繊維含有量で実用レベルでのアルミニウムの熱伝導率を凌いでおり、繊維含有量が増大するにしたがって熱伝導率が増加する傾向が認められ、最高では600W/mKを超える結果が得られている。   The thermal conductivity in the center line direction, that is, the fiber orientation direction was measured with a test piece taken from the produced composite material. The results are indicated by ◯ in FIG. The black circles use Al—Si alloy powder as metal powder. Although the thermal conductivity of pure aluminum is 244 W / mK, an aluminum alloy is usually used in an actual composite material-using device such as a heat exchanger, and the thermal conductivity is lowered. Considering this, the thermal conductivity of aluminum at a practical level is about 200 W / mK. The composite material produced in this example has vapor-grown carbon fibers oriented in one direction as a fibrous carbon material, surpassing the thermal conductivity of aluminum at a practical level at all fiber contents. As the fiber content increases, the thermal conductivity tends to increase, and a result exceeding 600 W / mK is obtained at the maximum.

なお、上記実施例8では繊維配向方向の熱伝導率を測定するために、多数枚の繊維シートを積層した多層構造の複合材料を製造したが、実際の製品では繊維シートを1枚乃至は数枚というように少数積層する場合が多い。繊維シートを少数積層した薄い複合材料の方が汎用性等が高く。使用価値も大きい。以下の実施例でも同様である。   In Example 8 above, in order to measure the thermal conductivity in the fiber orientation direction, a composite material having a multilayer structure in which a large number of fiber sheets were laminated was manufactured. However, in an actual product, one or several fiber sheets were used. In many cases, a small number of sheets are laminated. A thin composite material with a few laminated fiber sheets is more versatile. Use value is also great. The same applies to the following embodiments.

実施例9
圧延による影響を調査するため、実施例8において、繊維状炭素材料の含有量が2.5wt%である複合材料について、直径が60mm×高さ10mmの円柱状の圧延試験用複合材料を製造した。製造方法は実施例8と同じであり、製造された複合材料では、円柱状のアルミニウム粉末焼結体の中に中心線に直角な炭素繊維層が中心線方向に所定間隔で幾層にも積層されると共に、炭素繊維層における繊維は同じ方向に配向している。
Example 9
In order to investigate the effect of rolling, in Example 8, a composite material for rolling test having a diameter of 60 mm × height of 10 mm was manufactured for a composite material having a fibrous carbon material content of 2.5 wt%. . The manufacturing method is the same as in Example 8. In the manufactured composite material, carbon fiber layers perpendicular to the center line are laminated in a number of layers at predetermined intervals in the center line direction in a cylindrical aluminum powder sintered body. In addition, the fibers in the carbon fiber layer are oriented in the same direction.

そして製造された高さ60mmの円柱状複合材料を厚みが1mmになるまで炭素繊維層における繊維配向方向に圧延した。圧延後の厚さ1mmの板材から、平行な2辺が圧延方向(繊維配向方向)に平行で、他の平行な2辺が圧延方向(繊維配向方向)に直角な25mm角のサンプルを採取し、そのサンプルの熱伝導率を圧延方向(繊維配向方向)及び圧延方向(繊維配向方向)に直角な方向の2方向について測定した。   The produced cylindrical composite material having a height of 60 mm was rolled in the fiber orientation direction in the carbon fiber layer until the thickness became 1 mm. A 25 mm square sample in which two parallel sides are parallel to the rolling direction (fiber orientation direction) and the other two parallel sides are perpendicular to the rolling direction (fiber orientation direction) is taken from the 1 mm-thick plate after rolling. The thermal conductivity of the sample was measured in two directions, a direction perpendicular to the rolling direction (fiber orientation direction) and the rolling direction (fiber orientation direction).

圧延方向(繊維配向方向)の熱伝導率は237W/mKであり、圧延方向(繊維配向方向)に直角な方向の熱伝導率は212W/mKであった。圧延前の繊維配向方向の熱伝導率は図17からわかるように300W/mKを超える約330W/mKである。圧下率が1/60という強度の圧延を受けているにもかかわらず、圧延後の熱伝導率は実用レベルでのアルミニウムの熱伝導率を凌いでおり、繊維配向方向に直角な方向の熱伝導率でさえも、この実用レベルでのアルミニウムの熱伝導率を凌いでいる。   The thermal conductivity in the rolling direction (fiber orientation direction) was 237 W / mK, and the thermal conductivity in the direction perpendicular to the rolling direction (fiber orientation direction) was 212 W / mK. As can be seen from FIG. 17, the thermal conductivity in the fiber orientation direction before rolling is about 330 W / mK, which exceeds 300 W / mK. Despite being subjected to rolling with a reduction ratio of 1/60, the thermal conductivity after rolling exceeds the thermal conductivity of aluminum at a practical level, and the thermal conductivity in the direction perpendicular to the fiber orientation direction. Even the rate exceeds the thermal conductivity of aluminum at this practical level.

実施例10
絡まりあった長さが2〜3mmの気相成長炭素繊維の塊をシェイカーミルでほぐし、さばいた。そのシェイカーミルにアルミニウム粉末を混合し、両者を混練した。両者の混合率は、気相成長炭素繊維の含有量が2.5〜15wt%の範囲内で様々に変化するように調整した。
Example 10
Lumps of vapor-grown carbon fibers having a length of 2 to 3 mm that were entangled were loosened with a shaker mill and separated. Aluminum powder was mixed in the shaker mill, and both were kneaded. The mixing ratio of the two was adjusted so that the content of the vapor-grown carbon fiber varied in a range of 2.5 to 15 wt%.

得られた粉状の混練分散材を、実施例8と同様に、放電プラズマ焼結装置のダイ内に装填し、高さ方向に加圧した。この状態で、ダイ内の混練分散材を575℃×60分間の条件で放電プラズマ焼結した。その際、昇温速度は100℃/minとし、50MPaの圧力を付加し続けた。その結果、直径が10mm、高さが11〜12mmの円柱状のアルミニウム粉末焼結体の中に繊維状炭素材料が均一に分散したアルミニウムと繊維状炭素材料の複合材料が製造された。   The obtained powdery kneading dispersion material was loaded into a die of a discharge plasma sintering apparatus and pressurized in the height direction in the same manner as in Example 8. In this state, the kneaded dispersion material in the die was subjected to discharge plasma sintering under the condition of 575 ° C. × 60 minutes. At that time, the temperature rising rate was 100 ° C./min, and a pressure of 50 MPa was continuously applied. As a result, a composite material of aluminum and a fibrous carbon material in which the fibrous carbon material was uniformly dispersed in a cylindrical aluminum powder sintered body having a diameter of 10 mm and a height of 11 to 12 mm was produced.

