JP5278324B2 - Igbt用シリコン単結晶ウェーハの製造方法 - Google Patents
Igbt用シリコン単結晶ウェーハの製造方法 Download PDFInfo
- Publication number
- JP5278324B2 JP5278324B2 JP2009530203A JP2009530203A JP5278324B2 JP 5278324 B2 JP5278324 B2 JP 5278324B2 JP 2009530203 A JP2009530203 A JP 2009530203A JP 2009530203 A JP2009530203 A JP 2009530203A JP 5278324 B2 JP5278324 B2 JP 5278324B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- wafer
- silicon single
- igbt
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013078 crystal Substances 0.000 title claims description 320
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 278
- 229910052710 silicon Inorganic materials 0.000 title claims description 274
- 239000010703 silicon Substances 0.000 title claims description 273
- 238000004519 manufacturing process Methods 0.000 title claims description 69
- 238000000034 method Methods 0.000 claims description 131
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 113
- 239000001301 oxygen Substances 0.000 claims description 113
- 229910052760 oxygen Inorganic materials 0.000 claims description 113
- 125000004429 atom Chemical group 0.000 claims description 91
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 77
- 238000010438 heat treatment Methods 0.000 claims description 71
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 53
- 229910052698 phosphorus Inorganic materials 0.000 claims description 51
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 50
- 239000011574 phosphorus Substances 0.000 claims description 50
- 229910052757 nitrogen Inorganic materials 0.000 claims description 38
- 239000002019 doping agent Substances 0.000 claims description 37
- 239000012298 atmosphere Substances 0.000 claims description 31
- 239000007789 gas Substances 0.000 claims description 27
- 238000005247 gettering Methods 0.000 claims description 24
- 238000005204 segregation Methods 0.000 claims description 20
- 238000002347 injection Methods 0.000 claims description 18
- 239000007924 injection Substances 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 14
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 6
- 235000012431 wafers Nutrition 0.000 description 240
- 230000007547 defect Effects 0.000 description 69
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 40
- 239000010453 quartz Substances 0.000 description 35
- 239000001257 hydrogen Substances 0.000 description 30
- 229910052739 hydrogen Inorganic materials 0.000 description 30
- 239000000126 substance Substances 0.000 description 21
- 239000002244 precipitate Substances 0.000 description 19
- 238000005530 etching Methods 0.000 description 17
- 239000000155 melt Substances 0.000 description 17
- 239000010410 layer Substances 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 12
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 11
- 238000001556 precipitation Methods 0.000 description 11
- 239000002344 surface layer Substances 0.000 description 11
- 238000000227 grinding Methods 0.000 description 10
- 230000006798 recombination Effects 0.000 description 10
- 238000005215 recombination Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- 238000011109 contamination Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000005034 decoration Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- -1 silicon alkoxide Chemical class 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000007730 finishing process Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000004854 X-ray topography Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000002356 laser light scattering Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/20—Controlling or regulating
