[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5284904B2 - Manufacturing method of universal joint parts - Google Patents

Manufacturing method of universal joint parts Download PDF

Info

Publication number
JP5284904B2
JP5284904B2 JP2009186990A JP2009186990A JP5284904B2 JP 5284904 B2 JP5284904 B2 JP 5284904B2 JP 2009186990 A JP2009186990 A JP 2009186990A JP 2009186990 A JP2009186990 A JP 2009186990A JP 5284904 B2 JP5284904 B2 JP 5284904B2
Authority
JP
Japan
Prior art keywords
universal joint
manufacturing
shaft
joint part
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009186990A
Other languages
Japanese (ja)
Other versions
JP2011038600A (en
Inventor
秀紀 川村
剛志 加藤
隆秀 宍戸
大輔 菊地
Original Assignee
株式会社中村自工
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社中村自工 filed Critical 株式会社中村自工
Priority to JP2009186990A priority Critical patent/JP5284904B2/en
Publication of JP2011038600A publication Critical patent/JP2011038600A/en
Application granted granted Critical
Publication of JP5284904B2 publication Critical patent/JP5284904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rolling Contact Bearings (AREA)

Description

本発明は、自在継手の構成部品の製造方法に係り、特に、転動部分あるいは摺動部分に使用される自在継手部品素材に対する表面処理技術に関するものである。   The present invention relates to a method for manufacturing a component part of a universal joint, and more particularly to a surface treatment technique for a universal joint part material used for a rolling part or a sliding part.

自在継手(ユニバーサルジョイント)は、製鉄設備、製紙設備、鉄道車輌、船舶などの各種装置に用いられている。   Universal joints (universal joints) are used in various apparatuses such as iron making equipment, paper making equipment, railway vehicles, and ships.

自在継手は、駆動源部に連結される動力伝達装置の動力伝達部に設けられ、被駆動系に動力を伝達するものであり、使用される状況から自在継手の構成部材の表面には接線方向の力や滑り力が作用する。このため自在継手の構成部材には、転動部分あるいは摺動部分など、各種応力が加わる部位が存在する。   The universal joint is provided in the power transmission unit of the power transmission device connected to the drive source unit, and transmits power to the driven system. Force and sliding force. For this reason, the components of the universal joint include sites to which various stresses such as rolling portions or sliding portions are applied.

前記使用状態では、構成部材の表面に疲労が発生しやすく、耐表面強度を向上させる必要がある。   In the state of use, fatigue tends to occur on the surface of the component member, and the surface strength resistance needs to be improved.

また、前記のような作用力が加わる装置において、その部品に浸炭鋼を用い、該部品素材にショットピーニングを施し、表層に大きな圧縮応力を形成して表面強度を向上させる加工方法が公開されている(特許文献1参照)。   Moreover, in the apparatus to which the acting force as described above is applied, a machining method is disclosed in which carburized steel is used for the part, shot peening is applied to the part material, and a large compressive stress is formed on the surface layer to improve the surface strength. (See Patent Document 1).

しかし、特許文献1に開示された方法は一般的なショットピーニングを用いており、この方法では、ショットピーニングにより素材表面に荒れが生じ、面粗さが大きいと、すべりが大きく発生する部位において潤滑油の油膜が切れやすいという問題が生じ、面粗さが小さくないと表面損傷や焼付きが生じる。   However, the method disclosed in Patent Document 1 uses general shot peening, and in this method, the surface of the material is roughened by shot peening, and if the surface roughness is large, lubrication occurs at a site where a large amount of slip occurs. There arises a problem that the oil film of oil easily breaks, and surface damage and seizure occur unless the surface roughness is small.

また、ショットピーニングを用いない疲労強度を高める方法としては、特許文献2にローラバニシング加工を十字継手に施すことが開示されている。   Further, as a method for increasing fatigue strength without using shot peening, Patent Document 2 discloses that a roller burnishing process is performed on a cross joint.

しかしながら、特許文献2に開示されている加工方法では、耐表面強度を向上させることができても、特許文献1に記載の加工方法と同様に、継手構成部品の表面粗さに基づく油切れ、それによる摩擦抵抗の軽減について解消することはできない。   However, in the processing method disclosed in Patent Document 2, even if the surface resistance strength can be improved, as in the processing method described in Patent Document 1, oil shortage based on the surface roughness of the joint component parts, It is not possible to eliminate the reduction in frictional resistance.

特開平7−286649号公報JP 7-286649 A 特開2004−108407号公報JP 2004-108407 A

自在継手において、十字軸の各軸部の端部にはそれぞれ軸受が設けられ、対向する一対の十字軸を連結する軸構造において、軸間の摺動を確実にするためスプラインを切った軸体が設けられている。   In a universal joint, bearings are provided at the ends of each shaft portion of the cross shaft, and a shaft body in which a spline is cut to ensure sliding between the shafts in a shaft structure that connects a pair of opposed cross shafts. Is provided.

そして、前記十字軸の軸受部分には転動力が作用し、また、前記スプライン部分には摺動力が作用する。このため、通常、軸受部分とスプライン部分には、グリースなどの潤滑油を介在させ摩擦抵抗を減少させて、摩擦による表面剥離を低減するようにしている。   Then, a rolling force acts on the bearing portion of the cross shaft, and a sliding force acts on the spline portion. For this reason, usually, lubricating oil such as grease is interposed between the bearing portion and the spline portion to reduce the frictional resistance, thereby reducing the surface peeling due to friction.

このため、転動部や摺動部における油膜切れは、耐表面強度を向上させることと共に、自在継手の寿命を左右する大きな要因である。   For this reason, the breakage of the oil film in the rolling part and the sliding part is a major factor that improves the surface strength and the life of the universal joint.

そこで本発明は、比較的簡易な方法で、転動部や摺動部における表面強度(硬さおよび残留圧縮応力)を向上させることができると共に、油膜切れを防止することができて、耐久性の向上を可能にする自在継手部品の製造方法を提供することを目的とする。   Therefore, the present invention can improve the surface strength (hardness and residual compressive stress) in the rolling part and the sliding part by a relatively simple method, and can prevent the oil film from being cut, and can be durable. An object of the present invention is to provide a method for manufacturing a universal joint component that enables improvement of the above.

前記目的を達成するため、本発明の自在継手部品の製造方法の発明は、機械構造用炭素鋼または機械構造用低合金鋼または高炭素クロム軸受鋼からなる自在継手部品素材に対して、浸炭焼入れ焼戻し処理および/または高周波焼入れ処理を行う熱処理工程と、前記熱処理工程後の前記自在継手部品素材に対して微粒子ピーニングを行う表面処理工程とを行い、前記表面処理工程後の前記自在継手部品素材において、表面硬さが800HV以上、残留圧縮応力が表面から30μmで−800MPa以下、表面粗さがRa0.4μm程度の凹凸が形成されるようにすることを特徴とする。   In order to achieve the above object, the invention of a method for manufacturing a universal joint component according to the present invention includes carburizing and quenching a universal joint component material made of carbon steel for machine structure, low alloy steel for machine structure, or high carbon chromium bearing steel. In the universal joint component material after the surface treatment step, a heat treatment step for performing tempering treatment and / or induction hardening treatment, and a surface treatment step for performing fine particle peening on the universal joint component material after the heat treatment step are performed. The surface hardness is 800 HV or higher, the residual compressive stress is 30 μm from the surface to −800 MPa or lower, and the surface roughness Ra is about 0.4 μm.

本発明によれば、自在継手における高い接触面圧や応力が発生する部位に設けられる部品素材に対して、浸炭焼入れ焼戻し処理および/または高周波焼入れ処理を行った後、微粒子ピーニングを行うことにより、部品表面に微細な凹凸(表面粗さRa0.4μm程度)を形成することができると共に、表面硬さと残留圧縮応力を向上させることができた。   According to the present invention, by performing carburization quenching and tempering treatment and / or induction quenching treatment on a component material provided in a portion where a high contact surface pressure or stress occurs in a universal joint, by performing fine particle peening, Fine irregularities (surface roughness Ra of about 0.4 μm) could be formed on the surface of the component, and surface hardness and residual compressive stress could be improved.

このため、微細な凹凸による潤滑油溜りが形成され、接触面における油膜切れを防止することができること相俟って、表面強度が向上するため、継手各部の摩擦抵抗が軽減し、剥離,き裂等の発生を防止することができる。よって、耐久性が向上し、自在継手の寿命が向上する。   For this reason, a lubricating oil pool is formed with fine irregularities, and it is possible to prevent oil film breakage at the contact surface, which improves the surface strength, thereby reducing the frictional resistance of each part of the joint, and causing peeling and cracking. Etc. can be prevented. Therefore, durability is improved and the life of the universal joint is improved.

本発明の実施形態を説明するための自在継手の一例を示す斜視図The perspective view which shows an example of the universal joint for demonstrating embodiment of this invention 図1に示す本実施形態の自在継手の分解斜視図The disassembled perspective view of the universal joint of this embodiment shown in FIG. 本実施形態における軸受部分の断面図Cross-sectional view of the bearing portion in the present embodiment 本実施形態における連結軸部分の断面図Sectional drawing of the connecting shaft part in this embodiment 本実施形態における十字軸の軸受とコロ軸の処理工程フロー図Process flow diagram of cross shaft bearing and roller shaft in this embodiment 本実施形態における摺動軸のスプライン軸の処理工程を示すフロー図The flowchart which shows the process process of the spline shaft of the sliding shaft in this embodiment 本実施形態における前記処理を施した部品の表面硬さを実測した結果を示す図The figure which shows the result of having actually measured the surface hardness of the component which performed the said process in this embodiment 実施形態における前記処理を施した部品の残留圧縮応力を実測した結果を示す図The figure which shows the result of having actually measured the residual compressive stress of the component which performed the said process in embodiment. 微粒子ピーニングを施さない部品素材の表面状態を示す図Diagram showing the surface condition of component materials that are not subjected to fine particle peening 微粒子ピーニングを施した本実施形態に係る部品素材の表面状態を示す図The figure which shows the surface state of the component material which concerns on this embodiment which gave fine particle peening

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態を説明するための自在継手の一例を示す斜視図、図2は図1の自在継手の分解斜視図である。   FIG. 1 is a perspective view showing an example of a universal joint for explaining an embodiment of the present invention, and FIG. 2 is an exploded perspective view of the universal joint of FIG.

図1,図2において、1は左右一対の十字軸、2は十字軸1の両端部にそれぞれ設けられた摺動軸である。   1 and 2, reference numeral 1 denotes a pair of left and right cross shafts, and 2 denotes sliding shafts provided at both ends of the cross shaft 1, respectively.

十字軸1は、基部11に対して互いに直交する方向に突出する4本の軸部12を有し、各軸部12の先端部に軸受13が設けられている。この軸受13は、図3の軸受部分の断面図に示すような構造になっており、軸受13の内側と軸部12の外側間にはコロ軸14が介在し、軸部12の外側に対して軸受13が周方向へ回転可能になっている。   The cross shaft 1 has four shaft portions 12 projecting in directions orthogonal to each other with respect to the base portion 11, and a bearing 13 is provided at the distal end portion of each shaft portion 12. The bearing 13 has a structure as shown in a sectional view of the bearing portion in FIG. 3, and a roller shaft 14 is interposed between the inside of the bearing 13 and the outside of the shaft portion 12, and the outside of the shaft portion 12 is Thus, the bearing 13 is rotatable in the circumferential direction.

前記各軸部12には、断面十字状にグリースなどの潤滑油が満たされる油孔15が基部11を通って貫通している。油孔15は基部11の中心部を通り、一方の軸部12から他方の軸部12へ延在するように形成されている。   Each shaft portion 12 has an oil hole 15 that passes through the base portion 11 and is filled with lubricating oil such as grease in a cross-shaped cross section. The oil hole 15 is formed so as to extend from the one shaft portion 12 to the other shaft portion 12 through the central portion of the base portion 11.

そして、自由継手の動作時に、各油孔15内の潤滑油が、軸受13の天板部13a部分を通って、各コロ軸14部分へ達することにより、軸受13各部の転動による円滑な継手動作が行われるようになっている。   During the operation of the free joint, the lubricating oil in each oil hole 15 passes through the top plate portion 13a portion of the bearing 13 and reaches each roller shaft 14 portion, whereby a smooth joint caused by rolling of each portion of the bearing 13 is achieved. Operation is to be performed.

なお、図3に示す16は、軸受13の下端部分を閉鎖するシール部材である。   3 is a seal member for closing the lower end portion of the bearing 13.

摺動軸2は、本例では、図1,図2に示すように、軸体21と、この軸体21に結合された筒状軸体22と、この筒状軸体22に摺動可能に嵌挿されたスプライン軸23とからなっている。   In this example, as shown in FIGS. 1 and 2, the sliding shaft 2 is slidable on a shaft body 21, a cylindrical shaft body 22 coupled to the shaft body 21, and the cylindrical shaft body 22. And a spline shaft 23 inserted into the.

筒状軸体22とスプライン軸23とは、図4の連結軸部分の断面図に示すように、筒状軸体22とスプライン軸23間の隙間に、筒状軸体22の側部に設けられた給油部24からグリースなどの潤滑油が満たされるようになっており、筒状軸体22とスプライン軸23との相対的摺動が円滑に行われるようになっている。   The cylindrical shaft body 22 and the spline shaft 23 are provided on the side of the cylindrical shaft body 22 in the gap between the cylindrical shaft body 22 and the spline shaft 23 as shown in the sectional view of the connecting shaft portion in FIG. The lubrication oil such as grease is filled from the oil supply section 24, and the relative sliding between the cylindrical shaft body 22 and the spline shaft 23 is performed smoothly.

なお、図4に示す25は、筒状軸体22の開口端部を閉鎖するシール部材である。   In addition, 25 shown in FIG. 4 is a seal member that closes the open end of the cylindrical shaft body 22.

次に、本発明の自在継手部品の製造方法の実施形態について説明する。   Next, an embodiment of a method for manufacturing a universal joint component of the present invention will be described.

十字軸1における転動面である軸受13の内外面と、コロ軸14の外周面には、図5のフロー図に示す処理加工を施す。   The inner and outer surfaces of the bearing 13 that are rolling surfaces of the cross shaft 1 and the outer peripheral surface of the roller shaft 14 are processed as shown in the flowchart of FIG.

高炭素クロム軸受鋼などからなる軸受13とコロ軸14の素材(以下、部品素材と称する)に対して、まず、旋削などの粗加工により外形加工を行う(外形処理工程:ステップS1)。次に、浸炭焼入れ戻しまたは高周波焼入れを行い、素材の材質組成によっては、浸炭焼入れ戻しおよび高周波焼入れを行う(熱処理工程:ステップS2)。   First, outer shape processing is performed by roughing such as turning on the material (hereinafter referred to as component material) of the bearing 13 and the roller shaft 14 made of high carbon chromium bearing steel or the like (outer shape processing step: step S1). Next, carburizing and quenching or induction hardening is performed, and depending on the material composition of the material, carburizing and quenching and induction hardening are performed (heat treatment step: step S2).

その後、研磨などの仕上げ加工を行い(仕上げ工程:ステップS3)、仕上げ加工後の部品素材に対して、微粒子ピーニングを行う(表面処理工程:ステップS4)。   Thereafter, finishing processing such as polishing is performed (finishing step: step S3), and fine particle peening is performed on the finished part material (surface treatment step: step S4).

前記ステップS1〜S3の処理条件は材質組成などによって変わる。ステップS4の微粒子ピーニングにおいては、粒径が0.01〜0.1mm、かつ硬度が750〜1000HVの高速度鋼,セラミックなどの微粒子を用い、この微粒子を投射速度を150〜200m/sとして部品素材に噴射する。   The processing conditions of steps S1 to S3 vary depending on the material composition. In the fine particle peening in step S4, fine particles such as high-speed steel and ceramic having a particle diameter of 0.01 to 0.1 mm and a hardness of 750 to 1000 HV are used, and the fine particles are projected at a projection speed of 150 to 200 m / s. Spray onto the material.

そして、ステップS4の表面処理工程により、部品素材において、表面硬さが800HV以上、残留圧縮応力が表面から30μmで−800MPa以下、表面粗さがRa0.4μm程度の凹凸が形成されるようにする。   Then, by the surface treatment process in step S4, in the component material, irregularities having a surface hardness of 800 HV or more, a residual compressive stress of 30 μm from the surface to −800 MPa or less, and a surface roughness of about Ra 0.4 μm are formed. .

図5に示す処理を施した部品素材からなる軸受13あるいはコロ軸14は、最表面において優れた改質効果が得られた。具体的には、軸受13あるいはコロ軸14に、浸炭焼入れ戻しおよび/または高周波焼入れを行った後、微粒子ピーニングを行うことにより、表面硬さと残留圧縮応力が向上して、これにより、表面起点型の剥離を抑制することができた。   The bearing 13 or the roller shaft 14 made of the component material subjected to the treatment shown in FIG. 5 has an excellent modification effect on the outermost surface. Specifically, the surface hardness and residual compressive stress are improved by subjecting the bearing 13 or the roller shaft 14 to carburizing quenching and / or induction quenching and then performing fine particle peening. It was possible to suppress peeling.

特に、軸受13における角部の面取り部,R部(小曲面形成部)部分においては、集中応力が加わるが、本実施形態では、これらの部位においても、表面硬さと残留圧縮応力が向上することにより、疲労寿命が向上し、表面からの亀裂の発生を抑制することができた。   In particular, concentrated stress is applied to the chamfered portion and the R portion (small curved surface forming portion) of the corner portion of the bearing 13, but in this embodiment, surface hardness and residual compressive stress are also improved in these portions. As a result, the fatigue life was improved and the occurrence of cracks from the surface could be suppressed.

図7,図8に、実際に前記処理を施した部品について、表面硬さと残留圧縮応力を実測した結果を示す。図7,図8において、WPC(Wide Peening Cleaning)処理とは微粒子ピーニング処理のことを意味する。   FIG. 7 and FIG. 8 show the results of actual measurement of surface hardness and residual compressive stress for parts actually subjected to the above treatment. 7 and 8, WPC (Wide Peening Cleaning) means fine particle peening.

図7,図8に示すように、表面から0.1mmにおいて、微粒子ピーニングを行わなかった場合に比較して、顕著に表面硬さと残留圧縮応力が向上していることが分る。   As shown in FIGS. 7 and 8, it can be seen that the surface hardness and residual compressive stress are remarkably improved at 0.1 mm from the surface as compared with the case where fine particle peening is not performed.

また、図9,図10に、実際に前記処理を施した部品について、表面状態を拡大観察した結果を示す。図9は微粒子ピーニングを施さない部品素材の表面状態を示し、図10は微粒子ピーニングを施した本実施形態に係る部品素材の表面状態を示している。   9 and 10 show the results of magnifying and observing the surface state of the parts actually subjected to the above treatment. FIG. 9 shows the surface state of the component material not subjected to fine particle peening, and FIG. 10 shows the surface state of the component material according to the present embodiment subjected to fine particle peening.

図9に示す表面状態と比較して、図10に示す表面状態では、部品素材の表面に多数の微細凹凸(黒い部分)が形成されていることが分る。   Compared with the surface state shown in FIG. 9, it can be seen that in the surface state shown in FIG. 10, a large number of fine irregularities (black portions) are formed on the surface of the component material.

通常、自在継手の軸受13あるいはコロ軸14の摺動部分では、高い接触面圧が発生して潤滑油の潤滑力の低下が見られるが、本実施形態においては、前記凹凸の凹部の存在により、凹部に油分を保持することができる。このため、軸受13あるいはコロ軸14の接触面における油膜切れ、潤滑力の低下を防ぐことができる。よって、摩擦抵抗が軽減し、転動面の剥離、およびシール部材16のオイルシール部の摩耗を防ぐことができる。   Usually, in the sliding part of the universal joint bearing 13 or the roller shaft 14, a high contact surface pressure is generated and the lubricating force of the lubricating oil is reduced. In this embodiment, however, the presence of the concave and convex recesses is present. The oil can be held in the recess. For this reason, it is possible to prevent the oil film from being cut off at the contact surface of the bearing 13 or the roller shaft 14 and the reduction of the lubricating force. Therefore, the frictional resistance is reduced, and the rolling surface can be peeled off and the oil seal portion of the seal member 16 can be prevented from being worn.

次に、自在継手部品である摺動軸2のスプライン軸23の製造について、図6のフロー図を参照して説明する。   Next, manufacture of the spline shaft 23 of the sliding shaft 2 which is a universal joint component will be described with reference to the flowchart of FIG.

機械構造用炭素鋼あるいは機械構造用低合金鋼などからなるスプライン軸23の素材(以下、部品素材と称する)に対して、まず、ホブ加工などの仕上げ加工を行う(仕上げ工程:ステップS11)。次に、高周波焼入れを行う(熱処理工程:ステップS12)。その後、仕上げ加工後の部品素材に対して、微粒子ピーニングを行う(表面処理工程:ステップS13)。   First, finish processing such as hobbing is performed on the material of the spline shaft 23 (hereinafter referred to as component material) made of carbon steel for machine structure or low alloy steel for machine structure (finishing step: step S11). Next, induction hardening is performed (heat treatment process: step S12). Thereafter, fine particle peening is performed on the finished part material (surface treatment step: step S13).

前記ステップS11,S12の処理条件は材質組成などによって変わる。ステップS13の微粒子ピーニングにおいては、粒径が0.01〜0.1mm、かつ硬度が750〜1000HVの高速度鋼,セラミックなどの微粒子を用い、この微粒子を投射速度を150〜200m/sとして部品素材に噴射する。   The processing conditions of steps S11 and S12 vary depending on the material composition. In the fine particle peening in step S13, fine particles such as high-speed steel and ceramic having a particle size of 0.01 to 0.1 mm and a hardness of 750 to 1000 HV are used, and the fine particles are projected at a projection speed of 150 to 200 m / s. Spray onto the material.

そして、ステップS3の表面処理工程により、部品素材において、表面硬さが800HV以上、残留圧縮応力が表面から30μmで−800MPa以下、表面粗さがRa0.4μm程度の凹凸が形成されるようにする。   Then, by the surface treatment process in step S3, in the component material, irregularities having a surface hardness of 800 HV or more, a residual compressive stress of 30 μm from the surface to −800 MPa or less, and a surface roughness of Ra about 0.4 μm are formed. .

図6に示す処理を施した部品素材からなるスプライン軸23は、本実施形態における前記軸受,コロ軸と同様に、微粒子ピーニングを行うことにより、表面硬さと残留圧縮応力が向上し、最表面において優れた改質効果が得られた。   Similar to the bearing and roller shaft in the present embodiment, the spline shaft 23 made of the component material subjected to the processing shown in FIG. Excellent reforming effect was obtained.

具体的には、スプライン軸23において、表面起点型の剥離や表面からの亀裂の発生を抑制することができる。   Specifically, in the spline shaft 23, it is possible to suppress the occurrence of surface-origin separation and cracks from the surface.

さらに、前記と同様に、微粒子ピーニングによりスプライン軸23の表面に凹部が存在することにより、凹部に油分を保持することができる。このため、摺動軸2のスプライン軸23の接触摺動面における油膜切れ、潤滑力の低下を防ぐことができる。よって、摩擦抵抗を軽減し、摺動面の剥離、およびシール部材25のオイルシール部の摩耗を防ぐことができる。   Further, as described above, the presence of the concave portion on the surface of the spline shaft 23 by the fine particle peening makes it possible to retain the oil in the concave portion. For this reason, it is possible to prevent the oil film from being cut off on the contact sliding surface of the spline shaft 23 of the sliding shaft 2 and the reduction of the lubricating force. Therefore, frictional resistance can be reduced, and peeling of the sliding surface and wear of the oil seal portion of the seal member 25 can be prevented.

本発明は、自在継手の構成部品の各部において適用され、表面硬さ,残留圧縮応力、および油分の保持性が改善されるため、高負荷状況で使用され、高い接触面圧および応力が加わって、潤滑力の低下が生じやすい自在継手部品の製造方法として有効である。   The present invention is applied to each part of the component parts of the universal joint, and the surface hardness, residual compressive stress, and oil retention are improved, so that it is used in a high load situation, and high contact surface pressure and stress are applied. It is effective as a method for manufacturing a universal joint component in which a reduction in lubricating force is likely to occur.

1 十字軸
11 基部
12 軸部
13 軸受
14 コロ軸
15 油孔
16 シール部材
2 摺動軸
21 軸体
22 筒状軸体
23 スプライン軸
24 給油部
25 シール部材
DESCRIPTION OF SYMBOLS 1 Cross shaft 11 Base part 12 Shaft part 13 Bearing 14 Roller shaft 15 Oil hole 16 Seal member 2 Sliding shaft 21 Shaft body 22 Cylindrical shaft body 23 Spline shaft 24 Oil supply part 25 Seal member

Claims (8)

機械構造用炭素鋼または機械構造用低合金鋼または高炭素クロム軸受鋼からなる自在継手部品素材に対して、浸炭焼入れ焼戻し処理および/または高周波焼入れ処理を行う熱処理工程と、前記熱処理工程後の前記自在継手部品素材に対して微粒子ピーニングを行う表面処理工程とを行い、
前記表面処理工程後の前記自在継手部品素材において、表面硬さが800HV以上、残留圧縮応力が表面から30μmで−800MPa以下、表面粗さがRa0.4μm程度の凹凸が形成されるようにすることを特徴とする自在継手部品の製造方法。
A heat treatment step of performing carburizing and tempering treatment and / or induction hardening treatment on a universal joint component material made of carbon steel for machine structure or low alloy steel for machine structure or high carbon chrome bearing steel, and after the heat treatment step, A surface treatment process that performs fine particle peening on universal joint component materials,
In the universal joint component material after the surface treatment step, irregularities having a surface hardness of 800 HV or more, a residual compressive stress of 30 μm to −800 MPa or less, and a surface roughness of about Ra 0.4 μm are formed. A method for manufacturing a universal joint part characterized by the above.
前記微粒子ピーニングに用いられる微粒子の硬度が750〜1000HV、かつ粒径が0.01〜0.1mmであることを特徴とする請求項1記載の自在継手部品の製造方法。   The method for producing a universal joint part according to claim 1, wherein the fine particles used for the fine particle peening have a hardness of 750 to 1000 HV and a particle size of 0.01 to 0.1 mm. 前記微粒子ピーニングにおける微粒子投射速度が、150〜200m/sであることを特徴とする請求項1または2記載の自在継手部品の製造方法。   The method for manufacturing a universal joint part according to claim 1, wherein a fine particle projection speed in the fine particle peening is 150 to 200 m / s. 前記自在継手部品が、自在継手を構成する十字軸の転動部分の部品であることを特徴とする請求項1記載の自在継手部品の製造方法。   2. The method for manufacturing a universal joint part according to claim 1, wherein the universal joint part is a part of a rolling portion of a cross shaft constituting the universal joint. 前記自在継手部品が、前記十字軸の軸受部であることを特徴とする請求項1または4記載の自在継手部品の製造方法。   The method for manufacturing a universal joint component according to claim 1, wherein the universal joint component is a bearing portion of the cross shaft. 前記自在継手部品が、前記十字軸の軸受コロであることを特徴とする請求項1または4記載の自在継手部品の製造方法。   The method for manufacturing a universal joint part according to claim 1, wherein the universal joint part is a bearing roller of the cross shaft. 前記自在継手部品が、自在継手を構成する軸体の摺動部分の部品であることを特徴とする請求項1記載の自在継手部品の製造方法。   2. The method for manufacturing a universal joint part according to claim 1, wherein the universal joint part is a part of a sliding portion of a shaft body constituting the universal joint. 前記自在継手部品が、前記軸体のスプライン軸であることを特徴とする請求項1または7記載の自在継手部品の製造方法。   The method for manufacturing a universal joint component according to claim 1, wherein the universal joint component is a spline shaft of the shaft body.
JP2009186990A 2009-08-12 2009-08-12 Manufacturing method of universal joint parts Active JP5284904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186990A JP5284904B2 (en) 2009-08-12 2009-08-12 Manufacturing method of universal joint parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186990A JP5284904B2 (en) 2009-08-12 2009-08-12 Manufacturing method of universal joint parts

Publications (2)

Publication Number Publication Date
JP2011038600A JP2011038600A (en) 2011-02-24
JP5284904B2 true JP5284904B2 (en) 2013-09-11

Family

ID=43766571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186990A Active JP5284904B2 (en) 2009-08-12 2009-08-12 Manufacturing method of universal joint parts

Country Status (1)

Country Link
JP (1) JP5284904B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101341100B1 (en) * 2012-02-08 2014-01-03 (주)디자인메카 Method for remanufacturing of bearing
JP2014196819A (en) * 2013-03-29 2014-10-16 トヨタ自動車株式会社 Spline fitting structure
JP6597774B2 (en) * 2015-04-22 2019-10-30 日本精工株式会社 Torque transmission joint and worm reducer
DE102016223211A1 (en) * 2016-11-23 2018-05-24 Aktiebolaget Skf Component of a universal joint bushing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4102866B2 (en) * 2001-04-16 2008-06-18 ジヤトコ株式会社 Gear manufacturing method
JP2005264331A (en) * 2005-03-11 2005-09-29 Yanmar Co Ltd Machine structural components
JP2008207589A (en) * 2007-02-23 2008-09-11 Ntn Corp Bearing device for wheel and its manufacturing method

Also Published As

Publication number Publication date
JP2011038600A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
US7685717B2 (en) Method for manufacturing a bearing raceway member
KR101551316B1 (en) Bearing roller, bearing, and bearing roller processing method
WO2010082597A1 (en) Outer member of constant speed universal joint
JP5284904B2 (en) Manufacturing method of universal joint parts
JP6833330B2 (en) Rolling device and rolling bearing
JPH05157146A (en) Belt type continuously variable transmission for vehicle
JP2013160314A (en) Rolling bearing
JP4186568B2 (en) Rolling bearing and method for manufacturing inner ring of rolling bearing
US7163461B2 (en) Cross joint
JP2007182607A (en) Method for manufacturing rolling member for use in constant velocity joint, rolling member for use in constant velocity joint, and constant velocity joint
JP2003329048A (en) Manufacturing method for bearing raceway member
JP2009191902A (en) Wheel bearing device
JP5130707B2 (en) Rolling device
JP6964400B2 (en) Manufacturing method of rolling bearings, rolling devices and rolling devices
JP2008267403A (en) Rolling device
JP7176646B2 (en) Rolling bearing and its manufacturing method
JP4520223B2 (en) Method for forming nitriding sliding surface
WO2019103039A1 (en) Rolling part, bearing, and production method therefor
JP2007253192A (en) Method for manufacturing shaft
JP2004100867A (en) Method for manufacturing race ring for rolling bearing, and race ring for rolling bearing
WO2016159137A1 (en) Rolling device and rolling bearing
JP2010196817A (en) Power transmission shaft and manufacturing method thereof
JP4284956B2 (en) Manufacturing method of rolling sliding member
JP2024039081A (en) universal joint
JP2007155021A (en) Roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5284904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250