放電プラズマ焼結装置のダイ内における混練分散材の高さ方向の圧縮により、混練分散材中の気相成長炭素繊維は横に倒れる。倒れる方向は様々である。このため、製造された複合材料は、気相成長炭素繊維が無配向とは言え、中心線に対して直角な平面に沿って配向する傾向を示す。つまり、複合材料中の気相成長炭素繊維は、配向度は高くないものの、中心線に対して直角な平面に沿った二次元の配向性を示す。   The vapor grown carbon fiber in the kneaded and dispersed material falls sideways by compression in the height direction of the kneaded and dispersed material in the die of the discharge plasma sintering apparatus. There are various ways to fall. For this reason, the produced composite material tends to be oriented along a plane perpendicular to the center line, although the vapor-grown carbon fibers are not oriented. That is, the vapor-grown carbon fiber in the composite material does not have a high degree of orientation, but exhibits a two-dimensional orientation along a plane perpendicular to the center line.

その後、実施例8と同様に、複合材料から直交方向に円盤状の試験片を採取した。試験片の直径は10mm、厚みは2〜3mmであり、試験片の中心線は複合材料の中心線に直角である。試験片の中心線方向における熱伝導率を測定した。結果を図17中に×印で示す。   Thereafter, in the same manner as in Example 8, a disk-shaped test piece was collected from the composite material in the orthogonal direction. The diameter of the test piece is 10 mm, the thickness is 2 to 3 mm, and the center line of the test piece is perpendicular to the center line of the composite material. The thermal conductivity in the center line direction of the test piece was measured. The results are shown by x marks in FIG.

弱い配向性を示すとは言え、基本的に無配向であるので、○印で示した繊維配向材料と比べると、熱伝導率は劣る。しかし、全ての繊維含有量において、実用レベルでのアルミニウムの熱伝導率(200W/mK)を凌いでおり、最高では400W/mK近い熱伝導率を示す。   Although it is weakly oriented, it is basically non-oriented, and thus its thermal conductivity is inferior compared to the fiber-oriented material indicated by ◯. However, in all fiber contents, it exceeds the thermal conductivity (200 W / mK) of aluminum at a practical level, and shows a thermal conductivity close to 400 W / mK at the maximum.

なお、図17中の△印は、繊維状炭素材料の含有量毎に複数作製した複合材料の熱伝導率の平均値を表している。   In addition, (triangle | delta) mark in FIG. 17 represents the average value of the heat conductivity of the composite material produced for every content of fibrous carbon material.

実施例11
実施例8〜10は、繊維状炭素材料として気相成長炭素繊維を使用した繊維配向型の複合材料の製造例である。一方、実施例1〜7は、繊維状炭素材料としてカーボンナノチューブを使用したものであり、全てが繊維無配向型の複合材料の製造例である。そこで、本実施例では、繊維状炭素材料としてカーボンナノチューブを使用した繊維配向型の複合材料の製造例について示す。
Example 11
Examples 8 to 10 are production examples of fiber-oriented composite materials using vapor-grown carbon fibers as fibrous carbon materials. On the other hand, Examples 1-7 use a carbon nanotube as a fibrous carbon material, and all are production examples of a fiber non-oriented type composite material. Therefore, in this embodiment, an example of manufacturing a fiber-oriented composite material using carbon nanotubes as the fibrous carbon material is shown.

繊維状炭素材料として、長さが数μmの極めて短い直線状のカーボンナノチューブが半径方向に2次元的に密接集合した厚さが数μmのカーボンナノチューブ集合シートを用意した。そのカーボンナノチューブ集合シートにおける多数本のカーボンナノチューブをローラにより一方向へ押し倒して、カーボンナノチューブが表面に平行な特定の一方向へ配向した薄い繊維シートを作製した。   As a fibrous carbon material, a carbon nanotube aggregate sheet having a thickness of several μm was prepared, in which very short linear carbon nanotubes having a length of several μm were two-dimensionally closely gathered in the radial direction. A number of carbon nanotubes in the carbon nanotube aggregate sheet were pushed down in one direction by a roller to produce a thin fiber sheet in which the carbon nanotubes were oriented in a specific direction parallel to the surface.

この繊維シートから直径が10mmの円形繊維シートを多数打ち抜いた。それらの円形繊維シートの両面に、金属粉末として平均粒子径が30μmのアルミニウム粉体を付着させながら、円形シートを厚み方向に積層し、直径10mm×高さ20mmの円柱状積層体を作製した。このとき、円形シートの両面に付着させるアルミニウム粉体の付着量の調整により、カーボンナノチューブの含有量を1.5wt%に調整した。円形シートを重ねる際には繊維の配向方向が同一方向を向くように注意した。   Many circular fiber sheets having a diameter of 10 mm were punched from this fiber sheet. While attaching aluminum powder having an average particle diameter of 30 μm as metal powder to both surfaces of the circular fiber sheets, the circular sheets were laminated in the thickness direction to prepare a cylindrical laminate having a diameter of 10 mm × height of 20 mm. At this time, the content of carbon nanotubes was adjusted to 1.5 wt% by adjusting the amount of aluminum powder adhered to both surfaces of the circular sheet. When stacking circular sheets, care was taken that the fiber orientation direction was the same.

作製された円柱状積層体を放電プラズマ焼結装置のダイ内に装填し、高さ方向に加圧した。これによりダイ内の円柱状積層体は高さ約15mmまで圧縮された。この状態で、ダイ内の円柱状積層体を575℃×60分間の条件で放電プラズマ焼結した。その際、昇温速度は100℃/minとし、50MPaの圧力を付加し続けた。その結果、円柱状のアルミニウム粉末焼結体の中に、中心線に直角な炭素繊維層が中心線方向に所定間隔で幾層にも積層された円柱状のアルミニウムとカーボンナノチューブの繊維配向型複合材料が製造された。   The produced cylindrical laminate was loaded into a die of a discharge plasma sintering apparatus and pressurized in the height direction. Thereby, the cylindrical laminated body in the die was compressed to a height of about 15 mm. In this state, the cylindrical laminate in the die was subjected to discharge plasma sintering under the condition of 575 ° C. × 60 minutes. At that time, the temperature rising rate was 100 ° C./min, and a pressure of 50 MPa was continuously applied. As a result, a fiber-oriented composite of columnar aluminum and carbon nanotubes, in which carbon fiber layers perpendicular to the centerline are laminated at predetermined intervals in the centerline direction in a cylindrical aluminum powder sintered body The material was manufactured.

製造された複合材料の直径は10mm、高さは加圧焼結過程での収縮により約11〜12mmになっていた。炭素繊維層における繊維はカーボンナノチューブであり、層表面に平行(複合材料の中心線に直角)な方向で、且つ同じ方向に配向している。   The manufactured composite material had a diameter of 10 mm and a height of about 11 to 12 mm due to shrinkage during the pressure sintering process. The fibers in the carbon fiber layer are carbon nanotubes, and are oriented in the same direction as the direction parallel to the layer surface (perpendicular to the center line of the composite material).