- C30B15/203—Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/322—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
- H01L21/3221—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
- H01L21/3225—Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66234—Bipolar junction transistors [BJT]
- H01L29/66325—Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
- H01L29/66333—Vertical insulated gate bipolar transistors
- H01L29/66348—Vertical insulated gate bipolar transistors with a recessed gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
- H01L29/7395—Vertical transistors, e.g. vertical IGBT
- H01L29/7396—Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
- H01L29/7397—Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本願は、2007年8月29日に、日本に出願された特願2007−223065号に基づき優先権を主張し、その内容をここに援用する。
上述のように、IGBTは酸化膜で絶縁されたゲートで電流を制御する素子なので、ゲート酸化膜の品質(Gate Oxide Integrity、以下GOIと記す)が重要である。シリコン単結晶ウェーハ中に欠陥が含まれていると、その欠陥がゲート酸化膜に取り込まれて、酸化膜の絶縁破壊の原因となる。
もし、ウェーハ平面上に複数の受けられた素子、つまり、複数の素子が並列に設けられていた場合、これらの素子間で抵抗率が異なると、抵抗率の低い素子に大電流が集中し破損してしまうので抵抗率の均一性と安定性が重要である。このように、複数の素子が並列に微細化された場合、抵抗率の差によって、大電流が集中し特定の素子に電流が集中し破損してしまうので抵抗率が均一で、しかも、デバイス熱プロセスを経ても変化しないことが重要である。
PT型基板の欠点を克服する為に、オフ時に空乏層がコレクタ側に接触しないノンパンチスルー(Non Punch Through、以下NPTと記す)型のIGBTが開発されている。更に最近になって、トレンチゲート構造や、図5Cに示すように、コレクタ側にフィールドストップ(Field Stop、以下FSと記す)層を形成した、よりオン電圧が低くスイッチング損失の少ないFS−IGBTが製造されるようになっている。NPT型やFS型のIGBT用の基板としては、従来から浮遊帯域溶融法(Floating Zone Method、以下FZ法と記す)で育成したシリコン単結晶から切り出した直径150mm以下のウェーハ(以下、FZウェーハという)が使用されている。
そこで、我々はφ200mm以上好ましくはφ300mm以上の大口径結晶が容易に育成できるチョクラルスキー法(CZ法)でIGBT用シリコン単結晶ウェーハを製造することを試みた。
また特許文献2には、酸素及び窒素でドーピングされる間にチョクラルスキー法を使って引き上げられるシリコン単結晶の製造方法であって、単結晶が引き上げられる間に6.5×1017原子/cm3未満の濃度の酸素、及び5×1013原子/cm3超の濃度の窒素でドーピングされるシリコン単結晶の製造方法が開示されている。
更に特許文献3には、窒素を添加した融液からチョクラルスキー法により育成され、2×1014atoms/cm3以上2×1016atoms/cm3以下の窒素濃度、及び7×1017atoms/cm3以下の酸素濃度を含有し、各種表面欠陥密度がFPD≦0.1個/cm2、SEPD≦0.1個/cm2、及びOSF≦0.1個/cm2であり、内部欠陥密度がLSTD≦1×105個/cm3であり、かつ酸化膜耐圧特性がTZDB高Cモード合格率≧90%及びTDDB合格率≧90%以上であるシリコン半導体基板が開示されている。
また、従来から、EG処理として、ウェーハ裏面側にゲッタリング層としての多結晶シリコン層を形成し、IGBT製造工程における重金属汚染を除去するようにしていたが、このポリシリコン層形成が作業工程の増大と製造コストの増大を招くため、これをおこなわないことが好ましい。しかし、IGBT用デバイスプロセスにおいては、ゲッタリング能を有することが必要であり、EGを施さずにIG能を有するIGBT用シリコン単結晶ウェーハが求められていた。
(1)CZ法では、単結晶の育成時に過剰な空孔が凝集して0.2〜0.3μm程度のCOP欠陥(Crystal Originated Particle)が生じる。IGBTを製造する際には、ウェーハ表面にゲート酸化膜を形成するが、COP欠陥がウェーハ表面に露出して出来たピット、あるいはウェーハ表面近傍に存在するCOP欠陥がこのゲート酸化膜に取り込まれると、GOI(Gate Oxide Integrity)を劣化させる。従って、GOIが劣化しないように、COP欠陥を含まないウェーハが必要になるが、CZ法では無欠陥のウェーハの製造が難しい。
(2)CZ法により製造されたシリコン単結晶ウェーハには、1×1018atoms/cm3程度の過剰な酸素が含まれており、このようなウェーハに対して450℃で1時間程度の低温熱処理(IGBT製造工程のシンタリング処理に相当する熱処理)を行うと酸素ドナーが発生し、熱処理前後でウェーハの抵抗率が変化してしまう。
(3)CZ法により製造されたシリコン単結晶ウェーハの抵抗率は、シリコン融液に添加するドーパント量によって制御でき、IGBT用のウェーハにはドーパントとしてリンが添加されるが、リンは偏析係数が小さい為にシリコン単結晶の長さ方向に渡って濃度が大きく変化する。そのため、一本のシリコン単結晶の中で、設計仕様に合致する抵抗率を有するウェーハの得られる範囲が狭い。
(4)CZ法により製造されたシリコン単結晶ウェーハには、1×1018atoms/cm3程度の過剰な酸素が含まれており、このようなウェーハに対してデバイス形成プロセスを行うと、過剰な酸素がSiO2となって析出し、再結合ライフタイムを劣化させる。
シリコン単結晶の引き上げ速度をGrown−in欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が8.5×10 17 atoms/cm 3 以下の単結晶を育成する引き上げ工程と、
前記単結晶からスライスしたウェーハを1175℃以上でRTA処理する空孔注入工程と、
前記空孔注入工程後に、1000℃〜1100℃の温度範囲、1〜16時間の処理時間で熱処理して前記ウェーハ全面の表面側に厚さ方向寸法が100〜200μmであるIGBT用デバイスの形成されるデバイス領域および該デバイス領域よりも裏面側にデバイス形成後に除去されるゲッタリング領域を形成する空孔制御熱処理工程と、
を有し、
チョクラルスキー法によってシリコン単結晶を育成する際に、シリコン融液にn型ドーパントを添加するか、シリコン融液にリンを2.9×10 13 atoms/cm 3 以上2.9×10 15 atoms/cm 3 以下、前記リンよりも偏析係数の小さなp型ドーパントを、その偏析係数に応じて結晶中の濃度が1×10 13 atoms/cm 3 以上1×10 15 atoms/cm 3 以下となるように添加するか、または、引き上げ後のシリコン単結晶に中性子照射を行うことで、リンをドープすることを特徴とする。
本発明のIGBT用のシリコン単結晶ウェーハは、チョクラルスキー法によって育成されたシリコン単結晶からなるIGBT用のシリコン単結晶ウェーハであって、
前記ウェーハ全面に設けられ表面側にIGBT用デバイスの形成されるデバイス領域と、該デバイス領域よりも裏面側に位置しデバイス形成後に除去されるゲッタリング領域とを有し、
前記デバイス領域の厚さ方向寸法が100〜200μmとされ、
結晶径方向全域においてCOP欠陥および転位クラスタが排除されており、格子間酸素濃度が8.5×1017atoms/cm3以下であり、ウェーハ面内における抵抗率のばらつきが5%以下であることができる。
本発明は、前記デバイス領域において、IGBT用デバイスプロセス熱処理後に、20nm以上の酸素析出物密度が5×103個/cm3以下であり、前記ゲッタリング領域において、IGBT用デバイスプロセス熱処理後に、20nm以上の酸素析出物密度が5×104個/cm3以上1×107個/cm3以下であることができる。
本発明は、前記シリコン単結晶に、5×1012atoms/cm3以上5×1015atoms/cm3以下、または、1×1013atoms/cm3以上5×1015atoms/cm3以下の窒素をドープすることができる。
本発明は、前記シリコン単結晶が、前記チョクラルスキー法により育成される際にGrown−in欠陥フリーなシリコン単結晶を引き上げ可能な引き上げ速度で育成されたものであり、かつ、引き上げ後のシリコン単結晶に中性子照射がなされてリンがドープされてなるものであることができる。
本発明のIGBT用シリコン単結晶ウェーハの製造方法は、チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、
シリコン単結晶の引き上げ速度をGrown−in欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が8.5×1017atoms/cm3以下の単結晶を育成する引き上げ工程と、
前記単結晶からスライスしたウェーハを1175℃以上でRTA処理する空孔注入工程と、
前記空孔注入工程後に、1000℃〜1100℃の温度範囲、1〜16時間の処理時間で熱処理して前記ウェーハ全面の表面側に厚さ方向寸法が100〜200μmであるIGBT用デバイスの形成されるデバイス領域および該デバイス領域よりも裏面側にデバイス形成後に除去されるゲッタリング領域を形成する空孔制御熱処理工程と、
を有することができる。
本発明は、前記シリコン単結晶に、5×1012atoms/cm3以上5×1015atoms/cm3以下の窒素をドープすることができる。
本発明は、CZ炉内の雰囲気ガス中に水素ガス換算分圧で40Pa以上400Pa以下の範囲となる水素原子含有物質を導入することができる。
本発明は、チョクラルスキー法によってシリコン単結晶を育成する際に、シリコン融液にn型ドーパントを添加するか、シリコン融液にリンを2.9×1013atoms/cm3以上2.9×1015atoms/cm3以下、前記リンよりも偏析係数の小さなp型ドーパントを、その偏析係数に応じて結晶中の濃度が1×1013atoms/cm3以上1×1015atoms/cm3以下となるように添加するか、または、引き上げ後のシリコン単結晶に中性子照射を行うことで、リンをドープすることができる。
前記ウェーハ全面に設けられ表面側にIGBT用デバイスの形成されるデバイス領域と、該デバイス領域よりも裏面側に位置しデバイス形成後に除去されるゲッタリング領域とを有し、
前記デバイス領域の厚さ方向寸法が100〜200μmとされ、
結晶径方向全域においてCOP欠陥および転位クラスタが排除されており、格子間酸素濃度が8.5×1017atoms/cm3以下であり、ウェーハ面内における抵抗率のばらつきが5%以下であることにより、IGBTが形成されるデバイス領域(ウェーハ最表面〜百数十μm)にBMDが発生せず、バックグラインドで除去される厚み領域の中で、バルク中心部(表裏面から百数十μm以外)にRTA処理で故意にBMDを作りこんだウェーハを提供することができる。これにより、デバイス領域では、無欠陥としてデバイス特性に影響を与える抵抗率の変化がなく、かつ、EG処理をおこなわないで、デバイス製造工程において必要なIG能を有してデバイスプロセスにおけるハンドリング性を向上し、デバイス製造に影響を及ぼす重金属汚染を防止することが可能となる。
具体的には、ウェーハ最表面からウェーハ厚さ方向に、それぞれ、IGBT用デバイスプロセスを経ても酸素析出がおきない、つまり、BMDが検出されない均質な厚み寸法100〜200μm程度のデバイス領域と、このデバイス領域に接して、IGBT用デバイスプロセスを経るとウェーハ厚さ方向にほぼ均質で20nm以上の酸素析出物密度が5×104個/cm3以上1×107個/cm3以下となるBMD層と、このBMD層からウェーハ裏面までデバイス領域と同様の特性を有する裏側領域とを有するウェーハを得ることができる。
さらに、本発明のIGBT用のシリコン単結晶ウェーハにおいては、前記シリコン単結晶が、前記チョクラルスキー法により育成される際にGrown−in欠陥フリーなシリコン単結晶を引き上げ可能な引き上げ速度で育成されたものであり、かつ、引き上げ後のシリコン単結晶に中性子照射がなされてリンがドープされてなるものが好ましい。
また本発明のIGBT用のシリコン単結晶ウェーハにおいては、前記シリコン単結晶が、前記チョクラルスキー法より育成される際に、n型ドーパントがドープされたシリコン融液から、Grown−in欠陥フリーなシリコン単結晶を引き上げ可能な引き上げ速度により育成されたものであることが好ましい。
更に本発明のIGBT用のシリコン単結晶ウェーハにおいては、前記シリコン単結晶に、5×1012atoms/cm3以上5×1015atoms/cm3以下の窒素がドープされていることが好ましい。
さらにまた、本発明のIGBT用のシリコン単結晶ウェーハにおいては、リンと、前記リンよりも偏析係数の小さなp型ドーパントがそれぞれ、1×1013atoms/cm3以上1×1015atoms/cm3以下の濃度で含まれていることが好ましい。
さらにまた、本発明のIGBT用のシリコン単結晶ウェーハにおいては、ウェーハ表面におけるLPD密度が0.1個/cm2以下であり、ライトエッチング欠陥密度が1×103個/cm2以下であることが好ましい。
また、本発明で、OSF領域とは、乾燥酸素雰囲気で900℃から1000℃まで、昇温速度5℃/minで昇温した後、乾燥酸素雰囲気で1000℃、1時間、その後、ウェット酸素雰囲気で1000℃から1150℃まで昇温速度3℃/minで昇温した後、ウェット酸素雰囲気で1150℃、2時間、その後900℃まで降温する熱処理後に、2μmのライトエッチングを実施してOSF領域を顕在化させ、OSF密度のウェーハ面内分布を測定した際に、OSFの密度が10個/cm2の領域を意味するものである。
また、本発明において、「LPD密度」とは、レーザ光散乱式パーティクルカウンター(SP1(surfscan SP1):KLA−Tencor社製)を用いて検出される0.1μmサイズ以上の欠陥の密度である。
なお、酸素ドナーの濃度を9.8×1012個/cm3以下にする理由は次の通りである。高耐圧IGBTには、n型で抵抗率が40〜70Ω・cmのウェーハが使われる。例えば、基板の抵抗率の仕様が50±5Ω・cmの場合では、許容できるドナー濃度は9.8×1012個/cm3以下となる。ここで、酸素に起因した酸素ドナーが最も発生しやすい温度は450℃である。例えばデバイスプロセスにおいてAl配線のシンタリング処理はこの温度前後で行われる。450℃で1時間の熱処理を施した場合に発生する酸素ドナーの濃度の酸素濃度依存性を調べた結果を図1に示す。図1から、酸素ドナーの濃度を9.8×1012個/cm3以下に抑えるためには、ウェーハの格子間酸素濃度を8.5×1017atoms/cm3以下に制御しなければならないことが分かる。このような理由から本発明においては、格子間酸素濃度を8.5×1017atoms/cm3以下とすることができる。
具体的には、図10に示すように、石英ルツボ回転数R1(rpm)と、結晶回転数R2(rpm)とを、
添付図面図10に各点(R1,R2)で示すように、
点A (0.1,1)、点B(0.1,7)、点C(0.5,7)、点D(0.7,6)、点E(1,6)、点F(2,2)、点G(2,1)で囲まれる範囲内の値に設定することができる。これにより、格子間酸素濃度が4×1017atoms/cm3以下の単結晶を育成することができる。実質的には、石英ルツボの回転数をR1(rpm)、結晶回転数をR2(rpm)とするとき、R1:0.1以上2以下、R2:1以上7以下、の範囲であって、R1:0.5以上0.7以下の場合、R2<7−5(R1−0.5)を満足し、R1:0.7以上1以下の場合、R2<6を満足し、R1:1以上2以下の場合、R2<6−4(R1−1)を満足する範囲に設定することができる。この場合、単結晶中の格子間酸素濃度を4.0×1017atoms/cm3以下として低酸素濃度のシリコン単結晶を育成できる。
このため、この低酸素単結晶から、抵抗率のバラツキが小さく、かつ、IGBT製造プロセスを経ても酸素析出物の密度が極めて少ない450℃程度の低温熱処理を受けると酸素ドナーが発生して、基板の抵抗率が変化してしまうことを防止可能なIGBT用のシリコン単結晶ウェーハを提供することが可能となる。
添付図面図10に各点(R1,R2)で示すように、
点A (0.1,1)、点B(0.1,7)、点L(0.2,7)、点K(0.3,7)、点J(0.5,6)、点I(0.7,6)、点H(1,5)、点N(1,3)、点M(1,1)で囲まれる範囲内の値に設定してシリコン単結晶を引き上げることで、単結晶中の格子間酸素濃度を3.5×1017atoms/cm3以下としてより低酸素濃度のシリコン単結晶を育成できる。実質的には、石英ルツボ回転数R1(rpm)と結晶回転数R2(rpm)とをR1:0.1以上2以下、R2:1以上7以下、の範囲であって、但しR1:0.3以上、0.5以下の場合、R2<7−5(R1−0.3)を満足し、R1:0.5以上0.7以下の場合、R2<6を満足し、R1:0.7以上1以下の場合、R2<6−3.4(R1−0.7)を満足する範囲に設定すればよい。この場合、単結晶中の格子間酸素濃度が3.5×1017atoms/cm3以下として、低酸素濃度のシリコン単結晶を提供できる。
添付図面図10に各点(R1,R2)で示すように、
点A (0.1,1)、点B(0.1,7)、点L(0.2,7)、点Q(0.3,6)、点J(0.5,6)、点P(0.7,5)、点N(1,3)、点M(1,1)で囲まれる範囲内の値に設定してシリコン単結晶を引き上げてもよい。 実質的には、石英ルツボ回転数R1(rpm)と結晶回転数R2(rpm)とをR1:0.1以上1以下、R2:1以上7以下、の範囲であって、但しR1:0.2以上0.3以下の場合、R2<7−10(R1−0.2)を満足し、R1:0.3以上0.5以下の場合、R2<6を満足し、R1:0.5以上0.7以下の場合、R2<6−5(R1−0.5)を満足し、R1:0.7以上、1以下の場合、R2<5−6.7(R1−0.7)を満足する範囲に設定することができる。この場合、単結晶中の格子間酸素濃度3.0×1017atoms/cm3以下のシリコン単結晶を育成し、より低酸素濃度のシリコン単結晶を育成できる。
なお、石英ルツボ回転数R1(rpm)と、結晶回転数R2(rpm)と格子間酸素濃度との関係を表5に示す。
また、本発明では、磁場中心位置と結晶引き上げ時の融液表面位置を−75〜+50mm、より好ましくは、20〜45mmとすることが好ましい。ここで、ここで磁場中心位置とは、水平磁場にあっては磁場発生コイルの中心が位置する高さ位置を意味し、−75mmとは、融液液面から上方75mmであることを意味している。
ここで、合成石英ルツボとは、少なくとも原料融液に当接する内表面が以下のような合成石英から形成されたものを意味する。
合成石英ガラス粉を溶融して得られたガラスでは、光透過率を測定すると、波長200nm程度までの紫外線を良く透過し、紫外線光学用途に用いられている四塩化炭素を原料とした合成石英ガラスに近い特性であると考えられる。
合成石英ガラス粉を溶融して得られたガラスでは、波長245nmの紫外線で励起して得られる蛍光スペクトルを測定すると、天然石英粉の溶融品のような蛍光ピークは見られない。
また、本発明では、CZ炉内に供給する雰囲気ガス流量を100〜200リットル/min以上とし、CZ炉内の圧力を6700pa以下として、溶融液表面から蒸発するSiOを効果的に装置外に排出すると共に、溶融液表面を漂う異物もルツボ壁に追いやるとともに、結晶中の酸素濃度が高くなることを防止することができる。
ところで、CZ法により製造されたシリコン単結晶ウェーハの抵抗率は、シリコン単結晶に含まれるドーパント量によって制御できるが、IGBT基板のドーパントとして良く使われるリンは、偏析係数が小さい為にシリコン単結晶の長さ方向にわたってその濃度が大きく変化する。そのため、一本の単結晶の中で設計仕様に合った抵抗率を有するウェーハの得られる範囲が狭い。このため本発明では、上述したように、中性子照射、シリコン融液へのn型ドーパントの添加、リンとリンよりも偏析係数の小さなp型ドーパントを所定量添加、その他様々な手段を採用する。いずれの場合も、不純物濃度の低いシリコン多結晶を原料とし、不純物の溶出が少ない合成石英ルツボを用いて単結晶を育成することが重要である。これらの手段を用いることで、シリコン単結晶の歩留まりを改善することができる。
また、シリコン融液へのn型ドーパントの添加によっても、抵抗率を制御することができる。この時、所謂DLCZ法(Double Layered Czochralski;二層式引き上げ法)を適用することが望ましい。DLCZ法とは、リンのような偏析係数の小さなドーパントの結晶軸方向の濃度変化を抑制する方法である。この方法は例えば特開平5−43384号公報に開示されており、CZ方法において、坩堝中で多結晶シリコンを一旦全部溶かしてシリコン融液としてからリンを添加し、坩堝の底部の温度を下げてシリコン融液を底より上方に向かって凝固させてシリコン凝固層を形成し、このシリコン凝固層を上方から底に向けて徐々に溶かしながら結晶を育成することによって、単結晶中に取り込まれるドーパント濃度をほぼ一定に保つ方法である。
本発明ではこのDLCZ法を採用することによっても、シリコン単結晶の結晶軸方向の抵抗率変化を抑制することができる。
更にまた、DLCZ法やCCZ法のようにシリコン融液にドーパントを添加する単結晶育成の場合には、ウェーハ面内の抵抗率バラツキを抑制するために、結晶育成中の結晶回転速度を速く回転させることが望ましく、直径200mm以下の単結晶育成では結晶回転速度を15〜30rpm、直径300mm以上では8〜15rpmの範囲で回転させることが望ましい。なお、通常、結晶回転速度を増加させると、Grow−in欠陥フリー結晶を得るための引き上げ速度マージン幅が狭くなってしまい、単結晶育成そのものが困難となるが、本発明では後述するように水素含有ガス雰囲気でシリコン単結晶を育成することにより、Grow−in欠陥フリー結晶を得るための引き上げ速度マージンを十分に確保することができる。
また、シリコン単結晶に、1×1013atoms/cm3以上5×1015atoms/cm3以下、あるいは、1×1014atoms/cm3以上5×1015atoms/cm3以下、より好ましくは、1×1014atoms/cm3以上9×1014atoms/cm3以下、あるいは、1×1014atoms/cm3以上5×1014atoms/cm3以下の窒素がドープされることによって、COP欠陥および転位クラスタの排除が容易になる。窒素のドープ量が上記の範囲未満ではV/Gの制御可能範囲が狭くCOP欠陥および転位クラスタの排除が完全になされない虞があり、上記の範囲を超えると、窒化物が生成してシリコン単結晶が育成できなくなるため好ましくない。また、上記の範囲以上とすることで、窒素をドープすることによる酸素析出促進効果が明らかであり、また、上記の範囲以下とすれば、単結晶引き上げ時の単結晶化の妨げとなったり、連続操業の不安定化を引き起こしたりすることもない。
シリコン単結晶の引き上げ速度をGrown−in欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が8.5×1017atoms/cm3以下の単結晶を育成する引き上げ工程と、
前記単結晶からスライスしたウェーハを1175℃以上でRTA処理する空孔注入工程と、
前記空孔注入工程後に、1000℃〜1100℃の温度範囲、1〜16時間の処理時間で熱処理して前記ウェーハ全面の表面側に厚さ方向寸法が100〜200μmであるIGBT用デバイスの形成されるデバイス領域および該デバイス領域よりも裏面側にデバイス形成後に除去されるゲッタリング領域を形成する空孔制御熱処理工程と、
を有することにより、空孔注入工程として窒素を含む雰囲気、または、アンモニアなどの窒素含有ガスを含む雰囲気中でRTA処理をおこなったウェーハでは、IGBT用デバイスプロセスの初期に600℃〜900℃までの低温熱処理が長時間施された場合でも、ウェーハ表層側に存在する空孔が安定化しない。その結果、デバイスプロセスにおける後の熱処理工程で表層から100〜200μmまたは150μmの厚みであるデバイス領域で20nm以上のBMD(酸素析出物)が密度5×103個/cm3以上の高密度に形成され、IGBT特性を劣化させる原因となることを防止できる。
ここで、空孔制御熱処理工程における熱処理の昇温速度、降温速度は、それぞれ3〜50℃/min、3〜20℃/minとされることが好ましい。したがって、ランプアニール炉も使用可能であるが、横型炉によって処理することができる。
ここで、昇温・降温速度が3℃より小さいと核形成が生じてしまい、密度制御が困難である。また昇温速度が50℃/minを越えるとウェーハに大きな熱応力が付加され、割れてしまう可能性がある。また降温速度が20℃/minを越えると空孔制御熱処理でウェーハに空孔注入され、密度制御を困難にする要因となってしまう。
t ≧ −7d/300 + 73/3
となる。
図8において、Z領域より下側で、700℃3時間の点と1000℃1時間の点を結んだ直線よりも上側のY領域では、デバイス領域にもBMDが析出してしまうため好ましくない。また、図8において、Y領域より下側のX領域では、デバイス領域のみBMDが析出してしまうため好ましくない。
また本発明のIGBT用シリコン単結晶ウェーハの製造方法は、チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、シリコン融液にn型ドーパントを添加し、CZ炉内の雰囲気ガス中に水素ガス換算分圧で40Pa以上400Pa以下の範囲となる水素原子含有物質を導入し、シリコン単結晶の引き上げ速度をGrown−in欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が8.5×1017atoms/cm3以下の単結晶を育成することができる。
また本発明のIGBT用シリコン単結晶ウェーハの製造方法は、チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、シリコン融液に、リンを2.9×1013atoms/cm3以上2.9×1015atoms/cm3以下、前記リンよりも偏析係数の小さなp型ドーパントを、その偏析係数に応じて結晶中の濃度が1×1013atoms/cm3以上1×1015atoms/cm3以下となるように添加し、CZ炉内の雰囲気ガス中に水素ガス換算分圧で40Pa以上400Pa以下の範囲となる水素原子含有物質を導入し、シリコン単結晶の引き上げ速度をGrown−in欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が8.5×1017atoms/cm3以下の単結晶を育成することができる。
更に本発明のIGBT用シリコン単結晶ウェーハの製造方法においては、前記チョクラルスキー法よりシリコン単結晶に対して、窒素を5×1012atoms/cm3以上5×1015atoms/cm3以下の濃度で添加することが好ましい。
即ち、本発明においては、水素含有物質がシリコン融液に溶解し高温のシリコン融液中で熱分解して水素原子に変換されると仮定した上で、変換後の雰囲気中の水素ガス換算分圧が40〜400Paの範囲になるように水素含有物質の添加量を調整すればよい。
また、シリコン融液に窒素を添加することで、Grown−in欠陥フリーなシリコン単結晶が引き上げ可能な速度の許容幅を更に広げることができ、ウェーハのCOP欠陥および転位クラスタの排除が容易になる。
6…シリコン単結晶
T…種結晶
(CZ炉の構成)
図3は、本発明の実施形態におけるIGBT用のシリコン単結晶ウェーハの製造方法を実施するのに適したCZ炉の縦断面図である。
図3に示すCZ炉は、チャンバー内の中心部に配置されたルツボ1と、ルツボ1の外側に配置されたヒータ2と、ヒータ2の外側に配置された磁場供給装置9とを備えている。ルツボ1は、内側にシリコン融液3を収容する石英ルツボ1aを外側の黒鉛ルツボ1bで保持する二重構造であり、ペディスタルと呼ばれる支持軸1cにより回転および昇降駆動される。
ルツボ1の上方には、円筒形状の熱遮蔽体7が設けられている。熱遮蔽体7は、黒鉛で外殻を作り、内部に黒鉛フェルトを充填した構造である。熱遮蔽体7の内面は、上端部から下端部にかけて内径が漸減するテーパー面になっている。熱遮蔽体7の上部外面は内面に対応するテーパー面であり、下部外面は、熱遮蔽体7の厚みを下方に向かって漸増させるようにほぼストレート面に形成されている。
そして、シードチャック5に取り付けた種結晶Tをシリコン融液3に浸漬し、ルツボ1および引き上げ軸4を回転させつつ種結晶Tを引き上げることにより、シリコン単結晶6を形成できるようになっている。
半径方向の幅Wは例えば50mm、逆円錐台面である内面の垂直方向に対する傾きθは例えば21°、熱遮蔽体7の下端の融液面からの高さH1は例えば60mmとする。
次に、図3に示すCZ炉を用いたIGBT用のシリコン単結晶ウェーハの製造方法を説明する。
本実施形態においては、図6に示すように、IGBT用のシリコン単結晶ウェーハの製造方法として、CZ法により単結晶を引き上げる引き上げ工程S01と、引き上げた単結晶からウェーハをスライスしエッチング・研削・研磨等の表面処理をおこなってウェーハを形成するスライス工程S02と、ウェーハWを1175℃以上でRTA処理する空孔注入工程S03と、空孔注入工程S03後に、1000℃〜1100℃の温度範囲、1〜16時間の処理時間で熱処理してウェーハにデバイス領域およびゲッタリング領域を形成する空孔制御熱処理工程S04と、を有する。さらに、IGBTの製造工程として、IGBT用デバイスプロセスSD1と、バックグラインド工程SD2と、デバイス仕上げ工程SD3と、によりIGBTが完成することとなる。
なお、水素ガスを含有しない不活性ガスのみの雰囲気とすることもできる。
次に、シードチャック5に取り付けた種結晶Tをシリコン融液3に浸漬し、ルツボ1および引き上げ軸4を回転させつつ結晶引き上げを行う。この場合の引き上げ条件としては、単結晶の成長速度をV(mm/分)とし、単結晶成長時の融点から1350℃の温度勾配G(℃/mm)としたときの比V/G(mm2/分・℃)を0.22〜0.15程度に制御し、VをGrown−in欠陥フリーなシリコン単結晶が引き上げ可能な速度である0.42〜0.33mm/分に制御する、といった条件を例示できる。また、他の条件としては、石英るつぼの回転数を5〜0.2rpmとし、単結晶の回転速度を20〜10rpmとし、アルゴン雰囲気の圧力を1333〜26660Paまたは30Torrとし、更に磁場強度を3000〜5000Gaussといった条件を例示できる。特に、石英るつぼの回転数を5rpm以下にすることで、石英るつぼに含まれる酸素原子のシリコン融液への拡散を防止することができ、シリコン単結晶中の格子間酸素濃度を低減することができる。また、単結晶の回転速度を5rpm以上とすることで、シリコン単結晶内部における抵抗率のバラツキを低減できる。
以上の引き上げ条件に設定することで、シリコン単結晶中の格子間酸素濃度を8.5×1017atoms/cm3以下、より好ましくは、4×1017atoms/cm3以下にすることができ、これによりIGBT製造工程での酸素ドナー発生を防止することができる。格子間酸素濃度が上記の範囲を越えるとIGBT製造工程で酸素析出物や酸素ドナーが生じ、IGBTの特性を変えてしまうので好ましくない。
ラッピングを行う際には、ウェーハの割れを防止するために、ウェーハの表面の周縁部に表面側面取り部を形成するとともに、ウェーハの裏面の周縁部に裏面側面取り部を形成することが好ましい。図4には、ウェーハ加工完了後のウェーハ周縁部の断面を示す。
また、表面側面取り部24は、表面22の主面23に対して傾斜する第一傾斜面11を有しており、裏面側面取り部28は、裏面26の主面27に対して傾斜する第二傾斜面12を有している。第一傾斜面11の傾斜角度θ1は10°から50°の範囲が好ましく、第二傾斜面12の傾斜角度θ2は10°から30°の範囲が好ましく、更にθ1≦θ2とされていることが好ましい。
また、第一傾斜面11と周縁端29との間には、これらを接続する第一曲面13が設けられている。また、第二傾斜面12と周縁端29との間には、これらを接続する第二曲面14が設けられている。第一曲面13の曲率半径R1の範囲は80μmから250μmの範囲が好ましく、第二曲面14の曲率半径R2の範囲は100μmから300μmの範囲が好ましい。
この空孔注入工程S03では、1150〜1250℃、または1100〜1200℃、より好ましくは1170〜1180℃で、5〜60秒、昇温・降温速度ともに、50〜100℃/分で、かつ、窒素または、アンモニア等空孔注入効果を有するガス雰囲気として、ランプアニールなど枚葉アニール炉でおこなわれる。ここで、1050〜1150℃程度の低い温度でアンモニアなどの分解温度が低いガス雰囲気で表面を窒化して空孔注入をおこなった場合には、表面窒化による空孔のウェーハ表面からの注入のみが優勢である。これは、窒化膜形成に際して、ウェーハ表面におけるシリコン単結晶の結晶格子からシリコン原子を奪い取って単結晶外側に窒化シリコン膜を形成してゆくために、(格子間シリコンと対になっていない)空孔のみの形成となり、これがウェーハ表面から内側に向けて拡がり、最外部(表面側)の空孔のみが冷却時に減って、ウェーハ厚み方向表面及び裏面付近に空孔濃度のピークが形成されてM型の空孔濃度分布が実現されると考えられる。なお、この低い温度範囲においては、窒素ガス雰囲気では表面窒化が起こりにくいので、窒素よりも分解温度の低いアンモニア等のガス雰囲気とすることが必要である。
このFrenkel対生成による空孔形成は、空孔の拡散係数に対して格子間シリコンの拡散係数がはやいため、ウェーハ厚み方向全域で生成したFrenkel対のうち、格子間シリコンのみがウェーハ表面側に拡散していき、結果的にバルク領域には空孔のみが形成されるものである。なお、このFrenkel対生成による空孔形成は、表面窒化をおこなわないでRTA処理した際の空孔形成、あるいは、表面に自然酸化膜以上の厚みを有する酸化膜が存在した状態でのRTA処理した際の空孔形成として認識される。
したがって、上記の1150〜1250℃、1170〜1180℃程度高温処理においては、バルク領域において、低い温度での処理による表面からの空孔注入と、Frenkel対による空孔形成の両方がおこることになり、結果的に、ウェーハ厚み方向中央部分のバルク領域における空孔濃度がウェーハ厚み方向および面内方向に均一で、かつ低温処理よりも高い状態を実現することができるものである。
この空孔制御熱処理工程S04では、図8に示すZ領域となる処理温度と処理時間の関係を満たし、かつ、1000℃〜1100℃の温度範囲、1〜16時間の処理時間で熱処理して、図7Bに示すように、ウェーハW全面の表面WS1側に厚さ方向寸法が100〜200μmであるIGBT用デバイスの形成されるデバイス領域W1および該デバイス領域W1よりも裏面側にデバイス形成後に除去されるゲッタリング領域W2,W3を形成する。
このゲッタリング領域W2,W3は、ウェーハ厚み方向中央部位置で、空孔濃度が厚み方向にほぼ均一状態に高濃度に分布した中央領域W2と、ウェーハW裏面WS2側でデバイス領域W1とほぼ同様の状態である裏面側領域W3とからなる。
デバイス領域W1は、表面WS1から100〜200μm、好ましくは140〜160μm、より好ましくは150μm程度の厚みを有し、空孔制御熱処理工程S04の熱処理により、空孔が外方拡散および格子間シリコンとの結合によってほぼ消滅しているとみなせる程度に低減している。このため、後工程における熱処理での酸素析出が抑制可能な状態となっている。
ゲッタリング領域のうち、中央領域W2では、空孔の高濃度状態が維持され、後工程における熱処理での酸素析出が充分可能な状態となっている。
裏面側領域W3では、デバイス領域と同様の状態となっている。
また、シリコン融液に窒素を添加することで、Grown−in欠陥フリーなシリコン単結晶が引き上げ可能な速度の許容幅を更に広げることができ、ウェーハのCOP欠陥および転位クラスタの排除が容易になる。
以上のようにして製造されたシリコン単結晶ウェーハは、結晶径方向全域においてCOP欠陥および転位クラスタが排除されており、格子間酸素濃度が8.5×1017atoms/cm3以下であり、ウェーハ面内における抵抗率のばらつきが5%以下となっている。また、抵抗率自体は48Ω・cm〜52Ω・cm程度となる。更にシリコン単結晶ウェーハには、5×1012atoms/cm3以上5×1015atoms/cm3以下の窒素がドープされている。
更に本実施形態のシリコン単結晶ウェーハにおいては、破壊電界8MV/cmでのTZDBの合格率が90%以上であり、450℃で1時間の熱処理を行った場合に析出する酸素ドナーの濃度が9.8×1012個/cm−3以下であり、800℃で4時間と1000℃で16時間の二段階熱処理を行った場合に生じるBMDの密度が5×107個/cm−3以下であり、前記二段階熱処理を行った場合における再結合ライフタイムが100μ秒以上となっている。
更にまた、本実施形態のシリコン単結晶ウェーハにおいては、ウェーハ表面における0.1μm以上のLPD密度が0.1個/cm2以下であり、ライトエッチング欠陥密度が1×103個/cm2以下になっている。更にまた、本実施形態のシリコン単結晶ウェーハには、裏面側に50nm以上2000nm以下の多結晶シリコン層が形成されており、ウェーハの表面の周縁部には表面側面取り部が形成され、ウェーハの裏面の周縁部には裏面側面取り部が形成されることもできる。
IGBT用の製造工程としては、本実施形態のIGBT用のシリコン単結晶ウェーハWに対して、表3に示すような熱処理条件とされるIGBT用デバイスプロセスSD1により、図7Cに示すように、デバイス領域W1にデバイスDを形成する。
なお図において、デバイスDは模式的に記載している。
その後、チップ毎への切断、裏面処理等のデバイス仕上げ工程SD3により、図5に示すIGBT素子が完成することとなる。
同時に、表面WS1から150μm以上または200μm以上の深さでデバイス領域W1に隣接するバックグラインド領域W2においては、IGBT用デバイスプロセスSD1を経た後で、酸素析出が起きてBMD(酸素析出物)密度が5×104個/cm3以上1×107個/cm3以下となり、BMDのゲッタリング(IG)効果によってIGBT用デバイスプロセスSD1の最中に、デバイス領域W1を金属汚染から保護することができる。
しかも、バックグラインド領域W2,W3は、バックグラインド工程SD2により除去されるため、完成したIGBT素子には厚み方向(エミッタ−コレクタ方向)にはその全域にわたってBMDが含まれないため、BMDによるIGBT特性の劣化を生じさせない さらに、本実施形態においては、IGBT用シリコン単結晶ウェーハは、デバイス工程における初期からバックグラインド領域がゲッタリング(IG)能を有するので、ウェーハ裏面WS2へのポリシリコン膜形成処理などのEG処理を省略して製造コストを低減することができる。
さらに、OSF領域が排除されて、OSFの密度が10個/cm2以上である領域が存在しないので、IGBT製造工程におけるウェーハ表面でのゲート酸化膜の形成時に、COP欠陥がゲート酸化膜に取り込まれることがなく、GOIを劣化させることがない。また、集積回路におけるリーク電流を防止できる。さらに、良品率を90%以上とすることができる。
更に、格子間酸素濃度が上記の範囲以下なので、ウェーハの熱処理後に発生する酸素ドナーの濃度を9.8×1012個/cm3以下に抑えることができ、熱処理前後でのウェーハの抵抗率の変化を防ぐことができ、シリコン単結晶ウェーハの品質を安定にできる。
また、本発明のシリコン単結晶ウェーハによれば、ウェーハ面内における抵抗率のばらつきが5%以下なので、シリコン単結晶ウェーハの品質を安定にできる。
更に、シリコン単結晶に、上記の範囲とされる窒素がドープされることによって、COP欠陥および転位クラスタの排除が容易になる。窒素のドープ量が上記の範囲未満ではCOP欠陥および転位クラスタの排除が完全になされない虞があり、上記の範囲を超えると、窒化物が生成してシリコン単結晶が育成できなくなる。
また、TZDBの合格率が90%以上であり、450℃で1時間の熱処理を行った場合に発生する酸素ドナーの濃度が9.8×1012個/cm3以下であり、800℃で4時間と1000℃で16時間の二段階熱処理を行った場合に析出するBMDの密度が5×107個/cm3以下であり、二段階熱処理を行った場合における再結合ライフタイムが100μ秒以上であるので、IGBT用のシリコン単結晶ウェーハに求められる特性を満たすことができる。
CZ法により、種々の格子間酸素濃度を有するシリコンインゴットを製造した。具体的には、多結晶シリコン塊を石英ルツボに投入し、アルゴン雰囲気中で多結晶シリコン塊を加熱してシリコン融液とした。シリコン融液にはドーパントとしてリンを添加した。リンの添加量は、シリコン単結晶の抵抗率が65Ω・cmになるように調整した。次に、磁場供給装置から3000G(0.3T)の水平磁場を磁場中心高さが融液液面に対して−75〜+50mmとなるように供給しながら、シリコン融液に種結晶を浸漬させ、次に種結晶及び石英ルツボを回転させながら種結晶を徐々に引き上げて種結晶の下に単結晶を成長させた。尚、単結晶の成長速度(引き上げ速度)をV(mm/分)とし、単結晶成長時の融点から1350℃の温度勾配G(℃/分)としたときの比V/Gを0.185程度に設定し、Vを0.49mm/分に設定した。このようにして、条件1〜4の引き上げ条件で引き上げられてなる単結晶シリコンのインゴットを製造した。なお、シリコンインゴットにおける格子間酸素濃度は、石英ルツボの回転数を調整することにより制御した。また、条件4では、シリコン融液中に窒化珪素膜付きのシリコンウェーハを投入することにより、シリコン単結晶中に4.1×1014atoms/cm3の窒素をドープした。
更に表1には、引き上げ速度の許容幅を示す。この許容幅は、結晶の引き上げ速度を徐々に低下させ育成したを結晶を育成方向に縦割り加工しGrown−in欠陥分布をCuデコレーション後にX−rayトポグラフィー法により観察することでCOP領域を、またライトエッチング欠陥を測定することで転位クラスター領域を判定しもとめた結晶径方向全域においてCOP欠陥および転位クラスタが排除できる引き上げ速度マージンである。
また、条件2と3を比較すると、条件3では結晶の回転速度の高速化によって抵抗率のばらつきは低減されたが、引き上げ速度の許容幅が大幅に低下した。これは、単結晶の回転速度の増大によって、シリコン融液と単結晶との間の固液界面形状が変化したためと考えられる。
更に、条件4については、条件3に対し、窒素をドープしたことによって引き上げ速度の許容幅が増大したが、抵抗率のばらつきも増大した。これは、窒素ドープによってシリコン融液の対流状態が変化したためと考えられる。
CZ法により、種々の格子間酸素濃度を有するシリコンインゴットを製造した。具体的には、多結晶シリコン塊を石英ルツボに投入し、アルゴン雰囲気中で多結晶シリコン塊を加熱してシリコン融液とした。シリコン融液に種結晶を浸漬させ、次に種結晶及び石英ルツボを回転させながら種結晶を徐々に引き上げて種結晶の下に単結晶を成長させた。尚、単結晶の成長速度(引き上げ速度)をV(mm/分)とし、単結晶成長時の融点から1350℃の温度勾配G(℃/分)としたときの比V/Gを0.185程度に設定し、Vを0.49mm/分に設定した。このようにして、条件5〜14の引き上げ条件で引き上げられてなる単結晶シリコンのインゴットを製造した。
また、条件3において結晶の回転速度の高速化によって低下した引き上げ速度の許容幅は、条件8〜10に示すように雰囲気中に水素を導入することによって改善された。条件8〜10のように、所定量の水素を導入すると共に、ルツボ回転速度並びに単結晶の回転速度を制御することによって、格子間酸素濃度の低減と、抵抗率のばらつきの低減と、引き上げ速度の許容幅の拡大を同時に実現できることが判明した。
また、条件4において窒素ドープによって増大した抵抗率のばらつきは、条件12及び13に示すように雰囲気中に水素を導入することによって改善された。これは、窒素ドープによって引き起こされたシリコン融液の対流状態の変動を水素の導入によって抑制できたためと考えられる。また条件12及び13では、引き上げ速度の許容幅についても、窒素ドープ単独(条件5〜6)、水素導入単独(条件7〜11)の場合と比べて拡大することができた。
更にこの条件12及び13に対して、リンの導入を中性子照射により行った条件14では、抵抗率のばらつきがより低減された。
COPおよび転位を含まないφ300mmシリコン単結晶から切り出され、ウェーハ中心部の酸素濃度が11.0×1017atoms/cm3 (ASTM F121−1979)のウェーハを用意した。このウェーハを、アルゴンとアンモニアの混合ガス雰囲気中で1200℃、10secの条件でランプアニール炉によりRTA処理(空孔注入処理)を施した。その後、ウェーハ深さ方向(厚さ方向)のBMD密度を計測するため、表4に示すように、空孔制御熱処理工程S04としての熱処理(窒素雰囲気中で1000℃の熱処理時間を0、0.5,1,2,時間)およびIGBT製造プロセスを模擬した熱処理として窒素雰囲気中で800℃4hr+1000℃16hrの熱処理を実施した。
このBMD密度測定結果を図9に示す。
Claims (3)
- チョクラルスキー法によってシリコン単結晶を育成することにより得られるIGBT用シリコン単結晶ウェーハの製造方法であって、
シリコン単結晶の引き上げ速度をGrown−in欠陥フリーなシリコン単結晶が引き上げ可能な速度で、格子間酸素濃度が8.5×1017atoms/cm3以下の単結晶を育成する引き上げ工程と、
前記単結晶からスライスしたウェーハを1175℃以上でRTA処理する空孔注入工程と、
前記空孔注入工程後に、1000℃〜1100℃の温度範囲、1〜16時間の処理時間で熱処理して前記ウェーハ全面の表面側に厚さ方向寸法が100〜200μmであるIGBT用デバイスの形成されるデバイス領域および該デバイス領域よりも裏面側にデバイス形成後に除去されるゲッタリング領域を形成する空孔制御熱処理工程と、
を有し、
チョクラルスキー法によってシリコン単結晶を育成する際に、シリコン融液にn型ドーパントを添加するか、シリコン融液にリンを2.9×1013atoms/cm3以上2.9×1015atoms/cm3以下、前記リンよりも偏析係数の小さなp型ドーパントを、その偏析係数に応じて結晶中の濃度が1×1013atoms/cm3以上1×1015atoms/cm3以下となるように添加するか、または、引き上げ後のシリコン単結晶に中性子照射を行うことで、リンをドープすることを特徴とするIGBT用シリコン単結晶ウェーハの製造方法。 - 前記シリコン単結晶に、5×1012atoms/cm 3 以上5×1015atoms/cm3以下の窒素をドープすることを特徴とする請求項1に記載のIGBT用シリコン単結晶ウェーハの製造方法。
- CZ炉内の雰囲気ガス中に水素ガス換算分圧で40Pa以上400Pa以下の範囲となる水素原子含有物質を導入することを特徴とする請求項1または2に記載のIGBT用シリコン単結晶ウェーハの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009530203A JP5278324B2 (ja) | 2007-08-29 | 2008-08-29 | Igbt用シリコン単結晶ウェーハの製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007223065 | 2007-08-29 | ||
JP2007223065 | 2007-08-29 | ||
JP2009530203A JP5278324B2 (ja) | 2007-08-29 | 2008-08-29 | Igbt用シリコン単結晶ウェーハの製造方法 |
PCT/JP2008/065522 WO2009028658A1 (ja) | 2007-08-29 | 2008-08-29 | Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法、igbt用シリコン単結晶ウェーハの抵抗率保証方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2009028658A1 JPWO2009028658A1 (ja) | 2010-12-02 |
JP5278324B2 true JP5278324B2 (ja) | 2013-09-04 |
Family
ID=40387368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009530203A Active JP5278324B2 (ja) | 2007-08-29 | 2008-08-29 | Igbt用シリコン単結晶ウェーハの製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5278324B2 (ja) |
WO (1) | WO2009028658A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7142153B2 (ja) | 2019-04-02 | 2022-09-26 | 株式会社ユポ・コーポレーション | 印刷用紙及び印刷物 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5764937B2 (ja) | 2011-01-24 | 2015-08-19 | 信越半導体株式会社 | シリコン単結晶ウェーハの製造方法 |
JP2013129564A (ja) * | 2011-12-21 | 2013-07-04 | Siltronic Ag | シリコン単結晶基板およびその製造方法 |
JP6167752B2 (ja) * | 2013-08-21 | 2017-07-26 | 信越半導体株式会社 | シリコン単結晶材料の製造方法 |
DE102014107590B3 (de) * | 2014-05-28 | 2015-10-01 | Infineon Technologies Ag | Halbleitervorrichtung, Siliziumwafer und Verfahren zum Herstellen eines Siliziumwafers |
EP4151782B1 (de) * | 2021-09-16 | 2024-02-21 | Siltronic AG | Verfahren zur herstellung einer halbleiterscheibe aus einkristallinem silizium und halbleiterscheibe aus einkristallinem silizium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002057159A (ja) * | 2000-08-07 | 2002-02-22 | Sumitomo Metal Ind Ltd | シリコンウェーハおよびその製造方法 |
JP2006261632A (ja) * | 2005-02-18 | 2006-09-28 | Sumco Corp | シリコンウェーハの熱処理方法 |
US20070193501A1 (en) * | 2006-02-21 | 2007-08-23 | Sumco Corporation | Silicon single crystal wafer for IGBT and method for manufacturing silicon single crystal wafer for IGBT |
-
2008
- 2008-08-29 WO PCT/JP2008/065522 patent/WO2009028658A1/ja active Application Filing
- 2008-08-29 JP JP2009530203A patent/JP5278324B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002057159A (ja) * | 2000-08-07 | 2002-02-22 | Sumitomo Metal Ind Ltd | シリコンウェーハおよびその製造方法 |
JP2006261632A (ja) * | 2005-02-18 | 2006-09-28 | Sumco Corp | シリコンウェーハの熱処理方法 |
US20070193501A1 (en) * | 2006-02-21 | 2007-08-23 | Sumco Corporation | Silicon single crystal wafer for IGBT and method for manufacturing silicon single crystal wafer for IGBT |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7142153B2 (ja) | 2019-04-02 | 2022-09-26 | 株式会社ユポ・コーポレーション | 印刷用紙及び印刷物 |
Also Published As
Publication number | Publication date |
---|---|
WO2009028658A1 (ja) | 2009-03-05 |
JPWO2009028658A1 (ja) | 2010-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6210125B2 (ja) | シリコン単結晶ウェーハ | |
JP4760729B2 (ja) | Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法 | |
JP5359874B2 (ja) | Igbt用シリコン単結晶ウェーハの製造方法 | |
JP4631717B2 (ja) | Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法 | |
JP5321460B2 (ja) | Igbt用シリコン単結晶ウェーハの製造方法 | |
US6843847B1 (en) | Silicon single crystal wafer and production method thereof and soi wafer | |
JP5246163B2 (ja) | Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法 | |
US20070095274A1 (en) | Silicon wafer and method for producing same | |
JP3692812B2 (ja) | 窒素ドープした低欠陥シリコン単結晶ウエーハおよびその製造方法 | |
JP2010222241A (ja) | Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法 | |
KR101323912B1 (ko) | 실리콘 웨이퍼 및 그 제조 방법 | |
JP5387408B2 (ja) | Igbt用シリコン単結晶ウェーハの製造方法 | |
JP5278324B2 (ja) | Igbt用シリコン単結晶ウェーハの製造方法 | |
JP4529416B2 (ja) | シリコン単結晶ウェーハの製造方法及びシリコン単結晶ウェーハ | |
US20100127354A1 (en) | Silicon single crystal and method for growing thereof, and silicon wafer and method for manufacturing thereof | |
JP5304649B2 (ja) | Igbt用のシリコン単結晶ウェーハの製造方法 | |
JPWO2009025339A1 (ja) | Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法 | |
JPWO2009025341A1 (ja) | Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法 | |
JP2005119964A (ja) | 窒素ドープした低欠陥シリコン単結晶ウエーハおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130325 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130506 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5278324 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |