[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006001232A - Composite having high heat conduction/low heat expansion and manufacturing process of the same - Google Patents

Composite having high heat conduction/low heat expansion and manufacturing process of the same Download PDF

Info

Publication number
JP2006001232A
JP2006001232A JP2004182256A JP2004182256A JP2006001232A JP 2006001232 A JP2006001232 A JP 2006001232A JP 2004182256 A JP2004182256 A JP 2004182256A JP 2004182256 A JP2004182256 A JP 2004182256A JP 2006001232 A JP2006001232 A JP 2006001232A
Authority
JP
Japan
Prior art keywords
composite
thermal conductivity
thermal expansion
metal
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004182256A
Other languages
Japanese (ja)
Other versions
JP4711165B2 (en
Inventor
Hideko Fukushima
英子 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004182256A priority Critical patent/JP4711165B2/en
Publication of JP2006001232A publication Critical patent/JP2006001232A/en
Application granted granted Critical
Publication of JP4711165B2 publication Critical patent/JP4711165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high heat conduction material which, having high heat conductivity, is useful as a material substituting for the conventionally used copper, aluminum and the like in the thermal machine such as a radiating plate for protecting electric circuits, a heat exchanger and a heat pump. <P>SOLUTION: The composite is obtained by laminating a tape-, sheet-, film- or mat-like crystalline carbon material (graphite, carbon fiber, carbon nanotube, etc.) and a metal (Cu, Al, Ag, Mg, W, Mo, Si, Zn, etc.) and forming into a composite. Its heat conductivity in the lamination (thickness) direction is ≤200 W/(m×K), and a ratio of the above heat conductivity in the lamination direction to the heat conductivity in the orthogonal (planar) direction is ≤0.7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高熱伝導・低熱膨脹複合体及びその製造方法に関する。本発明の高熱伝導・低熱膨脹複合体は、電気回路保護用の放熱板、熱交換器やヒートポンプ等の熱的機械の高熱伝導性が要求されるヒートシンク材料として有用である。   The present invention relates to a high thermal conductivity / low thermal expansion composite and a method for producing the same. The high thermal conductivity / low thermal expansion composite of the present invention is useful as a heat sink material that requires high thermal conductivity of a thermal machine such as a heat radiating plate for protecting an electric circuit, a heat exchanger or a heat pump.

従来、熱交換、熱伝達の現象を伴う熱的機械又は放熱用のヒートシンク材料としては、主に銅及び銅合金、アルミニウム及びアルミニウム合金等が使用されている。特に、高熱伝導率が要求される熱交換器等の熱的機械には、常温から高温までの温度範囲にわたって熱伝導率が最も高い銅やアルミニウム等が使用されている。
また、最近では、炭素粒子又は炭素繊維と金属との複合材を放熱基板として使用する試みが数多く提案されている。例えば、特許文献1(特開平10-168502号公報)には、黒鉛、炭素繊維、カーボンブラック、フラーレン又はカーボンナノチューブから選ばれた1種類以上からなる結晶性カーボン材1〜200重量部と、Fe、Cu、Al、Ag、Be、Mg、W、Ni、Mo、Si、Zn及びこれらの合金からなる群から選ばれた金属の粉末100重量部とを混合し、ホットプレス成形することにより得られた高熱伝導率複合材を開示している。この複合材によれば金属マトリックスに結晶性カーボン材が分散した構造を有した高熱伝導率の複合体が得られている。
また、特許文献2(特開2000-203973号公報)には、炭素質マトリックス中にアルミニウム、マグネシウム、錫、亜鉛、銅、銀、鉄、ニッケル及びこれらの合金からなる群から選ばれた少なくとも1種の金属が含浸されてなる炭素基金属複合材であって、炭素質マトリックスの気孔の90体積%以上に前記金属が含浸し、前記金属の含有量が前記炭素基金属複合材全体の35体積%以下である炭素基金属複合材を開示している。
また、特許文献3(特開2001-58255号公報)には、黒鉛結晶を含む炭素粒子又は炭素繊維を含む炭素成形体にアルミニウム、銅、銀又はこれらの合金を溶湯鍛造法で加圧含浸させることにより製造された炭素基金属複合材であって、室温における厚さ方向の熱伝導率が150 W/mK以上であり、熱膨張率が4×10-6/K〜12×10-6/Kである炭素基金属複合材を開示している。これらの炭素基金属複合材は、高剛性で高熱伝導率及び低熱膨張率を有する黒鉛マトリックスを骨格とし、その気孔に金属が含浸した構造を有するので、黒鉛の低熱膨張率と金属の高熱伝導率を兼備する。
Conventionally, copper and a copper alloy, aluminum and an aluminum alloy, etc. are mainly used as a thermal machine or heat sink material for heat dissipation accompanying heat exchange and heat transfer. In particular, for a thermal machine such as a heat exchanger that requires high thermal conductivity, copper, aluminum, or the like having the highest thermal conductivity over a temperature range from room temperature to high temperature is used.
Recently, many attempts have been made to use carbon particles or a composite material of carbon fiber and metal as a heat dissipation substrate. For example, Patent Document 1 (Japanese Patent Laid-Open No. 10-168502) discloses 1 to 200 parts by weight of a crystalline carbon material made of one or more selected from graphite, carbon fiber, carbon black, fullerene or carbon nanotube, and Fe. , Cu, Al, Ag, Be, Mg, W, Ni, Mo, Si, Zn, and 100 parts by weight of a metal powder selected from the group consisting of these alloys are mixed and obtained by hot pressing. High thermal conductivity composites are disclosed. According to this composite material, a composite having a high thermal conductivity having a structure in which a crystalline carbon material is dispersed in a metal matrix is obtained.
Patent Document 2 (Japanese Patent Application Laid-Open No. 2000-203973) discloses at least one selected from the group consisting of aluminum, magnesium, tin, zinc, copper, silver, iron, nickel, and alloys thereof in the carbonaceous matrix. A carbon-based metal composite impregnated with a seed metal, wherein 90% by volume or more of the pores of the carbonaceous matrix is impregnated with the metal, and the metal content is 35 volumes of the entire carbon-based metal composite. % Based carbon composite materials are disclosed.
Patent Document 3 (Japanese Patent Laid-Open No. 2001-58255) discloses that a carbon molded body containing carbon particles or graphite fibers containing graphite crystals is impregnated with aluminum, copper, silver or an alloy thereof by a melt forging method. A carbon-based metal composite material having a thermal conductivity in the thickness direction at room temperature of 150 W / mK or more and a thermal expansion coefficient of 4 × 10 −6 / K to 12 × 10 −6 / A carbon-based metal composite that is K is disclosed. These carbon-based metal composites have a structure in which a graphite matrix having high rigidity, high thermal conductivity, and low thermal expansion coefficient is used as a skeleton, and the pores are impregnated with metal. Therefore, the low thermal expansion coefficient of graphite and the high thermal conductivity of metal Combined.