繊維配向方向の熱伝導率を測定するために、複合材料から直交方向に円盤状の試験片を採取した。試験片の直径は10mm、厚みは2〜3mmであり、試験片の中心線は複合材料の中心線に直角で、且つ繊維層における繊維配向方向に一致している。すなわち、各試験片では、その中心線に平行な繊維層が、中心線に直角な方向に所定間隔で積層されており、各繊維層における繊維配向方向は試験片の中心線方向に一致しているのである。   In order to measure the thermal conductivity in the fiber orientation direction, a disk-shaped test piece was taken in the orthogonal direction from the composite material. The test piece has a diameter of 10 mm and a thickness of 2 to 3 mm. The center line of the test piece is perpendicular to the center line of the composite material and coincides with the fiber orientation direction in the fiber layer. That is, in each test piece, a fiber layer parallel to the center line is laminated at a predetermined interval in a direction perpendicular to the center line, and the fiber orientation direction in each fiber layer coincides with the center line direction of the test piece. It is.

試験片の熱伝導率を中心線方向、すなわち繊維配向方向について測定した。結果を図17中に◎印で示す。このカーボンナノチューブ配向型の複合材料は、カーボンナノチューブの含有量が1.5wt%の場合で、274W/mKの熱伝導率を示した。繊維状炭素材料が気相成長炭素繊維の場合と比べて遜色ない性能である。ただ、カーボンナノチューブの場合、高品質な直線状のカーボンナノチューブは、現状では非常に高価であり、コストパフォーマンスを考慮して、総合的、工業的に評価すると、気相成長炭素繊維の使用は有意義である。   The thermal conductivity of the test piece was measured in the center line direction, that is, the fiber orientation direction. The results are indicated by ◎ in FIG. This carbon nanotube-oriented composite material exhibited a thermal conductivity of 274 W / mK when the carbon nanotube content was 1.5 wt%. Compared with the case where the fibrous carbon material is vapor-grown carbon fiber, the performance is comparable. However, in the case of carbon nanotubes, high-quality linear carbon nanotubes are very expensive at present, and the use of vapor-grown carbon fibers is meaningful when evaluated comprehensively and industrially in consideration of cost performance. It is.

実施例12
本実施例では、繊維状炭素材料として長さが数μmの直線状の高品質カーボンナノチューブを使用した無配向型の複合材料を製造した。具体的に説明すると、平均粒子径が30μmのアルミニウム粉末と長さが数μmの直線状のカーボンナノチューブをシェイカーミルで混練した。カーボンナノチューブの含有量は0.5wt%とした。
Example 12
In this example, a non-oriented type composite material using a linear high-quality carbon nanotube having a length of several μm as a fibrous carbon material was manufactured. More specifically, aluminum powder having an average particle diameter of 30 μm and linear carbon nanotubes having a length of several μm were kneaded by a shaker mill. The carbon nanotube content was 0.5 wt%.

得られた粉状の混練分散材を、放電プラズマ焼結装置のダイ内に装填し、高さ方向に加圧した。この状態で、ダイ内の混練分散材を575℃×60分間の条件で放電プラズマ焼結した。その際、昇温速度は100℃/minとし、50MPaの圧力を付加し続けた。これにより、直径が10mm、高さが2〜3の円盤状の複合材料を製造した。   The obtained powdery kneading dispersion was loaded into a die of a discharge plasma sintering apparatus and pressurized in the height direction. In this state, the kneaded dispersion material in the die was subjected to discharge plasma sintering under the condition of 575 ° C. × 60 minutes. At that time, the temperature rising rate was 100 ° C./min, and a pressure of 50 MPa was continuously applied. Thereby, a disk-shaped composite material having a diameter of 10 mm and a height of 2 to 3 was produced.

この複合材料では、円盤状のアルミニウム粉末焼結体の中にカーボンナノチューブが均一に分散している。カーボンナノチューブは非常に短いため、中心線方向の圧縮を受けても配向性は実質的に生じない。このため、熱伝導率測定用サイズの薄い円盤状複合材料(直径10mm×厚み2〜3mm)を直接製造した。中心線方向の熱伝導率は、図17中に◎(ただし中は黒丸)に示すとおり240W/mKであった。カーボンナノチューブの配合量が0.5wt%であることを考慮すると、この性能は良好である。   In this composite material, carbon nanotubes are uniformly dispersed in a disk-shaped aluminum powder sintered body. Since carbon nanotubes are very short, even if they are compressed in the direction of the center line, the orientation does not substantially occur. For this reason, a thin disk-shaped composite material (diameter 10 mm × thickness 2 to 3 mm) having a size for measuring thermal conductivity was directly manufactured. The thermal conductivity in the direction of the center line was 240 W / mK as shown by ◎ in FIG. This performance is good considering that the compounding amount of the carbon nanotube is 0.5 wt%.

実施例13
以上の実施例では、基材は金属粉末焼結体または金属とセラミックスの混合粉末焼結体である。これらに対し、本実施例では、セラミックス基材と気相成長繊維との複合材料を製造した。
Example 13
In the above embodiments, the substrate is a metal powder sintered body or a mixed powder sintered body of metal and ceramics. On the other hand, in the present Example, the composite material of the ceramic base material and the vapor growth fiber was manufactured.

具体的に説明すると、実施例10と同様に、絡まりあった長さが2〜3mmの気相成長炭素繊維の塊をシェイカーミルでほぐし、さばいた。そのシェイカーミルに平均粒径が0.6μmのアルミナ粉末を混合し、両者を混練した。気相成長炭素繊維の含有量は5wt%とした。   Specifically, in the same manner as in Example 10, a mass of vapor-grown carbon fibers having a length of 2 to 3 mm entangled was loosened with a shaker mill and separated. The shaker mill was mixed with alumina powder having an average particle size of 0.6 μm, and both were kneaded. The content of the vapor growth carbon fiber was 5 wt%.

得られた粉状の混練分散材を、実施例8及び実施例10と同様に放電プラズマ焼結装置のダイ内に装填し、高さ方向に加圧した。この状態で、ダイ内の混練分散材を1400℃×3分間の条件で放電プラズマ焼結した。その際、昇温速度は100℃/minとし、30MPaの圧力を付加し続けた。その結果、直径が10mm、高さが11〜12mmの円柱状のアルミナ粉末焼結体の中に気相成長炭素繊維が均一に分散したアルミナと繊維状炭素材料の複合材料が製造された。   The obtained powdery kneading dispersion was loaded into a die of a discharge plasma sintering apparatus in the same manner as in Example 8 and Example 10, and pressurized in the height direction. In this state, the kneaded dispersion material in the die was subjected to spark plasma sintering under the conditions of 1400 ° C. × 3 minutes. At that time, the rate of temperature increase was 100 ° C./min, and a pressure of 30 MPa was continuously applied. As a result, a composite material of alumina and a fibrous carbon material in which vapor-grown carbon fibers were uniformly dispersed in a cylindrical alumina powder sintered body having a diameter of 10 mm and a height of 11 to 12 mm was produced.

放電プラズマ焼結装置のダイ内における混練分散材の高さ方向の圧縮により、混練分散材中の気相成長炭素繊維は横に倒れる。倒れる方向は様々である。このため、製造された複合材料は、気相成長炭素繊維が無配向とは言え、中心線に対して直角な平面に沿って配向する傾向を示す。つまり、複合材料中の気相成長炭素繊維は、配向度は高くないものの、中心線に対して直角な平面に沿った二次元の配向性を示す。   The vapor grown carbon fiber in the kneaded and dispersed material falls sideways by compression in the height direction of the kneaded and dispersed material in the die of the discharge plasma sintering apparatus. There are various ways to fall. For this reason, the produced composite material tends to be oriented along a plane perpendicular to the center line, although the vapor-grown carbon fibers are not oriented. That is, the vapor-grown carbon fiber in the composite material does not have a high degree of orientation, but exhibits a two-dimensional orientation along a plane perpendicular to the center line.

その後、実施例8及び実施例10と同様に、複合材料から直交方向に円盤状の試験片を採取した。試験片の直径は10mm、厚みは2〜3mmであり、試験片の中心線は複合材料の中心線に直角である。試験片の中心線方向における熱伝導率を測定したところ、243W/mKであった。アルミナ粉末焼結体自体の熱伝導率は約25W/mKであるから、繊維状炭素材料との複合化により、熱伝導率は約10倍に上昇したことになり、基材がアルミニウムの場合と比較しても見劣りしない性能を示している。   Thereafter, in the same manner as in Example 8 and Example 10, a disk-shaped test piece was collected from the composite material in the orthogonal direction. The diameter of the test piece is 10 mm, the thickness is 2 to 3 mm, and the center line of the test piece is perpendicular to the center line of the composite material. It was 243 W / mK when the heat conductivity in the centerline direction of the test piece was measured. Since the thermal conductivity of the alumina powder sintered body itself is about 25 W / mK, the thermal conductivity has increased about 10 times due to the combination with the fibrous carbon material. The performance is not inferior even when compared.

比較例
参考のために、繊維状炭素材料としてカーボンファイバーを使用した複合材料を製造した。製造方法は実施例10と同じとした。すなわち、絡まりあったカーボンファイバーの塊をシェイカーミルでほぐし、さばいた。そのシェイカーミルにアルミニウム粉末を混合し、両者を混練した。カーボンファイバーの含有量は15wt%とした。
Comparative Example For reference, a composite material using carbon fiber as a fibrous carbon material was produced. The manufacturing method was the same as in Example 10. That is, the tangled carbon fiber lump was loosened with a shaker mill and separated. Aluminum powder was mixed in the shaker mill, and both were kneaded. The carbon fiber content was 15 wt%.

得られた粉状の混練分散材を、実施例8及び10と同様に、放電プラズマ焼結装置のダイ内に装填し、高さ方向に加圧した。この状態で、ダイ内の混練分散材を575℃×60分間の条件で放電プラズマ焼結した。その際、昇温速度は100℃/minとし、50MPaの圧力を付加し続けた。その結果、直径が10mm、高さが11〜12mmの円柱状のアルミニウム粉末焼結体の中にカーボンファイバーが均一に分散したアルミニウムと繊維状炭素材料の複合材料が製造された。   The obtained powdery kneading dispersion was loaded into a die of a discharge plasma sintering apparatus and pressed in the height direction in the same manner as in Examples 8 and 10. In this state, the kneaded dispersion material in the die was subjected to discharge plasma sintering under the condition of 575 ° C. × 60 minutes. At that time, the temperature rising rate was 100 ° C./min, and a pressure of 50 MPa was continuously applied. As a result, a composite material of aluminum and a fibrous carbon material in which carbon fibers are uniformly dispersed in a cylindrical aluminum powder sintered body having a diameter of 10 mm and a height of 11 to 12 mm was produced.

放電プラズマ焼結装置のダイ内における混練分散材の高さ方向の圧縮により、混練分散材中のカーボンファイバーは横に倒れる。このため、製造された複合材料中のカーボンファイバーは、配向度は高くないものの、中心線に対して直角な平面に沿った二次元の配向性を示す。   The carbon fiber in the kneaded and dispersed material falls sideways by compression in the height direction of the kneaded and dispersed material in the die of the discharge plasma sintering apparatus. For this reason, the carbon fiber in the manufactured composite material does not have a high degree of orientation, but exhibits a two-dimensional orientation along a plane perpendicular to the center line.

その後、実施例8及び10と同様に、複合材料から直交方向に円盤状の試験片を採取した。試験片の直径は10mm、厚みは2〜3mmであり、試験片の中心線は複合材料の中心線に直角である。試験片の中心線方向における熱伝導率を測定した。結果を図17中に●印で示す。   Thereafter, in the same manner as in Examples 8 and 10, a disk-shaped test piece was collected from the composite material in the orthogonal direction. The diameter of the test piece is 10 mm, the thickness is 2 to 3 mm, and the center line of the test piece is perpendicular to the center line of the composite material. The thermal conductivity in the center line direction of the test piece was measured. The results are indicated by ● marks in FIG.

カーボンファイバーの含有量が15wt%と多いので、熱伝導率は208W/mKであった。しかし、実施例10において気相成長炭素繊維の含有量が15wt%の場合の熱伝導率は約350W/mKである。本発明で使用する繊維状炭素材料は、複合材料における含有材料としてカーボンファイバーより格段に優秀である。   Since the carbon fiber content was as high as 15 wt%, the thermal conductivity was 208 W / mK. However, in Example 10, when the content of the vapor growth carbon fiber is 15 wt%, the thermal conductivity is about 350 W / mK. The fibrous carbon material used in the present invention is far superior to carbon fiber as a contained material in the composite material.

本発明の高熱伝導複合材料は、例えばアルミニウム合金、ステンレス鋼等の金属粉体を用いて高熱伝導度に優れた熱交換器やヒートシンク、燃料電池のセパレータなどを製造することができ、さらに金属粉体とセラミックス粉体を用いて、耐腐食性、耐高温特性に優れた電極材料、発熱体、配線材料、熱交換器、燃料電池などを製造することができる。   The high thermal conductive composite material of the present invention can produce heat exchangers, heat sinks, fuel cell separators, etc. having excellent high thermal conductivity using metal powder such as aluminum alloy and stainless steel. An electrode material, a heating element, a wiring material, a heat exchanger, a fuel cell, and the like excellent in corrosion resistance and high temperature resistance characteristics can be manufactured using the body and ceramic powder.

図1Aはカーボンナノチューブを分散含有するアルミニウム焼結体の圧延後の状態写真図、図1Bは圧延後の組織の2μmオーダーの拡大電子顕微鏡写真図である。FIG. 1A is a state photograph after rolling of an aluminum sintered body containing carbon nanotubes in a dispersed manner, and FIG. 1B is an enlarged electron micrograph of the 2 μm order of the structure after rolling. (a)〜(d)はR2、R3、R4、R5の4種の圧延金属材料の試験片切り出し箇所を示す状態写真図である。(A)-(d) is a state photograph figure which shows the test piece cutout location of four types of rolled metal materials of R2, R3, R4, and R5. (a)〜(d)はR2、R3、R4、R5の4種の圧延金属材料(焼鈍なし)ごとの応力−ひずみ関係を示すグラフである。(A)-(d) is a graph which shows the stress-strain relationship for every 4 types of rolling metal materials (no annealing) of R2, R3, R4, R5. (a)〜(d)はR2、R3、R4、R5の4種の圧延金属材料(焼鈍あり)ごとの応力−ひずみ関係を示すグラフである。(A)-(d) is a graph which shows the stress-strain relationship for every 4 types of rolling metal materials (with annealing) of R2, R3, R4, R5. 図5Aはアルミニウムをマトリックスとしたカーボンナノチューブ分散複合材料の強制破面の電子顕微鏡写真図、図5Bは強制破面の拡大電子顕微鏡写真図である。Figure 5 A is an electron micrograph of a forced fracture surface of a carbon nanotube dispersed composite materials with a matrix of Al Miniumu, FIG. 5B is an enlarged electron micrograph of a forced fracture. 図6は混練解砕する前のアルミニウム粒子の電子顕微鏡写真図であり、図6Aはスケールが20μmオーダー、図6Bは10μmオーダーである。FIG. 6 is an electron micrograph of aluminum particles before kneading and pulverization. FIG. 6A shows a scale on the order of 20 μm, and FIG. 6B shows an order of 10 μm. 図7は混練解砕後のアルミニウム粒子の電子顕微鏡写真図であり、図7Aはスケールが30μmオーダー、図7Bは図7Aに示す凹部の10μmオーダーの拡大電子顕微鏡写真図である。FIG. 7 is an electron micrograph of aluminum particles after kneading and pulverization, FIG. 7A is an enlarged electron micrograph of the order of 30 μm and FIG. 7B is an order of 10 μm of the recess shown in FIG. 7A. 図8Aは図7Aに示す凹部の1μmオーダーの拡大電子顕微鏡写真図、図8Bは500nmオーダーの拡大電子顕微鏡写真図である。8A is an enlarged electron micrograph of the order of 1 μm of the recess shown in FIG. 7A, and FIG. 8B is an enlarged electron micrograph of the order of 500 nm. 図9Aは図7Aに示す平滑部の10μmオーダーの拡大電子顕微鏡写真図、図9Bは1μmオーダーの拡大電子顕微鏡写真図である。9A is an enlarged electron micrograph of the order of 10 μm of the smooth portion shown in FIG. 7A, and FIG. 9B is an enlarged electron micrograph of the order of 1 μm. 図10は図7Aに示す平滑部の500nmオーダーの拡大電子顕微鏡写真図である。FIG. 10 is an enlarged electron micrograph of the smooth portion shown in FIG. 7A on the order of 500 nm. 図11Aはチタンをマトリックスとしたカーボンナノチューブ分散複合材料の強制破面の電子顕微鏡写真図、図11Bは強制破面の拡大電子顕微鏡写真図である。FIG. 11A is an electron micrograph of a forced fracture surface of a carbon nanotube-dispersed composite material using titanium as a matrix, and FIG. 11B is an enlarged electron micrograph of the forced fracture surface. 図12Aは混練解砕する前のチタン粒子の電子顕微鏡写真図であり、図12Bは混練解砕後のチタン粒子の電子顕微鏡写真図である。FIG. 12A is an electron micrograph of titanium particles before kneading and crushing, and FIG. 12B is an electron micrograph of titanium particles after kneading and crushing. 図13Aは図12Bに示すチタン粒子表面の1μmオーダーの拡大電子顕微鏡写真図、図13Bは500nmオーダーの拡大電子顕微鏡写真図である。13A is an enlarged electron micrograph of the order of 1 μm on the surface of the titanium particles shown in FIG. 12B, and FIG. 13B is an enlarged electron micrograph of the order of 500 nm. 図14Aは銅をマトリックスとしたカーボンナノチューブ分散複合材料の強制破面の電子顕微鏡写真図、図14Bは強制破面の拡大電子顕微鏡写真図である。14A is an electron micrograph of a forced fracture surface of a carbon nanotube-dispersed composite material using copper as a matrix, and FIG. 14B is an enlarged electron micrograph of the forced fracture surface. 図15は混練解砕する前の銅粒子の電子顕微鏡写真図であり、図15Aはスケールが10μmオーダー、図15Bは50μmオーダーである。FIG. 15 is an electron micrograph of copper particles before kneading and pulverization. FIG. 15A shows a scale on the order of 10 μm, and FIG. 15B shows an order of 50 μm. 図16Aは混練解砕した後の銅粒子表面の1μmオーダーの拡大電子顕微鏡写真図、図16Bは500nmオーダーの拡大電子顕微鏡写真図である。FIG. 16A is an enlarged electron micrograph of the order of 1 μm on the copper particle surface after kneading and pulverization, and FIG. 16B is an enlarged electron micrograph of the order of 500 nm. 図17は本発明の実施例及び参考例において、アルミニウムと炭素材料の複合材料における炭素材料含有量と熱伝導率との関係を示すグラフである。FIG. 17 is a graph showing the relationship between the carbon material content and the thermal conductivity in a composite material of aluminum and a carbon material in Examples and Reference Examples of the present invention .

Claims (12)

金属粉体、又は金属とセラミックスの混合粉体、若しくはセラミックス粉体からなる放電プラズマ焼結体からなる基材中に、繊維状炭素材料が複数の層をなして存在する積層体であり、その積層体における繊維状炭素材料の各層が、グラフェンシートが円筒形状に丸まった単層又は複数層のグラフェンチューブを芯部に有し、その芯部を多重に取り囲むようにグラフェンシートがグラフェンチューブの径方向に積層された気相成長炭素繊維の分散液を固化させることにより作製されたシートであって、且つ繊維の方向がシート表面に平行な方向に配向した気相成長炭素繊維配向シートである高熱伝導複合材料。   A laminate in which a fibrous carbon material is present in a plurality of layers in a base material made of a metal powder, or a mixed powder of metal and ceramics, or a discharge plasma sintered body made of ceramic powder. Each layer of fibrous carbon material in the laminate has a single-layer or multiple-layer graphene tube with a graphene sheet rounded in a cylindrical shape, and the graphene sheet has a diameter of the graphene tube so as to surround the core in multiple layers. High-temperature heat-sensitive carbon fiber oriented sheet produced by solidifying a dispersion of vapor-grown carbon fibers laminated in a direction, and oriented in a direction parallel to the sheet surface. Conductive composite material. 気相成長炭素繊維配向シートにおける繊維の方向が、シート表面に平行な方向で、且つ同一の方向に配向した請求項1に記載の高熱伝複合材料。   The high heat transfer composite material according to claim 1, wherein the direction of the fibers in the vapor-grown carbon fiber oriented sheet is oriented in the same direction as the direction parallel to the sheet surface. 前記基材は前記繊維状炭素材料と共に積層方向の塑性加工を受けた加工材である請求項1又は2に記載の高熱伝導複合材料。   The highly heat-conductive composite material according to claim 1, wherein the base material is a processed material that has undergone plastic processing in the stacking direction together with the fibrous carbon material. 前記基材が金属粉体、又は金属とセラミックスの混合粉体からなる放電プラズマ焼結体であり、前記金属はアルミニウム、アルミニウム合金、チタン、チタン合金、銅、銅合金、ステンレス鋼のうちの1種または2種以上である請求項1〜3の何れかに記載の高熱伝導複合材料。 The base material is a discharge plasma sintered body made of metal powder or a mixed powder of metal and ceramics , and the metal is one of aluminum, aluminum alloy, titanium, titanium alloy, copper, copper alloy, and stainless steel. The high thermal conductive composite material according to any one of claims 1 to 3, which is a seed or two or more kinds. 前記基材が金属とセラミックスの混合粉体、又はセラミックス粉体からなる放電プラズマ焼結体であり、前記セラミックスは酸化物、窒化物、炭化物、ホウ化物のうちの1種または2種以上である請求項1〜4の何れかに記載の高熱伝導複合材料。 The base material is a discharge plasma sintered body made of a mixed powder of metal and ceramic, or ceramic powder , and the ceramic is one or more of oxide, nitride, carbide, and boride. The high heat conductive composite material according to claim 1. 金属粉体層、又は金属粉体とセラミックス粉体の混合粉体層、若しくはセラミックス粉体層と、繊維状炭素材料により構成されたシートとを交互に積層する工程と、得られた積層体を積層方向に加圧して放電プラズマ焼結する工程とを含み、前記シートはグラフェンシートが円筒形状に丸まった単層又は複数層のグラフェンチューブを芯部に有し、その芯部を多重に取り囲むようにグラフェンシートがグラフェンチューブの径方向に積層された気相成長炭素繊維の分散液を固化させることにより作製されたシートであって、且つ繊維の方向がシート表面に平行な方向に配向した気相成長炭素繊維配向シートである高熱伝導複合材料の製造方法。   A step of alternately laminating a metal powder layer, or a mixed powder layer of metal powder and ceramic powder, or a ceramic powder layer, and a sheet made of a fibrous carbon material, and an obtained laminate The sheet is pressure-sintered in the stacking direction and sintered by discharge plasma. The sheet has a single-layered or multi-layered graphene tube in which the graphene sheet is rounded into a cylindrical shape, and surrounds the core in multiple layers. Is a sheet produced by solidifying a vapor-grown carbon fiber dispersion in which a graphene sheet is laminated in the radial direction of the graphene tube, and the fiber direction is oriented in a direction parallel to the sheet surface A method for producing a high thermal conductive composite material which is a grown carbon fiber oriented sheet. 前記気相成長炭素繊維配向シートは、繊維の方向がシートの表面に平行で且つ同一の方向に配向している請求項6に記載の高熱伝導複合材料の製造方法。   The method for producing a high thermal conductive composite material according to claim 6, wherein the vapor-grown carbon fiber oriented sheet has a fiber direction parallel to the surface of the sheet and oriented in the same direction. 得られた放電プラズマ焼結体を塑性変形させる工程を含む請求項6又は7に記載の高熱伝導複合材料の製造方法。   The manufacturing method of the high heat conductive composite material of Claim 6 or 7 including the process of plastically deforming the obtained discharge plasma sintered compact. 塑性変形が冷間圧延、温間圧延、熱間圧延のいずれかである請求項8に記載の高熱伝導複合材料の製造方法。   The method for producing a high thermal conductive composite material according to claim 8, wherein the plastic deformation is any one of cold rolling, warm rolling, and hot rolling. 塑性変形の後に焼鈍を行う工程を含む請求項9に記載の高熱伝導複合材料の製造方法。   The manufacturing method of the high heat conductive composite material of Claim 9 including the process of annealing after plastic deformation. 金属粉体層、又は金属粉体とセラミックス粉体の混合粉体層、若しくはセラミックス粉体層と、繊維状炭素材料により構成されたシートとを交互に積層する工程において、金属粉体層、又は金属粉体とセラミックス粉体の混合粉体層と、繊維状炭素材料により構成されたシートとを交互に積層、前記金属粉体は純アルミニウム、アルミニウム合金、チタン、チタン合金、銅、銅合金、ステンレス鋼のうちの1種または2種以上である請求項6〜10の何れかに記載の高熱伝導複合材料の製造方法。 In the step of alternately laminating the metal powder layer, or the mixed powder layer of the metal powder and the ceramic powder, or the ceramic powder layer and the sheet made of the fibrous carbon material, the metal powder layer, or A mixed powder layer of metal powder and ceramic powder and a sheet made of fibrous carbon material are alternately laminated, and the metal powder is pure aluminum, aluminum alloy, titanium, titanium alloy, copper, copper alloy. The method for producing a highly heat-conductive composite material according to any one of claims 6 to 10, which is one or more of stainless steels. 金属粉体層、又は金属粉体とセラミックス粉体の混合粉体層、若しくはセラミックス粉体層と、繊維状炭素材料により構成されたシートとを交互に積層する工程において、金属粉体とセラミックス粉体の混合粉体層、又はセラミックス粉体層と、繊維状炭素材料により構成されたシートとを交互に積層、前記セラミックス粉体は酸化物、窒化物、炭化けい素、炭化チタン、炭化物、ホウ化物のうちの1種または2種以上である請求項6〜11の何れかに記載の高熱伝導複合材料の製造方法。




In the process of alternately laminating the metal powder layer, or the mixed powder layer of the metal powder and the ceramic powder, or the ceramic powder layer and the sheet made of the fibrous carbon material, the metal powder and the ceramic powder The mixed powder layer of the body or the ceramic powder layer and the sheet composed of the fibrous carbon material are alternately laminated, and the ceramic powder is oxide, nitride, silicon carbide, titanium carbide, carbide, The method for producing a high thermal conductive composite material according to any one of claims 6 to 11, which is one or more of borides.




JP2007526827A 2005-05-10 2006-03-22 High thermal conductive composite material and its manufacturing method Expired - Fee Related JP5288441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007526827A JP5288441B2 (en) 2005-05-10 2006-03-22 High thermal conductive composite material and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005137735 2005-05-10
JP2005137735 2005-05-10
JP2007526827A JP5288441B2 (en) 2005-05-10 2006-03-22 High thermal conductive composite material and its manufacturing method
PCT/JP2006/305738 WO2006120803A1 (en) 2005-05-10 2006-03-22 Highly thermally conductive composite material

Publications (2)

Publication Number Publication Date
JPWO2006120803A1 JPWO2006120803A1 (en) 2008-12-18
JP5288441B2 true JP5288441B2 (en) 2013-09-11

Family

ID=37396321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007526827A Expired - Fee Related JP5288441B2 (en) 2005-05-10 2006-03-22 High thermal conductive composite material and its manufacturing method

Country Status (2)

Country Link
JP (1) JP5288441B2 (en)
WO (1) WO2006120803A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110666179A (en) * 2019-11-11 2020-01-10 沈阳航空航天大学 Graphene aluminum-based composite powder for laser deposition manufacturing and preparation method and application thereof
KR102193589B1 (en) * 2019-09-02 2020-12-21 허경삼 Method for manufacturing aluminium-graphene composites having enhanced thermal conductivity

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054541A2 (en) * 2006-05-19 2008-05-08 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US8337979B2 (en) 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
JP5116082B2 (en) 2007-04-17 2013-01-09 住友精密工業株式会社 High thermal conductivity composite material
JP5229934B2 (en) * 2007-07-05 2013-07-03 住友精密工業株式会社 High thermal conductivity composite material
CN101458608B (en) 2007-12-14 2011-09-28 清华大学 Touch screen preparation method
CN101458596B (en) 2007-12-12 2011-06-08 北京富纳特创新科技有限公司 Touch screen and display device
CN101458594B (en) 2007-12-12 2012-07-18 清华大学 Touch screen and display device
CN101419519B (en) 2007-10-23 2012-06-20 清华大学 Touch panel
CN101458593B (en) 2007-12-12 2012-03-14 清华大学 Touch screen and display device
CN101458595B (en) 2007-12-12 2011-06-08 清华大学 Touch screen and display device
CN101656769B (en) 2008-08-22 2012-10-10 清华大学 Mobile telephone
CN101464763B (en) 2007-12-21 2010-09-29 清华大学 Production method of touch screen
CN101458602B (en) 2007-12-12 2011-12-21 清华大学 Touch screen and display device
CN101458603B (en) 2007-12-12 2011-06-08 北京富纳特创新科技有限公司 Touch screen and display device
CN101458599B (en) 2007-12-14 2011-06-08 清华大学 Touch screen, method for producing the touch screen, and display device using the touch screen
CN101655720B (en) 2008-08-22 2012-07-18 清华大学 Personal digital assistant
CN101458604B (en) 2007-12-12 2012-03-28 清华大学 Touch screen and display device
CN101470560B (en) 2007-12-27 2012-01-25 清华大学 Touch screen and display equipment
CN101458600B (en) 2007-12-14 2011-11-30 清华大学 Touch screen and display device
CN101470558B (en) 2007-12-27 2012-11-21 清华大学 Touch screen and display equipment
CN101458606B (en) 2007-12-12 2012-06-20 清华大学 Touch screen, method for producing the touch screen, and display device using the touch screen
CN101458598B (en) 2007-12-14 2011-06-08 清华大学 Touch screen and display device
CN101458605B (en) 2007-12-12 2011-03-30 鸿富锦精密工业(深圳)有限公司 Touch screen and display device
CN101458609B (en) 2007-12-14 2011-11-09 清华大学 Touch screen and display device
CN101419518B (en) 2007-10-23 2012-06-20 清华大学 Touch panel
CN101458597B (en) 2007-12-14 2011-06-08 清华大学 Touch screen, method for producing the touch screen, and display device using the touch screen
CN101470566B (en) 2007-12-27 2011-06-08 清华大学 Touch control device
WO2009054309A1 (en) * 2007-10-25 2009-04-30 National University Corporation Hokkaido University Composite metal material and process for production thereof
CN101458975B (en) 2007-12-12 2012-05-16 清华大学 Electronic element
CN101464757A (en) 2007-12-21 2009-06-24 清华大学 Touch screen and display equipment
CN101458607B (en) 2007-12-14 2010-12-29 清华大学 Touch screen and display device
CN101458601B (en) 2007-12-14 2012-03-14 清华大学 Touch screen and display device
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
CN101464765B (en) 2007-12-21 2011-01-05 鸿富锦精密工业(深圳)有限公司 Touch screen and display equipment
CN101464764B (en) 2007-12-21 2012-07-18 清华大学 Touch screen and display equipment
CN101464766B (en) 2007-12-21 2011-11-30 清华大学 Touch screen and display equipment
CN101470565B (en) 2007-12-27 2011-08-24 清华大学 Touch screen and display equipment
WO2009104665A1 (en) * 2008-02-20 2009-08-27 株式会社大成化研 Manufacturing method for metal materials that comprise carbon nanostructure materials and cnt steel manufactured therefrom
CN101561189B (en) * 2008-04-18 2011-06-08 清华大学 Solar energy heat collector
US8237677B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
JP5229732B2 (en) * 2008-11-11 2013-07-03 地方独立行政法人大阪府立産業技術総合研究所 Apparatus and method for producing fine carbon fiber twisted yarn
CN101924816B (en) 2009-06-12 2013-03-20 清华大学 Flexible mobile phone
KR101145709B1 (en) * 2009-10-23 2012-05-24 전북대학교산학협력단 Manufacturing method of nano-structured metal carbides-cnt composite
WO2011090133A1 (en) 2010-01-20 2011-07-28 古河電気工業株式会社 Composite electric cable and process for producing same
JP5569839B2 (en) * 2010-05-18 2014-08-13 住友精密工業株式会社 Carbon fiber oriented sheet manufacturing method
EP2562766A1 (en) * 2011-08-22 2013-02-27 Bayer MaterialScience AG Dispersions containing carbon nanotubes and graphene platelets
TWI523038B (en) * 2012-05-04 2016-02-21 Elite Optoelectronic Co Ltd A flexible transparent display structure and method for forming a light emitting diode
ES2663666T3 (en) 2013-02-28 2018-04-16 N12 Technologies, Inc. Nanostructure film cartridge based dispensing
JP6176845B2 (en) * 2013-09-06 2017-08-09 住友精密工業株式会社 High heat conduction plate
JP6390024B2 (en) * 2014-04-08 2018-09-19 矢崎総業株式会社 Carbon nanotube composite material and manufacturing method thereof
CN105463346B (en) * 2015-10-12 2017-02-22 中南大学 Spiral line reinforced metal matrix composite and manufacturing method thereof
CN105400982B (en) * 2015-10-30 2017-08-11 苏州大学 Graphene is prepared by titantium hydride strengthens the method for titanium-based nano composite
CN105349846B (en) * 2015-11-02 2017-05-03 唐山建华科技发展有限责任公司 Preparation method of graphene/aluminum composite material
CN105742970A (en) * 2016-04-08 2016-07-06 天津平高智能电气有限公司 Switch cabinet and manufacturing method thereof
EP3463826B1 (en) 2016-05-31 2023-07-05 Massachusetts Institute of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
EP3681942B1 (en) 2017-09-15 2024-10-02 Massachusetts Institute of Technology Low-defect fabrication of composite materials
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
JP7094805B2 (en) * 2018-07-05 2022-07-04 住友精密工業株式会社 How to manufacture heat exchangers and heat exchangers
CA3116596A1 (en) * 2018-10-29 2020-05-07 Stuart Licht Use of carbon nanomaterials produced with low carbon footprint to produce composites with low co2 emission
CN109590459B (en) * 2019-01-11 2020-06-09 中南大学 In-situ interface modification method for graphene/magnesium-aluminum alloy
CN109695007B (en) * 2019-01-15 2020-01-21 中南大学 Preparation method of metal-carbon composite material
CN109967083B (en) * 2019-01-15 2020-08-04 中南大学 Porous catalytic material
JP7340809B2 (en) * 2019-04-01 2023-09-08 ヤマキ電器株式会社 Nanocarbon composite ceramics and manufacturing method thereof
CN110157933B (en) * 2019-06-25 2020-11-06 西安建筑科技大学 Preparation method of high-strength wear-resistant non-oriented graphene/Ti 2AlNb composite material
CN111139376B (en) * 2020-01-21 2021-03-16 西安稀有金属材料研究院有限公司 Preparation method of in-situ acicular MAX phase reinforced titanium-based composite material
CN111500888B (en) * 2020-06-10 2022-01-04 柯良节 Graphene composite metal material and preparation method and production equipment thereof
CN112030044B (en) * 2020-08-21 2021-09-24 武汉轻工大学 Carbon nano tube reinforced aluminum matrix composite material and preparation method thereof
CN113151706A (en) * 2021-03-17 2021-07-23 西安理工大学 Low friction coefficient WB2Preparation method of/CuSn 10 composite material
JP7142748B1 (en) 2021-06-25 2022-09-27 東邦チタニウム株式会社 Titanium porous body and method for producing titanium porous body
JP7488235B2 (en) 2021-09-29 2024-05-21 矢崎総業株式会社 Aluminum matrix composite member, its manufacturing method and electrical connection member
CN114149273B (en) * 2021-12-28 2022-10-21 湖南省嘉利信陶瓷科技有限公司 Preparation method of alumina ceramic powder for electronic ceramics
CN114478022B (en) * 2021-12-31 2023-01-03 南通威斯派尔半导体技术有限公司 High-reliability aluminum nitride copper-clad ceramic substrate and preparation method thereof
WO2024118920A1 (en) * 2022-11-30 2024-06-06 Naeco, Llc Solid phase methods for producing enhanced metal matrix composites

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003023A (en) * 2003-05-21 2004-01-08 Hitachi Ltd Composite material, method for manufacturing the same, and application of the same
JP2006001232A (en) * 2004-06-21 2006-01-05 Hitachi Metals Ltd Composite having high heat conduction/low heat expansion and manufacturing process of the same
WO2006051782A1 (en) * 2004-11-09 2006-05-18 Shimane Prefectural Government Metal base carbon fiber composite material and method for production thereof
JP2006144030A (en) * 2004-11-16 2006-06-08 Bridgestone Corp High thermal conductivity composite material and manufacturing method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301048A (en) * 2002-04-10 2003-10-21 Polymatech Co Ltd Thermally conductive molded product
JP4403265B2 (en) * 2003-09-05 2010-01-27 国立大学法人信州大学 Powder mixing method
WO2005040068A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
JP4593472B2 (en) * 2003-10-29 2010-12-08 住友精密工業株式会社 Method for producing carbon nanotube-dispersed composite material and application thereof
WO2005040066A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003023A (en) * 2003-05-21 2004-01-08 Hitachi Ltd Composite material, method for manufacturing the same, and application of the same
JP2006001232A (en) * 2004-06-21 2006-01-05 Hitachi Metals Ltd Composite having high heat conduction/low heat expansion and manufacturing process of the same
WO2006051782A1 (en) * 2004-11-09 2006-05-18 Shimane Prefectural Government Metal base carbon fiber composite material and method for production thereof
JP2006144030A (en) * 2004-11-16 2006-06-08 Bridgestone Corp High thermal conductivity composite material and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102193589B1 (en) * 2019-09-02 2020-12-21 허경삼 Method for manufacturing aluminium-graphene composites having enhanced thermal conductivity
CN110666179A (en) * 2019-11-11 2020-01-10 沈阳航空航天大学 Graphene aluminum-based composite powder for laser deposition manufacturing and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2006120803A1 (en) 2008-12-18
WO2006120803A1 (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP5288441B2 (en) High thermal conductive composite material and its manufacturing method
JP4593473B2 (en) Method for producing carbon nanotube dispersed composite material
JP5116082B2 (en) High thermal conductivity composite material
Ghasali et al. Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite
Awotunde et al. Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review
JPWO2005040066A1 (en) Carbon nanotube-dispersed composite material, production method thereof, and application thereof
JP4441768B2 (en) Metal-graphite composite material having high thermal conductivity and method for producing the same
JP6982320B2 (en) Graphite / graphene composite material, heat collector, heat transfer body, heat radiator and heat dissipation system
CN101151384A (en) High-heat-conduction composite with graphite grain dispersed and process for producing the same
Sethuram et al. Characterization of graphene reinforced Al-Sn nanocomposite produced by mechanical alloying and vacuum hot pressing
JP2006315893A (en) Method for producing carbon nanotube-dispersed composite material
CN109504869A (en) A kind of metal-base nanometer composite material and preparation method thereof with bionical multilevel structure
Pillari et al. On the comparison of graphene and multi-wall carbon nanotubes as reinforcements in aluminum alloy AA2219 processed by ball milling and spark plasma sintering
JP4593472B2 (en) Method for producing carbon nanotube-dispersed composite material and application thereof
CA2783939A1 (en) A compound material comprising a metal and nanoparticles
Suárez et al. Carbon Nanotube (CNT)-reinforced metal matrix bulk composites: Manufacturing and evaluation
Vijay Ponraj et al. Study of processing and microstructure of copper composite reinforced with graphene nanosheet by powder metallurgy technique
US20120175547A1 (en) Compound material comprising a metal and nanoparticles
WO2011032791A1 (en) A compound material comprising a metal and nanoparticles
JP4375948B2 (en) Nano SiC sintered body and manufacturing method thereof
Huo et al. Interface regulation of micro-sized sintered Ag-10Al composite based on in-situ surface modification and enhanced microstructure stability in power electronic packaging
Nyanor et al. Microstructure and mechanical properties of hybrid nano-titanium carbide-carbon nanotubes (nano-TiC-CNT) reinforced aluminium matrix composite
Zhang et al. Microstructure and interface structures of graphene reinforced pure titanium matrix composites by hot pressed sintering
Chen et al. Recent advances in 2D graphene reinforced metal matrix composites
Liu et al. Balance thermal conductivity and thermal expansion in RGO/Cu composites through alignment engineering

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees