この種の過電圧保護回路を備えた電力供給制御回路として,例えば特許文献1に開示されたものがある。その構成を図1を用いて説明する。
過電圧保護回路100は、ゲート電荷放電回路108、ゲート抵抗107、出力MOSトランジスタ109、クランプ切換スイッチ110、ダイナミッククランプ回路111、負荷112を有している。過電圧保護回路100の接続について詳細に説明する。
Nチャネル出力MOSトランジスタ109の第1の端子(例えば、ドレイン)は第1の電源(例えば、バッテリー電源)101に接続されており、第2の端子(例えば、ソース)は負荷112を介して第2の電源(例えば、接地電位)102に接続されている。出力MOSトランジスタ109と負荷112との間の接続点には出力端子106が接続されている。また、出力MOSトランジスタ109の制御端子(例えば、ゲート)はゲート抵抗107の一端が接続されている。ゲート抵抗107の他の一端には、第1の制御信号104が入力され、さらにゲート抵抗107の他の一端と出力端子106との間にはゲート電荷放電回路108が接続されている。ゲート電荷放電回路108は、本実施の形態では、1つのMOSトランジスタである。ゲート電荷放電回路108のドレインは、ゲート抵抗107の他の一端に接続されており、ソースは出力端子106に接続されている。また、ゲート電荷放電回路108のゲートには、第2の制御信号105が入力されている。
また、出力MOSトランジスタ109のゲートとバッテリー電源101との間には第1のスイッチ110とダイナミッククランプ回路111が直列に接続されている。本実施の形態では、第1のスイッチ110は、1つのNチャネルMOSトランジスタであり、ダイナミッククランプ回路111は、1つのツェナーダイオードである。
第1のスイッチ110は、ソースが出力トランジスタ109のゲートに接続され、ドレインがダイナミッククランプ回路111のアノードに接続されており、制御端子(例えば、ゲート)は基準電圧(例えば、接地電位)103に接続されている。さらに、本実施の形態では、第1のスイッチ110の基板端子は、出力端子に接続されている。また、ダイナミッククランプ回路111のカソードは、バッテリー電源101に接続されている。
第1のスイッチ110は、2つの電圧の比較結果に基づいて、導通状態と非導通状態とが切り換わるスイッチである。例えば、接地電位と出力MOSトランジスタ109のゲート電圧とを比較して、2つの電圧の差が第1のスイッチ110であるMOSトランジスタの閾値以上となった場合に導通状態となるスイッチである。
ダイナミッククランプ回路111は、アノード−カソード間の電圧差がダイオードの降伏電圧以上になった場合に、アノード−カソード間の電圧差を所定の電圧値(例えば、ダイナミッククランプ電圧)以下に制限する回路である。
負荷112は、ソレノイド等のインダクタンス成分を有するL負荷、あるいは出力端子に接続されるワイヤーハーネスのインダクタンス成分である。
過電圧保護回路100の動作について詳細に説明する。ここで、過電圧保護回路100は、出力MOSトランジスタ109が導通状態になり、負荷112によって出力端子106に電圧を発生する導通モードと、出力MOSトランジスタ109が非導通状態になるターンオフ時に出力端子106に負電圧サージが発生する負電圧サージモード、バッテリーの端子がオルタネータの発電中にはずれることによってバッテリー電源101に正電圧サージ(ダンプサージ)が発生するダンプサージモードとがある。なお、ダンプサージとしての正電圧サージのエネルギーは比較的大きく、そのようなサージに対し出力トランジスタが破壊しないようにする必要がある。以下、これら3つのモードに分けて過電圧保護回路100の動作を説明する。
まず、導通モードでは、第1の制御信号104がHigh(ハイ)レベルとなると、出力MOSトランジスタ109が導通状態となる。第1の制御信号104のHighレベル信号は、出力MOSトランジスタ109を低チャネル抵抗で導通状態とするため、例えばバッテリー電源を昇圧した電圧である。これによって、負荷112に電圧が発生して、出力端子106から電圧を出力する。また、この場合、ゲート電荷放電回路108は、第1の制御信号104とは逆相となる第2の制御信号105によって制御される。第2の制御信号105のLow(ロウ)レベルは、例えば接地電位である。第2の制御信号105がLowレベルであった場合、ゲート電荷放電回路108は非導通状態となる。
ここで、導通モードの場合、第1のスイッチ110のゲート電圧が接地電位であるため、出力MOSトランジスタ109のゲート電圧の値によらず、第1のスイッチ110は非導通状態となる。従って、出力MOSトランジスタ109のゲートとダイナミッククランプ回路111とは、切断された状態であって、出力MOSトランジスタ109のゲートからバッテリー電源101側に電流は流れない。つまり、第1のスイッチ110は、出力MOSトランジスタ109のゲートからバッテリー電源101への電流の逆流防止機能も有している。
負電圧サージモードの動作について説明する。負電圧サージは、出力MOSトランジスタ109が非導通状態になるターンオフ時に発生する。この場合、第1の制御信号104は、Lowレベルであり、第2の制御信号105は、Highレベルである。ここで、第1の制御信号104のLowレベルは、例えば接地電位であって、第2の制御信号105のHighレベルは、バッテリー電源の電圧である。
第2の制御信号105がHighレベルである場合、ゲート電荷放電回路108は導通状態である。従って、出力MOSトランジスタ109のゲート電荷は、ゲート抵抗107とゲート電荷放電回路108を介して放電される。ここで、出力MOSトランジスタ109が非導通状態となるため、負荷112のL成分が負電圧サージを発生させる。そのとき、第1のスイッチ110は、ゲート抵抗107とゲート電荷放電回路108とを介して出力端子106と電気的に接続される。ここで、出力MOSトランジスタ109が非導通状態となるため、負荷112のL成分が図2に示すような負電圧サージを発生させる。
この負電圧が発生すると、出力端子106の電圧が降下する。ここで、ゲート電荷放電回路108が導通状態である。このため、出力端子106の電圧と出力MOSトランジスタ109のゲートの電圧とは、実質的に同じ電圧となり、出力端子106の電圧降下に基づいて出力MOSトランジスタ109のゲートの電圧も降下する。第1のスイッチ110のゲート電圧と出力MOSトランジスタ109のゲートとの電位差が第1のスイッチ110の閾値を上回ると、第1のスイッチ110は導通状態となる。その後、さらに出力MOSトランジスタ109のゲートの電圧が降下し、ダイナミッククランプ回路111の両端の電位差が、ダイナミッククランプ回路の降伏電圧以上になると、ダイナミッククランプ回路111の両端にダイナミッククランプ電圧が発生する。また、出力MOSトランジスタ109は導通状態となる。これによって、出力MOSトランジスタ109のドレイン−ゲート間電圧は、ダイナミッククランプ電圧によって制限される。さらに、出力MOSトランジスタ109のドレイン−ソース間の電圧は、ダイナミッククランプ電圧と出力MOSトランジスタ109の閾値電圧を足し合わせた電圧値によって制限される。
この場合、出力MOSトランジスタ109は導通状態であるため、負荷の抵抗成分で決まる電流がドレイン−ソース間に流れる。つまり、出力MOSトランジスタ109の消費電力は、ダイナミッククランプ電圧×負荷の抵抗成分で決まる電流値となる。負荷の抵抗成分は、この消費電力によって、出力MOSトランジスタ109が熱破壊しないように設定されている。また、出力MOSトランジスタ109の閾値電圧をゲート抵抗107の抵抗値で割ることで求まる電流がダイナミッククランプ回路に流れる。この電流は、例えば数十μA程度である。
次に、ダンプサージモードの動作について説明する。図3に示すようなダンプサージがバッテリー電源101に印加され、バッテリー電源101の電圧が上昇する。この場合、第1のスイッチ110のゲート電圧は接地電位となっており、出力端子106は、正電圧であるため、第1のスイッチ110は、非導通状態となる。つまり、出力MOSトランジスタ109のゲートとバッテリー電源101は切り離されるため、出力MOSトランジスタ109のゲート電圧は、バッテリー電源101の電圧変動の影響を受けることはない。つまり、出力MOSトランジスタ109は、非導通状態となる。
これによって、出力MOSトランジスタ109は、非導通状態であって、ソース−ドレイン間の電圧がダンプサージ電圧となる。ここで、出力MOSトランジスタ109のドレイン−ゲート間の耐圧、及び、ドレイン−ソース間の耐圧は、一般的にダンプサージ電圧よりも高くなるように設計されているため、ダンプサージによって出力MOSトランジスタ109が破壊されることはない。
上述の説明より、従来例の過電圧保護回路100によれば、負電圧モードの出力端子106の変化に基づいて、第1のスイッチ110を導通状態とすることで、ダイナミッククランプ回路111を動作させて負電圧サージから出力MOSトランジスタ109を保護する。また、導通モードとダンプサージモードの場合には、出力端子106が負電圧を発生しないことから、第1のスイッチ110は非導通状態となり、ダイナミッククランプ回路111を無効にする。つまり、過電圧保護回路100は、出力端子106の電圧が負電圧となった場合に、ダイナミッククランプ回路111による出力MOSトランジスタ109の保護を行い、その他のモードでは、ダイナミッククランプ回路を使わずに出力MOSトランジスタ109の耐圧によって破壊を防ぐ回路である。
以下、本発明の実施の形態について図面を参照して詳細に説明する。
図5を参照すると、本発明の第1の実施形態による電力供給制御回路は、ゲート電荷放電回路108、ゲート抵抗107、出力MOSトランジスタ109、クランプ切換スイッチ110、第1のダイナミッククランプ回路111、第2のダイナミッククランプ回路114、ダイオード116、第2のスイッチ113、プルダウン素子115、負荷112を有している。過電圧保護回路100の接続について詳細に説明する。
Nチャネル出力MOSトランジスタ109の第1の端子(例えば、ドレイン)は第1の電源(例えば、バッテリー電源)としての電源ライン101に接続されており、第2の端子(例えば、ソース)は負荷112を介して第2の電源(例えば、接地電位)102に接続されている。出力MOSトランジスタ109と負荷112との間の接続点には出力端子106が接続されている。また、出力MOSトランジスタ109の制御端子(例えば、ゲート)はゲート抵抗107の一端が接続されている。ゲート抵抗107の他の一端には、第1の制御信号104が入力され、さらにゲート抵抗107の他の一端と出力端子106との間にはゲート電荷放電回路108が接続されている。ゲート電荷放電回路108は、本実施の形態では、1つのNチャネルMOSトランジスタである。ゲート電荷放電回路108のドレインは、ゲート抵抗107の他の一端に接続されており、ソースは出力端子106に接続されている。また、ゲート電荷放電回路108のゲートには、第2の制御信号105が入力されている。
また、出力MOSトランジスタ109のゲートとバッテリー電源101との間には第1のスイッチ110と第1のダイナミッククランプ回路111が直列に接続されている。本実施の形態では、第1のスイッチ110は、1つのNチャネルMOSトランジスタであり、第1のダイナミッククランプ回路111は、1つのツェナーダイオードである。
第1のスイッチ110は、ソースが出力トランジスタ109のゲートに接続され、ドレインが第1のダイナミッククランプ回路111のアノードに接続されており、制御端子(例えば、ゲート)は基準電圧(例えば、接地電位)103に接続されている。さらに、本実施の形態では、第1のスイッチ110の基板端子は、出力端子に接続されている。また第1のダイナミッククランプ回路111のカソードは、バッテリー電源101に接続されている。
第1のスイッチ110は、2つの電圧の比較結果に基づいて、導通状態と非導通状態とが切り換わるスイッチである。例えば、接地電位と出力MOSトランジスタ109のゲート電圧とを比較して、2つの電圧の差が第1のスイッチ110であるMOSトランジスタの閾値以上となった場合に導通状態となるスイッチである。
第1のダイナミッククランプ回路111は、アノード−カソード間の電圧差がダイオードの降伏電圧以上になった場合に、アノード−カソード間の電圧差を所定の電圧値(例えば、第1のダイナミッククランプ電圧)以下に制限する回路である。負荷112は、ソレノイド等のインダクタンス成分を有するL負荷、あるいは出力端子に接続されるワイヤーハーネスのインダクタンス成分である。
また、出力MOSトランジスタ109のゲートと第1のダイナミッククランプ回路111のアノードとの間には第2のスイッチ113と第2のダイナミッククランプ回路114、ダイオード116が直列に接続されている。本実施の形態では、第2の切換スイッチ113は、1つのNチャネルMOSトランジスタであり、第2のダイナミッククランプ回路114、ダイオード116は、それぞれ1つのツェナーダイオードである。
第2のスイッチ113は、ソースが出力トランジスタ109のゲートに接続され、ドレインがダイオード116のアノードに接続されており、制御端子(例えば、ゲート)はダイオード116のカソードに接続されるとともに、プルダウン素子115を介して出力端子106に接続されている。さらに、本実施の形態では、第2のスイッチ113の基板端子は、出力端子に接続されている。またダイオード116のカソードは、第2のダイナミッククランプ回路114のアノードに接続されている。第2のダイナミッククランプ回路114のカソードは、第1のダイナミッククランプ回路111のアノードに接続されている。また、本実施の形態では、プルダウン素子115はデプレッション型のNチャネルMOSトランジスタで、ドレインが第2のスイッチ113のゲート、ソースとゲートが出力端子106に接続されている。
次に,過電圧保護回路100の動作について詳細に説明する。ここで、過電圧保護回路100は、出力MOSトランジスタ109が導通状態になり、負荷112によって出力端子106に電圧を発生する導通モードと、出力MOSトランジスタ109が非導通状態になるターンオフ時に出力端子106に負電圧サージが発生する負電圧サージモード、バッテリーの端子がオルタネータの発電中にはずれることによってバッテリー電源101に正電圧サージ(ダンプサージ)が発生するダンプサージモード、ダンプサージ電圧以上の電圧値を持つがエネルギーの小さな正電源サージとがある。この4つのモードに分けて過電圧保護回路100の動作を説明する。
なお、図の点線で囲った第2の過電圧保護回路以外の動作は、従来例と実質同一であるので、詳細な説明はここでは省略し、概要だけに止める。
まず、導通モードでは、第1の制御信号104がHighレベルとなると、出力MOSトランジスタ109が導通状態となる。第1の制御信号104のHighレベル信号は、出力MOSトランジスタ109を低チャネル抵抗で導通状態とするため、例えばバッテリー電源を昇圧した電圧である。これによって、負荷112に電圧が発生して、出力端子106から電圧を出力する。また、この場合、ゲート電荷放電回路108は、第1の制御信号104とは逆相となる第2の制御信号105によって制御される。第2の制御信号105のLowレベルは、例えば接地電位である。第2の制御信号105がLowレベルであった場合、ゲート電荷放電回路108は非導通状態となる。
ここで、導通モードの場合、第2のスイッチ113のゲート電圧は、MOSトランジスタ115を介して出力端子106の電位であるため、出力MOSトランジスタ109のゲート電圧の値によらず、第2のスイッチ113は非導通状態となる。従って、出力MOSトランジスタ109のゲートと第2のダイナミッククランプ回路114、ダイオード116とは、切断された状態であって、出力MOSトランジスタ109のゲートからバッテリー電源101側に電流は流れない。つまり、第2のスイッチ113は、出力MOSトランジスタ109のゲートからバッテリー電源101への電流の逆流防止機能も有している。
負電圧サージモードの動作について説明する。負電圧サージは、出力MOSトランジスタ109が非導通状態になるターンオフ時に発生する。この場合、第1の制御信号104は、Lowレベルであり、第2の制御信号105は、Highレベルである。ここで、第1の制御信号104のLowレベルは、例えば接地電位であって、第2の制御信号105のHighレベルは、バッテリー電源の電圧である。
第2の制御信号105がHighレベルである場合、ゲート電荷放電回路108は導通状態である。従って、出力MOSトランジスタ109のゲート電荷は、ゲート抵抗107とゲート電荷放電回路108を介して放電される。ここで、出力MOSトランジスタ109が非導通状態となるため、負荷112のL成分が負電圧サージを発生させる。
そのとき、第2の過電圧保護回路(図の波線で囲った回路)は、第1の過電圧保護回路(図の波線で囲った以外の回路)よりも大きなクランプ電圧に設定されているので、第2のスイッチ113は非導通状態となる。従って、出力MOSトランジスタ109のゲートと第2のダイナミッククランプ回路114、ダイオード116とは、切断された状態となる。
一方、第1のスイッチ110は、第1のスイッチ110のゲート電圧と出力MOSトランジスタ109のゲートとの電位差が第1のスイッチ110の閾値を上回ると、導通状態となる。その後、さらに出力MOSトランジスタ109のゲートの電圧が降下し、第1のダイナミッククランプ回路111の両端の電位差が、第1のダイナミッククランプ回路111の降伏電圧以上になると、ダイナミッククランプ回路111の両端にダイナミッククランプ電圧が発生する。また、出力MOSトランジスタ109は導通状態となる。これによって、出力MOSトランジスタ109のドレイン−ゲート間電圧は、第1のダイナミッククランプ電圧によって制限される。さらに、出力MOSトランジスタ109のドレイン−ソース間の電圧は、第1のダイナミッククランプ電圧と出力MOSトランジスタ109の閾値電圧を足し合わせた電圧値によって制限される。
次に、ダンプサージモードの動作について説明する。ダンプサージがバッテリー電源101に印加され、バッテリー電源101の電圧が上昇する。この場合、第1のスイッチ110のゲート電圧は接地電位となっており、出力端子106は、正電圧であるため、第1のスイッチ110は、非導通状態となる。つまり、出力MOSトランジスタ109のゲートとバッテリー電源101は切り離されるため、出力MOSトランジスタ109のゲート電圧は、バッテリー電源101の電圧変動の影響を受けることはない。つまり、出力MOSトランジスタ109は、非導通状態となる。
これによって、出力MOSトランジスタ109は、非導通状態であって、ソース−ドレイン間の電圧がダンプサージ電圧となる。ここで、出力MOSトランジスタ109のドレイン−ゲート間の耐圧、及び、ドレイン−ソース間の耐圧は、一般的にダンプサージ電圧よりも高くなるように設計されているため、ダンプサージによって出力MOSトランジスタ109が破壊されることはない。
上述の説明より、本実施形態にかかる過電圧保護回路100によれば、負電圧モードの出力端子106の変化に基づいて、第1のスイッチ110を導通状態とすることで、ダイナミッククランプ回路111を動作させて負電圧サージから出力MOSトランジスタ109を保護する。また、導通モードとダンプサージモードの場合には、出力端子106が負電圧を発生しないことから、第1のスイッチ110は非導通状態となり、ダイナミッククランプ回路111を無効にする。
次に、ダンプサージ以上の正電源サージに対する動作について説明する。ダンプサージ以上の正電源サージが電源端子101に印加され、バッテリー電源101の電圧が上昇する。このとき、第1の過電圧保護回路(図の波線で囲った以外の回路)の状態は、ダンプサージモードの動作時と同じになる。第2の過電圧保護回路(図の波線で囲った回路)では、電源端子101の電圧が第1のダイナミッククランプ回路111と第2のダイナミッククランプ回路114の降伏電圧を足し合わせた電圧よりも高くなると、第2のスイッチの制御端子の電位はソース電位よりも持ち上がり、第2のスイッチ113が導通状態となる。その後、さらに正電源サージが上昇し、第1のダイナミッククランプ電圧111と第2のダイナミッククランプ電圧114とダイオード116を足し合わせた電圧よりも高くなると、第1のダイナミッククランプ回路111と第2のダイナミッククランプ114とダイオード116の両端にダイナミッククランプ電圧が発生する。これによって、出力MOSトランジスタ109のドレイン−ソース間の電圧は、第1のダイナミッククランプ電圧と第2のダイナミッククランプ電圧とダイオード116の耐圧と出力MOSトランジスタ109の閾値電圧を足し合わせた電圧値によって制限される。そして、電源ラインに乗った正電源サージは、そのドレイン・ソース間電圧が上記のように制限された状態で出力MOSトランジスタが導通することで吸収される。
一般的に、出力MOSトランジスタ109の耐圧は、図3に示す40Vのダンプサージ電圧を考えた場合は、60V程度に設計されている。また、出力MOSトランジスタの閾値電圧は2.0V程度である。
第1のダイナミッククランプ回路111、第2のダイナミッククランプ回路114、ダイオード116は、それぞれ異なる耐圧を有している(同じ耐圧でも問題はない)。例えば、第1のダイナミッククランプ回路111は18V、第2のダイナミッククランプ116は25V、ダイオード116は6Vの耐圧である。このとき、負サージ電圧に対しては、20V(=18V+2.0V)程度で出力MOSトランジスタ109を過電圧保護する。また、ダンプサージ以上の電源サージに対して45V(=18V+25V+2.0V)程度で出力MOSトランジスタ109を過電圧保護する。
第1の実施例の形態では、第2のスイッチ113の制御端子(例えば、ゲート)は、プルダウン素子115を介して出力端子106に接続されており、そのプルダウン素子115はデプレッション型MOSトランジスタであるが、これが抵抗であってもよい。
第1の実施の形態では、第1のダイナミッククランプ回路111、第2のダイナミッククランプ回路114、ダイオード116は、それぞれ1つのツェナーダイオードであるが、耐圧が6V程度のツェナーダイオードを使用する方が望ましい(6Vツェナーダイオードは、製造ばらつきが小さく、温度特性もほとんど無いので、過電圧保護回路の精度をよくすることができる)。この場合、第1のダイナミッククランプ回路111、第2のダイナミッククランプ回路114は、必要な数を直列接続して接続する。
次に、本発明の第2の実施の形態について図面を参照して詳細に説明する。
図6を参照すると、本実施の形態は、ゲート電荷放電回路108、ゲート抵抗107、出力MOSトランジスタ109、クランプ切換スイッチ110、第1のダイナミッククランプ回路111、第2のダイナミッククランプ回路114、ダイオード116、第2のスイッチ113、プルダウン素子115、負荷112を有している。過電圧保護回路100の接続について詳細に説明する。
出力MOSトランジスタ109の第1の端子(例えば、ドレイン)は第1の電源(例えば、バッテリー電源)101に接続されており、第2の端子(例えば、ソース)は負荷112を介して第2の電源(例えば、接地電位)102に接続されている。出力MOSトランジスタ109と負荷112との間の接続点には出力端子106が接続されている。また、出力MOSトランジスタ109の制御端子(例えば、ゲート)はゲート抵抗107の一端が接続されている。ゲート抵抗107の他の一端には、第1の制御信号104が入力され、さらにゲート抵抗107の他の一端と出力端子106との間にはゲート電荷放電回路108が接続されている。ゲート電荷放電回路108は、本実施の形態では、1つのMOSトランジスタである。ゲート電荷放電回路108のドレインは、ゲート抵抗107の他の一端に接続されており、ソースは出力端子106に接続されている。また、ゲート電荷放電回路108のゲートには、第2の制御信号105が入力されている。
また、出力MOSトランジスタ109のゲートとバッテリー電源101との間には第1のスイッチ110と第1のダイナミッククランプ回路111が直列に接続されている。本実施の形態では、第1のスイッチ110は、1つのMOSトランジスタであり、第1のダイナミッククランプ回路111は、3つの直列接続されたツェナーダイオードである。
第1のスイッチ110は、ソースが出力トランジスタ109のゲートに接続され、ドレインが第1のダイナミッククランプ回路111のアノードに接続されており、制御端子(例えば、ゲート)は基準電圧(例えば、接地電位)103に接続されている。さらに、本実施の形態では、第1のスイッチ110の基板端子は、出力端子に接続されている。また第1のダイナミッククランプ回路111のカソードは、バッテリー電源101に接続されている。
第1のスイッチ110は、2つの電圧の比較結果に基づいて、導通状態と非導通状態とが切り換わるスイッチである。例えば、接地電位と出力MOSトランジスタ109のゲート電圧とを比較して、2つの電圧の差が第1のスイッチ110であるMOSトランジスタの閾値以上となった場合に導通状態となるスイッチである。
第1のダイナミッククランプ回路111は、アノード−カソード間の電圧差がダイオードの降伏電圧以上になった場合に、アノード−カソード間の電圧差を所定の電圧値(例えば、第1のダイナミッククランプ電圧)以下に制限する回路である。負荷112は、ソレノイド等のインダクタンス成分を有するL負荷、あるいは出力端子に接続されるワイヤーハーネスのインダクタンス成分である。
また、出力MOSトランジスタ109のゲートと第1のダイナミッククランプ回路111のアノードとの間には第2のスイッチ113と第2のダイナミッククランプ回路114、ダイオード116が直列に接続されている。本実施の形態では、第2の切換スイッチ113は、1つのMOSトランジスタであり、第2のダイナミッククランプ回路114は直列接続された3つのツェナーダイオード、ダイオード116は1つのツェナーダイオードである。
第2のスイッチ113は、ソースが出力トランジスタ109のゲートに接続され、ドレインがダイオード116のアノードに接続されており、制御端子(例えば、ゲート)はダイオード116のカソードに接続されるとともに、プルダウン素子115を介して出力端子106に接続されている。さらに、本実施の形態では、第2のスイッチ113の基板端子は、出力端子に接続されている。またダイオード116のカソードは、第2のダイナミッククランプ回路114のアノードに接続されている。第2のダイナミッククランプ回路114のカソードは、第1のダイナミッククランプ回路111のアノードに接続されている。また、本実施の形態では、プルダウン素子115はデプレッション型MOSトランジスタで、ドレインが第2のスイッチ113のゲート、ソースとゲートが出力端子106に接続されている。
動作につき説明すると、まず、導通モードでは、第1の制御信号104がHighレベルとなると、出力MOSトランジスタ109が導通状態となる。第1の制御信号104のHighレベル信号は、出力MOSトランジスタ109を低チャネル抵抗で導通状態とするため、例えばバッテリー電源を昇圧した電圧である。これによって、負荷112に電圧が発生して、出力端子106から電圧を出力する。また、この場合、ゲート電荷放電回路108は、第1の制御信号104とは逆相となる第2の制御信号105によって制御される。第2の制御信号105のLowレベルは、例えば接地電位である。第2の制御信号105がLowレベルであった場合、ゲート電荷放電回路108は非導通状態となる。
ここで、導通モードの場合、第2のスイッチ113のゲート電圧は、MOSトランジスタ115を介して出力端子106の電位であるため、出力MOSトランジスタ109のゲート電圧の値によらず、第2のスイッチ113は非導通状態となる。従って、出力MOSトランジスタ109のゲートと第2のダイナミッククランプ回路114、ダイオード116とは、切断された状態であって、出力MOSトランジスタ109のゲートからバッテリー電源101側に電流は流れない。つまり、第2のスイッチ113は、出力MOSトランジスタ109のゲートからバッテリー電源101への電流の逆流防止機能も有している。
負電圧サージモードの動作について説明する。負電圧サージは、出力MOSトランジスタ109が非導通状態になるターンオフ時に発生する。この場合、第1の制御信号104は、Lowレベルであり、第2の制御信号105は、Highレベルである。ここで、第1の制御信号104のLowレベルは、例えば接地電位であって、第2の制御信号105のHighレベルは、バッテリー電源の電圧である。
第2の制御信号105がHighレベルである場合、ゲート電荷放電回路108は導通状態である。従って、出力MOSトランジスタ109のゲート電荷は、ゲート抵抗107とゲート電荷放電回路108を介して放電される。ここで、出力MOSトランジスタ109が非導通状態となるため、負荷112のL成分が負電圧サージを発生させる。そのとき、第2の過電圧保護回路(図の波線で囲った回路)は、第1の過電圧保護回路(図の波線で囲った以外の回路)よりも大きなクランプ電圧に設定されているので、第2のスイッチ113は非導通状態となる。従って、出力MOSトランジスタ109のゲートと第2のダイナミッククランプ回路114、ダイオード116とは、切断された状態となる。一方、第1のスイッチ110は、第1のスイッチ110のゲート電圧と出力MOSトランジスタ109のゲートとの電位差が第1のスイッチ110の閾値を上回ると、導通状態となる。その後、さらに出力MOSトランジスタ109のゲートの電圧が降下し、第1のダイナミッククランプ回路111の両端の電位差が、第1のダイナミッククランプ回路111の降伏電圧以上になると、ダイナミッククランプ回路111の両端にダイナミッククランプ電圧が発生する。また、出力MOSトランジスタ109は導通状態となる。これによって、出力MOSトランジスタ109のドレイン−ゲート間電圧は、第1のダイナミッククランプ電圧によって制限される。さらに、出力MOSトランジスタ109のドレイン−ソース間の電圧は、第1のダイナミッククランプ電圧(D1a〜D1cの耐圧の和)と出力MOSトランジスタ109の閾値電圧を足し合わせた電圧値によって制限される。
次に、ダンプサージモードの動作について説明する。ダンプサージがバッテリー電源101に印加され、バッテリー電源101の電圧が上昇する。この場合、第1のスイッチ110のゲート電圧は接地電位となっており、出力端子106は、正電圧であるため、第1のスイッチ110は、非導通状態となる。つまり、出力MOSトランジスタ109のゲートとバッテリー電源101は切り離されるため、出力MOSトランジスタ109のゲート電圧は、バッテリー電源101の電圧変動の影響を受けることはない。つまり、出力MOSトランジスタ109は、非導通状態となる。
これによって、出力MOSトランジスタ109は、非導通状態であって、ソース−ドレイン間の電圧がダンプサージ電圧となる。ここで、出力MOSトランジスタ109のドレイン−ゲート間の耐圧、及び、ドレイン−ソース間の耐圧は、一般的にダンプサージ電圧よりも高くなるように設計されているため、ダンプサージによって出力MOSトランジスタ109が破壊されることはない。
上述の説明より、実施の形態2にかかる過電圧保護回路100によれば、負電圧モードの出力端子106の変化に基づいて、第1のスイッチ110を導通状態とすることで、ダイナミッククランプ回路111を動作させて負電圧サージから出力MOSトランジスタ109を保護する。また、導通モードとダンプサージモードの場合には、出力端子106が負電圧を発生しないことから、第1のスイッチ110は非導通状態となり、ダイナミッククランプ回路111を無効にする。
次に、ダンプサージ以上の正電源サージに対する動作について説明する。ダンプサージ以上の正電源サージが電源端子101に印加され、バッテリー電源101の電圧が上昇する。このとき、第1の過電圧保護回路(図の波線で囲った以外の回路)の状態は、ダンプサージモードの動作時と同じになる。第2の過電圧保護回路(図の波線で囲った回路)では、電源端子101の電圧が第1のダイナミッククランプ回路111と第2のダイナミッククランプ回路114の降伏電圧を足し合わせた電圧よりも高くなると、第2のスイッチの制御端子の電位はソース電位よりも持ち上がり、第2のスイッチ113が導通状態となる。その後、さらに正電源サージが上昇し、第1のダイナミッククランプ電圧111と第2のダイナミッククランプ電圧114とダイオード116を足し合わせた電圧よりも高くなると、ダイナミッククランプ回路111とダイナミッククランプ114とダイオード116の両端にダイナミッククランプ電圧が発生する。これによって、出力MOSトランジスタ109のドレイン−ソース間の電圧は、第1のダイナミッククランプ電圧(D1a〜D1cの耐圧の和)と第2のダイナミッククランプ電圧(D2a〜D2cの耐圧の和)とダイオード116の耐圧と出力MOSトランジスタ109の閾値電圧を足し合わせた電圧値によって制限される。
次に、本発明の第3の実施の形態について図面を参照して詳細に説明する。
図7を参照すると、本発明の実施の形態は、ゲート電荷放電回路108、ゲート抵抗107、出力MOSトランジスタ109、クランプ切換スイッチ110、第1のダイナミッククランプ回路111、第2のダイナミッククランプ回路114、ダイオード116、第2のスイッチ113、プルダウン素子115、負荷112を有している。過電圧保護回路100の接続について詳細に説明する。
出力MOSトランジスタ109の第1の端子(例えば、ドレイン)は第1の電源(例えば、バッテリー電源)101に接続されており、第2の端子(例えば、ソース)は負荷112を介して第2の電源(例えば、接地電位)102に接続されている。出力MOSトランジスタ109と負荷112との間の接続点には出力端子106が接続されている。また、出力MOSトランジスタ109の制御端子(例えば、ゲート)はゲート抵抗107の一端が接続されている。ゲート抵抗107の他の一端には、第1の制御信号104が入力され、さらにゲート抵抗107の他の一端と出力端子106との間にはゲート電荷放電回路108が接続されている。ゲート電荷放電回路108は、本実施の形態では、1つのMOSトランジスタである。ゲート電荷放電回路108のドレインは、ゲート抵抗107の他の一端に接続されており、ソースは出力端子106に接続されている。また、ゲート電荷放電回路108のゲートには、第2の制御信号105が入力されている。
また、出力MOSトランジスタ109のゲートとバッテリー電源101との間には第1のスイッチ110と第1のダイナミッククランプ回路111が直列に接続されている。本実施の形態では、第1のスイッチ110は、1つのMOSトランジスタであり、第1のダイナミッククランプ回路111は、1つのツェナーダイオードである。
第1のスイッチ110は、ソースが出力トランジスタ109のゲートに接続され、ドレインが第1のダイナミッククランプ回路111のアノードに接続されており、制御端子(例えば、ゲート)は基準電圧(例えば、接地電位)103に接続されている。さらに、本実施の形態では、第1のスイッチ110の基板端子は、出力端子に接続されている。また第1のダイナミッククランプ回路111のカソードは、バッテリー電源101に接続されている。
第1のスイッチ110は、2つの電圧の比較結果に基づいて、導通状態と非導通状態とが切り換わるスイッチである。例えば、接地電位と出力MOSトランジスタ109のゲート電圧とを比較して、2つの電圧の差が第1のスイッチ110であるMOSトランジスタの閾値以上となった場合に導通状態となるスイッチである。
第1のダイナミッククランプ回路111は、アノード−カソード間の電圧差がダイオードの降伏電圧以上になった場合に、アノード−カソード間の電圧差を所定の電圧値(例えば、第1のダイナミッククランプ電圧)以下に制限する回路である。負荷112は、ソレノイド等のインダクタンス成分を有するL負荷、あるいは出力端子に接続されるワイヤーハーネスのインダクタンス成分である。
また、出力MOSトランジスタ109のゲートと第1の第1の電源101との間には第2のスイッチ113と第2のダイナミッククランプ回路114、ダイオード116が直列に接続されている。本実施の形態では、第2の切換スイッチ113は、1つのMOSトランジスタであり、第2のダイナミッククランプ回路114、ダイオード116はそれぞれ1つのツェナーダイオードである。
第2のスイッチ113は、ソースが出力トランジスタ109のゲートに接続され、ドレインがダイオード116のアノードに接続されており、制御端子(例えば、ゲート)はダイオード116のカソードに接続されるとともに、プルダウン素子115を介して出力端子106に接続されている。さらに、本実施の形態では、第2のスイッチ113の基板端子は、出力端子に接続されている。またダイオード116のカソードは、第2のダイナミッククランプ回路114のアノードに接続されている。第2のダイナミッククランプ回路114のカソードは、第1のダイナミッククランプ回路111のカソードに接続されている。また、本実施の形態では、プルダウン素子115はデプレッション型MOSトランジスタで、ドレインが第2のスイッチ113のゲート、ソースとゲートが出力端子106に接続されている。
回路動作に関し、まず、導通モードでは、第1の制御信号104がHighレベルとなると、出力MOSトランジスタ109が導通状態となる。第1の制御信号104のHighレベル信号は、出力MOSトランジスタ109を低チャネル抵抗で導通状態とするため、例えばバッテリー電源を昇圧した電圧である。これによって、負荷112に電圧が発生して、出力端子106から電圧を出力する。また、この場合、ゲート電荷放電回路108は、第1の制御信号104とは逆相となる第2の制御信号105によって制御される。第2の制御信号105のLowレベルは、例えば接地電位である。第2の制御信号105がLowレベルであった場合、ゲート電荷放電回路108は非導通状態となる。
ここで、導通モードの場合、第2のスイッチ113のゲート電圧は、MOSトランジスタ115を介して出力端子106の電位であるため、出力MOSトランジスタ109のゲート電圧の値によらず、第2のスイッチ113は非導通状態となる。従って、出力MOSトランジスタ109のゲートと第2のダイナミッククランプ回路114、ダイオード116とは、切断された状態であって、出力MOSトランジスタ109のゲートからバッテリー電源101側に電流は流れない。つまり、第2のスイッチ113は、出力MOSトランジスタ109のゲートからバッテリー電源101への電流の逆流防止機能も有している。
負電圧サージモードの動作について説明する。負電圧サージは、出力MOSトランジスタ109が非導通状態になるターンオフ時に発生する。この場合、第1の制御信号104は、Lowレベルであり、第2の制御信号105は、Highレベルである。ここで、第1の制御信号104のLowレベルは、例えば接地電位であって、第2の制御信号105のHighレベルは、バッテリー電源の電圧である。
第2の制御信号105がHighレベルである場合、ゲート電荷放電回路108は導通状態である。従って、出力MOSトランジスタ109のゲート電荷は、ゲート抵抗107とゲート電荷放電回路108を介して放電される。ここで、出力MOSトランジスタ109が非導通状態となるため、負荷112のL成分が負電圧サージを発生させる。そのとき、第2の過電圧保護回路(図の波線で囲った回路)は、第1の過電圧保護回路(図の波線で囲った以外の回路)よりも大きなクランプ電圧に設定されているので、第2のスイッチ113は非導通状態となる。従って、出力MOSトランジスタ109のゲートと第2のダイナミッククランプ回路114、ダイオード116とは、切断された状態となる。一方、第1のスイッチ110は、第1のスイッチ110のゲート電圧と出力MOSトランジスタ109のゲートとの電位差が第1のスイッチ110の閾値を上回ると、導通状態となる。その後、さらに出力MOSトランジスタ109のゲートの電圧が降下し、第1のダイナミッククランプ回路111の両端の電位差が、第1のダイナミッククランプ回路111の降伏電圧以上になると、ダイナミッククランプ回路111の両端にダイナミッククランプ電圧が発生する。また、出力MOSトランジスタ109は導通状態となる。これによって、出力MOSトランジスタ109のドレイン−ゲート間電圧は、第1のダイナミッククランプ電圧によって制限される。さらに、出力MOSトランジスタ109のドレイン−ソース間の電圧は、第1のダイナミッククランプ電圧と出力MOSトランジスタ109の閾値電圧を足し合わせた電圧値によって制限される。
次に、ダンプサージモードの動作について説明する。ダンプサージがバッテリー電源101に印加され、バッテリー電源101の電圧が上昇する。この場合、第1のスイッチ110のゲート電圧は接地電位となっており、出力端子106は、正電圧であるため、第1のスイッチ110は、非導通状態となる。つまり、出力MOSトランジスタ109のゲートとバッテリー電源101は切り離されるため、出力MOSトランジスタ109のゲート電圧は、バッテリー電源101の電圧変動の影響を受けることはない。つまり、出力MOSトランジスタ109は、非導通状態となる。
これによって、出力MOSトランジスタ109は、非導通状態であって、ソース−ドレイン間の電圧がダンプサージ電圧となる。ここで、出力MOSトランジスタ109のドレイン−ゲート間の耐圧、及び、ドレイン−ソース間の耐圧は、一般的にダンプサージ電圧よりも高くなるように設計されているため、ダンプサージによって出力MOSトランジスタ109が破壊されることはない。
上述の説明より、実施の形態3にかかる過電圧保護回路100によれば、負電圧モードの出力端子106の変化に基づいて、第1のスイッチ110を導通状態とすることで、ダイナミッククランプ回路111を動作させて負電圧サージから出力MOSトランジスタ109を保護する。また、導通モードとダンプサージモードの場合には、出力端子106が負電圧を発生しないことから、第1のスイッチ110は非導通状態となり、ダイナミッククランプ回路111を無効にする。
次に、ダンプサージ以上の正電源サージに対する動作について説明する。ダンプサージ以上の正電源サージが電源端子101に印加され、バッテリー電源101の電圧が上昇する。このとき、第1の過電圧保護回路(図の波線で囲った以外の回路)の状態は、ダンプサージモードの動作時と同じになる。第2の過電圧保護回路(図の波線で囲った回路)では、電源端子101の電圧が第2のダイナミッククランプ回路114の降伏電圧よりも高くなると、第2のスイッチの制御端子の電位はソース電位よりも持ち上がり、第2のスイッチ113が導通状態となる。その後、さらに正電源サージが上昇し、第2のダイナミッククランプ電圧114とダイオード116の耐圧を足し合わせた電圧よりも高くなると、第2のダイナミッククランプ114とダイオード116の両端にダイナミッククランプ電圧が発生する。これによって、出力MOSトランジスタ109のドレイン−ソース間の電圧は、第2のダイナミッククランプ電圧とダイオード116の耐圧と出力MOSトランジスタ109の閾値電圧を足し合わせた電圧値によって制限される。
本発明の第1の実施の形態から第3の実施の形態において、第2のダイナミッククランプ回路114の電気的な接続、切断を、第2のスイッチ113、ダイオード116、プルダウン素子115によって行っているが、ダイオードによって実現することもできる。
次に、本発明の第4の実施の形態について図面を参照して詳細に説明する。
図8を参照すると、本発明の実施の形態は、ゲート電荷放電回路108、ゲート抵抗107、出力MOSトランジスタ109、クランプ切換スイッチ110、第1のダイナミッククランプ回路111、第2のダイナミッククランプ回路114、第2のダイオード117、負荷112を有している。
過電圧保護回路100の接続について詳細に説明する。
出力MOSトランジスタ109の第1の端子(例えば、ドレイン)は第1の電源(例えば、バッテリー電源)101に接続されており、第2の端子(例えば、ソース)は負荷112を介して第2の電源(例えば、接地電位)102に接続されている。出力MOSトランジスタ109と負荷112との間の接続点には出力端子106が接続されている。また、出力MOSトランジスタ109の制御端子(例えば、ゲート)はゲート抵抗107の一端が接続されている。ゲート抵抗107の他の一端には、第1の制御信号104が入力され、さらにゲート抵抗107の他の一端と出力端子106との間にはゲート電荷放電回路108が接続されている。ゲート電荷放電回路108は、本実施の形態では、1つのMOSトランジスタである。ゲート電荷放電回路108のドレインは、ゲート抵抗107の他の一端に接続されており、ソースは出力端子106に接続されている。また、ゲート電荷放電回路108のゲートには、第2の制御信号105が入力されている。
また、出力MOSトランジスタ109のゲートとバッテリー電源101との間には第1のスイッチ110と第1のダイナミッククランプ回路111が直列に接続されている。本実施の形態では、第1のスイッチ110は、1つのMOSトランジスタであり、第1のダイナミッククランプ回路111は、1つのツェナーダイオードである。
第1のスイッチ110は、ソースが出力トランジスタ109のゲートに接続され、ドレインが第1のダイナミッククランプ回路111のアノードに接続されており、制御端子(例えば、ゲート)は基準電圧(例えば、接地電位)103に接続されている。さらに、本実施の形態では、第1のスイッチ110の基板端子は、出力端子に接続されている。また第1のダイナミッククランプ回路111のカソードは、バッテリー電源101に接続されている。
第1のスイッチ110は、2つの電圧の比較結果に基づいて、導通状態と非導通状態とが切り換わるスイッチである。例えば、接地電位と出力MOSトランジスタ109のゲート電圧とを比較して、2つの電圧の差が第1のスイッチ110であるMOSトランジスタの閾値以上となった場合に導通状態となるスイッチである。
第1のダイナミッククランプ回路111は、アノード−カソード間の電圧差がダイオードの降伏電圧以上になった場合に、アノード−カソード間の電圧差を所定の電圧値(例えば、第1のダイナミッククランプ電圧)以下に制限する回路である。負荷112は、ソレノイド等のインダクタンス成分を有するL負荷、あるいは出力端子に接続されるワイヤーハーネスのインダクタンス成分である。
また、出力MOSトランジスタ109のゲートと第1の第1の電源101との間には第2のダイオード117と第2のダイナミッククランプ回路114が直列に接続されている。本実施の形態では、第2のダイオード117は、1つのダイオードであるが、過電圧保護回路100を1つの半導体内に集積する場合は、ポリシリコンで形成されたダイオードであることが望ましい。
第2のダイオード117は、カソードが出力トランジスタ109のゲートに接続され、アノードが第2のダイナミッククランプ回路114のアノードに接続されている。
導通モードでは、第1の制御信号104がHighレベルとなると、出力MOSトランジスタ109が導通状態となる。第1の制御信号104のHighレベル信号は、出力MOSトランジスタ109を低チャネル抵抗で導通状態とするため、例えばバッテリー電源を昇圧した電圧である。これによって、負荷112に電圧が発生して、出力端子106から電圧を出力する。また、この場合、ゲート電荷放電回路108は、第1の制御信号104とは逆相となる第2の制御信号105によって制御される。第2の制御信号105のLowレベルは、例えば接地電位である。第2の制御信号105がLowレベルであった場合、ゲート電荷放電回路108は非導通状態となる。
ここで、導通モードの場合、第2のダイオード117は、アノード電位よりもカソード電位が高いため非導通状態となる。従って、出力MOSトランジスタ109のゲートと第2のダイナミッククランプ回路114とは、切断された状態であって、出力MOSトランジスタ109のゲートからバッテリー電源101側に電流は流れない。つまり、第2のダイオード117は、出力MOSトランジスタ109のゲートからバッテリー電源101への電流の逆流防止機能も有している。
負電圧サージモードの動作について説明する。負電圧サージは、出力MOSトランジスタ109が非導通状態になるターンオフ時に発生する。この場合、第1の制御信号104は、Lowレベルであり、第2の制御信号105は、Highレベルである。ここで、第1の制御信号104のLowレベルは、例えば接地電位であって、第2の制御信号105のHighレベルは、バッテリー電源の電圧である。
第2の制御信号105がHighレベルである場合、ゲート電荷放電回路108は導通状態である。従って、出力MOSトランジスタ109のゲート電荷は、ゲート抵抗107とゲート電荷放電回路108を介して放電される。ここで、出力MOSトランジスタ109が非導通状態となるため、負荷112のL成分が負電圧サージを発生させる。そのとき、第2の過電圧保護回路(図の波線で囲った回路)は、第1の過電圧保護回路(図の波線で囲った以外の回路)よりも大きなクランプ電圧に設定されているので、第2のダイオード117は非導通状態となる。従って、出力MOSトランジスタ109のゲートと第2のダイナミッククランプ回路114とは、切断された状態となる。一方、第1のスイッチ110は、第1のスイッチ110のゲート電圧と出力MOSトランジスタ109のゲートとの電位差が第1のスイッチ110の閾値を上回ると、導通状態となる。その後、さらに出力MOSトランジスタ109のゲートの電圧が降下し、第1のダイナミッククランプ回路111の両端の電位差が、第1のダイナミッククランプ回路111の降伏電圧以上になると、ダイナミッククランプ回路111の両端にダイナミッククランプ電圧が発生する。また、出力MOSトランジスタ109は導通状態となる。これによって、出力MOSトランジスタ109のドレイン−ゲート間電圧は、第1のダイナミッククランプ電圧によって制限される。さらに、出力MOSトランジスタ109のドレイン−ソース間の電圧は、第1のダイナミッククランプ電圧と出力MOSトランジスタ109の閾値電圧を足し合わせた電圧値によって制限される。
次に、ダンプサージモードの動作について説明する。ダンプサージがバッテリー電源101に印加され、バッテリー電源101の電圧が上昇する。この場合、第1のスイッチ110のゲート電圧は接地電位となっており、出力端子106は、正電圧であるため、第1のスイッチ110は、非導通状態となる。つまり、出力MOSトランジスタ109のゲートとバッテリー電源101は切り離されるため、出力MOSトランジスタ109のゲート電圧は、バッテリー電源101の電圧変動の影響を受けることはない。つまり、出力MOSトランジスタ109は、非導通状態となる。
これによって、出力MOSトランジスタ109は、非導通状態であって、ソース−ドレイン間の電圧がダンプサージ電圧となる。ここで、出力MOSトランジスタ109のドレイン−ゲート間の耐圧、及び、ドレイン−ソース間の耐圧は、一般的にダンプサージ電圧よりも高くなるように設計されているため、ダンプサージによって出力MOSトランジスタ109が破壊されることはない。
上述の説明より、実施の形態3にかかる過電圧保護回路100によれば、負電圧モードの出力端子106の変化に基づいて、第1のスイッチ110を導通状態とすることで、ダイナミッククランプ回路111を動作させて負電圧サージから出力MOSトランジスタ109を保護する。また、導通モードとダンプサージモードの場合には、出力端子106が負電圧を発生しないことから、第1のスイッチ110は非導通状態となり、ダイナミッククランプ回路111を無効にする。
次に、ダンプサージ以上の正電源サージに対する動作について説明する。ダンプサージ以上の正電源サージが電源端子101に印加され、バッテリー電源101の電圧が上昇する。このとき、第1の過電圧保護回路(図の波線で囲った以外の回路)の状態は、ダンプサージモードの動作時と同じになる。第2の過電圧保護回路(図の波線で囲った回路)では、電源端子101の電圧が第2のダイナミッククランプ回路114の降伏電圧よりも高くなると、第2のダイオード117が導通状態となり、第2のダイナミッククランプ電圧114と第2のダイオード117の順方向電圧を足し合わせた電圧よりも高くなると、ダイナミッククランプ114と第2のダイオード117の両端にダイナミッククランプ電圧が発生する。これによって、出力MOSトランジスタ109のドレイン−ソース間の電圧は、第2のダイナミッククランプ電圧と第2のダイオード117の順方向電圧と出力MOSトランジスタ109の閾値電圧を足し合わせた電圧値によって制限される。
以上のとおり、本発明によれば、出力端子に発生する逆起電圧に対して電力用半導体を過電圧保護することができ、また、Load Dumpよりも大きな電圧の電源サージ(エネルギーは小さい)に対して、過電圧保護回路が動作するが、Load Dumpサージ(エネルギーは大きい)に対しては過電圧動作しない。したがって、高信頼性に対して益々高まる要求に応えることができる、過電圧保護回路つき電力供給制御回路を提供できる。