[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5281831B2 - Method for forming conductive material structure - Google Patents

Method for forming conductive material structure Download PDF

Info

Publication number
JP5281831B2
JP5281831B2 JP2008170361A JP2008170361A JP5281831B2 JP 5281831 B2 JP5281831 B2 JP 5281831B2 JP 2008170361 A JP2008170361 A JP 2008170361A JP 2008170361 A JP2008170361 A JP 2008170361A JP 5281831 B2 JP5281831 B2 JP 5281831B2
Authority
JP
Japan
Prior art keywords
plating
film
substrate
plating film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008170361A
Other languages
Japanese (ja)
Other versions
JP2010010557A (en
JP2010010557A5 (en
Inventor
明 福永
瑞樹 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2008170361A priority Critical patent/JP5281831B2/en
Priority to KR1020080121666A priority patent/KR20090058462A/en
Priority to US12/314,080 priority patent/US8784636B2/en
Priority to TW103126362A priority patent/TWI518213B/en
Priority to TW097147072A priority patent/TWI451006B/en
Publication of JP2010010557A publication Critical patent/JP2010010557A/en
Publication of JP2010010557A5 publication Critical patent/JP2010010557A5/ja
Application granted granted Critical
Publication of JP5281831B2 publication Critical patent/JP5281831B2/en
Priority to US14/299,306 priority patent/US20140287580A1/en
Priority to KR20140128587A priority patent/KR20140120878A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a conductive material structure suitable for three-dimensional mounting by a through electrode in a shorter time by improving plating requiring a longer time that causes hindrance to practical use. <P>SOLUTION: A conductive film 14 is formed over the entire surface of a substrate W, having a recessed portion 12 for the through electrode, and including a surface of the recessed portion 12 on the surface thereof; a resist pattern 30 is formed at a predetermined position on the surface of the substrate W; and a first plating film 36 is embedded in the recessed portion 12 for the through electrode by carrying out first electrolytic plating under a first plating condition where the conductive film 14 is used as an electric supply layer. After the first plating film 36 is completely embedded in the recessed portion 12 for the through electrode, a second plating film 38 is grown on the conductive film 14 exposed in a resist opening portion 32 of the resist pattern 30 and on the first plating film 36 by carrying out second electrolytic plating under a second plating condition where the conductive film 14 and first plating film 36 are used as an electric supply layer. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、導電材料構造体の形成方法に係り、更に詳しくは、内部に上下に貫通する貫通電極を、表面に該貫通電極に連続する電極パッド及び/または再配線構造をそれぞれ有し、前記貫通電極を介した半導体チップ等の三次元積層を実現するのに使用される導電材料構造体を形成する導電材料構造体の形成方法に関する。   The present invention relates to a method for forming a conductive material structure. More specifically, the present invention has a through electrode vertically penetrating inside, and an electrode pad and / or a redistribution structure continuous with the through electrode on the surface. The present invention relates to a method for forming a conductive material structure that forms a conductive material structure used to realize three-dimensional stacking of a semiconductor chip or the like via a through electrode.

エレクトロニクス製品の更なる小型化、高性能化を実現するために、特にLSIの実装密度を高める手法として、複数の半導体チップを多層に積上げて1つのパッケージとする三次元実装技術が注目されている。既に、ワイアボンディングにより半導体チップを積層化する方法が実用化されており、大容量化という観点でフラッシュメモリの積層などに用いられている。しかしながら、ワイアボンディングにあっては、電極間の接続に用いられる配線長さがmmのオーダーとチップ内配線の長さに比べて非常に長く、DRAMやロジックなど高速信号を扱うデバイスへの適用においては、信号遅延などの観点から多くを期待できない。そこで、基板の内部に銅等の導電材料で上下に貫通する貫通電極を形成し、貫通電極を介して半導体チップ同士を最短距離で接合することにより、更なる高速化、小型化を実現する貫通電極型の三次元積層技術が検討されている。   In order to achieve further downsizing and higher performance of electronic products, three-dimensional mounting technology in which a plurality of semiconductor chips are stacked in a single package is attracting attention as a technique for increasing the mounting density of LSIs. . A method of stacking semiconductor chips by wire bonding has already been put into practical use, and is used for stacking flash memories from the viewpoint of increasing capacity. However, in wire bonding, the wiring length used for connection between electrodes is very long compared to the order of mm and the length of the wiring in the chip, so that it can be applied to devices that handle high-speed signals such as DRAM and logic. Cannot expect much from the viewpoint of signal delay. Therefore, a through electrode that penetrates up and down with a conductive material such as copper is formed inside the substrate, and the semiconductor chips are joined at the shortest distance via the through electrode, thereby realizing further high speed and miniaturization. An electrode-type three-dimensional stacking technique has been studied.

ここで、基板の内部に貫通電極を設けただけではチップ同士を接合することができないので、基板表面の貫通電極直上に電極パッドを形成したり、或いは再配線層を形成して電極パッドの位置を再配置したりする必要がある。また電極パッド上に接合用の鉛フリーはんだ層を形成することも考えられる。   Here, since the chips cannot be bonded to each other simply by providing a through electrode inside the substrate, an electrode pad is formed immediately above the through electrode on the surface of the substrate, or a rewiring layer is formed to position the electrode pad. Need to be rearranged. It is also conceivable to form a lead-free solder layer for bonding on the electrode pad.

図1及び図2は、基板の内部に上下に貫通する銅からなる貫通電極を、基板の表面に銅からなる電極パッドをそれぞれ有する導電材料構造体の製造例を工程順に示す。先ず、図1(a)に示すように、例えばリソグラフィ・エッチング技術により、シリコン等からなる基材10の内部に上方に開口する複数の貫通電極用凹部12を形成した基板Wを用意し、この基板Wの表面の貫通電極用凹部12の表面を含む全表面に電解めっきの給電層としての銅等からなるシード膜(導電膜)14をスパッタリング等で形成する。   1 and 2 show a manufacturing example of a conductive material structure having a through electrode made of copper penetrating vertically inside a substrate and an electrode pad made of copper on the surface of the substrate in the order of steps. First, as shown in FIG. 1A, a substrate W having a plurality of through-electrode recesses 12 opened upward is prepared in a base material 10 made of silicon or the like by, for example, lithography / etching technology. A seed film (conductive film) 14 made of copper or the like as a power feeding layer for electrolytic plating is formed by sputtering or the like on the entire surface of the substrate W including the surface of the through electrode recess 12.

そして、基板Wの表面に電解銅めっきを施すことで、図1(b)に示すように、基板Wに設けた貫通電極用凹部12内に第1めっき膜16を埋込みながら、基板Wのシード膜14の表面に第1めっき膜16を堆積させる。そして、図1(c)に示すように、化学的機械的研磨(CMP)等により、貫通電極用凹部12内以外の基板W上の余剰な第1めっき銅16を研磨除去する。   Then, by performing electrolytic copper plating on the surface of the substrate W, as shown in FIG. 1B, the seed of the substrate W is embedded while the first plating film 16 is embedded in the through-electrode recess 12 provided on the substrate W. A first plating film 16 is deposited on the surface of the film 14. Then, as shown in FIG. 1C, excess first plated copper 16 on the substrate W other than the inside of the through-electrode recess 12 is polished and removed by chemical mechanical polishing (CMP) or the like.

次に、図2(a)に示すように、基板Wの表面の所定位置にフォトレジスト等によりレジストパターン18を形成する。この時、レジストパターン18のレジスト開口部20が電極パッドに対応した位置及び形状となるようにする。この状態で、基板Wの表面に電解銅めっきを施すことで、図2(b)に示すように、レジストパターン18のレジスト開口部20内に第2めっき膜22を形成する。そして、図2(c)に示すように、基板Wの表面の余剰なシード膜14及びレジストパターン18を除去し、同時に、貫通電極用凹部12内に充填した第1めっき膜16の底面が外部に露出するまで基板Wの裏面側を研磨除去する。これによって、貫通電極用凹部12内に埋込んだ第1めっき膜16で上下に貫通する銅からなる複数の貫通電極24を、レジストパターン18のレジスト開口部20内に成膜した第2めっき膜22で電極パッド26をそれぞれ形成した導電材料構造体を完成させる。   Next, as shown in FIG. 2A, a resist pattern 18 is formed at a predetermined position on the surface of the substrate W using a photoresist or the like. At this time, the resist opening 20 of the resist pattern 18 is set to a position and shape corresponding to the electrode pad. In this state, by subjecting the surface of the substrate W to electrolytic copper plating, a second plating film 22 is formed in the resist opening 20 of the resist pattern 18 as shown in FIG. Then, as shown in FIG. 2C, the excess seed film 14 and the resist pattern 18 on the surface of the substrate W are removed, and at the same time, the bottom surface of the first plating film 16 filled in the through-electrode recess 12 is external. The back side of the substrate W is polished and removed until it is exposed. Thus, the second plating film in which a plurality of through electrodes 24 made of copper penetrating vertically with the first plating film 16 embedded in the through electrode recess 12 is formed in the resist opening 20 of the resist pattern 18. 22, the conductive material structure in which the electrode pads 26 are respectively formed is completed.

前述のように、貫通電極の形成には電解めっきを適用することが検討されているが、電解めっきで貫通電極を形成するためには、外径寸法が数〜100μmで、深さが数10〜数100μm程度の貫通電極用凹部を予め形成し、この貫通電極用凹部内に銅等からなるめっき膜を埋込むことが求められる。しかしながら、このように非常に大きな貫通電極用凹部内に従来の一般的な電解めっき方法で欠陥のないめっき膜の埋込みを行うには長時間を要し、生産性の観点から実用化の障害となっている。また、図1及び図2に示す工程で導電材料構造体を形成しようとすると、めっき→CMP→レジスト形成→めっきと多くの工程を経なければならず、製造コストが高くなる。そこで、貫通電極の直上に電極パッドや再配線層、更には接合用はんだ層などを電解めっきで連続的に形成しようという考え方も成立するが、それぞれの厚みも数μm以上あって、貫通電極とこれらを同一条件で連続的に電解めっきで成膜しようとすると、更に長時間を要することになる。   As described above, application of electrolytic plating to the formation of the through electrode has been studied. However, in order to form the through electrode by electrolytic plating, the outer diameter is several to 100 μm and the depth is several tens. It is required to form a through electrode recess having a thickness of about several hundred μm in advance and embed a plating film made of copper or the like in the through electrode recess. However, it takes a long time to embed a defect-free plating film in such a large through-electrode recess by a conventional general electroplating method, which is an obstacle to practical use from the viewpoint of productivity. It has become. In addition, if an attempt is made to form a conductive material structure in the steps shown in FIGS. 1 and 2, many steps of plating → CMP → resist formation → plating must be performed, resulting in an increase in manufacturing cost. Therefore, the idea of continuously forming an electrode pad, a rewiring layer, and a bonding solder layer directly on the through electrode by electrolytic plating is also established, but each thickness is several μm or more, and the through electrode and If these are continuously formed by electrolytic plating under the same conditions, a longer time is required.

本発明は上記事情に鑑みて為されたもので、実用化の障害となるめっきの長時間化を改善し、貫通電極による三次元実装を実現するのに好適な導電材料構造体をより短時間で形成できるようにした導電材料構造体の形成方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to improve the plating time that is an impediment to practical use, and to provide a conductive material structure suitable for realizing three-dimensional mounting with through electrodes in a shorter time. It is an object of the present invention to provide a method for forming a conductive material structure that can be formed by the above method.

請求項1に記載の発明は、三次元積層技術に使用される貫通電極用凹部を形成した基板の表面の該凹部表面を含む全表面に導電膜を形成し、基板表面の所定位置にレジストパターンを形成し、前記導電膜を給電層とした第1めっき条件の下で、めっき成長を抑える添加剤含む第1めっき液に前記基板を浸漬させることで第1電解めっきを行って前記貫通電極用凹部内に第1めっき膜を埋込み、前記貫通電極用凹部内への前記第1めっき膜の埋込みが終了した後に、前記導電膜及び前記第1めっき膜を給電層とした第2めっき条件の下で、前記第1めっき液とは組成が異なる第2めっき液に前記基板を浸漬させることで第2電解めっきを行って、前記レジストパターンのレジスト開口部内に露出した導電膜及び前記第1めっき膜上に第2めっき膜を成長させ、前記レジスト開口部内に表面が平坦な前記第2めっき膜を形成する工程を含み、前記第1めっき膜と前記第2めっき膜は、同じ金属から構成され、前記第2めっき条件における平均電流値は、前記第1めっき条件における平均電流値よりも高いことを特徴とする導電材料構造体の形成方法である。 According to the first aspect of the present invention, a conductive film is formed on the entire surface including the concave surface of the substrate on which the concave portion for a through electrode used in the three-dimensional lamination technique is formed, and a resist pattern is formed at a predetermined position on the substrate surface The first electrolytic plating is performed by immersing the substrate in a first plating solution containing an additive that suppresses plating growth under a first plating condition using the conductive film as a power supply layer. After embedding the first plating film in the recess and completing the embedding of the first plating film in the recess for the through electrode , under the second plating condition using the conductive film and the first plating film as a power supply layer Then, the second electroplating is performed by immersing the substrate in a second plating solution having a composition different from that of the first plating solution, and the conductive film exposed in the resist opening of the resist pattern and the first plating film Second plating on Were grown, the resist surface in the opening includes a step of forming a flat second plating layer, the said first plating film second plating film is made of a same metal, in the second plating conditions The average current value is higher than the average current value in the first plating condition , and is a method for forming a conductive material structure.

基板にエッチング法等により形成された貫通電極用凹部内にめっき膜、例えば金属材料としての銅を電解めっきで埋込む場合(場合(1))と、基板表面にレジストパターンで形成されたレジスト開口部内にめっき膜、例えば金属材料としての銅を電解めっきで成膜して電極パッド等を形成する場合(場合(2))とでは、パターン形状や給電層の構造に大きな違いがある。場合(1)における貫通電極用凹部は、例えば外径が数〜数10μm、深さが10〜100μm程度でアスペクト比(孔径に対する深さの比)が1以上であるが、これに対して、場合(2)におけるレジストパターンは、例えば数〜数10μmの厚みで、レジスト開口部の外径または幅は数〜数10μm程度である。   A case where a plated film, for example, copper as a metal material is embedded by electrolytic plating in a recess for a through electrode formed on the substrate by an etching method or the like, and a resist opening formed by a resist pattern on the substrate surface There is a great difference in the pattern shape and the structure of the power feeding layer in the case where a plating film, for example, copper as a metal material is formed in the part by electrolytic plating to form an electrode pad or the like (case (2)). In the case (1), the through electrode recess has an outer diameter of several to several tens of μm, a depth of about 10 to 100 μm and an aspect ratio (ratio of the depth to the hole diameter) of 1 or more. In the case (2), the resist pattern has a thickness of several to several tens of μm, for example, and the outer diameter or width of the resist opening is about several to several tens of μm.

場合(1)では、貫通電極用凹部のアスペクト比が1以上であり、貫通電極用凹部の側面にもシード膜(給電層)が存在するので、貫通電極用凹部の底部からのめっき膜の成長を優先するボトムアップ成長の条件でめっき膜を成膜しないと、貫通電極用凹部の入口でのめっき膜の成長が優先され、貫通電極用凹部内に埋込まれるめっき膜にボイドやシームなどのめっき欠陥を生じる。このため、例えば貫通電極用凹部の入口部分でのめっき膜の成長を抑制するための添加剤の性能を高めためっき液を用いるとともに、当初はある程度の電流でめっきを行った後、一旦電流値を下げて、貫通電極用凹部内部での銅イオンの消耗の回復を待つことを繰返すなど、いくつかの条件を最適化する必要がある。   In the case (1), since the aspect ratio of the through electrode recess is 1 or more and the seed film (feeding layer) is also present on the side surface of the through electrode recess, the plating film grows from the bottom of the through electrode recess. If the plating film is not formed under the bottom-up growth conditions that give priority to the growth of the plating film, priority is given to the growth of the plating film at the entrance of the through-electrode recess, and voids or seams are added to the plating film embedded in the through-electrode recess This causes plating defects. For this reason, for example, a plating solution with enhanced performance of an additive for suppressing the growth of the plating film at the entrance portion of the through-electrode recess is used, and after initial plating with a certain current, the current value is once It is necessary to optimize several conditions, such as repeatedly waiting for the recovery of the consumption of copper ions in the through electrode recesses.

場合(2)では、レジストパターンで囲まれたレジスト開口部の底部にのみ給電層が存在し、このためスルーマスクめっきとなり、そのまま電解めっきを行うとレジスト開口部の底部からめっき膜が成長する。このため、めっき膜にボイドやシームなどのような欠陥が生じる懸念は少ない。しかし、レジストパターン内部でのめっき液の流速分布により、めっき膜のパターン形状の偏りが生じる可能性がある。この現象は、めっき速度に対して必ずしも十分な銅イオンの供給が出来ない場合、即ち拡散律速領域でめっきする場合に起こりやすい。したがって、この場合は、めっき液の組成や電流密度よりも、機械的攪拌や空気攪拌などめっき液の流動条件の最適化が重要な要素となる。   In the case (2), the power feeding layer is present only at the bottom of the resist opening surrounded by the resist pattern, so that through-mask plating is performed, and if the electrolytic plating is performed as it is, a plating film grows from the bottom of the resist opening. For this reason, there are few concerns that defects, such as a void and a seam, arise in a plating film. However, there is a possibility that the pattern shape of the plating film is uneven due to the flow velocity distribution of the plating solution inside the resist pattern. This phenomenon tends to occur when sufficient copper ions cannot be supplied with respect to the plating speed, that is, when plating is performed in a diffusion-controlled region. Therefore, in this case, optimization of the flow conditions of the plating solution, such as mechanical stirring and air stirring, is more important than the composition and current density of the plating solution.

なお、レジスト開口部の下にある貫通電極用凹部内にめっき膜を埋込む際には、レジスト開口部内にめっき膜を埋込む時以上にレジストパターン内に存在するめっき液の濃度分布の影響を受けるので、上記場合(1)におけるめっき液の添加剤ならびに電流条件の最適化に加え、めっき液の流動条件の最適化が重要となる。 Note that when the plating film is embedded in the through electrode recess under the resist opening, the concentration distribution of the plating solution existing in the resist pattern is affected more than when the plating film is embedded in the resist opening. since receiving, in addition to the optimization of the additive and the current condition of a plating solution in the case (1), optimizing the flow conditions of the plating liquid is important.

以上のように、それぞれの形状に好適なめっき条件、例えば電流値、めっき液、めっき液の攪拌条件などを最適化してめっきすることがめっき膜の完全性ならびに成膜効率を上げるために必要である。本発明によれば、第1めっき条件で第1電解めっきを行って貫通電極用凹部内に第1めっき膜を埋込み、しかる後、第2めっき条件で第2電解めっきを行って、導電膜上の所定位置に形成したレジストパターンのレジスト開口部に第2めっき膜を成長させることで、この要請に応えることができる。しかも、予めレジストパターンを形成しておいてから、貫通電極用凹部内に第1めっき膜を埋込む第1電解めっきと、レジストパターンのレジスト開口部内に第2めっき膜を成長させる第2電解めっきを連続して行うことで、めっき時間を短縮して、生産性を向上させることができる。   As described above, it is necessary to optimize the plating conditions suitable for each shape, for example, the current value, the plating solution, and the stirring conditions of the plating solution, in order to increase the completeness of the plating film and the film formation efficiency. is there. According to the present invention, the first electrolytic plating is performed under the first plating condition to embed the first plating film in the through electrode recess, and then the second electrolytic plating is performed under the second plating condition to form the conductive film on the conductive film. This requirement can be met by growing the second plating film in the resist opening of the resist pattern formed at the predetermined position. In addition, after the resist pattern is formed in advance, the first electrolytic plating in which the first plating film is embedded in the through electrode recess, and the second electrolytic plating in which the second plating film is grown in the resist opening of the resist pattern By carrying out continuously, the plating time can be shortened and the productivity can be improved.

請求項2に記載の発明は、前記レジストパターンの高さは、5μm〜100μmであることを特徴とする請求項1記載の導電材料構造体の形成方法である。   The invention described in claim 2 is the method for forming a conductive material structure according to claim 1, wherein the height of the resist pattern is 5 μm to 100 μm.

基板表面のレジスト開口部内に成膜する第2めっき膜で再配線を形成する場合には、該再配線を流れる電気信号の周波数や供給する電流値などを考慮すると、第2めっき膜の膜厚を少なくとも5μm程度とする必要がある。基板表面のレジスト開口部内に成膜する第2めっき膜で電極パッドやポストを形成する場合には、その後の接合条件を勘案すると、第2めっき膜の膜厚を数10μmとすることが望ましい。更に、電極パッドの上に接合用のはんだ等の接合材料を電解めっきで載せようとすると、レジストパターンに更に数10μm程度の高さが加わる。このため、レジストパターンの高さは、少なくとも5μm以上で、100μm程度以下とすることが好ましい。   When the rewiring is formed with the second plating film formed in the resist opening on the substrate surface, the film thickness of the second plating film is considered in consideration of the frequency of the electric signal flowing through the rewiring and the supplied current value. Needs to be at least about 5 μm. In the case where the electrode pad or the post is formed with the second plating film formed in the resist opening on the substrate surface, it is desirable that the film thickness of the second plating film be several tens of μm in consideration of subsequent bonding conditions. Furthermore, when a bonding material such as solder for bonding is placed on the electrode pad by electrolytic plating, a height of about several tens of μm is further added to the resist pattern. For this reason, the height of the resist pattern is preferably at least 5 μm and not more than about 100 μm.

請求項3に記載の発明は、前記第1めっき膜及び前記第2めっき膜は、銅または銅合金からなることを特徴とする請求項1または2記載の導電材料構造体の形成方法である。   The invention according to claim 3 is the method for forming a conductive material structure according to claim 1 or 2, wherein the first plating film and the second plating film are made of copper or a copper alloy.

貫通電極用凹部内に埋込まれる第1めっき膜は、半導体チップ同士を最短距離で接合して更なる高速化、小型化を実現する貫通電極として使用される。このため、第1めっき膜は、導電性が高く電気抵抗の低いものであることが望まれる。そのようなものとしては、金、銀または銅などが考えられるが、ボトムアップめっきが工業的に可能なものは銅をベースとするめっきのみであり、またコスト的に見ても、少なくとも第1めっき条件で成膜する第1めっき膜は、銅または銅合金からなることが好適である。   The first plating film embedded in the through-electrode recess is used as a through-electrode that realizes further speeding up and downsizing by joining semiconductor chips at the shortest distance. For this reason, it is desired that the first plating film has high conductivity and low electrical resistance. As such, gold, silver, copper, or the like can be considered. However, the only thing that can be industrially used for bottom-up plating is copper-based plating. The first plating film formed under the plating conditions is preferably made of copper or a copper alloy.

また第2めっき条件で成膜される第2めっき膜については、第1めっき条件の第1電解めっきで成膜する第1めっき膜と同じ金属を連続して成膜できることが生産性の点から合理的であり、かつここでも出来るだけ導電性の高い金属であることが望ましい。従って、第2めっき膜も、銅または銅合金からなることが好適である。   From the viewpoint of productivity, the second plating film formed under the second plating condition can be continuously formed of the same metal as the first plating film formed by the first electrolytic plating under the first plating condition. It is desirable to use a metal that is reasonable and has as high conductivity as possible. Accordingly, the second plating film is also preferably made of copper or a copper alloy.

貫通電極用凹部全体の面積は、デバイス部分の面積を確保するという観点から基板全体の面積のせいぜい1%程度であって数%を超えることはない。一方、再配線や電極パッドの面積は、基板全体の面積の数〜数10%になるのが一般的である。このため、第1めっき条件での第1電解めっきでは貫通電極用凹部を第1めっき膜で埋込むのに必要な電流のみを供給すればよいが、再配線や電極パッドとなる第2めっき膜を成膜する第2めっき条件での第2電解めっきを第1電解めっきと同じ電流で行うとめっき時間が長くなる。このため、第2めっき条件における平均電流値は、第1めっき条件における平均電流値よりも高いことが望ましい。   The entire area of the through-electrode recess is at most about 1% of the entire area of the substrate from the viewpoint of securing the area of the device portion and does not exceed several percent. On the other hand, the area of the rewiring or electrode pad is generally several to several tens of percent of the total area of the substrate. For this reason, in the first electroplating under the first plating conditions, it is sufficient to supply only the current necessary for filling the concave portion for the through electrode with the first plating film. However, the second plating film serving as a rewiring or electrode pad When the second electrolytic plating under the second plating conditions for forming the film is performed at the same current as the first electrolytic plating, the plating time becomes longer. For this reason, it is desirable that the average current value in the second plating condition is higher than the average current value in the first plating condition.

請求項に記載の発明は、前記第2めっき条件による前記第2電解めっきで前記レジストパターンの高さの途中まで前記第2めっき膜を成長させた後、第3めっき条件での第3電解めっきを行って、前記第2めっき膜上に第3めっき膜を成長させることを特徴とする請求項1乃至のいずれかに記載の導電材料構造体の形成方法である。 According to a fourth aspect of the present invention, after the second plating film is grown to the middle of the height of the resist pattern by the second electroplating under the second plating condition, the third electrolysis under the third plating condition is performed. performing plating, a third method of forming a conductive material structure according to any one of claims 1 to 3, characterized in that growing a plated film on the second plating layer.

このように、第2めっき膜上に第3めっき膜を形成することで、この第3めっき膜を、チップ間を接合するための接合材料として使用することができる。この場合、電極パッドやポストを形成する第2めっき膜上に第3めっき膜を連続して形成することで、コストアップに繋がる新たなレジストパターンを設ける必要をなくすことができる。この第3めっき条件での第3電解めっきは、めっき液、電流密度その他のめっき条件をそれに好適なものとして、つまり第1めっき条件及び第2めっき条件とは異なるめっき条件で実施することが望ましい。   Thus, by forming the third plating film on the second plating film, the third plating film can be used as a bonding material for bonding chips. In this case, it is possible to eliminate the need to provide a new resist pattern that leads to an increase in cost by continuously forming the third plating film on the second plating film on which the electrode pads and posts are formed. It is desirable that the third electrolytic plating under the third plating conditions is performed under a plating solution, current density and other plating conditions suitable for it, that is, under plating conditions different from the first plating conditions and the second plating conditions. .

請求項に記載の発明は、前記第3めっき膜は、前記第1めっき膜及び前記第2めっき膜とは異なる金属からなることを特徴とする請求項記載の導電材料構造体の形成方法である。 The invention according to claim 5 is the method for forming a conductive material structure according to claim 4 , wherein the third plating film is made of a metal different from the first plating film and the second plating film. It is.

第3めっき膜は、接合材料として使用され、導電性よりも接合性が優先される。このため、第1めっき膜や第2めっき膜に使われる銅などとは異なる材料、例えばスズやスズ合金などが好ましく用いられる。   The third plating film is used as a bonding material, and bonding properties are given priority over conductivity. For this reason, a material different from copper or the like used for the first plating film or the second plating film, for example, tin or tin alloy is preferably used.

請求項に記載の発明は、前記貫通電極用凹部内への前記第1めっき膜の埋込みを該貫通電極用凹部内が第1めっき膜で完全に埋まる前に終了することを特徴とする請求項1乃至のいずれかに記載の導電材料構造体の形成方法である。 The invention according to claim 6 is characterized in that the embedding of the first plating film into the through electrode recess is finished before the through electrode recess is completely filled with the first plating film. Item 6. A method for forming a conductive material structure according to any one of Items 1 to 5 .

このように、貫通電極用凹部内への第1めっき膜の埋込みを該貫通電極用凹部内が第1めっき膜で完全に埋まる前に終了することで、つまり貫通電極用凹部内が第1めっき膜で完全に埋まる前の第1めっき膜の上面に多少なりとも凹形状が残っている段階でめっき条件を第1めっき条件から第2めっき条件に変更することで、第1めっき膜の中央部分が盛り上がった形状になって、第2めっき条件による第2電解めっきで第2めっき膜を形成した時に、第2めっき膜の貫通電極用凹部の中心に相当する部位の膜厚のみが他の部分に比べて厚いものとなってしまうことを防止することができる。   In this way, the first plating film is embedded in the through electrode recess before the through electrode recess is completely filled with the first plating film, that is, the through electrode recess is in the first plating. By changing the plating condition from the first plating condition to the second plating condition at the stage where the concave shape remains on the upper surface of the first plating film before being completely filled with the film, the central portion of the first plating film When the second plating film is formed by the second electrolytic plating under the second plating conditions, only the film thickness of the portion corresponding to the center of the recess for the through electrode of the second plating film is the other part. It is possible to prevent the thickness from becoming thicker.

請求項に記載の発明は、前記貫通電極用凹部内が前記第1めっき膜で完全に埋まる前に、第1電流値より低い第2電流値よる所定時間のめっきを少なくとも1回行うことを特徴とする請求項1記載の導電材料構造体の形成方法である。
このように、貫通電極用凹部内が第1めっき膜で完全に埋まる前に、第1電流値より低い第2電流値よる所定時間のめっきを行うことで、貫通電極用凹部の内部でのイオンの消耗の回復を待つことができる。
According to the seventh aspect of the present invention, the plating for a predetermined time with a second current value lower than the first current value is performed at least once before the inside of the through electrode recess is completely filled with the first plating film. The method for forming a conductive material structure according to claim 1, wherein the conductive material structure is formed.
In this way, before the inside of the through electrode recess is completely filled with the first plating film, by performing plating for a predetermined time with the second current value lower than the first current value, ions inside the through electrode recess are formed. Can wait for the recovery of exhaustion.

請求項に記載の発明は、めっき液を前記基板表面に対して略平行に移動する攪拌パドルで流動させつつめっきを行うことを特徴とする請求項1乃至のいずれかに記載の導電材料構造体の形成方法である。 The invention according to claim 8, the conductive material according to any one of claims 1 to 7, characterized in that the plating while fluidized with stirring paddle that moves substantially parallel to the plating solution said substrate surface This is a method of forming a structure.

前述のように、レジストパターンで囲まれたレジスト開口部内をめっきする場合には、レジストパターン内部でのめっき液の流速分布により、めっき膜のパターン形状の偏りが生じ平坦な表面が得られない可能性が有る。そこで、例えば、縦型めっき装置において、めっき液を上向流で供給するとともに、攪拌用パドルを基板に対して略平行に高速に往復動させてめっき液をめっき中に移動させることで、レジスト開口部内へのめっき液供給を促進し、前記パターン形状の偏りを抑制することが出来る。なお、この往復動としては、単純に行き来する場合のほかに、往復動の中心を一方に少しずつ移動しつつ往復動する方法を採用しても良い。 As described above, when plating inside the resist opening surrounded by the resist pattern, the plating liquid pattern flow rate distribution in the resist pattern may cause uneven plating pattern shape and a flat surface cannot be obtained. There is sex. Therefore, for example, in a vertical plating apparatus, the plating solution is supplied in an upward flow, and the stirring paddle is reciprocated at high speed substantially parallel to the substrate to move the plating solution during plating. The supply of the plating solution into the opening can be promoted, and the deviation of the pattern shape can be suppressed. As the reciprocating motion, a method of reciprocating while moving little by little in the center of the reciprocating motion may be adopted in addition to simply going back and forth.

請求項に記載の発明は、めっき液を前記基板表面に対して回転する攪拌パドルによって流動させつつめっきを行うことを特徴とする請求項1乃至のいずれかに記載の導電材料構造体の形成方法である。
請求項10に記載の発明は、窒素からなるバブルを前記第2めっき液中に供給して、前記第2めっき液中に供給されたバブルが基板表面の全域に沿って流れるようにしたことを特徴とする請求項1乃至9のいずれかに記載の導電材料構造体の形成方法である。
The invention according to claim 9 is the conductive material structure according to any one of claims 1 to 7 , wherein plating is performed while flowing a plating solution with a stirring paddle rotating with respect to the substrate surface. It is a forming method.
The invention described in claim 10 is configured such that a bubble made of nitrogen is supplied into the second plating solution so that the bubble supplied into the second plating solution flows along the entire area of the substrate surface. A method for forming a conductive material structure according to any one of claims 1 to 9.

レジスト開口部内へのめっき液の供給を促進する方法としては、前述のような往復動する攪拌パドルによる方法のほかに、例えば噴流形式めっき装置において、めっき液を上向流で供給するとともに、基板表面に対して回転する攪拌パドルによりめっき液をめっき中に流動させることで、レジスト開口部内へのめっき液供給を促進し、前記パターン形状の偏りを抑制することも出来る。この場合には、回転中心でのめっき液の流動が相対的に低いので、回転中心を基板中心から離し、且つ基板表面に対して回転中心を少しずつ移動させることを併用することにより、基板全面での均一な液の流動状態を達成することが出来る。   As a method for promoting the supply of the plating solution into the resist opening, in addition to the method using the reciprocating stirring paddle as described above, for example, in a jet type plating apparatus, the plating solution is supplied in an upward flow, and the substrate By causing the plating solution to flow during plating by the stirring paddle rotating with respect to the surface, the supply of the plating solution into the resist opening can be promoted, and the unevenness of the pattern shape can also be suppressed. In this case, since the flow of the plating solution at the center of rotation is relatively low, the entire surface of the substrate can be obtained by using a combination of separating the center of rotation from the center of the substrate and moving the center of rotation little by little relative to the substrate surface. A uniform liquid flow state can be achieved.

本発明によれば、貫通電極による三次元積層を実現するのに使用される導電材料構造体を、現実的なコストと時間で、しかもめっき膜の面内均一性も高く形成することが出来る。更に、チップ同士の接合に必要な接合材料を同時に成膜することもできる。   According to the present invention, it is possible to form a conductive material structure used for realizing three-dimensional stacking with through electrodes at a realistic cost and time and with high in-plane uniformity of the plating film. Further, a bonding material necessary for bonding chips can be formed simultaneously.

以下、本発明の実施の形態を図面を参照して説明する。
図3は、本発明の導電材料構造体の形成方法に使用されるめっき処理設備(電解銅めっき設備)の全体配置図を示す。このめっき処理設備は、基板の前処理、めっき処理及びめっきの後処理のめっき全工程を連続して自動的に行うようにしたもので、外装パネルを取付けた装置フレーム110の内部は、仕切板112によって、基板のめっき処理及びめっき液が付着した基板の処理を行うめっき空間116と、それ以外の処理、すなわちめっき液に直接には関わらない処理を行う清浄空間114に区分されている。そして、めっき空間116と清浄空間114とを仕切る仕切板112で仕切られた仕切り部には、基板ホルダ160(図4参照)を2枚並列に配置して、この各基板ホルダ160との間で基板の脱着を行う、基板受渡し部としての基板脱着台162が備えられている。清浄空間114には、基板を収納した基板カセットを載置搭載するロード・アンロードポート120が接続され、更に、装置フレーム110には、操作パネル121が備えられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 3 shows an overall layout of a plating treatment facility (electrolytic copper plating facility) used in the method for forming a conductive material structure of the present invention. This plating processing equipment is configured to automatically and continuously perform all steps of substrate pre-treatment, plating treatment and post-plating treatment. The interior of the apparatus frame 110 to which the exterior panel is attached is a partition plate. 112 is divided into a plating space 116 for performing the plating process on the substrate and the substrate to which the plating solution adheres, and a clean space 114 for performing other processes, that is, a process not directly related to the plating solution. Then, two substrate holders 160 (see FIG. 4) are arranged in parallel in the partition portion partitioned by the partition plate 112 that partitions the plating space 116 and the clean space 114, and between the substrate holders 160. A substrate detachment table 162 is provided as a substrate delivery unit for detaching the substrate. The clean space 114 is connected to a load / unload port 120 on which a substrate cassette containing substrates is placed and mounted, and the apparatus frame 110 is provided with an operation panel 121.

清浄空間114の内部には、基板のオリフラやノッチなどの位置を所定方向に合わせるアライナ122と、めっき処理後の基板を洗浄し高速回転させてスピン乾燥させる2台の洗浄・乾燥装置124が配置されている。更に、これらの各処理装置、つまりアライナ122及び洗浄・乾燥装置124のほぼ中心に位置して、これらの各処理装置122,124、前記基板脱着台162及び前記ロード・アンロードポート120に搭載した基板カセットとの間で基板の搬送と受渡しを行う第1搬送ロボット128が配置されている。   Inside the clean space 114, an aligner 122 for aligning the position of the orientation flat or notch of the substrate in a predetermined direction and two cleaning / drying devices 124 for cleaning the substrate after plating and rotating it at high speed for spin drying are arranged. Has been. Further, these processing devices, that is, the aligner 122 and the cleaning / drying device 124 are positioned substantially at the center, and are mounted on the processing devices 122 and 124, the substrate attaching / detaching table 162, and the load / unload port 120. A first transfer robot 128 that transfers and transfers substrates to and from the substrate cassette is disposed.

清浄空間114内に配置されたアライナ122及び洗浄・乾燥装置124は、表面を上向きにした水平姿勢で基板を保持して処理する。搬送ロボット128は、表面を上向きにした水平姿勢で基板を保持して基板の搬送及び受渡しを行う。   The aligner 122 and the cleaning / drying device 124 disposed in the clean space 114 hold and process the substrate in a horizontal posture with the surface facing upward. The transfer robot 128 holds the substrate in a horizontal posture with the surface facing upward, and transfers and delivers the substrate.

めっき空間116内には、仕切板112側から順に、基板ホルダ160の保管及び一時仮置きを行うストッカ164、例えば基板の表面を純水で洗浄するとともに、純水で濡らして親水性を良くする水洗前処理を行う前処理装置126、例えば基板の表面に形成したシード層表面の電気抵抗の大きい酸化膜を硫酸や塩酸などの無機酸またはクエン酸やシュウ酸などの有機酸溶液でエッチング除去する活性化処理装置166、基板の表面を純水で水洗する第1水洗装置168a、めっき処理(電解銅めっき処理)を行うめっき装置(電解銅めっき装置)170、第2水洗装置168b及びめっき処理後の基板の水切りを行うブロー装置172が順に配置されている。そして、これらの装置の側方に位置して、2台の第2搬送ロボット174a,174bがレール176に沿って走行自在に配置されている。この一方の第2搬送ロボット174aは、基板脱着台162とストッカ164との間で基板ホルダ160の搬送を行う。他方の第2搬送ロボット174bは、ストッカ164、前処理装置126、活性化処理装置166、第1水洗装置168a、めっき装置170、第2水洗装置168b及びブロー装置172の間で基板ホルダ160の搬送を行う。   In the plating space 116, in order from the partition plate 112 side, a stocker 164 for storing and temporarily holding the substrate holder 160, for example, the surface of the substrate is washed with pure water and wetted with pure water to improve hydrophilicity. A pretreatment device 126 that performs pre-washing treatment, for example, an oxide film with high electrical resistance on the surface of the seed layer formed on the surface of the substrate is removed by etching with an inorganic acid such as sulfuric acid or hydrochloric acid or an organic acid solution such as citric acid or oxalic acid. Activation treatment device 166, first water washing device 168a for washing the surface of the substrate with pure water, plating device (electrolytic copper plating device) 170 for performing plating treatment (electrolytic copper plating treatment), second water washing device 168b and after the plating treatment Blow devices 172 for draining the substrates are sequentially arranged. Two second transfer robots 174 a and 174 b are disposed along the rails 176 so as to be located on the side of these devices. The one second transfer robot 174 a transfers the substrate holder 160 between the substrate attaching / detaching table 162 and the stocker 164. The other second transfer robot 174b transfers the substrate holder 160 between the stocker 164, the pretreatment device 126, the activation treatment device 166, the first water washing device 168a, the plating device 170, the second water washing device 168b, and the blow device 172. I do.

第2搬送ロボット174a,174bは、図4に示すように、鉛直方向に延びるボディ178と、このボディ178に沿って上下動自在でかつ軸心を中心に回転自在なアーム180を備えており、このアーム180に、基板ホルダ160を着脱自在に保持する基板ホルダ保持部182が2個並列に備えられている。基板ホルダ160は、表面を露出させ周縁部をシールした状態で基板Wを着脱自在に保持するように構成されている。   As shown in FIG. 4, the second transfer robots 174 a and 174 b include a body 178 extending in the vertical direction, and an arm 180 that can move up and down along the body 178 and can rotate about the axis. The arm 180 is provided with two substrate holder holding portions 182 that detachably hold the substrate holder 160 in parallel. The substrate holder 160 is configured to detachably hold the substrate W with the surface exposed and the peripheral edge sealed.

ストッカ164、前処理装置126、活性化処理装置166、水洗装置168a,168b及びめっき装置170は、基板ホルダ160の両端部に設けた外方に突出する突出部160aを上端部に引っ掛けて、基板ホルダ160を鉛直方向に吊り下げた状態で支持する。前処理装置126には、内部に純水を保持する2個の前処理槽127が備えられ、図4に示すように、基板Wを装着した基板ホルダ160を鉛直状態で保持した第2搬送ロボット174bのアーム180を下降させ、基板ホルダ160を前処理槽127の上端部に引っ掛けて吊下げ支持することで、基板ホルダ160を基板Wごと前処理槽127内の純水に浸漬させて前処理を行うように構成されている。活性化処理装置166には、内部に薬液を保持する2個の活性化処理槽183が備えられ、図4に示すように、基板Wを装着した基板ホルダ160を鉛直状態で保持した第2搬送ロボット174bのアーム180を下降させ、基板ホルダ160を活性化処理槽183の上端部に引っ掛けて吊下げ支持することで、基板ホルダ160を基板Wごと活性化処理槽183内の薬液に浸漬させて活性化処理を行うように構成されている。   The stocker 164, the pretreatment device 126, the activation treatment device 166, the rinsing devices 168a and 168b, and the plating device 170 hook the projections 160a projecting outwardly provided at both ends of the substrate holder 160 to the upper end portion, and The holder 160 is supported while being suspended in the vertical direction. The pretreatment device 126 includes two pretreatment tanks 127 that hold pure water therein, and as shown in FIG. 4, a second transfer robot that holds a substrate holder 160 on which a substrate W is mounted in a vertical state. The arm 180 of 174b is lowered, and the substrate holder 160 is hooked on the upper end portion of the pretreatment tank 127 and supported by being suspended, so that the substrate holder 160 is immersed in the pure water in the pretreatment tank 127 together with the substrate W. Is configured to do. The activation processing apparatus 166 includes two activation processing tanks 183 that hold a chemical solution therein, and as shown in FIG. 4, the second transfer that holds the substrate holder 160 on which the substrate W is mounted in a vertical state. The arm 180 of the robot 174b is lowered, and the substrate holder 160 is hooked on the upper end portion of the activation treatment tank 183 and supported by being suspended, so that the substrate holder 160 and the substrate W are immersed in the chemical solution in the activation treatment tank 183. An activation process is performed.

同様に、水洗装置168a,168bには、内部に純水を保持した各2個の水洗槽184a,184bが、めっき装置170には、内部にめっき液を保持した複数のめっき槽186がそれぞれ備えられ、前述と同様に、基板ホルダ160を基板Wごとこれらの水洗槽184a,184b内の純水またはめっき槽186内のめっき液に浸漬させることで、水洗処理やめっき処理が行われるように構成されている。またブロー装置172は、基板Wを装着した基板ホルダ160を鉛直状態で保持した第2搬送ロボット174bのアーム180を下降させ、この基板ホルダ160に装着した基板Wにエアーや不活性ガスを吹きかけることで、基板のブロー処理を行うように構成されている。   Similarly, each of the water washing apparatuses 168a and 168b includes two washing tanks 184a and 184b each holding pure water therein, and the plating apparatus 170 includes a plurality of plating tanks 186 each holding a plating solution therein. In the same manner as described above, the substrate holder 160 and the substrate W are immersed in pure water in the water washing tanks 184a and 184b or in a plating solution in the plating tank 186 so that the water washing process and the plating process are performed. Has been. The blower 172 lowers the arm 180 of the second transfer robot 174b that holds the substrate holder 160 with the substrate W mounted thereon in a vertical state, and blows air or an inert gas onto the substrate W mounted on the substrate holder 160. Thus, the substrate is blown.

めっき装置170は、図5に示すように、内部に一定量のめっき液Qを保持するめっき槽186が備えられ、このめっき液Q中に、基板ホルダ160で周縁部を水密的にシールし表面(被めっき面)を露出させて保持した基板Wを浸漬させて垂直に配置するようになっている。めっき液Qとして、この例では、銅イオン、支持電解質及びハロゲンイオンの他に、更に有機イオウ化合物、高分子化合物及び有機窒素化合物のうち少なくとも一つを含んだめっき液が使用される。支持電解質としては硫酸が、ハロゲンイオンとしては塩素が好ましく用いられる。   As shown in FIG. 5, the plating apparatus 170 is provided with a plating tank 186 that holds a certain amount of plating solution Q inside, and a peripheral portion of the plating solution Q is sealed with a substrate holder 160 in a watertight manner. The substrate W holding the exposed (plating surface) is immersed and arranged vertically. In this example, as the plating solution Q, a plating solution containing at least one of an organic sulfur compound, a polymer compound, and an organic nitrogen compound in addition to copper ions, supporting electrolytes, and halogen ions is used. Sulfuric acid is preferably used as the supporting electrolyte, and chlorine is preferably used as the halogen ion.

めっき槽186の上方外周には、めっき槽186の縁から溢れ出ためっき液Qを受け止めるオーバーフロー槽200が備えられている。オーバーフロー槽200の底部には、ポンプ202を備えた循環配管204の一端が接続され、循環配管204の他端は、めっき槽186の底部に設けられためっき液供給口186aに接続されている。これにより、オーバーフロー槽200内に溜まっためっき液Qは、ポンプ202の駆動に伴ってめっき槽186内に還流される。循環配管204には、ポンプ202の下流側に位置して、めっき液Qの温度を調節する恒温ユニット206と、めっき液内の異物をフィルタリング(除去)するフィルタ208が介装されている。   On the upper outer periphery of the plating tank 186, an overflow tank 200 for receiving the plating solution Q overflowing from the edge of the plating tank 186 is provided. One end of a circulation pipe 204 provided with a pump 202 is connected to the bottom of the overflow tank 200, and the other end of the circulation pipe 204 is connected to a plating solution supply port 186 a provided at the bottom of the plating tank 186. Thereby, the plating solution Q accumulated in the overflow tank 200 is returned to the plating tank 186 as the pump 202 is driven. The circulation pipe 204 is provided with a constant temperature unit 206 for adjusting the temperature of the plating solution Q and a filter 208 for filtering (removing) foreign matter in the plating solution, which are located downstream of the pump 202.

更に、めっき槽186の底部には、内部に多数のめっき液流通口を有する底板210が配置されている。これによって、めっき槽186の内部は、上方の基板処理室214と下方のめっき液分散室212に区画されている。更に、底板210には、下方に垂下する遮蔽板216が取付けられている。   Furthermore, a bottom plate 210 having a large number of plating solution circulation ports is disposed inside the plating tank 186. Thus, the inside of the plating tank 186 is divided into an upper substrate processing chamber 214 and a lower plating solution dispersion chamber 212. Further, the bottom plate 210 is attached with a shielding plate 216 that hangs downward.

これによって、この例のめっき装置170では、めっき液Qは、ポンプ202の駆動に伴ってめっき槽186のめっき液分散室212に導入され、底板210に設けられた多数のめっき液流通口を通過して基板処理室214内に流入し、基板ホルダ160で保持された基板Wの表面に対して略平行に上方に向けて流れてオーバーフロー槽200内に流出するようになっている。   Thus, in the plating apparatus 170 of this example, the plating solution Q is introduced into the plating solution dispersion chamber 212 of the plating tank 186 as the pump 202 is driven, and passes through a large number of plating solution flow ports provided in the bottom plate 210. Then, it flows into the substrate processing chamber 214, flows upward in parallel with the surface of the substrate W held by the substrate holder 160, and flows out into the overflow tank 200.

めっき槽186の内部には、基板Wの形状に沿った円板状のアノード220がアノードホルダ222に保持されて垂直に設置されている。このアノード220は、めっき槽186内にめっき液Qを満たした時に、このめっき液Q中に浸漬され、基板ホルダ160で保持してめっき槽186内の所定の位置に配置される基板Wと対面する。更に、めっき槽186の内部には、アノード220とめっき槽186内の所定の位置に配置される基板ホルダ160との間に位置して、めっき槽186内の電位分布を調整する調整板(レギュレーションプレート)224が配置されている。調整板224は、この例では、筒状部226と矩形状のフランジ部228からなり、材質として、誘電体である塩化ビニールを用いている。筒状部226は、電場の拡がりを十分制限できるような開口の大きさ、及び軸心に沿った長さを有している。調整板224のフランジ部228の下端は、底板210に達している。   Inside the plating tank 186, a disc-shaped anode 220 along the shape of the substrate W is held vertically by an anode holder 222. The anode 220 is immersed in the plating solution Q when the plating bath 186 is filled with the plating solution Q, and is held by the substrate holder 160 so as to face the substrate W disposed at a predetermined position in the plating bath 186. To do. Further, an adjustment plate (regulation) that adjusts the potential distribution in the plating tank 186 is located in the plating tank 186 between the anode 220 and the substrate holder 160 disposed at a predetermined position in the plating tank 186. Plate) 224 is arranged. In this example, the adjusting plate 224 includes a cylindrical portion 226 and a rectangular flange portion 228, and the material is vinyl chloride as a dielectric. The cylindrical portion 226 has an opening size that can sufficiently limit the expansion of the electric field and a length along the axis. The lower end of the flange portion 228 of the adjustment plate 224 reaches the bottom plate 210.

めっき槽186の内部には、めっき槽186内の所定の位置に配置される基板ホルダ160と調整板224との間に位置して、鉛直方向に延び、基板Wと平行に往復動して、基板ホルダ160と調整板224との間のめっき液Qを攪拌する攪拌パドル232が配置されている。このように、めっき液Qを攪拌パドル232で攪拌することで、十分な銅イオンを基板Wの表面に均一に供給することができる。攪拌パドル232と基板Wの表面との間隔は、攪拌パドル232による十分な撹拌効果を得るために、攪拌パドル232が基板ホルダ160と接触することなく、かつ、30mm以下であることが好ましく、15mm以下であることが更に好ましい。   Inside the plating tank 186 is positioned between the substrate holder 160 disposed at a predetermined position in the plating tank 186 and the adjustment plate 224, extends in the vertical direction, and reciprocates in parallel with the substrate W. A stirring paddle 232 for stirring the plating solution Q between the substrate holder 160 and the adjustment plate 224 is disposed. Thus, sufficient copper ions can be uniformly supplied to the surface of the substrate W by stirring the plating solution Q with the stirring paddle 232. The distance between the stirring paddle 232 and the surface of the substrate W is preferably 30 mm or less without the stirring paddle 232 coming into contact with the substrate holder 160 in order to obtain a sufficient stirring effect by the stirring paddle 232. More preferably, it is as follows.

攪拌パドル232は、図6及び図7に示すように、板厚tが3〜5mmの一定の厚みを有する矩形板状部材で構成され、内部に複数の長穴232aを平行に設けることで、鉛直方向に延びる複数の格子部232bを有するように構成されている。攪拌パドル232の材質は、例えばチタンにテフロン(登録商標)コートを施したものである。攪拌パドル232の垂直方向の長さL及び長孔232aの長さ方向の寸法Lは、基板Wの垂直方向の寸法よりも十分に大きくなるように設定されている。また、攪拌パドル232の横方向の長さHは、攪拌パドル232の往復運動の振幅(ストローク)と合わせた長さが基板Wの横方向の寸法よりも十分に大きくなるように設定されている。 As shown in FIGS. 6 and 7, the stirring paddle 232 is composed of a rectangular plate-like member having a constant thickness t of 3 to 5 mm, and a plurality of elongated holes 232a are provided in parallel therein, A plurality of lattice portions 232b extending in the vertical direction are provided. The material of the stirring paddle 232 is, for example, a titanium-coated Teflon (registered trademark). The length L 1 in the vertical direction of the stirring paddle 232 and the dimension L 2 in the length direction of the long hole 232 a are set to be sufficiently larger than the vertical dimension of the substrate W. The horizontal length H of the stirring paddle 232 is set so that the length combined with the amplitude (stroke) of the reciprocating motion of the stirring paddle 232 is sufficiently larger than the horizontal dimension of the substrate W. .

長穴232aの幅及び数は、長穴232aと長孔232aの間の格子部232bが効率良くめっき液を攪拌し、長穴232aをめっき液が効率良く通り抜けるように、格子部232bが必要な剛性を有する範囲で格子部232bが可能な限り細くなるように決めることが好ましい。   The width and number of the elongated holes 232a are required so that the lattice portion 232b between the elongated holes 232a and the elongated holes 232a efficiently stirs the plating solution, and the plating solution efficiently passes through the elongated holes 232a. It is preferable to determine the lattice portion 232b to be as thin as possible within a range having rigidity.

この例では、図7に示すように、各格子部232bの横断面が長方形になるように長穴232aを垂直に開けている。図8(a)に示すように、格子部232bの横断面の四隅に面取りを施してもよく、また図8(b)に示すように、格子部232bの横断面が平行四辺形になるように格子部232bに角度を付けても良い。   In this example, as shown in FIG. 7, the long holes 232a are formed vertically so that the cross section of each lattice portion 232b is rectangular. As shown in FIG. 8A, the corners of the cross section of the lattice portion 232b may be chamfered, and as shown in FIG. 8B, the cross section of the lattice portion 232b becomes a parallelogram. An angle may be added to the lattice portion 232b.

図9に示すように、攪拌パドル232は、攪拌パドル232の上端に固着したクランプ236によって、水平方向に延びるシャフト238に固定され、シャフト238は、シャフト保持部240に保持されつつ左右に摺動できるようになっている。シャフト238の端部は、攪拌パドル232を左右に直進往復運動させるパドル駆動部242に連結され、パドル駆動部242は、モータ244の回転をクランク機構(図示せず)によりシャフト238の直進往復運動に変換する。この例では、パドル駆動部242のモータ244の回転速度を制御することにより、攪拌パドル232の移動速度を制御する制御部246が備えられている。なお、パドル駆動部の機構は、クランク機構だけでなく、ボールねじによりサーボモータの回転をシャフトの直進往復運動に変換するようにしたものや、リニアモータによってシャフトを直進往復運動させるようにしたものでも良い。攪拌パドル232の移動速度は、攪拌パドル232による十分な撹拌効果を得るために、0.2m/sec以上であることが好ましく、0.5以上であることが更に好ましい。攪拌パドル232の移動速度は、装置設計の観点から、一般的には2.0m/sec以下である。   As shown in FIG. 9, the stirring paddle 232 is fixed to the horizontally extending shaft 238 by a clamp 236 fixed to the upper end of the stirring paddle 232, and the shaft 238 slides to the left and right while being held by the shaft holding portion 240. It can be done. The end of the shaft 238 is connected to a paddle drive unit 242 that reciprocates the stirring paddle 232 in the left and right directions. The paddle drive unit 242 rotates the motor 244 in a reciprocating motion of the shaft 238 by a crank mechanism (not shown). Convert to In this example, a control unit 246 that controls the moving speed of the stirring paddle 232 by controlling the rotation speed of the motor 244 of the paddle driving unit 242 is provided. The paddle drive mechanism is not only a crank mechanism, but also a ball screw that converts the rotation of the servo motor into a linear reciprocating motion of the shaft, or a linear motor that reciprocates the shaft linearly. But it ’s okay. The moving speed of the stirring paddle 232 is preferably 0.2 m / sec or more, and more preferably 0.5 or more in order to obtain a sufficient stirring effect by the stirring paddle 232. The moving speed of the stirring paddle 232 is generally 2.0 m / sec or less from the viewpoint of device design.

めっき装置170には、めっき時に陽極が導線を介してアノード220に、陰極が導線を介して基板Wにそれぞれ接続されるめっき電源250が備えられている。この例では、めっき電源250として、供給電流として10倍以上のレンジを持つものが使用されている。   The plating apparatus 170 is provided with a plating power source 250 in which an anode is connected to the anode 220 via a conductor and a cathode is connected to the substrate W via a conductor during plating. In this example, a plating power source 250 having a supply current range of 10 times or more is used.

このめっき装置170によれば、先ず、めっき槽186の内部に所定の組成を有する所定量のめっき液Qを満たし循環させておく。そして、基板Wを保持した基板ホルダ160を下降させて、基板Wをめっき槽186内のめっき液Qに浸漬した所定の位置に配置し、めっき電源250の陽極をアノード220に、陰極を基板Wにそれぞれ接続する。この状態で、必要に応じて、攪拌パドル232を基板Wと平行に移動させて、調整板224と基板Wとの間のめっき液Qを攪拌パドル232で攪拌し、これによって、基板Wの表面にめっき膜を成長させる。また、必要に応じて循環配管204のポンプ202を駆動して、めっき槽186内のめっき液Qを循環させつつ冷却して所定の温度に維持する。そして、所定時間経過後、アノード220と基板Wとの間への電圧の印加を停止し、攪拌パドル232の往復動を停止させてめっきを終了する。   According to this plating apparatus 170, first, the plating tank 186 is filled with a predetermined amount of the plating solution Q having a predetermined composition and circulated. Then, the substrate holder 160 holding the substrate W is lowered, and the substrate W is placed at a predetermined position immersed in the plating solution Q in the plating tank 186. The anode of the plating power source 250 is the anode 220, and the cathode is the substrate W. Connect to each. In this state, if necessary, the stirring paddle 232 is moved in parallel with the substrate W, and the plating solution Q between the adjustment plate 224 and the substrate W is stirred by the stirring paddle 232, whereby the surface of the substrate W is A plating film is grown on. Further, if necessary, the pump 202 of the circulation pipe 204 is driven to cool and maintain a predetermined temperature while circulating the plating solution Q in the plating tank 186. Then, after a predetermined time has elapsed, the application of voltage between the anode 220 and the substrate W is stopped, the reciprocation of the stirring paddle 232 is stopped, and the plating is finished.

次に、本発明の実施の形態の導電材料構造体の形成方法を説明する。
図10及び図11は、基板の内部に上下に貫通する銅からなる貫通電極を、基板表面に銅からなる電極パッドをそれぞれ有する導電材料構造体の製造例を工程順に示す。先ず、図10(a)に示すように、例えばリソグラフィ・エッチング技術により、シリコン等からなる基材10の内部に上方に開口する複数の貫通電極用凹部12を形成した基板Wを用意し、この基板Wの表面の貫通電極用凹部12の表面を含む全表面に電解めっきの給電層としての銅からなるシード膜(導電膜)14をスパッタリング等で形成する。
Next, a method for forming a conductive material structure according to an embodiment of the present invention will be described.
10 and 11 show a manufacturing example of a conductive material structure having a through electrode made of copper penetrating vertically inside a substrate and an electrode pad made of copper on the substrate surface in the order of steps. First, as shown in FIG. 10A, a substrate W having a plurality of through-electrode recesses 12 opened upward is prepared in a base material 10 made of silicon or the like by, for example, lithography / etching technology. A seed film (conductive film) 14 made of copper as a power feeding layer for electrolytic plating is formed by sputtering or the like on the entire surface including the surface of the through electrode recess 12 on the surface of the substrate W.

次に、図10(b)に示すように、基板Wの表面の所定位置にフォトレジスト等によるレジストパターン30を形成する。この例にあっては、基板Wの表面に銅からなる電極パッド42(図11(b)参照)を形成するようにしている。このため、図12(a)に示すように、レジストパターン30のレジスト開口部32は、貫通電極用凹部12の直上方に位置し、該凹部12より大きな電極パッドの形状に沿った、例えば矩形状または円形状となる。   Next, as shown in FIG. 10B, a resist pattern 30 made of a photoresist or the like is formed at a predetermined position on the surface of the substrate W. In this example, an electrode pad 42 (see FIG. 11B) made of copper is formed on the surface of the substrate W. For this reason, as shown in FIG. 12A, the resist opening 32 of the resist pattern 30 is located immediately above the through-electrode recess 12 and is, for example, rectangular along the shape of the electrode pad larger than the recess 12. Shape or circular shape.

なお、基板Wの表面に電極パッドの位置を再配置する再配線を形成する場合には、図12(b)に示すように、レジストパターン30aのレジスト開口部32aは、貫通電極用凹部12の上方に位置する電極パッド部34aと該電極パッド部34aから延びる配線部34bを有する、再配線に沿った形状となる。   When forming a rewiring for rearranging the position of the electrode pad on the surface of the substrate W, as shown in FIG. 12B, the resist opening 32a of the resist pattern 30a The electrode pad portion 34a located above and the wiring portion 34b extending from the electrode pad portion 34a have a shape along the rewiring.

このレジストパターン30の高さhは、5μm〜100μmであることが好ましい。つまり、下記のように、レジスト開口部32内に成膜する第2めっき膜38で電極パッドや再配線を形成するのであるが、再配線の場合、信号の周波数や供給する電流値などを考慮すると、その厚さを少なくとも5μm程度とする必要があり、電極パッドやポストの場合、その後の接合条件を勘案すると、その厚さを数10μmとすることが望ましい。更に、下記のように、第2めっき膜の上に成膜した第3めっき膜で接合用のはんだ等の接合材料を形成しようとすると、レジストパターン30に更に数10μm程度の高さが加わる。このため、レジストパターン30の高さを、少なくとも5μm以上で、100μm程度以下とすることで、レジスト開口部32内に十分な膜厚を有する第2めっき膜38、更には第3めっき膜44を形成することができる。   The height h of the resist pattern 30 is preferably 5 μm to 100 μm. That is, as described below, the electrode pad and the rewiring are formed by the second plating film 38 formed in the resist opening 32. In the case of the rewiring, the signal frequency and the supplied current value are taken into consideration. Then, the thickness needs to be at least about 5 μm. In the case of an electrode pad or a post, the thickness is preferably several tens of μm in consideration of subsequent bonding conditions. Further, as described below, when a bonding material such as bonding solder is formed by the third plating film formed on the second plating film, the resist pattern 30 is further added with a height of about several tens of μm. Therefore, by setting the height of the resist pattern 30 to at least 5 μm or more and about 100 μm or less, the second plating film 38 and the third plating film 44 having a sufficient film thickness in the resist opening 32 are formed. Can be formed.

次に、図10(c)に示すように、シード膜14を給電層として該シード層14とアノードとの間に所定のめっき電流を流す第1めっき条件で第1電解めっきを行って、貫通電極用凹部12内に第1めっき膜36を埋込む。この時、貫通電極用凹部12以外のレジスト開口部内に位置するシード膜14の表面にも第1めっき膜が成膜されても良い。   Next, as shown in FIG. 10C, the first electrolytic plating is performed under the first plating condition using the seed film 14 as a power feeding layer and flowing a predetermined plating current between the seed layer 14 and the anode. The first plating film 36 is embedded in the electrode recess 12. At this time, the first plating film may also be formed on the surface of the seed film 14 located in the resist opening other than the through electrode recess 12.

この場合、貫通電極用凹部12のアスペクト比は1以上であり、貫通電極用凹部12の側面にも給電層としてのシード膜14が存在するので、貫通電極用凹部12の底部からのめっき膜の成長を優先するボトムアップ成長の条件で第1めっき膜36を成膜しないと、貫通電極用凹部12の入口でのめっき膜の成長が優先され、貫通電極用凹部12内に埋込まれる第1めっき膜36にボイドやシームなどのめっき欠陥を生じる。このため、第1めっき条件での第1電解めっきに際しては、例えば貫通電極用凹部12の入口部分でのめっき膜の成長を抑制するための添加剤の性能を高めためっき液を用いるとともに、当初はある程度の電流でめっきを行った後、一旦電流値を下げて、貫通電極用凹部12の内部での銅イオンの消耗の回復を待つことを繰返すなど、いくつかの条件を最適化する必要がある。   In this case, the aspect ratio of the through-electrode recess 12 is 1 or more, and the seed film 14 as a power feeding layer exists also on the side surface of the through-electrode recess 12, so that the plating film from the bottom of the through-electrode recess 12 If the first plating film 36 is not formed under the condition of bottom-up growth that gives priority to growth, the growth of the plating film at the entrance of the through-electrode recess 12 is given priority, and the first embedded in the through-electrode recess 12. Plating defects such as voids and seams occur in the plating film 36. For this reason, in the first electrolytic plating under the first plating conditions, for example, a plating solution with improved performance of the additive for suppressing the growth of the plating film at the entrance portion of the through-electrode recess 12 is used. After plating at a certain current, it is necessary to optimize several conditions such as repeatedly reducing the current value and waiting for the recovery of the consumption of copper ions inside the through-electrode recess 12. is there.

この時、シード膜14とアノードとの間に、図13(a)に示すように、一定電流を流すようにしても、図13(b)に示すように、時間の経過と共に電流が大きくなるステップ電流と流すようにしてもよく、更に図13(c)に示すように、電流の供給と停止を繰返すパルス電流を流すようにしてもよい。   At this time, even if a constant current is allowed to flow between the seed film 14 and the anode as shown in FIG. 13A, the current increases with time as shown in FIG. 13B. A step current may be allowed to flow, and a pulse current that repeats the supply and stop of the current may be allowed to flow as shown in FIG.

第1電解めっきの電流密度は、ボトムアップ成長を促すため、平均電流密度として、0.1mA/cm〜10mA/cmであることが好ましく、0.1mA/cm〜5mA/cmであることが更に好ましい。第1電解めっきの電流密度が0.1mA/cm以下になると貫通電極用凹部12内を第1めっき膜で埋めるためのめっき時間が長くなり、生産性が悪くなる。 The current density of the first electrolytic plating, to promote bottom-up growth, the average current density is preferably from 0.1mA / cm 2 ~10mA / cm 2 , at 0.1mA / cm 2 ~5mA / cm 2 More preferably it is. When the current density of the first electrolytic plating is 0.1 mA / cm 2 or less, the plating time for filling the inside of the through-electrode recess 12 with the first plating film becomes long, and the productivity is deteriorated.

そして、貫通電極用凹部12内への第1めっき膜36の埋込みが終了した後に、シード膜14及び第1めっき膜36を給電層とした第2めっき条件で第2電解めっきを行うのであるが、貫通電極用凹部12内への第1めっき膜36の埋込みを該貫通電極用凹部12内が第1めっき膜36で完全に埋まる前に終了することが好ましい。   Then, after the first plating film 36 is embedded in the through-electrode recess 12, the second electrolytic plating is performed under the second plating condition using the seed film 14 and the first plating film 36 as a power feeding layer. The embedding of the first plating film 36 in the through electrode recess 12 is preferably completed before the through electrode recess 12 is completely filled with the first plating film 36.

つまり、貫通電極用凹部12の第1めっき膜36による埋込みには、前述のように、いわゆるボトムアップめっきが適用されるが、ボトムアップめっきで貫通電極用凹部12内に第1めっき膜36を完全に埋込むと、図14(a)に示すように、第1めっき膜36は、一般に、その表面36aの中央部分が盛り上がった形状となる。これは貫通電極用凹部12の中心からのめっき膜の成長を促進する添加剤の効果によるところであるが、この効果は、第1電解めっきが終了した後、第2めっき条件による第2電解めっきを行っても、暫くの間に亘って継続する傾向にある。このため、貫通電極用凹部12に第1めっき膜36を完全に埋込んだ後に、下記のように、第2めっき条件による第2電解めっきで第2めっき膜38を形成すると、第2めっき膜38の貫通電極用凹部12の中心に相当する部位の膜厚のみが他の部分に比べて厚いものとなってしまう。このような局所的なめっき膜厚のばらつきは、その後の接合などに問題を生じるので、事前に矯正しておく必要がある。   That is, as described above, so-called bottom-up plating is applied for embedding the through-electrode recess 12 with the first plating film 36, but the first plating film 36 is formed in the through-electrode recess 12 by bottom-up plating. When completely buried, as shown in FIG. 14A, the first plating film 36 generally has a shape in which the central portion of the surface 36a is raised. This is due to the effect of the additive that promotes the growth of the plating film from the center of the recess 12 for the through electrode. This effect is obtained by performing the second electrolytic plating under the second plating condition after the first electrolytic plating is completed. Even if it goes, it tends to continue for a while. For this reason, when the second plating film 38 is formed by the second electrolytic plating under the second plating condition as described below after the first plating film 36 is completely embedded in the through-electrode recess 12, the second plating film Only the thickness of the portion corresponding to the center of the through-electrode recess 12 of 38 is thicker than the other portions. Such local variations in the plating film thickness cause problems in the subsequent bonding and the like, and therefore must be corrected in advance.

このため、貫通電極用凹部12内への第1めっき膜36の埋込みを該貫通電極用凹部12内が第1めっき膜36で完全に埋まる前に終了することで、つまり、図14(b)に示すように、貫通電極用凹部12内が第1めっき膜36で完全に埋まる前の第1めっき膜36の表面36aに多少なりとも凹形状が残っている段階で、めっき条件を第1めっき条件から第2めっき条件に変更することで、第1めっき膜36がその中央部分が盛り上がった形状になることを防止することができる。   For this reason, the embedding of the first plating film 36 into the through electrode recess 12 is completed before the through electrode recess 12 is completely filled with the first plating film 36, that is, FIG. 14B. As shown in FIG. 3, the plating conditions are changed to the first plating at a stage in which the concave shape remains on the surface 36a of the first plating film 36 before the through-electrode recess 12 is completely filled with the first plating film 36. By changing from the condition to the second plating condition, it is possible to prevent the first plating film 36 from having a raised shape at the center.

なお、下記のように、第2めっき条件での第2電解めっきで形成される第2めっき膜38は、電極パッドや再配線部分を形成するものであるので、基板全面で均一な膜厚のめっき膜を成膜するような条件で成膜される。従って、第1めっき膜36の表面36aに多少凹形状が残っている状態でも、レジスト開口部32のアスペクトが2以下、好ましくは1以下であれば、レジスト開口部32内に表面が平坦な第2めっき膜38を成膜することができる。   In addition, as described below, the second plating film 38 formed by the second electrolytic plating under the second plating condition forms an electrode pad and a rewiring portion. The film is formed under such conditions as to form a plating film. Accordingly, even when the surface 36a of the first plating film 36 has a slightly concave shape, if the aspect of the resist opening 32 is 2 or less, preferably 1 or less, the first surface having a flat surface in the resist opening 32 is obtained. Two plating films 38 can be formed.

第2めっき条件による第2電解めっきでは、シード膜14及び第1めっき膜36を給電層として、図11(a)に示すように、レジストパターン30のレジスト開口部32内に露出したシード層14及び第1めっき膜36上に第2めっき膜38を成長させる。   In the second electrolytic plating under the second plating condition, the seed layer 14 exposed in the resist opening 32 of the resist pattern 30 is used as shown in FIG. A second plating film 38 is grown on the first plating film 36.

この場合、レジストパターン30で囲まれたレジスト開口部32の底部にのみ給電層となるシード膜14及び第1めっき膜36が存在し、このためスルーマスクめっきとなり、そのまま電解めっきを行うとレジスト開口部32の底部から第2めっき膜38が成長する。このため、第2めっき膜38にボイドやシームなどのような欠陥が生じる懸念は少ない。しかし、レジストパターン30の内部でのめっき液の流速分布により、第2めっき膜38のパターン形状の偏りが生じる可能性がある。この現象は、めっき速度に対して必ずしも十分な銅イオンの供給が出来ない場合、即ち拡散律速領域でめっきする場合に起こりやすい。したがって、この場合は、めっき液の組成や電流密度よりも、機械的攪拌や空気攪拌などめっき液の流動条件の最適化が重要な要素となる。   In this case, the seed film 14 and the first plating film 36 that serve as a power feeding layer exist only at the bottom of the resist opening 32 surrounded by the resist pattern 30, and therefore, through-mask plating is performed. A second plating film 38 grows from the bottom of the portion 32. For this reason, there is little concern that defects such as voids and seams occur in the second plating film 38. However, the pattern distribution of the second plating film 38 may be biased due to the flow velocity distribution of the plating solution inside the resist pattern 30. This phenomenon tends to occur when sufficient copper ions cannot be supplied with respect to the plating speed, that is, when plating is performed in a diffusion-controlled region. Therefore, in this case, optimization of the flow conditions of the plating solution, such as mechanical stirring and air stirring, is more important than the composition and current density of the plating solution.

空気攪拌とは、めっき処理中に攪拌パドルを基板と平行に移動させてめっき液を攪拌するのと同時に、例えば空気や窒素からなるバブルをめっき液中に供給して、めっき液中に供給されたバブルが基板表面の全域に沿って流れるようにすることである。   Air agitation is a process in which the agitation paddle is moved in parallel with the substrate during the plating process to agitate the plating solution. At the same time, for example, a bubble made of air or nitrogen is supplied to the plating solution and supplied to the plating solution. The bubble is allowed to flow along the entire surface of the substrate.

このため、この例では、めっき槽186内にめっき液を上向流で供給するとともに、攪拌用パドル232を基板Wに対して略平行に高速に往復動させてめっき液をめっき中に移動させることで、レジスト開口部32内へのめっき液供給を促進し、パターン形状の偏りを抑制することができる。なお、この攪拌パドル232の往復動としては、単純に行き来する場合のほかに、往復動の中心を一方に少しずつ移動しつつ往復動する方法を採用しても良い。 For this reason, in this example, the plating solution is supplied into the plating tank 186 in an upward flow, and the stirring paddle 232 is reciprocated at high speed substantially parallel to the substrate W to move the plating solution during plating. Thus, the supply of the plating solution into the resist opening 32 can be promoted, and the uneven pattern shape can be suppressed. As the reciprocating motion of the agitation paddle 232, a method of reciprocating while moving little by little in the center of the reciprocating motion may be adopted in addition to simply going back and forth.

この例では、攪拌用パドル232を基板Wに対して略平行に高速に往復動させてめっき液をめっき中に移動させるようにしているが、例えば噴流形式めっき装置において、めっき液を上向流で供給するとともに、基板表面に対して回転する攪拌パドルによりめっき液をめっき中に流動させることで、レジスト開口部内へのめっき液供給を促進し、前記パターン形状の偏りを抑制するようにしてもよい。この場合には、回転中心でのめっき液の流動が相対的に低いので、回転中心を基板中心から離し、且つ基板表面に対して回転中心を少しずつ移動させることを併用することにより、基板全面での均一な液の流動状態を達成することが出来る。 In this example, the stirring paddle 232 is reciprocated at high speed substantially parallel to the substrate W to move the plating solution during plating. For example, in a jet type plating apparatus, the plating solution is flowed upward. In addition, the plating solution is caused to flow during plating by a stirring paddle rotating with respect to the substrate surface, thereby promoting the supply of the plating solution into the resist opening and suppressing the deviation of the pattern shape. Good. In this case, since the flow of the plating solution at the center of rotation is relatively low, the entire surface of the substrate can be obtained by using a combination of separating the center of rotation from the center of the substrate and moving the center of rotation little by little relative to the substrate surface. A uniform liquid flow state can be achieved.

以上のように、この例によれば、第1めっき条件で第1電解めっきを行って、貫通電極用凹部12内に第1めっき膜36を埋込み、しかる後、第2めっき条件で第2電解めっきを行って、基板表面の所定位置に形成したレジストパターン30のレジスト開口部32内に第2めっき膜38を成長させることで、それぞれの形状に好適なめっき条件、例えば電流値、めっき液、めっき液の攪拌条件などを最適化して、第1めっき膜36及び第2めっき膜38の完全性ならびに成膜効率を上げることができる。しかも、予め基板Wの表面にレジストパターン30を形成しておいてから、貫通電極用凹部12内に第1めっき膜36を埋込む第1電解めっきと、レジストパターン30のレジスト開口部32内に第2めっき膜38を成長させる第2電解めっきを連続して行うことで、めっき時間を短縮して、生産性を向上させることができる。   As described above, according to this example, the first electrolytic plating is performed under the first plating condition, the first plating film 36 is embedded in the through-electrode recess 12, and then the second electrolysis is performed under the second plating condition. By plating and growing the second plating film 38 in the resist opening 32 of the resist pattern 30 formed at a predetermined position on the substrate surface, plating conditions suitable for each shape, such as current value, plating solution, The agitation conditions of the plating solution and the like can be optimized to increase the integrity of the first plating film 36 and the second plating film 38 and the film formation efficiency. In addition, after the resist pattern 30 is formed in advance on the surface of the substrate W, the first electrolytic plating in which the first plating film 36 is embedded in the through-electrode recess 12 and the resist opening 30 in the resist pattern 30. By continuously performing the second electrolytic plating for growing the second plating film 38, the plating time can be shortened and the productivity can be improved.

ここで、貫通電極用凹部12全体の面積は、デバイス部分の面積を確保するという観点から基板全体の面積のせいぜい1%程度であって数%を超えることはない。一方、再配線や電極パッドの面積は、基板全体の面積の数〜数10%になるのが一般的である。このため、第1めっき条件での第1電解めっきでは貫通電極用凹部12を第1めっき膜36で埋込むのに必要な電流のみを供給すればよいが、再配線や電極パッドとなる第2めっき膜38を成膜する第2めっき条件での第2電解めっきを第1電解めっきと同じ電流で行うとめっき時間が長くなる。このため、第2めっき条件における平均電流値は、第1めっき条件における平均電流値よりも高いことが望ましい。   Here, the area of the entire through-electrode recess 12 is about 1% of the entire area of the substrate from the viewpoint of securing the area of the device portion and does not exceed several percent. On the other hand, the area of the rewiring or electrode pad is generally several to several tens of percent of the total area of the substrate. For this reason, in the first electroplating under the first plating conditions, it is sufficient to supply only the current necessary for filling the through-electrode recess 12 with the first plating film 36, but the second wiring which becomes a rewiring or electrode pad. If the second electrolytic plating under the second plating condition for forming the plating film 38 is performed at the same current as the first electrolytic plating, the plating time becomes long. For this reason, it is desirable that the average current value in the second plating condition is higher than the average current value in the first plating condition.

一般的には、被めっき面積に応じて電流値を上げることが望まれるので、第2めっき条件の平均電流値は、第1めっき条件の平均電流値の少なくとも2倍以上、一般には10倍程度であることが望ましい。したがって、第1電解めっきと第2電解めっきを1つのめっき槽で連続的に行う場合、めっき装置に搭載するめっき電源は、供給電流として10倍以上のレンジを持つものであることが望まれる。なお、前述のように、第1めっき条件での第1電解めっきでは、ステップ電流やパルス電流を使用することも出来るが、その際にも、第2めっき条件での第2電解めっきにおける平均電流値は、第1めっき条件での第2電解めっきにおける平均電流値以上とすることが望まれる。   Generally, since it is desired to increase the current value according to the area to be plated, the average current value of the second plating condition is at least twice the average current value of the first plating condition, generally about 10 times. It is desirable that Therefore, when the first electrolytic plating and the second electrolytic plating are continuously performed in one plating tank, it is desirable that the plating power source mounted on the plating apparatus has a range of 10 times or more as the supply current. As described above, in the first electroplating under the first plating conditions, a step current or a pulse current can be used, but also in this case, the average current in the second electroplating under the second plating conditions It is desirable that the value be equal to or greater than the average current value in the second electrolytic plating under the first plating conditions.

なお、貫通電極用凹部12内に埋込まれる第1めっき膜36は、下記のように、半導体チップ同士を最短距離で接合して更なる高速化、小型化を実現する貫通電極として使用される。このため、第1めっき膜36は、導電性が高く電気抵抗の低いものであることが望まれる。そのようなものとしては、金、銀または銅などが考えられるが、ボトムアップめっきが工業的に可能なものは銅をベースとするめっきのみであり、またコスト的に見ても、少なくとも第1めっき条件で成膜する第1めっき膜36は、銅または銅合金からなることが好適である。   The first plating film 36 embedded in the through-electrode recess 12 is used as a through-electrode for further speeding up and downsizing by joining the semiconductor chips at the shortest distance as described below. . For this reason, the first plating film 36 is desired to have high conductivity and low electrical resistance. As such, gold, silver, copper, or the like can be considered. However, the only thing that can be industrially used for bottom-up plating is copper-based plating. The first plating film 36 formed under the plating conditions is preferably made of copper or a copper alloy.

また第2めっき条件で成膜される第2めっき膜38については、第1めっき条件の第1電解めっきで成膜する第1めっき膜36と同じ金属を連続して成膜できることが生産性の点から合理的であり、かつここでも出来るだけ導電性の高い金属であることが望ましい。従って、第2めっき膜38も、銅または銅合金からなることが好適である。   In addition, for the second plating film 38 formed under the second plating conditions, it is possible to continuously form the same metal as the first plating film 36 formed by the first electrolytic plating under the first plating conditions. It is desirable to use a metal that is rational from the point of view and that is as conductive as possible. Therefore, the second plating film 38 is also preferably made of copper or a copper alloy.

次に、図11(b)に示すように、基板Wの表面の余剰なシード膜14及びレジストパターン30を除去し、同時に、貫通電極用凹部12内に埋込んだ第1めっき膜36の底面が外部に露出するまで基板Wの裏面側を研磨除去する。これによって、貫通電極用凹部12内に埋込んだ第1めっき膜36で上下に貫通する銅からなる複数の貫通電極40を、レジストパターン30のレジスト開口部32内に成膜した第2めっき膜38で電極パッド42をそれぞれ形成した導電材料構造体を完成させる。この電極パッド42の厚さは、例えば数十μmである。   Next, as shown in FIG. 11B, the excess seed film 14 and the resist pattern 30 on the surface of the substrate W are removed, and at the same time, the bottom surface of the first plating film 36 embedded in the through-electrode recess 12. The back surface side of the substrate W is polished and removed until is exposed to the outside. Thus, the second plating film in which the plurality of through electrodes 40 made of copper penetrating vertically with the first plating film 36 embedded in the through electrode recess 12 is formed in the resist opening 32 of the resist pattern 30. In 38, the conductive material structure in which the electrode pads 42 are respectively formed is completed. The electrode pad 42 has a thickness of several tens of micrometers, for example.

図15は、本発明の他の実施の形態における導電材料構造体の製造例を工程順に示す。前述の例と同様にして、図10(c)に示すように、第1めっき条件による第1電解めっきで貫通電極用凹部12内に第1めっき膜36を埋込む。そして、第2条件で第2電解めっきを行って、図15(a)に示すように、レジストパターン30の高さの途中まで第2めっき膜38を成長させ、更に、第3めっき条件での第3電解めっきを行って、第2めっき膜38上に第3めっき膜44を成長させる。   FIG. 15 shows a manufacturing example of a conductive material structure according to another embodiment of the present invention in the order of steps. In the same manner as in the above example, as shown in FIG. 10C, the first plating film 36 is embedded in the through-electrode recess 12 by the first electrolytic plating under the first plating conditions. Then, the second electrolytic plating is performed under the second condition, and as shown in FIG. 15A, the second plating film 38 is grown to the middle of the height of the resist pattern 30, and further, under the third plating condition. Third electrolytic plating is performed to grow a third plating film 44 on the second plating film 38.

この第3めっき膜44は、下記のようにチップ間を接合するための接合材料としての接合層46として使用するものである。電極パッドやポストを形成する第2めっき膜38上に第3めっき膜44を連続して形成することで、コストアップに繋がる、接合層を形成するための新たなレジストパターンを設ける必要をなくすことができる。この第3めっき条件での第3電解めっきは、めっき液、電流密度その他のめっき条件をそれに好適なものとして、つまり第1めっき条件及び第2めっき条件とは異なるめっき条件で実施することが望ましい。   The third plating film 44 is used as a bonding layer 46 as a bonding material for bonding chips as described below. By continuously forming the third plating film 44 on the second plating film 38 for forming the electrode pads and posts, it is not necessary to provide a new resist pattern for forming the bonding layer, which leads to an increase in cost. Can do. It is desirable that the third electrolytic plating under the third plating conditions is performed under a plating solution, current density and other plating conditions suitable for it, that is, under plating conditions different from the first plating conditions and the second plating conditions. .

また、第3めっき膜44は、前述のように、接合材料として使用されるため、導電性よりも接合性が優先される。このため、第1めっき膜36や第2めっき膜38に使われる銅などとは異なる材料、例えばスズやスズ合金などが好ましく用いられる。   Further, since the third plating film 44 is used as a bonding material as described above, the bonding property is given priority over the conductivity. For this reason, a material different from copper used for the first plating film 36 and the second plating film 38, for example, tin or tin alloy is preferably used.

次に、図15(b)に示すように、基板Wの表面の余剰なシード膜14及びレジストパターン30を除去し、同時に、貫通電極用凹部12内に埋込んだ第1めっき膜36の底面が外部に露出するまで基板Wの裏面側を研磨除去する。これによって、貫通電極用凹部12内に埋込んだ第1めっき膜36で上下に貫通する銅からなる複数の貫通電極40を、レジストパターン30のレジスト開口部32内に成膜した第2めっき膜38で電極パッド42を、第2めっき膜38上に成膜した第3めっき膜44で接合材料としての接合層46をそれぞれ形成した導電材料構造体を完成させる。この接合層46の厚さは、例えば数十μmである。   Next, as shown in FIG. 15B, the excess seed film 14 and the resist pattern 30 on the surface of the substrate W are removed, and at the same time, the bottom surface of the first plating film 36 embedded in the through electrode recess 12. The back surface side of the substrate W is polished and removed until is exposed to the outside. Thus, the second plating film in which the plurality of through electrodes 40 made of copper penetrating vertically with the first plating film 36 embedded in the through electrode recess 12 is formed in the resist opening 32 of the resist pattern 30. The conductive material structure in which the electrode pad 42 is formed at 38 and the bonding layer 46 as a bonding material is formed by the third plating film 44 formed on the second plating film 38 is completed. The thickness of the bonding layer 46 is, for example, several tens of μm.

次に、図3に示すめっき処理設備(電解銅めっき処理設備)を使用して、図10(c)に示す第1めっき膜36と図11(a)に示す第2めっき膜38を連続して形成する処理について説明する。   Next, using the plating processing facility (electrolytic copper plating processing facility) shown in FIG. 3, the first plating film 36 shown in FIG. 10C and the second plating film 38 shown in FIG. Will be described.

先ず、図10(b)に示すように、シリコン等からなる基材10内部に、上方に開口する複数の貫通電極用凹部12を形成し、更に全表面に電解めっきの給電層としてのシード層(導電膜)14を形成した基板Wを用意する。そして、この基板Wをその表面(被めっき面)を上にした状態で基板カセットに収容し、この基板カセットをロード・アンロードポート120に搭載する。   First, as shown in FIG. 10 (b), a plurality of through-electrode recesses 12 opened upward are formed in a base material 10 made of silicon or the like, and a seed layer as a power supply layer for electrolytic plating is formed on the entire surface. A substrate W on which (conductive film) 14 is formed is prepared. Then, this substrate W is accommodated in a substrate cassette with its surface (surface to be plated) facing up, and this substrate cassette is mounted on the load / unload port 120.

このロード・アンロードポート120に搭載した基板カセットから、第1搬送ロボット128で基板Wを1枚取出し、アライナ122に載せて基板Wのオリフラやノッチなどの位置を所定の方向に合わせる。一方、基板脱着台162にあっては、ストッカ164内に鉛直姿勢で保管されていた基板ホルダ160を第2搬送ロボット174aで取出し、これを90゜回転させた水平状態にして基板脱着台162に2個並列に載置する。   One substrate W is taken out from the substrate cassette mounted on the load / unload port 120 by the first transfer robot 128 and placed on the aligner 122 so that the orientation flats, notches and the like of the substrate W are aligned in a predetermined direction. On the other hand, in the substrate attachment / detachment table 162, the substrate holder 160 stored in the vertical position in the stocker 164 is taken out by the second transfer robot 174a, and is rotated 90 degrees to be in a horizontal state and placed on the substrate attachment / detachment table 162. Two are placed in parallel.

そして、アライナ122に載せてオリフラやノッチなどの位置を所定の方向に合わせた基板Wを第1搬送ロボット128で搬送し、基板脱着台162に載置された基板ホルダ160に周縁部をシールして装着する。そして、この基板Wを装着した基板ホルダ160を第2搬送ロボット174aで2基同時に把持し、上昇させた後、ストッカ164まで搬送し、90゜回転させて基板ホルダ160を垂直な状態となし、しかる後、下降させ、これによって、2基の基板ホルダ160をストッカ164に吊下げ保持(仮置き)する。これを順次繰返して、ストッカ164内に収容された基板ホルダ160に順次基板を装着し、ストッカ164の所定の位置に順次吊り下げ保持(仮置き)する。   Then, the substrate W, which is placed on the aligner 122 and whose orientation flat or notch is positioned in a predetermined direction, is transported by the first transport robot 128, and the peripheral portion is sealed to the substrate holder 160 placed on the substrate detachment table 162. Install. Then, the two substrate holders 160 loaded with the substrate W are simultaneously gripped by the second transport robot 174a, lifted, transported to the stocker 164, and rotated 90 ° to bring the substrate holder 160 into a vertical state. Thereafter, it is lowered, and the two substrate holders 160 are suspended and held (temporarily placed) on the stocker 164. This is repeated sequentially, and the substrate is sequentially mounted on the substrate holder 160 housed in the stocker 164, and is suspended and temporarily held (temporarily placed) at a predetermined position of the stocker 164.

一方、第2搬送ロボット174bにあっては、基板を装着しストッカ164に仮置きした基板ホルダ160を2基同時に把持し、上昇させた後、前処理装置126に搬送する。そして、この前処理装置126で、前処理槽127内に入れた純水等の前処理液に基板Wを浸漬させて前処理(水洗前処理)を施す。このとき使用する前処理液としての純水は、純水中の溶存酸素濃度を真空脱気装置や不活性ガスの導入により制御し、好ましくは2mg/L以下とする。次に、この基板を装着した基板ホルダ160を、前記と同様にして、活性化処理装置166に搬送し、活性化処理槽183に入れた硫酸や塩酸などの無機酸またはクエン酸やシュウ酸などの有機酸溶液に基板を浸漬させてシード層表面の電気抵抗の大きい酸化膜をエッチングし、清浄な金属面を露出させる。このときに使用する酸溶液は前記前処理用の純水と同様に酸溶液中の溶存酸素濃度を制御することができる。更に、この基板を装着した基板ホルダ160を、前記と同様にして、第1水洗装置168aに搬送し、この水洗槽184aに入れた純水で基板の表面を水洗する。   On the other hand, in the second transfer robot 174b, the two substrate holders 160 mounted with the substrates and temporarily placed on the stocker 164 are simultaneously gripped and raised, and then transferred to the pretreatment device 126. In the pretreatment device 126, the substrate W is immersed in a pretreatment liquid such as pure water placed in the pretreatment tank 127 to perform pretreatment (pretreatment with washing). The pure water as the pretreatment liquid used at this time is controlled to have a dissolved oxygen concentration in the pure water of 2 mg / L or less by introducing a vacuum degassing device or an inert gas. Next, the substrate holder 160 on which this substrate is mounted is transferred to the activation processing apparatus 166 in the same manner as described above, and an inorganic acid such as sulfuric acid or hydrochloric acid, citric acid, oxalic acid, or the like placed in the activation processing tank 183. The substrate is immersed in the organic acid solution to etch the oxide film having a large electric resistance on the surface of the seed layer, thereby exposing a clean metal surface. The acid solution used at this time can control the dissolved oxygen concentration in the acid solution in the same manner as the pure water for pretreatment. Further, the substrate holder 160 mounted with the substrate is transported to the first water washing device 168a in the same manner as described above, and the surface of the substrate is washed with pure water placed in the water washing tank 184a.

水洗が終了した基板を装着した基板ホルダ160を、前記と同様にしてめっき装置170に搬送し、めっき槽186内のめっき液188に浸漬させた状態でめっき槽186に吊り下げ支持することで、基板Wの表面にめっき処理を施す。   In the same manner as described above, the substrate holder 160 mounted with the substrate that has been washed with water is transported to the plating apparatus 170 and suspended and supported in the plating tank 186 while being immersed in the plating solution 188 in the plating tank 186. The surface of the substrate W is plated.

なお、基板ホルダ160で保持した基板Wをめっき液188に浸漬させた後、第1めっき条件で第1電解めっきを開始する前に、貫通電極用凹部12内部に残った水洗水とめっき液を置換させるための無通電浸漬時間を設けてもよい。但し、この無通電浸漬時間が長過ぎるとめっき液によってシード層が溶解されてしまうので、無通電浸漬時間は1分以下とするのが好ましい。   After immersing the substrate W held by the substrate holder 160 in the plating solution 188 and before starting the first electrolytic plating under the first plating conditions, the washing water and the plating solution remaining inside the through electrode recess 12 are removed. A non-energized immersion time for replacement may be provided. However, since the seed layer is dissolved by the plating solution if the non-conductive immersion time is too long, the non-conductive immersion time is preferably 1 minute or less.

この時、前述のように、先ず第1めっき条件での第1電解めっきを行って、図10(c)に示すように、貫通電極用凹部12の内部に第1めっき膜36を埋込む。この第1めっき条件は、貫通電極用凹部12の底部からのめっき膜の成長を優先するボトムアップ成長の条件である。そして、貫通電極用凹部12内への第1めっき膜36の埋込みが終了した後に、第1めっき条件から第2めっき条件に代え、第2めっき条件で第2電解めっきを行って、図11(a)に示すように、レジストパターン30のレジスト開口部32内に露出した導電膜12及び第1めっき膜36上に第2めっき膜38を成長させる。この第2めっき条件は、例えば第1めっき条件よりも平均電流値が2倍以上、一般には10倍以上高く、めっき液Qを攪拌する攪拌パドル232の動きを最適化した条件である。
なお、組成の異なるめっき液を使用して、第1めっき条件での第1電解めっきと第2めっき条件での第2電解めっきを行うようにしてもよい。
At this time, as described above, first electrolytic plating is performed under the first plating condition, and the first plating film 36 is embedded in the through-electrode recess 12 as shown in FIG. This first plating condition is a bottom-up growth condition that gives priority to the growth of the plating film from the bottom of the through electrode recess 12. Then, after the first plating film 36 is embedded in the through-electrode recess 12, the second electrolytic plating is performed under the second plating condition instead of the first plating condition, and FIG. As shown in a), a second plating film 38 is grown on the conductive film 12 and the first plating film 36 exposed in the resist opening 32 of the resist pattern 30. The second plating condition is, for example, a condition in which the average current value is twice or more, generally 10 times or more higher than the first plating condition, and the movement of the stirring paddle 232 for stirring the plating solution Q is optimized.
In addition, you may make it perform the 1st electrolytic plating on the 1st plating conditions, and the 2nd electrolytic plating on the 2nd plating conditions using the plating solution from which a composition differs.

そして、めっき終了後、基板を装着した基板ホルダ160を第2搬送ロボット174bで再度保持してめっき槽186から引き上げてめっき処理を終了する。   Then, after the end of plating, the substrate holder 160 with the substrate mounted thereon is held again by the second transfer robot 174b and pulled up from the plating tank 186, and the plating process is completed.

そして、前述と同様にして、基板ホルダ160を第2水洗装置168bまで搬送し、この水洗槽184bに入れた純水に浸漬させて基板の表面を純水洗浄する。しかる後、この基板を装着した基板ホルダ160を、前記と同様にして、ブロー装置172に搬送し、ここで、不活性ガスやエアーを基板に向けて吹き付けて、基板ホルダ160に付着しためっき液や水滴を除去する。しかる後、この基板を装着した基板ホルダ160を、前記と同様にして、ストッカ164の所定の位置に戻して吊下げ保持する。   Then, in the same manner as described above, the substrate holder 160 is transported to the second water washing device 168b and immersed in pure water placed in the water washing tank 184b to clean the surface of the substrate with pure water. Thereafter, the substrate holder 160 mounted with the substrate is transported to the blower 172 in the same manner as described above, and here, an inert gas or air is blown toward the substrate to adhere the plating solution attached to the substrate holder 160. Remove water drops. Thereafter, the substrate holder 160 with the substrate mounted thereon is returned to a predetermined position of the stocker 164 and held in the same manner as described above.

第2搬送ロボット174bは、上記作業を順次繰り返し、めっきが終了した基板を装着した基板ホルダ160を順次ストッカ164の所定の位置に戻して吊下げ保持する。一方、第2搬送ロボット174aにあっては、めっき処理後の基板を装着しストッカ164に戻した基板ホルダ160を2基同時に把持し、前記と同様にして、基板脱着台162上に載置する。   The second transfer robot 174b sequentially repeats the above operations, and returns the substrate holder 160, on which the plated substrate is mounted, to the predetermined position of the stocker 164 in a suspended manner. On the other hand, in the second transfer robot 174a, the two substrate holders 160 to which the substrate after the plating process is mounted and returned to the stocker 164 are simultaneously grasped and placed on the substrate attaching / detaching table 162 in the same manner as described above. .

そして、清浄空間114内に配置された第1搬送ロボット128は、この基板脱着台162上に載置された基板ホルダ160から基板を取出し、いずれかの洗浄・乾燥装置124に搬送する。そして、この洗浄・乾燥装置124で、表面を上向きにして水平に保持した基板を、純水等で洗浄し、高速回転させてスピン乾燥させた後、この基板を第1搬送ロボット128でロード・アンロードポート120に搭載した基板カセットに戻して、一連のめっき処理を完了する。これにより、図11(a)に示すように、貫通電極用凹部12内に貫通電極40を形成する第1めっき膜36を埋込み、レジストパターン30のレジスト開口部32内に電極パッド42を形成する第2めっき膜38を成膜した基板Wが得られる。   Then, the first transfer robot 128 disposed in the clean space 114 takes out the substrate from the substrate holder 160 placed on the substrate attachment / detachment table 162 and transfers it to one of the cleaning / drying devices 124. Then, the substrate held horizontally with the cleaning / drying device 124 is cleaned with pure water or the like, spin-dried by high-speed rotation, and then loaded / removed by the first transfer robot 128. Returning to the substrate cassette mounted on the unload port 120, a series of plating processes is completed. Thus, as shown in FIG. 11A, the first plating film 36 for forming the through electrode 40 is embedded in the through electrode recess 12, and the electrode pad 42 is formed in the resist opening 32 of the resist pattern 30. The substrate W on which the second plating film 38 is formed is obtained.

なお、図15に示すように、第3めっき条件での第3電解めっきで第2めっき膜38上に第3めっき膜44を成膜する場合には、前述のようにして第2めっき膜38を成膜した基板Wを他の電解めっき装置に搬送し、この他の電解めっき装置で第3めっき膜44を成膜する。   As shown in FIG. 15, when the third plating film 44 is formed on the second plating film 38 by the third electrolytic plating under the third plating condition, the second plating film 38 is formed as described above. Is transferred to another electrolytic plating apparatus, and the third plating film 44 is formed by the other electrolytic plating apparatus.

これまで本発明の実施の形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。   The embodiment of the present invention has been described so far, but the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.

従来の内部に上下に貫通する貫通電極を有する導電材料構造体の製造例の研磨工程までを工程順に示す図である。It is a figure which shows to the grinding | polishing process of the manufacture example of the electrically-conductive material structure which has the penetration electrode penetrated up and down in the conventional inside in order of a process. 図1の研磨工程の後を工程順に示す図である。It is a figure which shows the back of the grinding | polishing process of FIG. 1 in order of a process. 本発明に使用されるめっき装置(電解めっき装置)を備えためっき処理設備の全体配置図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole layout drawing of the plating processing equipment provided with the plating apparatus (electrolytic plating apparatus) used for this invention. 図3に示すめっき処理設備に備えられている搬送ロボットの概要図である。It is a schematic diagram of the conveyance robot with which the plating processing equipment shown in FIG. 3 is equipped. 図3に示すめっき処理設備に備えられているめっき装置の概略断面図である。It is a schematic sectional drawing of the plating apparatus with which the plating processing equipment shown in FIG. 3 is equipped. 図5に示すめっき装置の攪拌パドルを示す平面図である。It is a top view which shows the stirring paddle of the plating apparatus shown in FIG. 図6のA−A線断面図である。It is the sectional view on the AA line of FIG. それぞれ異なる攪拌パドルの変形例を示す図7相当図である。FIG. 8 is a view corresponding to FIG. 7 showing a modified example of different stirring paddles. 図5に示すめっき装置のパドル駆動機構をめっき槽と共に示す概略図である。It is the schematic which shows the paddle drive mechanism of the plating apparatus shown in FIG. 5 with a plating tank. 本発明の実施の形態における導電材料構造体の製造例の第1めっき膜成膜時までを工程順に示す図である。It is a figure which shows in order of process until the time of the 1st plating film film-forming of the manufacture example of the electrically-conductive material structure in embodiment of this invention. 図10の第1めっき膜成膜後を工程順に示す図である。It is a figure which shows the order after process formation of the 1st plating film of FIG. 図12(a)は、図10(b)の平面図を示し、図12(b)は、異なるレジストパターンの平面図を示す。FIG. 12 (a) shows a plan view of FIG. 10 (b), and FIG. 12 (b) shows a plan view of different resist patterns. 第1めっき条件の第1電解めっき時に供給する電流値と時間とのそれぞれ異なる関係を示すグラフである。It is a graph which shows each different relationship between the electric current value supplied at the time of the 1st electrolytic plating of 1st plating conditions, and time. 図14(a)は、貫通電極用凹部内に第1めっき膜を完全に埋込んだ状態を示し、図14(b)は、貫通電極用凹部内が第1めっき膜で完全に埋まる前の状態を示す。FIG. 14A shows a state in which the first plating film is completely embedded in the through electrode recess, and FIG. 14B shows a state before the through electrode recess is completely filled with the first plating film. Indicates the state. 本発明の他の実施の形態における導電材料構造体の製造例の第1めっき膜成膜後を工程順に示す図である。It is a figure which shows after the 1st plating film film-forming of the manufacture example of the electrically-conductive material structure in other embodiment of this invention in process order.

符号の説明Explanation of symbols

12 貫通電極用凹部
14 シード膜(導電膜)
30 レジストパターン
32 レジスト開口部
36 第1めっき膜
38 第2めっき膜
40 貫通電極
42 電極パッド
44 第3めっき膜
46 接合層
124 洗浄・乾燥装置
126 前処理装置
160 基板ホルダ
164 ストッカ
166 活性化処理装置
168a,168b 水洗装置
170 めっき装置
172 ブロー装置
186 めっき槽
220 アノード
224 調整板
232 攪拌パドル
250 めっき電源
12 Recess for penetrating electrode 14 Seed film (conductive film)
30 resist pattern 32 resist opening 36 first plating film 38 second plating film 40 through electrode 42 electrode pad 44 third plating film 46 bonding layer 124 cleaning / drying device 126 pretreatment device 160 substrate holder 164 stocker 166 activation treatment device 168a, 168b Flushing device 170 Plating device 172 Blow device 186 Plating tank 220 Anode 224 Adjustment plate 232 Stir paddle 250 Plating power source

Claims (10)

三次元積層技術に使用される貫通電極用凹部を形成した基板の表面の該凹部表面を含む全表面に導電膜を形成し、
基板表面の所定位置にレジストパターンを形成し、
前記導電膜を給電層とした第1めっき条件の下で、めっき成長を抑える添加剤を含む第1めっき液に前記基板を浸漬させることで第1電解めっきを行って前記貫通電極用凹部内に第1めっき膜を埋込み、
前記貫通電極用凹部内への前記第1めっき膜の埋込みが終了した後に、前記導電膜及び前記第1めっき膜を給電層とした第2めっき条件の下で、前記第1めっき液とは組成が異なる第2めっき液に前記基板を浸漬させることで第2電解めっきを行って、前記レジストパターンのレジスト開口部内に露出した導電膜及び前記第1めっき膜上に第2めっき膜を成長させ、前記レジスト開口部内に表面が平坦な前記第2めっき膜を形成する工程を含み、
前記第1めっき膜と前記第2めっき膜は、同じ金属から構成され、
前記第2めっき条件における平均電流値は、前記第1めっき条件における平均電流値よりも高いことを特徴とする導電材料構造体の形成方法。
Forming a conductive film on the entire surface including the concave surface of the surface of the substrate on which the concave portion for the through electrode used in the three-dimensional lamination technology is formed,
A resist pattern is formed at a predetermined position on the substrate surface,
The first electrolytic plating is performed by immersing the substrate in a first plating solution containing an additive that suppresses plating growth under the first plating condition using the conductive film as a power feeding layer, and the first electrolytic plating is performed in the through electrode recess Embedding the first plating film,
After the first plating film is embedded in the through electrode recess, the composition of the first plating solution is a second plating condition using the conductive film and the first plating film as a power supply layer. The second electrolytic plating is performed by immersing the substrate in a second plating solution having a different thickness, and a second plating film is grown on the conductive film exposed in the resist opening of the resist pattern and the first plating film , Forming the second plating film having a flat surface in the resist opening,
The first plating film and the second plating film are made of the same metal,
The method for forming a conductive material structure , wherein an average current value in the second plating condition is higher than an average current value in the first plating condition .
前記レジストパターンの高さは、5μm〜100μmであることを特徴とする請求項1記載の導電材料構造体の形成方法。   The method for forming a conductive material structure according to claim 1, wherein the height of the resist pattern is 5 μm to 100 μm. 前記第1めっき膜及び前記第2めっき膜は、銅または銅合金からなることを特徴とする請求項1または2記載の導電材料構造体の形成方法。   The method for forming a conductive material structure according to claim 1 or 2, wherein the first plating film and the second plating film are made of copper or a copper alloy. 前記第2めっき条件による前記第2電解めっきで前記レジストパターンの高さの途中まで前記第2めっき膜を成長させた後、第3めっき条件での第3電解めっきを行って、前記第2めっき膜上に第3めっき膜を成長させることを特徴とする請求項1乃至のいずれかに記載の導電材料構造体の形成方法。 After the second plating film is grown to the middle of the height of the resist pattern by the second electroplating under the second plating condition, the second electroplating is performed under the third plating condition, and the second plating is performed. forming method of the conductive material structure according to any one of claims 1 to 3, characterized in that growing the third plating layer on the membrane. 前記第3めっき膜は、前記第1めっき膜及び前記第2めっき膜とは異なる金属からなることを特徴とする請求項記載の導電材料構造体の形成方法。 The method for forming a conductive material structure according to claim 4, wherein the third plating film is made of a metal different from the first plating film and the second plating film. 前記貫通電極用凹部内への前記第1めっき膜の埋込みを該貫通電極用凹部内が第1めっき膜で完全に埋まる前に終了することを特徴とする請求項1乃至のいずれかに記載の導電材料構造体の形成方法。 According to any one of claims 1 to 5, characterized in that ends before the implantation of the first plating layer to the through electrode in the recess through-electrode in the recess completely filled in the first plating layer Of forming a conductive material structure. 前記貫通電極用凹部内が前記第1めっき膜で完全に埋まる前に、第1電流より低い第2電流よる所定時間のめっきを少なくとも1回行うことを特徴とする請求項1記載の導電材料構造体の形成方法。   2. The conductive material structure according to claim 1, wherein plating for a predetermined time with a second current lower than the first current is performed at least once before the inside of the through electrode recess is completely filled with the first plating film. Body formation method. 前記第1めっき液を前記基板表面に対して略平行に移動する攪拌パドルで流動させつつめっきを行うことを特徴とする請求項1乃至のいずれかに記載の導電材料構造体の形成方法。 Forming method of the conductive material structure according to any one of claims 1 to 7, characterized in that the plating while fluidized with stirring paddle that moves substantially parallel to the first plating solution to the substrate surface. 前記第1めっき液を前記基板表面に対して回転する攪拌パドルによって流動させつつめっきを行うことを特徴とする請求項1乃至のいずれかに記載の導電材料構造体の形成方法。 Forming method of the conductive material structure according to any one of claims 1 to 7, characterized in that the plating while fluidized by stirring paddles rotating the first plating solution to the substrate surface. 窒素からなるバブルを前記第2めっき液中に供給して、前記第2めっき液中に供給されたバブルが基板表面の全域に沿って流れるようにしたことを特徴とする請求項1乃至9のいずれかに記載の導電材料構造体の形成方法。The bubble made of nitrogen is supplied into the second plating solution so that the bubble supplied into the second plating solution flows along the entire area of the substrate surface. The formation method of the electrically-conductive material structure in any one.
JP2008170361A 2007-12-04 2008-06-30 Method for forming conductive material structure Active JP5281831B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008170361A JP5281831B2 (en) 2008-06-30 2008-06-30 Method for forming conductive material structure
US12/314,080 US8784636B2 (en) 2007-12-04 2008-12-03 Plating apparatus and plating method
KR1020080121666A KR20090058462A (en) 2007-12-04 2008-12-03 Method for producing conductive material structure and plating apparatus and plating method
TW097147072A TWI451006B (en) 2007-12-04 2008-12-04 Method for forming conductive structure, and plating apparatus and plating method
TW103126362A TWI518213B (en) 2007-12-04 2008-12-04 Method for forming conductive structure
US14/299,306 US20140287580A1 (en) 2007-12-04 2014-06-09 Method for forming conductive structure, and plating apparatus and plating method
KR20140128587A KR20140120878A (en) 2007-12-04 2014-09-25 Method for producing conductive material structure and plating apparatus and plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170361A JP5281831B2 (en) 2008-06-30 2008-06-30 Method for forming conductive material structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013110550A Division JP2013168679A (en) 2013-05-27 2013-05-27 Conductive material structure formation method

Publications (3)

Publication Number Publication Date
JP2010010557A JP2010010557A (en) 2010-01-14
JP2010010557A5 JP2010010557A5 (en) 2010-10-28
JP5281831B2 true JP5281831B2 (en) 2013-09-04

Family

ID=41590661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170361A Active JP5281831B2 (en) 2007-12-04 2008-06-30 Method for forming conductive material structure

Country Status (1)

Country Link
JP (1) JP5281831B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504147B2 (en) * 2010-12-21 2014-05-28 株式会社荏原製作所 Electroplating method
JP2012231096A (en) 2011-04-27 2012-11-22 Elpida Memory Inc Semiconductor device and manufacturing method of the same
FR2982877B1 (en) * 2011-11-18 2014-10-03 Alchimer MACHINE SUITABLE FOR METALLIZING A CAVITY OF A SEMICONDUCTOR OR CONDUCTIVE SUBSTRATE SUCH AS A VIA-TYPE VIA STRUCTURE
JP5842578B2 (en) * 2011-11-30 2016-01-13 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
US9468108B2 (en) * 2012-09-07 2016-10-11 Abacus Finance Group LLC Method and structure for forming contact pads on a printed circuit board using zero under cut technology
JP6459597B2 (en) * 2015-02-16 2019-01-30 株式会社村田製作所 Electrolytic plating equipment
JP6761763B2 (en) * 2017-02-06 2020-09-30 株式会社荏原製作所 Paddles, plating equipment with the paddles, and plating methods
JP6963396B2 (en) 2017-02-28 2021-11-10 キヤノン株式会社 Manufacturing method of electronic parts

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769661B2 (en) * 1997-08-29 2006-04-26 ユケン工業株式会社 Electrogalvanization of secondary molded products
JP2004349593A (en) * 2003-05-26 2004-12-09 Sanyo Electric Co Ltd Semiconductor device and method for manufacturing the same
JP4365143B2 (en) * 2003-06-16 2009-11-18 株式会社荏原製作所 Method for stirring plating treatment liquid and plating treatment apparatus
JP4148477B2 (en) * 2005-07-21 2008-09-10 Tdk株式会社 Sheet used for manufacturing multilayer wiring board, and plating method and plating apparatus used for manufacturing the sheet
JP2007242693A (en) * 2006-03-06 2007-09-20 Canon Inc Semiconductor device, and its manufacturing method
JP4795075B2 (en) * 2006-03-31 2011-10-19 古河電気工業株式会社 Electroplating equipment

Also Published As

Publication number Publication date
JP2010010557A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
US8784636B2 (en) Plating apparatus and plating method
JP5281831B2 (en) Method for forming conductive material structure
JP5504147B2 (en) Electroplating method
TWI841618B (en) Electrodeposition of nanotwinned copper structures
JP4805141B2 (en) Electroplating equipment
KR20210091823A (en) Low-temperature copper-copper direct bonding
JP2014201835A (en) Electric plating method
JP4624738B2 (en) Plating equipment
TWI541388B (en) Electroplating method
JP2012224944A (en) Electroplating method
JP4365143B2 (en) Method for stirring plating treatment liquid and plating treatment apparatus
KR20140120878A (en) Method for producing conductive material structure and plating apparatus and plating method
JP2005029863A (en) Plating apparatus
JP5749302B2 (en) Plating method
JP5232844B2 (en) Plating equipment
JP5385669B2 (en) Plating method and plating apparatus
JP5564171B2 (en) Plating apparatus and plating method
JP2006152415A (en) Plating apparatus and plating method
JP2013168679A (en) Conductive material structure formation method
JP2006225715A (en) Plating apparatus and plating method
JP2005281720A (en) Wet treatment method and apparatus therefor
JP2002332589A (en) Electrolytic copper plating method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5281831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250