特開平10−168502号公報JP-A-10-168502 特開2000−203973号公報JP 2000-202973 A 特開2001−58255号公報JP 2001-58255 A

ところが、従来のアルミニウムや銅等の金属製のヒートシンクは、熱膨張係数が2×10−5/K程度であり、近年の半導体素子の発熱量の高熱化によって、半導体素子との熱膨張率との違いにより発生する接合部の剥離が新たな問題となりつつある。
また、特許文献1のようにカーボン材と金属の複合体の場合は、単純に混合しただけでは、カーボン材がいかなる金属とも濡れないために、緻密な複合体が得られず、期待通りの特性が得られていなかった。一方、特許文献2、3の溶浸法による場合は、緻密化の問題は改善することができるが、溶浸に絶え得る強固なプリフォームの作製を必要としていた。
However, conventional heat sinks made of metal such as aluminum and copper have a coefficient of thermal expansion of about 2 × 10 −5 / K. Due to the recent increase in the amount of heat generated by semiconductor elements, the coefficient of thermal expansion with the semiconductor elements is increased. Separation of the joint caused by the difference is becoming a new problem.
In addition, in the case of a composite of a carbon material and a metal as in Patent Document 1, a simple composite cannot be obtained because the carbon material does not get wet with any metal simply by mixing, and the expected properties are obtained. Was not obtained. On the other hand, in the case of the infiltration methods of Patent Documents 2 and 3, the problem of densification can be improved, but it is necessary to produce a strong preform that can withstand infiltration.

そこで、本発明は、従来のアルミニウムや銅等の金属製のヒートシンクと同等以上の放熱性を有するとともに、半導体素子の発熱により半導体素子と熱膨張率の違いによる剥離の問題のないヒートシンクで、かつ緻密化が容易で、プリフォームの作製の必要のない複合体を提供することを目的とする。   Therefore, the present invention is a heat sink having heat dissipation equal to or better than that of a conventional metal heat sink such as aluminum or copper, and having no problem of peeling due to a difference in thermal expansion coefficient from the semiconductor element due to heat generation of the semiconductor element, and It is an object to provide a composite that can be easily densified and does not require the preparation of a preform.

前記課題を解決するために、本発明者らは高い放熱性を有するとともに、半導体素子の発熱により半導体素子と熱膨張率の違いによる剥離の問題のないヒートシンクを得るべく、種々検討を行い、半導体素子と同等の熱膨張率を有するとともに、一方向の熱伝導率を大きくした結晶性カーボンと金属を微細に積層させた複合体を得ることにより本発明を想到した。
すなわち、本発明の高熱伝導・低熱膨脹複合体は、黒鉛、炭素繊維、カーボンブラック、フラーレン又はカーボンナノチューブから選ばれた少なくとも1種からなるテープ状、シート状、フィルム状、マット状の結晶性カーボン材層と、Cu、Al、Ag、Mg、W、Mo、Si、Znから選ばれた金属又はこれらの金属を含む合金の粉末あるいは箔の少なくとも1種からなるテープ状、シート状、フィルム状、マット状の金属層とを積層し、複合化したものである。
In order to solve the above problems, the present inventors have conducted various studies to obtain a heat sink that has high heat dissipation and does not have a problem of peeling due to a difference in thermal expansion coefficient from the semiconductor element due to heat generation of the semiconductor element. The present invention has been conceived by obtaining a composite in which crystalline carbon and metal having a thermal expansion coefficient equivalent to that of the element and having a high thermal conductivity in one direction are finely laminated.
That is, the high thermal conductivity / low thermal expansion composite of the present invention is a crystalline carbon of tape-like, sheet-like, film-like, or mat-like shape comprising at least one selected from graphite, carbon fiber, carbon black, fullerene or carbon nanotube. A tape layer, a sheet shape, a film shape, which is made of at least one material layer and powder or foil of a metal selected from Cu, Al, Ag, Mg, W, Mo, Si, Zn or an alloy containing these metals, A matte metal layer is laminated and combined.

このとき、前記複合体の積層方向の熱伝導率が200W/(m・K)以下であり、前記積層方向の熱伝導率がそれと直交する方向の熱伝導率に対して0.7以下の比率であることが望ましい。また、前記複合体の積層方向の熱膨張係数が8〜30×10−6/Kで、それと直交する方向の熱膨張係数が8×10−6/K以下であることが望ましい。さらに、前記金属層と結晶性カーボン材層との割合が、体積割合で9:1〜1:9であることは望ましい態様である。 At this time, the thermal conductivity in the laminating direction of the composite is 200 W / (m · K) or less, and the thermal conductivity in the laminating direction is a ratio of 0.7 or less with respect to the thermal conductivity in the direction orthogonal thereto. It is desirable that Moreover, it is desirable that the thermal expansion coefficient in the stacking direction of the composite is 8 to 30 × 10 −6 / K, and the thermal expansion coefficient in the direction orthogonal thereto is 8 × 10 −6 / K or less. Further, it is desirable that the ratio of the metal layer and the crystalline carbon material layer is 9: 1 to 1: 9 by volume.

また、前記積層方向に積層される結晶性カーボン材層の材料は、面内においてランダムか、または、繊維状の場合は一軸方向にあるいは平織り状に配向されているのが好ましい。本発明で使用する結晶性カーボン材料は、ピッチ系炭素繊維あるいは気相成長法炭素繊維等、あるいは膨張黒鉛をシート状にしてなるカーボンペーパー、デープ状やシート状のカーボンナノチューブ等いずれの種類でもよいが、特に繊維軸方向の熱伝導率が高い黒鉛化したピッチ系炭素繊維や黒鉛化した気相成長炭素繊維やアーク放電法にて作製されたカーボンナノチューブが好適である。   The material of the crystalline carbon material layer laminated in the laminating direction is preferably random in the plane, or oriented in a uniaxial direction or a plain weave shape in the case of a fiber. The crystalline carbon material used in the present invention may be any kind such as pitch-based carbon fiber or vapor-grown carbon fiber, carbon paper formed from expanded graphite in a sheet form, deep or sheet-like carbon nanotubes, etc. However, graphitized pitch-based carbon fibers having high thermal conductivity in the fiber axis direction, graphitized vapor-grown carbon fibers, and carbon nanotubes produced by an arc discharge method are particularly suitable.

また、本発明は、上記した複合体をホットプレス焼結することにより製造する高熱伝導・低熱膨脹複合体の製造方法である。
また、本発明は、上記した複合体をパルス通電加圧焼結することにより製造する高熱伝導・低熱膨脹複合体の製造方法である。
また、本発明は、上記した複合体をHIP焼結することにより製造する高熱伝導・低熱膨脹複合体の製造方法である。
The present invention is also a method for producing a high thermal conductivity / low thermal expansion composite produced by hot press sintering the above composite.
The present invention is also a method for producing a high thermal conductivity / low thermal expansion composite produced by subjecting the above-mentioned composite to pulse current compression sintering.
The present invention is also a method for producing a high thermal conductivity / low thermal expansion composite produced by HIP sintering the above composite.

本発明によれば、単なる混合粉の焼結より高い熱伝導率が得られ積層方向と直交する方向では低い熱膨張係数が得られる。本発明の高熱伝導・低熱膨張複合体は、高熱伝導率と低熱膨張率を有し、しかも、様々な形状に加工することができるので、電気回路保護用の放熱板、熱交換器やヒートポンプ等の熱的機械の高熱伝導性が要求されるヒートシンク材料として有用である。   According to the present invention, a thermal conductivity higher than that of simple powder mixing is obtained, and a low thermal expansion coefficient is obtained in a direction orthogonal to the laminating direction. The high thermal conductivity / low thermal expansion composite of the present invention has a high thermal conductivity and a low thermal expansion coefficient, and can be processed into various shapes. Therefore, a heat radiating plate for protecting an electric circuit, a heat exchanger, a heat pump, etc. It is useful as a heat sink material that requires high thermal conductivity of these thermal machines.

以下、本発明を実施例により説明する。
先ず、本発明で用いる金属としては、Cu、Al、Ag、Mg、W、Mo、Si、Zn等の金属単体又はこれらの金属を1種類以上含む合金の粉末や箔を使用することができる。金属粉末の場合は、あらかじめシート状に成形するかあるいは焼結して使用することができる。熱伝導率の高い金属、例えば、Cu、Ag、Al等を使用することにより、より熱伝導率の高い複合体を得ることができる。
Hereinafter, the present invention will be described with reference to examples.
First, as a metal used in the present invention, a simple metal such as Cu, Al, Ag, Mg, W, Mo, Si, Zn, or an alloy powder or foil containing one or more of these metals can be used. In the case of a metal powder, it can be formed into a sheet or sintered before use. By using a metal having a high thermal conductivity such as Cu, Ag, Al, etc., a composite having a higher thermal conductivity can be obtained.

結晶性カーボン材としては、天然黒鉛、人工合成黒鉛、炭素繊維、カーボンナノチューブ、その他の結晶性を有するカーボン材を使用することができる。結晶性カーボン材は粉末又は繊維状として使用することができる。さらに、それらの結晶性カーボン材はテープ状、シート状、フィルム状、マット状で使用することができる。また、テープ状、シート状、フィルム状、マット状結晶性カーボン材は、めっき法、CVD法、PVD法により、あらかじめ金属層を被覆させておくと、より緻密な複合体を得ることができ好ましい。形成させる金属層としては、めっき法にて、Ni層、Ag層、Cu層、Zn層、Al層を、PVD法、CVD法では、Cu、Al、Ag、Mg、W、Mo、Si、Znを1種以上含む層を形成させればよい。特に、Cu層、Al層、Ag層を形成させておくと、より熱伝導率の高い複合体を得ることができる。結晶性のよいカーボン材としては、例えば、天然黒鉛、人工合成黒鉛、黒鉛化されたピッチ系炭素繊維や気相成長法炭素繊維、アーク放電法にて作製された炭素繊維等を使用することにより、より熱伝導率の高い複合体を得ることができる。   As the crystalline carbon material, natural graphite, artificial synthetic graphite, carbon fiber, carbon nanotube, and other carbon materials having crystallinity can be used. The crystalline carbon material can be used as a powder or fiber. Further, these crystalline carbon materials can be used in a tape shape, a sheet shape, a film shape, or a mat shape. In addition, a tape-like, sheet-like, film-like, or mat-like crystalline carbon material is preferable because a denser composite can be obtained if a metal layer is previously coated by a plating method, a CVD method, or a PVD method. . As a metal layer to be formed, a Ni layer, an Ag layer, a Cu layer, a Zn layer, and an Al layer are formed by plating, and a PVD method and a CVD method are Cu, Al, Ag, Mg, W, Mo, Si, and Zn. A layer containing one or more of them may be formed. In particular, when a Cu layer, an Al layer, and an Ag layer are formed, a composite having higher thermal conductivity can be obtained. Examples of the carbon material having good crystallinity include natural graphite, artificial synthetic graphite, graphitized pitch-based carbon fiber, vapor-grown carbon fiber, and carbon fiber prepared by an arc discharge method. Thus, a composite having higher thermal conductivity can be obtained.

金属と結晶性カーボン材との比率については、体積比率で9:1〜1:9、好ましくは7:3〜3:7とすることにより、熱伝導率が高く且つ複合化が容易な複合体を得ることができる。好ましい実施の形態では、金属と結晶性カーボン層とが加圧・焼結あるいは、加圧溶融焼結されたカーボンと金属が層状に積層された複合体かあるいは、カーボンと金属からなる複合層と金属層が層状に積層された複合体となる。   The ratio between the metal and the crystalline carbon material is 9: 1 to 1: 9, preferably 7: 3 to 3: 7 by volume, so that the composite has high thermal conductivity and can be easily combined. Can be obtained. In a preferred embodiment, the metal and the crystalline carbon layer are pressed / sintered, or a composite in which the pressure-sintered carbon and the metal are laminated in layers, or a composite layer made of carbon and metal It becomes a composite in which metal layers are laminated in layers.

金属と結晶性カーボン材との積層後の複合化は、いわゆるホットプレス焼結、パルス通電加圧焼結、あるいはHIP焼結することにより実施することができる。ホットプレス焼結、HIP焼結は、型に金属とカーボンを積層した状態で積め、金属の溶融温度より10℃以上低い温度で焼結する。緻密な複合体を得るためには、金属の溶融温度にできるだけ近い温度で複合化するのが良い。パルス通電加圧焼結の場合、ホットプレス焼結、HIP焼結と同様の条件で複合化しても良いが、さらに好ましくは、金属が溶融したのを確認した後に通電量を減少させる金属の溶融を利用した液相焼結により、より緻密な複合体が得られる。溶融温度での保持時間は、30分以内とし、より好ましくは10分以内が良い。複合体の組成が変化しないようにするためには、保持時間を5分以内とするのが良い。それ以上になると、溶融金属が型から溶出し、目的の組成の複合体とするのが困難である。また、積層体の複合化は、不活性ガス雰囲気中、あるいは真空中で実施することが好ましい。複合化時の圧力は、できるだけ高い方が良いが、使用する型の強度に依存する。黒鉛型を使用する場合は、100MPa以下、C/Cコンポジットからなる方の場合は、600MPa以下、金属製の型の場合は、2000MPa以下にするのが好ましい。それ以上になると型が破損し、緻密な複合体が得られない。そして、冷却後、使用した金属の溶融温度より10℃以上低い温度で、かつ200℃以上の温度において、昇温速度30℃/分以下、冷却速度20℃/分以下の条件で熱処理を行うと複合体の残留応力が緩和され好ましい。より好ましくは昇温速度10℃/分以下、冷却速度10℃/分以下である。   The compounding after lamination of the metal and the crystalline carbon material can be performed by so-called hot press sintering, pulsed current pressure sintering, or HIP sintering. Hot press sintering and HIP sintering are performed by stacking metal and carbon on a mold and sintering at a temperature lower by 10 ° C. or more than the melting temperature of the metal. In order to obtain a dense composite, it is preferable to form a composite at a temperature as close as possible to the melting temperature of the metal. In the case of pulsed electric current pressure sintering, it may be combined under the same conditions as hot press sintering and HIP sintering, but more preferably, metal melting that reduces the amount of electric current after confirming that the metal has melted. A denser composite can be obtained by liquid phase sintering utilizing the above. The holding time at the melting temperature is within 30 minutes, more preferably within 10 minutes. In order to prevent the composition of the complex from changing, the holding time is preferably within 5 minutes. Above that, the molten metal elutes from the mold and it is difficult to obtain a composite having the desired composition. Moreover, it is preferable to implement the composite of the laminate in an inert gas atmosphere or in a vacuum. The pressure during compounding should be as high as possible, but depends on the strength of the mold used. When a graphite mold is used, it is preferably 100 MPa or less, in the case of a C / C composite, 600 MPa or less, and in the case of a metal mold, 2000 MPa or less. If it exceeds that, the mold will be damaged, and a dense composite will not be obtained. And after cooling, when heat treatment is performed at a temperature lower than the melting temperature of the metal used by 10 ° C. or higher and at a temperature of 200 ° C. or higher under a temperature rising rate of 30 ° C./min or less and a cooling rate of 20 ° C./min or less The residual stress of the composite is relaxed, which is preferable. More preferably, the heating rate is 10 ° C./min or less and the cooling rate is 10 ° C./min or less.

以下に本発明の実施例と比較例を示し、本発明を説明する。
(実施例1)
銅箔上に平均粒径50μmの人造黒鉛粒子を銅:黒鉛の体積比率が、15:85となるようにシート成形、乾燥した黒鉛粒子層と銅箔からなるシートを厚さ5〜10mmとなるように黒鉛型に積層して積めた後、パルス通電加圧焼結法にて溶融焼結した。得られた試料を室温でレーザーフラッシュ法による熱伝導率を、熱機械分析装置にて熱膨張係数を測定した。その結果を表1に示す。
Examples of the present invention and comparative examples are shown below to explain the present invention.
Example 1
Artificial graphite particles having an average particle size of 50 μm are formed on a copper foil so that the volume ratio of copper: graphite is 15:85, and a sheet made of a dried graphite particle layer and a copper foil has a thickness of 5 to 10 mm. After being laminated and stacked on the graphite mold as described above, melt sintering was performed by a pulse current pressure sintering method. The obtained sample was measured for the thermal conductivity by a laser flash method at room temperature and the thermal expansion coefficient with a thermomechanical analyzer. The results are shown in Table 1.

(実施例2)
50mm以上の繊維長を有するピッチ系炭素繊維の束を並べた層とAl泊とを厚さ5〜10mmとなるように交互に積層し、パルス通電加圧焼結炉にて溶融焼結した。Alと黒鉛の体積比率は、20:80とした。得られた試料を室温でレーザーフラッシュ法による熱伝導率を、熱機械分析装置にて熱膨張係数を測定した。その結果を表1に示す。
(Example 2)
Layers in which bundles of pitch-based carbon fibers having a fiber length of 50 mm or more and Al-nights were alternately laminated so as to have a thickness of 5 to 10 mm, and were melt-sintered in a pulse current pressure sintering furnace. The volume ratio of Al to graphite was 20:80. The obtained sample was measured for the thermal conductivity by a laser flash method at room temperature and the thermal expansion coefficient with a thermomechanical analyzer. The results are shown in Table 1.

(実施例3)
アーク放電法で作製されたテープ状のカーボンナノチューブと銅箔を厚さ5〜10mmとなるように交互に積層し、パルス通電加圧焼結炉にて溶融焼結した。銅と黒鉛の体積比率は、40:60とした。得られた試料を室温でレーザーフラッシュ法による熱伝導率を、熱機械分析装置にて熱膨張係数を測定した。その結果を表1に示す。
Example 3
Tape-like carbon nanotubes and copper foils produced by an arc discharge method were alternately laminated so as to have a thickness of 5 to 10 mm, and were melt-sintered in a pulse current pressure sintering furnace. The volume ratio of copper and graphite was 40:60. The obtained sample was measured for the thermal conductivity by a laser flash method at room temperature and the thermal expansion coefficient with a thermomechanical analyzer. The results are shown in Table 1.

(実施例4)
ピッチ系炭素繊維の束を並べた層とAl−12Si%粉末を成形し、シート状にした層を厚さ5〜10mmとなるように交互に積層し、ホットプレス焼結した。加圧力は60MPa、、焼結条件は、真空中、550℃×1hrにて行った。Al-12Si%合金と黒鉛の体積比率は、50:50とした。得られた試料を室温でレーザーフラッシュ法による熱伝導率を、熱機械分析装置にて熱膨張係数を測定した。その結果を表1に示す。
Example 4
A layer in which bundles of pitch-based carbon fibers were arranged and Al-12Si% powder were formed, and the sheet-like layers were alternately laminated so as to have a thickness of 5 to 10 mm, followed by hot press sintering. The applied pressure was 60 MPa, and the sintering conditions were 550 ° C. × 1 hr in vacuum. The volume ratio of the Al-12Si% alloy and graphite was 50:50. The obtained sample was measured for the thermal conductivity by a laser flash method at room temperature and the thermal expansion coefficient with a thermomechanical analyzer. The results are shown in Table 1.

(実施例5)
アーク放電法にて作製されたテープ状のカーボンナノチューブとAl箔を厚さ5〜10mmとなるように交互に積層し、鉄容器に積め、気密封止をおこなった試料にてHIP焼結した。焼結条件は1000MPa、500℃×1hrにて行った。Alと黒鉛の体積比率は、40:50とした。得られた試料を室温でレーザーフラッシュ法による熱伝導率を、熱機械分析装置にて熱膨張係数を測定した。その結果を表1に示す。
(Example 5)
Tape-like carbon nanotubes and Al foils produced by an arc discharge method were alternately laminated so as to have a thickness of 5 to 10 mm, loaded on an iron container, and subjected to HIP sintering with a hermetically sealed sample. The sintering conditions were 1000 MPa, 500 ° C. × 1 hr. The volume ratio of Al to graphite was 40:50. The obtained sample was measured for the thermal conductivity by a laser flash method at room temperature and the thermal expansion coefficient with a thermomechanical analyzer. The results are shown in Table 1.

(比較例1)
銅と平均粒径50μmの人造黒鉛粉末の体積比率が15:85の混合粉を作製し、パルス通電加圧焼結法にて溶融焼結した。得られた試料を室温でレーザーフラッシュ法による熱伝導率を、熱機械分析装置にて熱膨張係数を測定した。その結果を表1に示す。
(Comparative Example 1)
A mixed powder of copper and an artificial graphite powder having an average particle diameter of 50 μm and having a volume ratio of 15:85 was prepared, and melt-sintered by a pulse current pressure sintering method. The obtained sample was measured for the thermal conductivity by a laser flash method at room temperature and the thermal expansion coefficient with a thermomechanical analyzer. The results are shown in Table 1.

(比較例2)
繊維長の平均が200μmのピッチ系炭素繊維とAl粉末の体積比率が20:80の混合粉を作製し、パルス通電加圧焼結法にて溶融焼結した。得られた試料を室温でレーザーフラッシュ法による熱伝導率を、熱機械分析装置にて熱膨張係数を測定した。その結果を表1に示す。
(Comparative Example 2)
A mixed powder of 20:80 volume ratio of pitch-based carbon fiber having an average fiber length of 200 μm and Al powder was prepared, and melt-sintered by a pulse current pressure sintering method. The obtained sample was measured for the thermal conductivity by a laser flash method at room temperature and the thermal expansion coefficient with a thermomechanical analyzer. The results are shown in Table 1.

Figure 2006001232
Figure 2006001232

以上のように、実施例による複合体は、積層方向の熱伝導率が200W/(m・K)以下であり、この積層方向の熱伝導率はそれと直交する方向の熱伝導率に対して0.7以下の比率に収まっている。同時に複合体の積層方向の熱膨張係数は8〜30×10−6/Kであり、且つそれと直交する方向の熱膨張係数が8×10−6/K以下に収まっている。よって、高熱伝導率と低熱膨張を有する複合体となすことが出来ている。 As described above, the composite according to the example has a thermal conductivity in the stacking direction of 200 W / (m · K) or less, and the thermal conductivity in the stacking direction is 0 with respect to the thermal conductivity in the direction orthogonal thereto. It is within the ratio of .7 or less. At the same time, the thermal expansion coefficient in the stacking direction of the composite is 8 to 30 × 10 −6 / K, and the thermal expansion coefficient in the direction orthogonal thereto is within 8 × 10 −6 / K. Therefore, a composite having high thermal conductivity and low thermal expansion can be obtained.

実施例1の金属顕微鏡写真を示す。白色部が銅、白色部に挟まれている部分が黒鉛である。The metal micrograph of Example 1 is shown. The white portion is copper, and the portion sandwiched between the white portions is graphite.

Claims (7)

黒鉛、炭素繊維、カーボンブラック、フラーレン又はカーボンナノチューブから選ばれた少なくとも1種からなるテープ状、シート状、フィルム状、マット状の結晶性カーボン材層と、Cu、Al、Ag、Mg、W、Mo、Si、Znから選ばれた金属又はこれらの金属を含む合金の粉末あるいは箔の少なくとも1種からなるテープ状、シート状、フィルム状、マット状の金属層とを積層し、複合化したことを特徴とする高熱伝導・低熱膨脹複合体。 A crystalline carbon material layer of at least one selected from graphite, carbon fiber, carbon black, fullerene or carbon nanotube, a crystalline carbon material layer in the form of a tape, a sheet, a film or a mat, and Cu, Al, Ag, Mg, W, A metal selected from Mo, Si, Zn or an alloy powder or foil containing these metals, or a tape-like, sheet-like, film-like, or matte-like metal layer laminated and compounded. High thermal conductivity / low thermal expansion composite. 前記複合体の積層方向の熱伝導率が200W/(m・K)以下であり、前記積層方向の熱伝導率がそれと直交する方向の熱伝導率に対して0.7以下の比率であることを特徴とする請求項1記載の高熱伝導・低熱膨脹複合体。 The thermal conductivity in the stacking direction of the composite is 200 W / (m · K) or less, and the thermal conductivity in the stacking direction is a ratio of 0.7 or less with respect to the thermal conductivity in the direction orthogonal thereto. The high thermal conductivity / low thermal expansion composite according to claim 1. 前記複合体の積層方向の熱膨張係数が8〜30×10−6/Kで、それと直交する方向の熱膨張係数が8×10−6/K以下であることを特徴とする請求項1または2に記載の高熱伝導・低熱膨脹複合体。 The thermal expansion coefficient in the stacking direction of the composite is 8 to 30 × 10 −6 / K, and the thermal expansion coefficient in a direction orthogonal to the composite expansion coefficient is 8 × 10 −6 / K or less. 2. A high thermal conductivity / low thermal expansion composite according to 2. 前記複合体を構成する金属層と結晶性カーボン材層との割合が、体積割合で9:1〜1:9であることを特徴とする請求項1〜3の何れかに記載の高熱伝導・低熱膨脹複合体。 The ratio of the metal layer and the crystalline carbon material layer constituting the composite is 9: 1 to 1: 9 by volume, and the high thermal conductivity / acceleration according to claim 1, Low thermal expansion complex. 請求項1〜4のいずれかに記載の複合体をホットプレス焼結することにより製造することを特徴とする高熱伝導・低熱膨脹複合体の製造方法。 A method for producing a high thermal conductivity / low thermal expansion composite, characterized in that the composite according to any one of claims 1 to 4 is produced by hot press sintering. 請求項1〜4のいずれかに記載の複合体をパルス通電加圧焼結することにより製造することを特徴とする高熱伝導・低熱膨脹複合体の製造方法。 A method for producing a high thermal conductivity / low thermal expansion composite, characterized in that the composite according to any one of claims 1 to 4 is produced by pulse-current pressure sintering. 請求項1〜4のいずれかに記載の複合体をHIP焼結することにより製造することを特徴とする高熱伝導・低熱膨脹複合体の製造方法。
A method for producing a high thermal conductivity / low thermal expansion composite comprising producing the composite according to any one of claims 1 to 4 by HIP sintering.
JP2004182256A 2004-06-21 2004-06-21 High thermal conductivity / low thermal expansion composite and method for producing the same Expired - Fee Related JP4711165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182256A JP4711165B2 (en) 2004-06-21 2004-06-21 High thermal conductivity / low thermal expansion composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182256A JP4711165B2 (en) 2004-06-21 2004-06-21 High thermal conductivity / low thermal expansion composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006001232A true JP2006001232A (en) 2006-01-05
JP4711165B2 JP4711165B2 (en) 2011-06-29

Family

ID=35770020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182256A Expired - Fee Related JP4711165B2 (en) 2004-06-21 2004-06-21 High thermal conductivity / low thermal expansion composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP4711165B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT503270B1 (en) * 2006-03-09 2008-03-15 Arc Seibersdorf Res Gmbh COMPOSITE MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
JP2008095171A (en) * 2006-10-08 2008-04-24 Momentive Performance Materials Inc Heat transfer composite, associated device and method
JP2009016621A (en) * 2007-07-05 2009-01-22 Toshiba Corp Heat dissipation plate for semiconductor package, and semiconductor device
JP2009016795A (en) * 2007-07-09 2009-01-22 Samsung Electro Mech Co Ltd Heat dissipation printed circuit board, and manufacturing method thereof
DE102007051570A1 (en) 2007-10-29 2009-04-30 Austrian Research Centers Gmbh Method for producing a composite material and composite material, composite body and connecting device
JP2011503872A (en) * 2007-11-08 2011-01-27 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Heat transfer composite, related devices and methods
KR101143524B1 (en) 2010-05-07 2012-05-09 (주)케이씨엠 Thermal diffusion seat
CN103112215A (en) * 2013-03-08 2013-05-22 苏州佳值电子工业有限公司 Novel heat conducting material
JP5288441B2 (en) * 2005-05-10 2013-09-11 住友精密工業株式会社 High thermal conductive composite material and its manufacturing method
WO2013141283A1 (en) * 2012-03-23 2013-09-26 東洋紡株式会社 Vacuum-deposition apparatus
JP2014040638A (en) * 2012-08-22 2014-03-06 Kyoto Univ Ceramic fiber reinforced tungsten composite material
JP2014527121A (en) * 2011-07-20 2014-10-09 トルンプフ レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method of forming a composite material and heat sink
TWI464114B (en) * 2009-02-12 2014-12-11 Denki Kagaku Kogyo Kk Method for manufacturing substrate formed by aluminum-graphite composite, heat radiating component using substrate and led luminescent member
JP5673895B1 (en) * 2013-03-13 2015-02-18 Dic株式会社 Core-shell type nanoparticles and method for producing the same
JP2016500582A (en) * 2012-09-17 2016-01-14 ザ・ボーイング・カンパニーTheBoeing Company Bulk carbon nanotube, metal composite, and manufacturing method
JP2016094668A (en) * 2015-12-04 2016-05-26 東洋紡株式会社 Manufacturing method of vapor-deposited film using vacuum vapor deposition system
JP2016132113A (en) * 2015-01-16 2016-07-25 昭和電工株式会社 Method for producing composite material of aluminum with carbon particle, and method for producing insulated substrate
KR20160120887A (en) * 2015-04-09 2016-10-19 주식회사 더굿시스템 Heat radiation plate for high power devices
JP2017128802A (en) * 2016-01-15 2017-07-27 昭和電工株式会社 Metal-graphite composite material and production method of the same
CN107737946A (en) * 2017-10-11 2018-02-27 南京工业大学 Efficient preparation method of nano-micron metal material based on fiber paper material
WO2018047988A1 (en) * 2016-09-06 2018-03-15 주식회사 더굿시스템 Heat dissipation plate material for high output device
JP2019026884A (en) * 2017-07-28 2019-02-21 昭和電工株式会社 Metal-carbon particle composite
CN109562598A (en) * 2016-11-11 2019-04-02 昭和电工株式会社 Metal-carbon particle composite material and its manufacturing method
CN111054927A (en) * 2019-12-03 2020-04-24 同济大学 Aluminum/magnesium/aluminum composite board with interface structure design and powder hot-pressing preparation method thereof
CN111054926A (en) * 2019-12-03 2020-04-24 同济大学 Zn solder reinforced interface aluminum/magnesium/aluminum composite board and powder hot-pressing preparation method
CN111069611A (en) * 2019-12-23 2020-04-28 长飞光纤光缆股份有限公司 Preparation method of graphite-graphene-metal composite material
CN111136277A (en) * 2019-12-03 2020-05-12 同济大学 Multilayer aluminum/magnesium composite board and powder hot-pressing preparation method thereof
KR20200093035A (en) 2017-12-11 2020-08-04 도와 홀딩스 가부시키가이샤 Clad material and method for manufacturing the same
CN111804919A (en) * 2019-04-10 2020-10-23 中国科学院宁波材料技术与工程研究所 High-thermal-conductivity graphite-metal composite material and preparation method thereof
CN111957975A (en) * 2019-05-20 2020-11-20 中南大学 Preparation technology of graphene reinforced copper-based composite material
CN112823214A (en) * 2018-11-21 2021-05-18 昭和电工株式会社 Aluminum-carbon particle composite material and method for producing same
US20210339314A1 (en) * 2018-07-09 2021-11-04 Technische Universität Berlin Process for producing a material composite, material composite and use of the material composite as a heat conductor and heat exchanger
CN114029494A (en) * 2021-11-11 2022-02-11 西北有色金属研究院 Preparation method of spiral graphene film/copper laminated composite material
JP2023006510A (en) * 2021-06-30 2023-01-18 日亜化学工業株式会社 Light-emitting module, vehicle lamp, and heat dissipation member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6064886B2 (en) 2012-12-26 2017-01-25 株式会社豊田中央研究所 Thermally conductive stress relaxation structure
CN109112442B (en) * 2018-10-25 2021-02-26 西安石油大学 Multi-scale reinforced low/negative thermal expansion magnesium-based composite material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933807A (en) * 1972-07-28 1974-03-28
JPH01225734A (en) * 1988-03-07 1989-09-08 Mitsubishi Heavy Ind Ltd Manufacture of fiber reinforced metal
JPH10168502A (en) * 1996-12-10 1998-06-23 Osaka Gas Co Ltd Composite material with high thermal conductivity
JP2005200676A (en) * 2004-01-13 2005-07-28 Shimane Pref Gov Composite material and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933807A (en) * 1972-07-28 1974-03-28
JPH01225734A (en) * 1988-03-07 1989-09-08 Mitsubishi Heavy Ind Ltd Manufacture of fiber reinforced metal
JPH10168502A (en) * 1996-12-10 1998-06-23 Osaka Gas Co Ltd Composite material with high thermal conductivity
JP2005200676A (en) * 2004-01-13 2005-07-28 Shimane Pref Gov Composite material and its production method

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5288441B2 (en) * 2005-05-10 2013-09-11 住友精密工業株式会社 High thermal conductive composite material and its manufacturing method
AT503270B1 (en) * 2006-03-09 2008-03-15 Arc Seibersdorf Res Gmbh COMPOSITE MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
JP2008095171A (en) * 2006-10-08 2008-04-24 Momentive Performance Materials Inc Heat transfer composite, associated device and method
JP2009016621A (en) * 2007-07-05 2009-01-22 Toshiba Corp Heat dissipation plate for semiconductor package, and semiconductor device
US7745928B2 (en) 2007-07-05 2010-06-29 Kabushiki Kaisha Toshiba Heat dissipation plate and semiconductor device
JP4558012B2 (en) * 2007-07-05 2010-10-06 株式会社東芝 Semiconductor package heat dissipation plate and semiconductor device
KR101015294B1 (en) * 2007-07-05 2011-02-15 가부시끼가이샤 도시바 Heat dissipation plate for semiconductor package and semiconductor device
JP2009016795A (en) * 2007-07-09 2009-01-22 Samsung Electro Mech Co Ltd Heat dissipation printed circuit board, and manufacturing method thereof
JP4693861B2 (en) * 2007-07-09 2011-06-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Heat dissipation printed circuit board and manufacturing method thereof
DE102007051570A1 (en) 2007-10-29 2009-04-30 Austrian Research Centers Gmbh Method for producing a composite material and composite material, composite body and connecting device
JP2011503872A (en) * 2007-11-08 2011-01-27 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Heat transfer composite, related devices and methods
TWI464114B (en) * 2009-02-12 2014-12-11 Denki Kagaku Kogyo Kk Method for manufacturing substrate formed by aluminum-graphite composite, heat radiating component using substrate and led luminescent member
KR101143524B1 (en) 2010-05-07 2012-05-09 (주)케이씨엠 Thermal diffusion seat
JP2014527121A (en) * 2011-07-20 2014-10-09 トルンプフ レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method of forming a composite material and heat sink
US9995541B2 (en) 2011-07-20 2018-06-12 Trumpf Laser Gmbh Method for forming a composite material, and heat sink
WO2013141283A1 (en) * 2012-03-23 2013-09-26 東洋紡株式会社 Vacuum-deposition apparatus
JP2013199676A (en) * 2012-03-23 2013-10-03 Toyobo Co Ltd Vacuum-deposition apparatus
JP2014040638A (en) * 2012-08-22 2014-03-06 Kyoto Univ Ceramic fiber reinforced tungsten composite material
JP2016500582A (en) * 2012-09-17 2016-01-14 ザ・ボーイング・カンパニーTheBoeing Company Bulk carbon nanotube, metal composite, and manufacturing method
CN103112215A (en) * 2013-03-08 2013-05-22 苏州佳值电子工业有限公司 Novel heat conducting material
JP5673895B1 (en) * 2013-03-13 2015-02-18 Dic株式会社 Core-shell type nanoparticles and method for producing the same
JP2016132113A (en) * 2015-01-16 2016-07-25 昭和電工株式会社 Method for producing composite material of aluminum with carbon particle, and method for producing insulated substrate
KR20160120887A (en) * 2015-04-09 2016-10-19 주식회사 더굿시스템 Heat radiation plate for high power devices
KR101691724B1 (en) * 2015-04-09 2016-12-30 주식회사 더굿시스템 Heat radiation plate for high power devices
JP2016094668A (en) * 2015-12-04 2016-05-26 東洋紡株式会社 Manufacturing method of vapor-deposited film using vacuum vapor deposition system
JP2017128802A (en) * 2016-01-15 2017-07-27 昭和電工株式会社 Metal-graphite composite material and production method of the same
WO2018047988A1 (en) * 2016-09-06 2018-03-15 주식회사 더굿시스템 Heat dissipation plate material for high output device
CN108352370A (en) * 2016-09-06 2018-07-31 古德系统有限公司 Heat sink for high-power components
CN109562598A (en) * 2016-11-11 2019-04-02 昭和电工株式会社 Metal-carbon particle composite material and its manufacturing method
DE112017005683T5 (en) 2016-11-11 2019-10-02 Showa Denko K.K. Metal-carbon particle composite material and method for its production
JP2019026884A (en) * 2017-07-28 2019-02-21 昭和電工株式会社 Metal-carbon particle composite
CN107737946A (en) * 2017-10-11 2018-02-27 南京工业大学 Efficient preparation method of nano-micron metal material based on fiber paper material
US11876030B2 (en) 2017-12-11 2024-01-16 Dowa Holdings Co., Ltd. Clad material and method for producing same
KR20200093035A (en) 2017-12-11 2020-08-04 도와 홀딩스 가부시키가이샤 Clad material and method for manufacturing the same
US20210339314A1 (en) * 2018-07-09 2021-11-04 Technische Universität Berlin Process for producing a material composite, material composite and use of the material composite as a heat conductor and heat exchanger
CN112823214A (en) * 2018-11-21 2021-05-18 昭和电工株式会社 Aluminum-carbon particle composite material and method for producing same
CN111804919A (en) * 2019-04-10 2020-10-23 中国科学院宁波材料技术与工程研究所 High-thermal-conductivity graphite-metal composite material and preparation method thereof
CN111957975A (en) * 2019-05-20 2020-11-20 中南大学 Preparation technology of graphene reinforced copper-based composite material
CN111136277A (en) * 2019-12-03 2020-05-12 同济大学 Multilayer aluminum/magnesium composite board and powder hot-pressing preparation method thereof
CN111054926A (en) * 2019-12-03 2020-04-24 同济大学 Zn solder reinforced interface aluminum/magnesium/aluminum composite board and powder hot-pressing preparation method
CN111054927A (en) * 2019-12-03 2020-04-24 同济大学 Aluminum/magnesium/aluminum composite board with interface structure design and powder hot-pressing preparation method thereof
CN111069611A (en) * 2019-12-23 2020-04-28 长飞光纤光缆股份有限公司 Preparation method of graphite-graphene-metal composite material
JP2023006510A (en) * 2021-06-30 2023-01-18 日亜化学工業株式会社 Light-emitting module, vehicle lamp, and heat dissipation member
CN114029494A (en) * 2021-11-11 2022-02-11 西北有色金属研究院 Preparation method of spiral graphene film/copper laminated composite material
CN114029494B (en) * 2021-11-11 2022-08-02 西北有色金属研究院 Preparation method of spiral graphene film/copper laminated composite material

Also Published As

Publication number Publication date
JP4711165B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4711165B2 (en) High thermal conductivity / low thermal expansion composite and method for producing the same
US7851055B2 (en) High-thermal-conductivity graphite-particles-dispersed-composite and its production method
KR101534478B1 (en) Highly thermally conductive composite material
JP2006144030A (en) High thermal conductivity composite material and manufacturing method therefor
JP5698947B2 (en) Heat sink for electronic device and method for manufacturing the same
TWI633637B (en) Exothermic plate and manufacturing method thereof, and semiconductor package and semiconductor module having the same
JP3673436B2 (en) Carbon-based metal composite material and manufacturing method thereof
CN1944698A (en) Super high heat conduction, low heat expansion coefficient composite material and its preparing method
JPWO2009051094A1 (en) Metal-graphite composite material having high thermal conductivity and method for producing the same
JP2008240155A (en) Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate
CN104884411B (en) Bonded material and method for producing same
JP2004010978A (en) Heat-dissipating material with high thermal conductivity and its manufacturing process
JP2006045596A (en) Composite body with high thermal conductivity and low thermal expansion, and its manufacturing method
JP2005330583A (en) Cu-Cr ALLOY AND Cu-Cr ALLOY PRODUCTION METHOD
US11876030B2 (en) Clad material and method for producing same
CN111636006B (en) Aluminum-silicon alloy graphite composite heat conduction material and preparation and application thereof
JP4051141B2 (en) Tungsten, tungsten fiber reinforced composite material and molybdenum, molybdenum fiber reinforced composite material, manufacturing method thereof, and high-temperature component using the same
JP7394500B1 (en) Aluminum composite material containing metal and/or ceramics and graphite, and method for producing aluminum composite material containing metal and/or ceramics and graphite
CN112823214B (en) Aluminium-carbon particle composite material and its production method
JP6498040B2 (en) Composite of aluminum and carbon particles and insulating substrate
JP2006002240A (en) High thermal conduction-low thermal expansion composite body and its production method
Ciupiński et al. Heat sink materials processing by pulse plasma sintering
JP2020057648A (en) Manufacturing method of anisotropic graphite composite
JP2000007456A (en) Highly heat conductive ceramic metal composite material
JP5322199B2 (en) Ceramic substrate for electronic parts and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R150 Certificate of patent or registration of utility model

Ref document number: 4711165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees