[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5130071B2 - Rust prevention method for marine steel - Google Patents

Rust prevention method for marine steel Download PDF

Info

Publication number
JP5130071B2
JP5130071B2 JP2008027574A JP2008027574A JP5130071B2 JP 5130071 B2 JP5130071 B2 JP 5130071B2 JP 2008027574 A JP2008027574 A JP 2008027574A JP 2008027574 A JP2008027574 A JP 2008027574A JP 5130071 B2 JP5130071 B2 JP 5130071B2
Authority
JP
Japan
Prior art keywords
alloy particles
particles
alloy
rust prevention
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008027574A
Other languages
Japanese (ja)
Other versions
JP2008223137A5 (en
JP2008223137A (en
Inventor
慎 長澤
謙治 加藤
実 伊藤
道郎 金子
嗣郎 今井
雅稔 小南
敏郎 寺川
隆 熊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOSHIKAWAKOGYO CO.,LTD.
Nippon Steel Corp
Original Assignee
YOSHIKAWAKOGYO CO.,LTD.
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOSHIKAWAKOGYO CO.,LTD., Nippon Steel and Sumitomo Metal Corp filed Critical YOSHIKAWAKOGYO CO.,LTD.
Priority to JP2008027574A priority Critical patent/JP5130071B2/en
Publication of JP2008223137A publication Critical patent/JP2008223137A/en
Publication of JP2008223137A5 publication Critical patent/JP2008223137A5/en
Application granted granted Critical
Publication of JP5130071B2 publication Critical patent/JP5130071B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Powder Metallurgy (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

本発明は、相対湿度30%以上〜100%以下の環境下、特にアッパーデッキ、ハッチカバー、ウォーターバラストタンク、カーゴホールド等の船舶内外板に用いられる鋼材の防錆方法およびその防錆方法を用いた耐食性に優れた船舶に関する。   INDUSTRIAL APPLICABILITY The present invention uses a rust prevention method for steel materials used for ship inner and outer plates such as upper decks, hatch covers, water ballast tanks, cargo holds, and the like in an environment with a relative humidity of 30% to 100%. It relates to ships with excellent corrosion resistance.

防錆顔料としてZn金属粒子を多量に含有する防錆塗料、すなわちジンクリッチペイントが、鉄鋼材料の腐食対策として汎用的に用いられている。このジンクリッチペイントは主に重防食塗装の下塗りに用いられるものであり、その防錆機構の特徴は塗膜に含まれるZn金属粒子の犠牲防食作用である。しかし、ジンクリッチペイントの塗膜の防錆能は、Zn金属粒子の犠牲防食作用に強く依存することから、使用環境によって亜鉛の消失速度が大きく鉄鋼材料に対する保護作用が長続きしない場合がある。   A rust preventive paint containing a large amount of Zn metal particles as a rust preventive pigment, that is, zinc rich paint, is widely used as a countermeasure against corrosion of steel materials. This zinc rich paint is mainly used for undercoating of heavy anticorrosion coating, and the feature of the rust prevention mechanism is sacrificial anticorrosion action of Zn metal particles contained in the coating film. However, since the anticorrosive ability of the zinc rich paint coating film strongly depends on the sacrificial anticorrosive action of the Zn metal particles, the disappearance rate of zinc is large depending on the use environment, and the protective action on the steel material may not last long.

そこで、塗料中のZn金属粒子の平均粒径を小さくしたり、膜厚を厚くしたりする対策がとられているが、鋼材面との密着性の低下や塗膜のヒビ割れ、或いはダレなどが起こりやすくなり、塗膜の防食性能と物理的性質や施工性を両立しがたく万全とはいえない。   Therefore, measures have been taken to reduce the average particle size of Zn metal particles in the paint or to increase the film thickness. However, such as a decrease in adhesion to the steel surface, cracks in the coating, or sagging It is difficult to achieve both anticorrosion performance and physical properties and workability of the coating film.

このような状況下にあって、従来のジンクリッチペイントの長所を保持し、更に長期にわたり犠牲防食作用を発揮する高性能ジンクリッチペイントの開発が期待され、これまでにも各種の提案がなされてきた。   Under such circumstances, the development of high-performance zinc rich paint that retains the advantages of conventional zinc rich paint and exhibits sacrificial anticorrosive action for a long time is expected, and various proposals have been made so far. It was.

例えば、特許文献1では、塗膜中に導電性高分子化合物、カーボンナノファイバー及びカーボンナノチューブからなる群から選択される導電性成分および、これらの各成分を分散するための溶媒を含有する塗装作業性にすぐれ、高耐食性を示す有機系ジンクリッチペイントに関する発明が提案された。   For example, in Patent Document 1, a coating operation containing a conductive component selected from the group consisting of a conductive polymer compound, carbon nanofibers, and carbon nanotubes in a coating film, and a solvent for dispersing these components. An invention relating to an organic zinc rich paint having excellent properties and high corrosion resistance has been proposed.

また、新たな合金粒子の組合せによって耐食性の向上を試みたものが提案された。例えば、特許文献2では、Zn金属粒子の他にZn−Mg合金粒子とMn粒子を含有させたジンクリッチペイントに関する発明が提案された。さらに、特許文献3では、Zn−Al−Mg系合金粒子を含有する耐食性塗料に関する発明が開示された。これらは、Zn−Mg系合金粒子とエポキシ系樹脂やウレタン系樹脂などの有機系樹脂との組合せによって耐食性を向上しようとするものである。   In addition, a new combination of alloy particles has been proposed that attempts to improve corrosion resistance. For example, Patent Document 2 proposes an invention related to a zinc rich paint containing Zn—Mg alloy particles and Mn particles in addition to Zn metal particles. Furthermore, in patent document 3, the invention regarding the corrosion-resistant coating material containing a Zn-Al-Mg type alloy particle was disclosed. These are intended to improve corrosion resistance by a combination of Zn—Mg alloy particles and an organic resin such as an epoxy resin or a urethane resin.

さらに、無機系バインダーを用いた発明が各種提案された。例えば、特許文献4に記載の発明の特徴は、金属組織がZnとMgZn2より構成された無機系のZn−Mg合金粒子の高寿命防食性能である。 Further, various inventions using inorganic binders have been proposed. For example, the feature of the invention described in Patent Document 4 is the long-life anticorrosion performance of inorganic Zn—Mg alloy particles whose metal structure is composed of Zn and MgZn 2 .

更に、粒子形状からも種々検討されてきた。例えば、特許文献5では、Zn−Mg合金のフレーク状粒子を含有する無機系耐食性塗料やこの塗料を塗布してなる耐食性鉄鋼材が提案されている。   Further, various studies have been made from the particle shape. For example, Patent Document 5 proposes an inorganic corrosion-resistant paint containing flaky particles of a Zn—Mg alloy and a corrosion-resistant steel material obtained by applying this paint.

一方、船舶内外の鋼板は一般的に無機系プライマーを塗装した鋼板が溶接・溶断され、建造される。さらに塗装環境を管理した環境で、その表層に変性タールエポキシ樹脂などの重防食塗装が施される。しかしながら、このように環境まで管理し、重防食塗装を実施しても、腐食が生じる問題が根強く残る。特に腐食の激しい部位としてエッジ部、溶接部が挙げられる。これら部位は、他の部位に比べ、塗装密着性が著しく低く、エッジ面取り、ロールコータなどの刷毛塗り塗装など、船舶内の他の部位よりも丁寧に仕上げられ、船舶内でも腐食を回避する試みが手間隙かけ実施されている。しかしながら、これら作業は、腐食を低減することが可能であるが、必要十分でなく、さらに、工程負荷、作業者によるばらつき問題などが生じ、さらなる改善が求められてきた。   On the other hand, steel plates inside and outside the ship are generally constructed by welding and fusing steel plates coated with an inorganic primer. Furthermore, in an environment where the coating environment is controlled, a heavy anticorrosion coating such as a modified tar epoxy resin is applied to the surface layer. However, even if the environment is controlled in this way and heavy anti-corrosion coating is performed, the problem of causing corrosion remains persistent. In particular, the edge portion and the welded portion can be cited as sites where corrosion is severe. These parts have significantly lower coating adhesion than other parts, and are finished more carefully than other parts in the ship, such as edge chamfering, brush coating such as roll coaters, and attempts to avoid corrosion in the ship. Has been implemented over the hands. However, although these operations can reduce corrosion, they are not necessary and sufficient, and further, process load, problems of variation by workers, and the like have arisen, and further improvement has been demanded.

これら溶接部、エッジ部の課題に対し、特許文献6では、溶接・溶断時塗装劣化の抑制を目標にZn金属粒子とMgまたはMg合金の混合物を含有する耐熱性塗料組成物に関する発明が提案されている。   In response to these problems with the welded portion and the edge portion, Patent Document 6 proposes an invention relating to a heat-resistant coating composition containing a mixture of Zn metal particles and Mg or Mg alloy with the aim of suppressing coating deterioration during welding and fusing. ing.

また、鋼板自身の耐食性向上の視点からも各種提案がされている。例えば、特許文献7では、塗装寿命を延長可能な船舶用鋼として、鋼材の成分組成を、質量%で、C:0.001〜0.025%、Si:0.60%以下、Mn:0.10〜3.0%、P:0.030%以下、S:0.01%以下、Al:0.01%以下、Ni:0.1〜4.0%およびCu:0.1%以下を含むものが開示されている。   Various proposals have also been made from the viewpoint of improving the corrosion resistance of the steel sheet itself. For example, in Patent Document 7, as marine steel capable of extending the coating life, the component composition of the steel material is, in mass%, C: 0.001 to 0.025%, Si: 0.60% or less, Mn: 0 .10 to 3.0%, P: 0.030% or less, S: 0.01% or less, Al: 0.01% or less, Ni: 0.1 to 4.0% and Cu: 0.1% or less Are disclosed.

また、貨油タンクでは、鋼材を裸使用すると実用的な耐食性が得られないため、鋼材の表面に無機系プライマーを塗布し使用される。例えば、特許文献8では、質量%で、C:0.16%以下、Si:1.5%以下、Mn:3.0%以下、P:0.035%以下、S:0.01%以下を含み、さらに、Cu:0.1%〜1.4%、Cr:0.2〜4%、Ni:0.05〜0.7%のうち1種以上を含み優れた耐食性を示す無機系プライマーを鋼材表面に塗布した貨油タンク用耐食鋼が開示されている。   Further, in a coin oil tank, practical corrosion resistance cannot be obtained when a steel material is used naked, and therefore, an inorganic primer is applied to the surface of the steel material. For example, in Patent Document 8, by mass%, C: 0.16% or less, Si: 1.5% or less, Mn: 3.0% or less, P: 0.035% or less, S: 0.01% or less In addition, an inorganic system containing one or more of Cu: 0.1% to 1.4%, Cr: 0.2 to 4%, Ni: 0.05 to 0.7% and exhibiting excellent corrosion resistance Corrosion resistant steel for coin oil tanks in which a primer is applied to the surface of the steel material is disclosed.

特開2005−68278号公報JP 2005-68278 A 特開平01−311178号公報Japanese Patent Laid-Open No. 01-311178 特開2001−164194号公報JP 2001-164194 A 特開平02−73932号公報Japanese Patent Laid-Open No. 02-73932 特開2002−285102号公報JP 2002-285102 A 特開昭61−213270号公報Japanese Patent Laid-Open No. 61-213270 特開2002−266052号公報JP 2002-266052 A 特開2002−012940号公報JP 2002-012940 A

しかしながら、特許文献1に記載の発明では、塗膜中に導電性化合物やカーボンナノチューブ等の導電性成分を添加し、電気伝導性を向上させることで、塩水噴霧環境のような常時濡れが生じる環境では耐食性向上効果は得られるが、乾燥過程が生じると、濡れ状態が中断し、導電性が長時間確保できず、その間、犠牲防食作用は生じないので、著しい耐食性向上が認められず、更なる改善が求められていた。   However, in the invention described in Patent Document 1, by adding a conductive component such as a conductive compound or carbon nanotube to the coating film to improve electrical conductivity, an environment in which constant wetting such as a salt spray environment occurs. However, when the drying process occurs, the wet state is interrupted, the conductivity cannot be secured for a long time, and no sacrificial anti-corrosion action occurs during that time. There was a need for improvement.

また、特許文献2や特許文献3では有機系バインダーを主に、また、特許文献4では無機系バインダーを主に用い、金属粒子にはZnの他に、Mg、Alなどの高耐食合金粒子を用いる発明が開示されている。これらは、MgZn2やMg2Zn11の金属間化合物を形成させ、耐食性を向上させたものである。具体的には金属間化合物は合金粒子内部に存在し表面が酸化物層またはZnとMgの固溶相で覆われている。従って、高耐食性・防錆性作用を発揮する金属間化合物相が合金粒子表面に出現しにくく、鋼板の耐食性が十分に得られない問題点があった。さらに、錆の主成分に電気伝導性の小さいZnCl2・4Zn(OH)2・H2Oが生成すると、犠牲防食作用が十分に発揮されない問題点があり、更なる改善が求められていた。 Further, in Patent Document 2 and Patent Document 3, an organic binder is mainly used, and in Patent Document 4, an inorganic binder is mainly used. In addition to Zn, high corrosion-resistant alloy particles such as Mg and Al are used as metal particles. The invention to be used is disclosed. These are formed by forming an intermetallic compound of MgZn 2 or Mg 2 Zn 11 and improving the corrosion resistance. Specifically, the intermetallic compound exists inside the alloy particle, and the surface is covered with an oxide layer or a solid solution phase of Zn and Mg. Therefore, there is a problem that an intermetallic compound phase exhibiting a high corrosion resistance / rust prevention action hardly appears on the surface of the alloy particles, and the corrosion resistance of the steel sheet cannot be sufficiently obtained. Furthermore, when ZnCl 2 · 4Zn (OH) 2 · H 2 O having a small electrical conductivity is generated as a main component of rust, there is a problem that the sacrificial anticorrosive action is not sufficiently exhibited, and further improvement has been demanded.

また、特許文献1,2,3は、一般的な有機系塗料であり、紫外線や水分、酸素などの影響を考慮する必要のある複合環境では劣化することを考慮すると、比較的短時間でメンテナンスが必要になるという副次的な問題が残されている。   Patent Documents 1, 2, and 3 are general organic paints, and are considered to be maintained in a relatively short time in consideration of deterioration in a complex environment that needs to consider the influence of ultraviolet rays, moisture, oxygen, and the like. A secondary problem remains that is necessary.

特許文献5では、フレーク状の合金粒子が開示されているが、フレーク状の合金粒子は、スプレー塗装が困難であり、従来のエアレススプレーでは塗装密着性が十分に確保できず、更なる改善が求められていた。   Patent Document 5 discloses flaky alloy particles. However, flaky alloy particles are difficult to spray-coat, and the conventional airless spray cannot sufficiently secure the coating adhesion, and further improvement can be achieved. It was sought after.

また、特許文献6は、溶断・溶接時の塗膜劣化を抑制し、耐食性を向上させる塗装鋼板が開示されているが、溶接、溶断時での作業性が低下することから更なる改善が求められていた。   Patent Document 6 discloses a coated steel sheet that suppresses coating film deterioration during fusing and welding and improves corrosion resistance. However, workability during welding and fusing is reduced, and further improvement is required. It was done.

さらに、船舶鋼板に関して、特許文献7で開示された船舶用鋼では、ウォーターバラストタンク環境において不可避的な欠陥部からの塗膜膨れを抑制し、塗装寿命を延長させることが可能となる。しかし、特許文献7に記載された発明は、さびによる塗膜の膨れを抑制し、塗装寿命を延長させる効果はあるが、完全ではない。一旦、膨れが発生すると、下地鋼材の錆面積、腐食量、板厚減少が増大することから、更なる改善が求められていた。   Furthermore, regarding marine steel plates, the marine steel disclosed in Patent Document 7 can suppress the swelling of the coating film from the unavoidable defective portion in the water ballast tank environment and extend the coating life. However, although the invention described in Patent Document 7 has the effect of suppressing the swelling of the coating film due to rust and extending the coating life, it is not perfect. Once blistering has occurred, the rust area, the amount of corrosion, and the reduction in plate thickness of the base steel material increase, and further improvements have been demanded.

また、特許文献8で開示されたプライマー塗装状態で使用する貨油タンク用耐食鋼は、酸露点腐食環境である貨油タンクではプライマーを表面に塗布することにより優れた耐食性を発揮する。しかし、船舶内外板のその他の部位、例えば、ウォーターバラストタンクは海水を出し入れする酸露点環境とは異なる塩水環境であり、これら鋼材と無機ジンクリッチプライマーだけの組み合わせでは、十分な効果が発揮されず、更なる改善が求められていた。   Further, the anti-corrosion steel for coin oil tanks used in the primer coating state disclosed in Patent Document 8 exhibits excellent corrosion resistance by applying the primer to the surface in the coin oil tank which is an acid dew point corrosion environment. However, other parts of the inner and outer plates of the ship, such as the water ballast tank, are salt water environments different from the acid dew point environment where seawater is taken in and out, and the combination of these steel materials and inorganic zinc rich primer alone does not exhibit sufficient effects. There was a need for further improvements.

そこで、本発明は、スプレー塗装性を低下させず、さらに乾燥と湿潤が繰り返されるような環境下でも、低コストで、長時間の犠牲防食作用により、従来よりも格段に優れた耐食性・防錆性を発揮する、船舶鋼材の防錆方法および耐食性に優れた船舶を提供することを目的とする。   Therefore, the present invention has much lower corrosion resistance and rust resistance than conventional ones due to low cost, long-time sacrificial anticorrosive action even in an environment where drying and wetting are repeated without reducing spray coating properties. It aims at providing the ship which was excellent in the rust prevention method and corrosion resistance of ship steel materials which show the property.

本発明者らは、Mgを0.01〜30質量%含有し、残部がZnと不可避的不純物からなり、平均粒子径が0.05〜200μmで、好ましくは最大径と最小径のアスペクト比(最大径/最小径)の平均が1〜1.5である形状を有し、物理的破砕面および/または長さ0.01μm以上のき裂をもつZn合金粒子を乾燥塗膜中に30質量%以上含有するよう調合した高耐食塗料もしくはそれを塗布した塗装鋼板を用いることにより、相対湿度30%以上〜100%以下の環境下において、特に相対湿度30〜70%程度の湿度が低い環境下においても、表面保湿効果が働くことで、長時間表面が湿潤状態となることにより、かつてなく著しく優れた耐食性・防錆性を発揮することを新たに見出した。   The inventors of the present invention contain 0.01 to 30% by mass of Mg, the balance is made of Zn and inevitable impurities, the average particle diameter is 0.05 to 200 μm, and preferably the aspect ratio of the maximum diameter and the minimum diameter ( 30 masses of Zn alloy particles having a shape in which the average of (maximum diameter / minimum diameter) is 1 to 1.5 and having a physically crushed surface and / or a crack having a length of 0.01 μm or more in a dry coating film % By using a highly corrosion-resistant paint formulated to contain at least 30% or a coated steel sheet coated with the paint, in an environment with a relative humidity of 30% to 100%, especially at a relative humidity of about 30 to 70%. However, it has been newly found that the surface moisturizing effect works and the surface becomes wet for a long time, thereby exhibiting remarkably superior corrosion resistance and rust prevention.

このような表面保湿性に優れた塗料または塗装鋼板を用いると、赤錆の発生が生じるスクラッチ傷、塗装の密着性が低下するエッジ部でさえ、赤錆の発生を抑制することが可能となる。理由は明確でないが、表面保湿効果が従来よりも長くなることで、犠牲防食効果が、広い相対湿度範囲内の大気環境下で、すなわち結果的に長時間にわたって発揮されるためと考える。このメカニズムは不明な点が多いが、次のメカニズムにより長時間の表面保湿性が発揮されるものと考える。Zn合金粒子中のMgが大気中の酸素と反応し、MgO・nH2Oの水酸化物が形成されやすくなり、表面保湿効果が向上するものと考える。 When such a paint or coated steel plate having excellent surface moisture retention is used, it is possible to suppress the occurrence of red rust even at scratches where red rust occurs and even at edge portions where paint adhesion decreases. Although the reason is not clear, it is considered that the sacrificial anticorrosive effect is exerted in an atmospheric environment within a wide relative humidity range, that is, as a result for a long time because the surface moisturizing effect is longer than before. Although this mechanism has many unclear points, it is considered that long-term surface moisturizing property is exhibited by the following mechanism. It is considered that Mg in the Zn alloy particles reacts with oxygen in the atmosphere, and MgO.nH 2 O hydroxide is easily formed, improving the surface moisturizing effect.

本発明者らは、アッパーデッキ、ハッチカバー、ウォーターバラストタンクなどのような塩化物環境下ではさらに次のようなメカニズムにより、より一層表面保湿効果が助長されることを見出した。すなわち、上記塗料または塗装鋼板は、乾湿繰り返し環境、または湿潤環境で、かつ、塩化物を含有する環境では、環境中の塩化物と塗料中のMgにより、表面にMgCl2を形成させる。このMgCl2は、潮解性が高く、長時間の表面保湿性を発揮し、その結果、表面保湿効果により犠牲防食作用性が一層向上し、著しい耐食性・防錆性を発揮するものと考えられる。 The present inventors have found that the surface moisturizing effect is further promoted by the following mechanism in a chloride environment such as an upper deck, a hatch cover, and a water ballast tank. That is, the paint or the coated steel sheet forms MgCl 2 on the surface by chloride in the environment and Mg in the paint in a dry and wet repeated environment or a wet environment and an environment containing chloride. This MgCl 2 has high deliquescence and exhibits long-term surface moisturizing properties. As a result, it is considered that the sacrificial anticorrosive action is further improved by the surface moisturizing effect and exhibits remarkable corrosion resistance and rust prevention properties.

本発明者らは、表面保湿効果による耐食性・防錆性の更なる向上可能性を詳細に検討し、上記合金粒子に、質量%で、Al:0.01〜30%、Si:0.01〜3%の1種又は2種を含有させることで、自己溶解性(大気から水分を取り込んで、その水分に溶解する性質)が適度に低減され、表面保湿効果の延長によるさらなる耐食性・防錆性が達成できることを見出した。   The present inventors have studied in detail the possibility of further improving the corrosion resistance and rust prevention properties due to the surface moisturizing effect, and in the above-mentioned alloy particles in mass%, Al: 0.01-30%, Si: 0.01 By containing ~ 1% or 2%, self-solubility (property to take water from the atmosphere and dissolve in the water) is moderately reduced, and further corrosion resistance and rust prevention by extending the surface moisturizing effect We found that sex can be achieved.

また、金属粒子形状にも着目し、上記Zn合金粒子は、球状ではなく、物理的破砕面および/または長さ0.01μm以上のき裂などにより、略球状多面体になると、特に面数が2以上になると、犠牲防食効果を損なうことなく、自己溶解性を一層低減でき、さらなる耐食性作用の延長が達成できることを見出した。このとき、破砕面および/または長さ0.01μm以上のき裂にMgZn2やMg2Zn11、Mg2Zn3、MgZnまたはMg7Zn3のうち1種以上を含むことの金属間化合物を配置することで、さらに得られる表面保湿効果を高めることができることを見出した。 Further, focusing on the shape of the metal particles, the Zn alloy particles are not spherical but have a substantially spherical polyhedron due to a physically crushed surface and / or a crack having a length of 0.01 μm or more. When it became above, it discovered that self-solubility could be reduced further and the extension of a further corrosion-resistant effect | action could be achieved, without impairing sacrificial anticorrosive effect. At this time, an intermetallic compound containing one or more of MgZn 2 , Mg 2 Zn 11 , Mg 2 Zn 3 , MgZn, or Mg 7 Zn 3 in the fracture surface and / or a crack of 0.01 μm or more in length It has been found that the surface moisturizing effect obtained can be further enhanced by arranging the layers.

さらに、前記無機系プライマーに、更に、平均粒子径2〜50μmのZnおよび不可避的不純物からなるZn金属粒子を分散させた高耐食性防錆塗料であって、質量%で、(前記Zn合金粒子量):(前記Zn金属粒子量)の比の値を1/xとしたとき、Xが300.0以下、および/またはZn合金粒子と該Zn金属粒子との全金属粒子中のMg含有量が0.01〜30%となるように混合することで、従来のZn金属粒子のみよりも優れた表面保湿効果が得られ、耐食性・防錆性が達成できることを見出した。   Furthermore, it is a high corrosion resistance rust preventive paint in which Zn metal particles consisting of Zn having an average particle diameter of 2 to 50 μm and inevitable impurities are further dispersed in the inorganic primer, ): When the ratio value of (the amount of Zn metal particles) is 1 / x, X is 300.0 or less, and / or the Mg content in all metal particles of the Zn alloy particles and the Zn metal particles is It has been found that by mixing so as to be 0.01 to 30%, a surface moisturizing effect superior to that of only conventional Zn metal particles can be obtained, and corrosion resistance and rust prevention can be achieved.

すなわち、Zn合金粒子は、そのままで塗料用の顔料として用いて優れた耐食性・防錆性をもたらすが、さらなる検討の結果、一般的な生成方法であるミスト法やガスアトマイズ法等で生成された、従来から一般的に用いられているZn金属粒子とZn合金粒子を混合した塗料顔料を用いることで、Zn金属粒子を単独使用した顔料に比較して著しく優れた耐食性・防錆性をもたらすことを見出した。   In other words, the Zn alloy particles are used as they are as pigments for paints to provide excellent corrosion resistance and rust prevention properties, but as a result of further studies, they were generated by a general generation method such as a mist method or a gas atomization method. By using paint pigments that are a mixture of Zn metal particles and Zn alloy particles that have been generally used in the past, it provides significantly superior corrosion resistance and rust prevention compared to pigments that use Zn metal particles alone. I found it.

また、本発明の金属粒子を顔料として有機塗料とした場合には紫外線・水分や酸素などの有機塗料の劣化にとって厳しい複合環境であっても従来にない優れた耐食性・防錆性をもたらすことを見出した。   In addition, when the metal particles of the present invention are used as organic paints as pigments, they provide excellent anti-corrosion and rust prevention properties even in complex environments that are severe for deterioration of organic paints such as ultraviolet rays, moisture and oxygen. I found it.

本発明は、以上のような検討に基づきなされたものであり、その特徴は以下の通りである。
(1)質量%で、Mg:0.01〜30%を含有し、残部Znおよび不可避的不純物からなるZn合金粒子であって、
該Zn合金粒子は、物理的破砕面および/またはさもしくは深さ0.01μm以上のき裂を有し、該物理的破砕面とき裂は、ガスアトマイズ法により作製したZn合金粒子同士を、含水率0.3%以下のトルエンまたはキシレンに加えてスラリー状としたものを対向するジェット噴流として、該ジェット噴流同士を衝突させることによって形成されてなり、
平均粒径が0.05〜200μmで、最大径と最小径のアスペクト比(最大径/最小径)平均値1〜1.5であるZn合金粒子を、
乾燥塗膜中に、質量%で、30%以上含有し、残部無機系バインダーからなる無機系プライマーまたは残部有機系バインダーからなる有機系プライマーを、下地層として塗布し、塗装厚みが2〜300μmのプライマー層を形成することを特徴とする、相対湿度30%以上〜100%以下の環境下に置かれる船舶鋼材の防錆方法。
(2)前記Zn合金粒子が、更に、質量%で、Al:0.01〜30%、Si:0.01〜3.0%の1種又は2種を含有することを特徴とする、前記(1)に記載の船舶鋼材の防錆方法。
(3)前記Zn合金粒子が、表面にMg固溶相及びZn−Mg金属間化合物を有することを特徴とする、前記(1)または(2)に記載の船舶鋼材の防錆方法。
(4)前記Zn合金粒子の金属間化合物が、MgZn2、Mg2Zn11、Mg2Zn3、MgZnまたはMg7Zn3のうち1種以上を含むことを特徴とする、前記(3)に記載の船舶鋼材の防錆方法。
(5)前記Zn合金粒子が、略球状多面体の面数が2面以上であることを特徴とする、前記(1)〜(4)の何れかに記載の船舶鋼材の防錆方法。
(6)前記無機系プライマーまたは前記有機系プライマーは、前記Zn合金粒子に加え、更に、平均粒子径0.05〜50μmのZnおよび不可避的不純物からなるZn金属粒子を含有することを特徴とする前記(1)〜(5)の何れか1項に記載の船舶鋼材の防錆方法。
(7)質量%で、(前記Zn合金粒子量):(前記Zn金属粒子量)の比の値を1/xとしたとき、Xが300.0以下であり、かつ、質量%で、前記Zn合金粒子と前記Zn金属粒子の混合粒子の合計を100%としたとき、Mgの含有量が、0.01%以上30%未満であることを特徴とする、前記(6)に記載の船舶鋼材の防錆方法。
The present invention has been made based on the above studies, and the features thereof are as follows.
(1) By mass%, Mg: 0.01-30% Zn alloy particles consisting of the balance Zn and unavoidable impurities ,
The Zn alloy particles, physical crushing surface, and / or the length or else properly has more crack depth 0.01 [mu] m, Crack the physical disruption plane, Zn alloy particles produced by a gas atomizing method It is formed by making the jet jets collide with each other as a jet jet facing each other in addition to toluene or xylene having a moisture content of 0.3% or less ,
An average particle diameter of 0.05~200Myuemu, the Zn alloy particles the maximum diameter and the minimum diameter of the aspect ratio (maximum diameter / minimum diameter) is 1 to 1.5 in the average value,
In the dried coating film, 30% or more by mass, and an inorganic primer composed of the remaining inorganic binder or an organic primer composed of the remaining organic binder was applied as a base layer, and the coating thickness was 2 to 300 μm. A rust prevention method for marine steel materials placed in an environment having a relative humidity of 30% to 100%, characterized by forming a primer layer.
(2) The Zn alloy particles further contain one or two of Al: 0.01 to 30% and Si: 0.01 to 3.0 % by mass%. The method for preventing rust of marine steel materials according to (1).
(3) The rust prevention method for marine steel according to (1) or (2), wherein the Zn alloy particles have an Mg solid solution phase and a Zn—Mg intermetallic compound on the surface.
(4) In the above (3), the intermetallic compound of the Zn alloy particles contains one or more of MgZn 2 , Mg 2 Zn 11 , Mg 2 Zn 3 , MgZn, or Mg 7 Zn 3. The rust-proofing method of the ship steel materials as described.
(5) The ship steel material rust prevention method according to any one of (1) to (4), wherein the Zn alloy particles have two or more substantially spherical polyhedrons.
(6) In addition to the Zn alloy particles, the inorganic primer or the organic primer further contains Zn metal particles composed of Zn having an average particle diameter of 0.05 to 50 μm and inevitable impurities. The method for preventing rust of marine steel materials according to any one of (1) to (5).
(7) In mass%, when the ratio value of (Zn alloy particle amount) :( Zn metal particle amount) is 1 / x, X is 300.0 or less, and in mass%, The ship according to (6) above, wherein the Mg content is 0.01 % or more and less than 30% when the total of the mixed particles of Zn alloy particles and the Zn metal particles is 100%. Rust prevention method for steel.

本発明によれば、相対湿度30%以上〜100%以下の環境で、例えば、ウォーターバラストタンク、カーゴホールド、アッパーデッキ、ハッチカバー等の船舶内外板が曝される環境下において、長期にわたる表面保湿性による犠牲防食効果を延長させることができるため、船舶内外板を有利に防錆することができ、延いては耐食性に優れた船舶を提供することが可能となるため、産業上の効果は計り知れない。   According to the present invention, surface moisturizing over a long period of time in an environment where the relative humidity is 30% to 100% and the inside and outside of the ship such as a water ballast tank, cargo hold, upper deck, hatch cover, etc. are exposed. The sacrificial anti-corrosion effect due to the property can be extended, so that the inner and outer plates of the ship can be advantageously rust-prevented, and thus it is possible to provide a ship with excellent corrosion resistance. I don't know.

本発明の限定要件を詳細に述べる。   The limiting requirements of the present invention will be described in detail.

船舶鋼材は、造船所の初期工程もしくは、製鉄所の最終工程にて、鋼板表面をブラスト処理し、その表層に無機系Znプライマーを塗布する。これら無機系Znプライマーが塗布された鋼板は目的に即した形状に溶断・溶接され船舶を建造していく。最終工程では、その上層に変性タールエポキシ塗装などの重防食塗装が施され、防食される。上記のような工程にて建造される船舶で、腐食が厳しく、乾湿繰り返しとなる部位に、ウォーターバラストタンクやカーゴホールド等の船舶内板とアッパーデッキ、ハッチカバー等の船舶外板がある。   Ship steel materials are blasted on the surface of a steel plate in an initial process of a shipyard or a final process of an ironworks, and an inorganic Zn primer is applied to the surface layer. The steel sheet coated with these inorganic Zn primers is melted and welded into a shape suitable for the purpose to build a ship. In the final process, a heavy anticorrosion coating such as a modified tar epoxy coating is applied to the upper layer to prevent corrosion. In the ship constructed by the above-described process, there are ship inner plates such as a water ballast tank and a cargo hold, and ship outer plates such as an upper deck and a hatch cover, where corrosion is severe and repeated wet and dry.

本発明は、上記のような船舶内外の相対湿度30%以上〜100%以下、特に相対湿度30〜70%程度の湿度が低い環境下においても、表面保湿効果が働くことで、長時間表面が湿潤状態となることにより、著しく優れた表面保湿性を発揮する。本発明において、相対湿度30%以上〜100%以下の環境下に置かれる鋼材を対象とした理由は以下のとおりである。従来の塗装方法で塗装した鋼板表面を手で触れてみると、相対湿度30%以上〜100%以下の環境下、特に相対湿度30〜70%程度の湿度が低い環境下においては、水分を含んでいることが指先の感触と肉眼で確認できない場合がある。 一方、本発明方法を施した鋼板表面においては、相対湿度30%以上〜100%以下の環境下で、相対湿度50〜100%に置かれた時はもちろんのこと、特に相対湿度30〜70%程度の湿度が低い環境下においても該鋼板表面を手で触れたときに水分を含んでいることが指先の感触と肉眼で確認できる。即ち、相対湿度30〜70%程度でも表面保湿作用が得られ、犠牲防食効果が十分に発揮されると考えられる。さらに、その他の環境因子として、請求項1のZn合金粒子由来のMgが、MgCl2となって、潮解性が生じる塩化物環境が好ましい。すなわち、海上や海浜環境のように海塩が飛散する環境が望ましい。 In the present invention, the surface moisturizing effect works even in an environment where the relative humidity inside and outside the ship is 30% to 100%, especially in the relative humidity of about 30 to 70%. When in a wet state, it exhibits extremely excellent surface moisture retention. In the present invention, the reason for targeting a steel material placed in an environment with a relative humidity of 30% to 100% is as follows. When the surface of a steel sheet coated by a conventional coating method is touched by hand, it contains moisture in an environment where the relative humidity is 30% to 100%, particularly in an environment where the relative humidity is about 30 to 70%. It may not be possible to confirm with a fingertip and the naked eye. On the other hand, on the surface of the steel sheet subjected to the method of the present invention, when placed in a relative humidity of 50% to 100% in an environment of a relative humidity of 30% to 100%, particularly relative humidity of 30% to 70%. Even in an environment where the humidity is low, it can be confirmed with the touch of the fingertips and the naked eye that it contains moisture when the steel sheet surface is touched by hand. That is, it is considered that the surface moisturizing action is obtained even at a relative humidity of about 30 to 70%, and the sacrificial anticorrosive effect is sufficiently exhibited. Further, as another environmental factor, a chloride environment in which Mg derived from the Zn alloy particles of claim 1 becomes MgCl 2 to cause deliquescence is preferable. That is, an environment where sea salt is scattered like the sea or beach environment is desirable.

また、船舶がローリングすることによりアッパーデッキ、ハッチカバーには海水の水滴、飛沫が飛散するが、そのような環境に用いる鋼板の防錆方法として、本発明が適している。従来腐食が厳しく、乾湿繰り返しとなる部位に、ウォーターバラストタンクやカーゴホールド等の船舶内板とアッパーデッキ、ハッチカバー等の船舶外板があるが、本発明を適用することで、耐食性・防錆性が十分得られる。   In addition, water drops and splashes of seawater are scattered on the upper deck and the hatch cover as the ship rolls, and the present invention is suitable as a rust prevention method for steel plates used in such environments. Conventionally, corrosion is severe, and there are ship inner plates such as water ballast tanks and cargo hold and ship outer plates such as upper decks and hatch covers in parts that repeat dry and wet, but by applying the present invention, corrosion resistance and rust prevention Enough.

次にZn金属粒子ないしZn合金粒子の限定要件について詳細に述べる。   Next, the limitation requirements for Zn metal particles or Zn alloy particles will be described in detail.

Mgは表面保湿効果発現に必要不可欠のものである。Zn合金粒子中のMg含有量は0.01〜30%とすることが必要である。Mgが0.01%未満では、耐食性の向上に十分な表面保湿効果は得られず、船舶内外板の耐食性を確保することができない。一方、30%を超えて添加すると上記効果が飽和するばかりか、経済性および製造性を阻害することから、Mgの添加量は0.01〜30%とした。ただし、この添加量の最適値は平均粒径によって変化し、一般にスプレー塗装において最適と考えられる平均粒径0.2〜30μmの場合には、下限は0.1%とし、上限は20%とすることが耐食性・防食性の向上効果、経済性の観点から好ましい。さらに、Mg添加量による耐食性と原料コスト、製造安定性のバランスを考慮するとMg添加量は0.2%〜15%がより好ましい。なお、本発明でいう物理的破砕面とは、球状の粒子の一部が欠落した形状を指す。Zn合金粒子が物理的破砕面を有することにより、後述のように耐食性・防食性の向上効果が顕著に得られる。また、本発明でいうき裂とは、球状の粒子表面上に存在する長さ0.01μm以上、表面からの深さ0.01μm以上の割れを意味する。き裂は長さもしくは深さで0.01μm未満では十分な耐食性向上効果が得られず、0.01μm以上の長さもしくは深さを必要とする。   Mg is indispensable for the surface moisturizing effect. The Mg content in the Zn alloy particles needs to be 0.01 to 30%. If Mg is less than 0.01%, a surface moisturizing effect sufficient for improving corrosion resistance cannot be obtained, and the corrosion resistance of the inner and outer plates of the ship cannot be ensured. On the other hand, the addition of over 30% not only saturates the above effects, but also impairs economic efficiency and manufacturability, so the amount of Mg was set to 0.01 to 30%. However, the optimum value of the addition amount varies depending on the average particle diameter. In the case of an average particle diameter of 0.2 to 30 μm, which is generally considered optimal in spray coating, the lower limit is 0.1% and the upper limit is 20%. It is preferable to improve the corrosion resistance / corrosion resistance from the viewpoint of economy. Furthermore, considering the balance between the corrosion resistance depending on the Mg addition amount, the raw material cost, and the production stability, the Mg addition amount is more preferably 0.2% to 15%. In addition, the physical crushing surface as used in the field of this invention points out the shape where a part of spherical particle was missing. When the Zn alloy particles have a physically crushed surface, the effect of improving corrosion resistance and anticorrosion can be obtained remarkably as described later. The term “crack” as used in the present invention means a crack having a length of 0.01 μm or more and a depth of 0.01 μm or more from the surface of a spherical particle. If the crack is less than 0.01 μm in length or depth, a sufficient corrosion resistance improvement effect cannot be obtained, and a length or depth of 0.01 μm or more is required.

Zn合金粒子の平均粒径は、スプレー塗装時に於ける付着性確保のため、0.05μm以上とし、刷毛塗り時の作業安定性確保のため、200μm以下とする。塗装安定性を考慮すると0.2〜50μmが好ましい。また、塗膜密着性を考慮すると0.2〜30μmが好ましい。   The average particle diameter of the Zn alloy particles is set to 0.05 μm or more for securing adhesion during spray coating, and 200 μm or less for securing work stability during brush coating. In consideration of coating stability, 0.2 to 50 μm is preferable. Moreover, when considering the coating film adhesion, 0.2 to 30 μm is preferable.

Zn合金粒子の形状を、好ましくは最大径と最小径のアスペクト比(最大径/最小径)の平均が1〜1.5とする。このような形状に限定したのは、スプレー塗装を前提とした場合には、平均のアスペクト比が1.5を超えると粒子の噴霧・飛行安定性が低下し、塗膜厚および塗膜中での粒子分布安定性が低下するからである。従って値が1.5を超えるアスペクト比の粒子が部分的に存在しても問題とはならない。さらに上記したアスペクト比の値の範囲は原料としてのZn合金粒子を規定するものであり、実際に塗料に混ぜて使用するまでに、空気中の水分等を吸収して、これらのZn合金粒子が凝集し結合した場合や、塗膜として鋼材上で硬化した場合のそれぞれの粒子が結合した場合等のZn合金粒子の形状までも規定するものではない。また、製造時や保管時に、Zn合金粒子表面に小さな凹凸が生じることもあるが、これらによる形状変化もアスペクト比の平均値が1〜1.5という球状や楕円球状から逸脱するものとはしない。   The average of the aspect ratio (maximum diameter / minimum diameter) of the maximum diameter and the minimum diameter is preferably set to 1 to 1.5 for the shape of the Zn alloy particles. The reason for limiting to such a shape is that when spray coating is assumed, if the average aspect ratio exceeds 1.5, the spraying and flight stability of the particles will be reduced, and the coating thickness and coating thickness will be reduced. This is because the particle distribution stability of the particles is lowered. Therefore, there is no problem even if particles having an aspect ratio exceeding 1.5 are partially present. Furthermore, the range of the value of the aspect ratio described above defines Zn alloy particles as a raw material. Before actually mixing and using the paint, it absorbs moisture in the air, and these Zn alloy particles It does not define the shape of Zn alloy particles such as when they are aggregated and bonded, or when each particle is bonded when cured on a steel material as a coating film. In addition, small irregularities may occur on the surface of the Zn alloy particles during production or storage, but the shape change caused by these does not deviate from the spherical or elliptical sphere having an average aspect ratio of 1 to 1.5. .

Zn合金粒子は、物理的破砕面および/または、き裂を有することが必要である。マグネシウム水酸化物や塩化マグネシウムによる表面保湿効果を発揮させるためには、合金粒子を物理的に破砕し、物理的破砕面および/または、き裂を形成してMgを粒子表面に濃化させておくことが必要だからである。   The Zn alloy particles need to have a physically fractured surface and / or a crack. In order to exert the surface moisturizing effect by magnesium hydroxide or magnesium chloride, the alloy particles are physically crushed and a physical crushed surface and / or crack is formed to concentrate Mg on the particle surface. Because it is necessary to keep.

上記破砕面を持つZn合金粒子の製造方法は、特に限定はしないが、例えば、汎用の粉末製造法である揮発法(蒸発凝固法)、アトマイズ法(噴霧法)により、まず、1次粒子を作成する。次に、作成した1次粒子同士の衝突あるいは1次粒子と固体との衝突によって物理的破砕面および/または、き裂を持つZn合金粒子を作製するか、又は含水率を0.3%以下としたトルエンまたはキシレン中に1次粒子を添加してスラリー状としたものを上記のZn合金粒子同士の衝突あるいは固体との衝突法によって物理的破砕面および/または、き裂を持つZn合金粒子を作製できる。また、この製造方法で作成することによりZn合金粒子のアスペクト比を1〜1.5の範囲内とすることもできる。   The production method of the Zn alloy particles having the crushing surface is not particularly limited. For example, primary particles are first obtained by a volatilization method (evaporation solidification method) or an atomization method (spray method), which are general-purpose powder production methods. create. Next, Zn alloy particles having a physically crushed surface and / or a crack are produced by collision between the produced primary particles or collision between the primary particles and a solid, or the moisture content is 0.3% or less. Zn alloy particles having a physically crushed surface and / or a crack formed by adding primary particles in toluene or xylene into a slurry and colliding with each other or colliding with a solid. Can be produced. Moreover, the aspect ratio of Zn alloy particle | grains can also be made into the range of 1-1.5 by producing with this manufacturing method.

次に乾燥塗膜中でのZn合金粒子の含有量は、質量%で、30質量%以上含有することが必要である。30質量%未満では耐食性等の効果が得られるまでに到らない。上限は、特に規定するものではないが、85質量%を超えると樹脂成分が少なくなり過ぎ、塗膜に欠陥が生じ易くなるため、85質量%以下が望ましい。なお、塗膜中の樹脂成分としては、成膜性を確保するために少なくとも15%とすることが好ましい。さらに、上記Zn合金粒子を30%以上含有していれば、それ以外の粉末粒子を添加してもよく、例えば、(意匠性を目的とした)Al、ステンレス等の金属粉末や酸化チタン、酸化亜鉛等の酸化物粉末、タルク、石粉等の体質顔料を含有していても良い。   Next, the content of Zn alloy particles in the dried coating film is mass%, and it is necessary to contain 30 mass% or more. If it is less than 30% by mass, effects such as corrosion resistance cannot be obtained. The upper limit is not particularly specified, but if it exceeds 85% by mass, the resin component becomes too small and defects are likely to occur in the coating film, so 85% by mass or less is desirable. The resin component in the coating film is preferably at least 15% in order to ensure film formability. Furthermore, as long as it contains 30% or more of the above Zn alloy particles, other powder particles may be added. For example, metal powder (for the purpose of design) such as Al, stainless steel, titanium oxide, oxidation Oxide powders such as zinc, and extender pigments such as talc and stone powder may be contained.

さらに、このZn合金粒子に、Al:0.01〜30%、Si:0.01〜3%の1種又は2種を含有させることでさらなる防錆性が達成できる。   Furthermore, the further rust prevention property can be achieved by making this Zn alloy particle contain 1 type or 2 types of Al: 0.01-30% and Si: 0.01-3%.

Zn合金粒子中のAl含有量は、0.01%未満では防食性能向上の効果は得られず、また30%より多く添加すると、AlはMgを固溶しやすく物理的破砕性を阻害するので、その範囲を0.01〜30%に限定した。更に、防食性能、物理的破砕性の観点から0.5〜20%が好ましい。さらに、経済性を考慮すると、1.0〜10%が好ましい。   If the Al content in the Zn alloy particles is less than 0.01%, the effect of improving the anticorrosion performance cannot be obtained, and if more than 30% is added, Al easily dissolves Mg and inhibits physical crushability. The range was limited to 0.01-30%. Furthermore, 0.5 to 20% is preferable from the viewpoint of anticorrosion performance and physical friability. Furthermore, if considering the economy, 1.0 to 10% is preferable.

Zn合金粒子中のSi含有量は、0.01%未満では塗膜密着性、物理的破砕および/または、き裂の効果は得られず、また3%より多く添加すると、耐食性に悪影響を及ぼすことから、0.01〜3%に限定した。更に、最大限の塗装密着性、耐食性を発揮させるためには0.5〜3.0%が好ましい。さらに製造安定性、経済性を考慮すると1.0〜1.5%が好ましい。   If the Si content in the Zn alloy particles is less than 0.01%, the effect of coating film adhesion, physical crushing and / or cracking cannot be obtained, and if added over 3%, the corrosion resistance is adversely affected. Therefore, it was limited to 0.01 to 3%. Furthermore, 0.5 to 3.0% is preferable in order to exhibit the maximum coating adhesion and corrosion resistance. Furthermore, if considering production stability and economy, 1.0 to 1.5% is preferable.

また、上記範囲内であれば、Al、Siの塗膜中での配合比率は特に限定しないが、耐食性の観点からそれぞれAl:0.05〜1.5%、Si:0.01〜1.5%が好ましい。   Moreover, if it is in the said range, the mixing | blending ratio in the coating film of Al and Si will not specifically limit, but from a corrosion-resistant viewpoint, Al: 0.05-1.5%, Si: 0.01-1. 5% is preferred.

本発明のZn合金粒子が、物理的破砕面および/またはき裂にMg固溶相及びZn−Mg金属間化合物を有すると、合金粒子表面に露出したMg固溶相及びZn−Mg金属間化合物の作用で塗装鋼板表面の保湿効果を発揮することができる。Zn合金粒子の場合は、金属間化合物を含んでおり、物理的破砕面および/またはき裂を有することができる。Mg固溶相とZn−Mg金属間化合物を表面に露出することで耐食性と防錆性が向上する理由については不明点が多いが、これらの相のいずれか一方以上が破砕面および/または、き裂に共存することでこれらの特性向上が特に安定に得られることを見いだしており、物理的破砕面および/または、き裂が存在することで、これらの相の化学的性質がより耐食性および防錆性に好ましいものに変化することを実験的に確認している。Mg固溶相及びZn−Mg金属間化合物は、予めZn合金粉末のX線回折法または、エネルギー分散型X線分析装置付き走査電子顕微鏡観察により、物理的破砕面またはき裂表面のMgとZnの組成比分析によって、同定することができる。   When the Zn alloy particles of the present invention have a Mg solid solution phase and a Zn—Mg intermetallic compound on the physically fractured surface and / or crack, the Mg solid solution phase and the Zn—Mg intermetallic compound exposed on the alloy particle surface The effect of moisturizing the surface of the coated steel sheet can be exhibited. In the case of a Zn alloy particle, it contains an intermetallic compound and can have a physically fractured surface and / or a crack. There are many unclear points about the reason why the corrosion resistance and rust prevention properties are improved by exposing the Mg solid solution phase and the Zn-Mg intermetallic compound to the surface, but one or more of these phases are crushing surfaces and / or, Co-existence with cracks has found that these properties can be obtained in a particularly stable manner, and the presence of physical fracture surfaces and / or cracks makes the chemical nature of these phases more corrosion-resistant and It has been experimentally confirmed that the rust resistance is improved. The Mg solid solution phase and the Zn—Mg intermetallic compound are obtained by previously measuring Mg and Zn on the physical fracture surface or crack surface by X-ray diffraction of the Zn alloy powder or scanning electron microscope observation with an energy dispersive X-ray analyzer. It can be identified by composition ratio analysis.

さらに、本発明では上記金属間化合物相をMgZn2、Mg2Zn11、MgZn、Mg2Zn3またはMg7Zn3のうち1種以上を含むことで、上記の耐食性と防錆性はより一層向上させることが可能である。MgZn2、Mg2Zn11、Mg2Zn3、MgZnまたは、Mg7Zn3はX線回折法または、エネルギー分散型X線分析装置付き走査電子顕微鏡観察による物理的破砕面またはき裂表面のMgとZnの組成比分析によって、同定することができる。 Furthermore, in the present invention, the intermetallic compound phase contains one or more of MgZn 2 , Mg 2 Zn 11 , MgZn, Mg 2 Zn 3 or Mg 7 Zn 3 , so that the above corrosion resistance and rust prevention properties are further improved. It is possible to improve. MgZn 2 , Mg 2 Zn 11 , Mg 2 Zn 3 , MgZn, or Mg 7 Zn 3 is an Mg on the physical fracture surface or crack surface by X-ray diffraction or scanning electron microscope observation with an energy dispersive X-ray analyzer. And Zn by composition ratio analysis.

金属粒子の形状は、上記Zn合金粒子が球状やフレーク状ではなく、物理的破砕および/またはき裂を有する略球状多面体とすることで、Mg濃化相または、Zn−Mg金属間化合物が露出し、十分な表面保湿性が長時間発現される。略球状多面体とは、球状の粒子が物理的破砕により生じた擬似球状形であり、耐食性を考慮すると、物理的破砕によって生じた一つの閉じた稜線で囲まれる平面または曲面を1面とする、多面体の面数が2面以上あることが好ましい。耐食性や防錆性向上の観点からは、物理的破砕面数は多いほど好ましいが、その破砕面数が平均1面未満では、現時点で理由は不明であるが、上記効果向上の効果のばらつきが大きくなる。また、平均のアスペクト比の値が2超で形状が極端に扁平な場合には、塗装時の作業性が低下し、好ましくない。従って、粒子の形状を非扁平の球状に近い多面体で(アスペクト比の平均値で1〜1.5)、面数が2面以上有する形状と規定した。さらに上記した形状範囲は原料としてのZn合金粒子を規定するものであり、実際に塗料に混ぜて使用するまでに、空気中の水分等を吸収して、これらのZn合金粒子が凝集し結合した場合や、塗膜として鋼材上で硬化した場合のそれぞれの粒子が結合した場合等のZn合金粒子の形状までも規定するものではない。また、製造時や保管時に、Zn合金粉末表面に小さな凹凸が生じることもあるが、これらによる形状変化もアスペクト比の平均値が1〜1.5という球状や楕円球状から逸脱するものとはしない。   The shape of the metal particles is such that the Zn alloy particles are not spherical or flaky, but are substantially spherical polyhedrons having physical crushing and / or cracks, so that the Mg-concentrated phase or Zn-Mg intermetallic compound is exposed. In addition, sufficient surface moisture retention is exhibited for a long time. The substantially spherical polyhedron is a pseudo-spherical shape in which spherical particles are generated by physical crushing, and considering the corrosion resistance, a plane or curved surface surrounded by one closed ridge line generated by physical crushing is defined as one surface. The number of faces of the polyhedron is preferably two or more. From the standpoint of improving corrosion resistance and rust prevention, the larger the number of physically crushed surfaces, the better. However, if the number of crushed surfaces is less than 1 on average, the reason is unknown at this time, but there are variations in the effects of improving the above effects. growing. Further, when the average aspect ratio value is more than 2 and the shape is extremely flat, workability during coating is lowered, which is not preferable. Therefore, the shape of the particles is defined as a non-flat polyhedral shape close to a spherical shape (average aspect ratio of 1 to 1.5) and a shape having two or more faces. Furthermore, the above-described shape range defines Zn alloy particles as a raw material, and absorbs moisture in the air and so on before these are actually mixed with paint and used, these Zn alloy particles are aggregated and bonded. In addition, the shape of the Zn alloy particles such as the case where the particles are bonded to each other when cured on a steel material as a coating film is not specified. In addition, small irregularities may occur on the surface of the Zn alloy powder during production and storage, but the shape change caused by these does not deviate from the spherical or elliptical sphere having an average aspect ratio of 1 to 1.5. .

本発明のプライマーに含有させる金属粒子として、前記Zn合金粒子に代えて、Zn合金粒子とZn金属粒子を混合した金属粒子の混合物を用い、Zn金属粒子は上述の本発明のZn合金粒子と同様のものを用いることができる。   As the metal particles to be included in the primer of the present invention, a mixture of metal particles obtained by mixing Zn alloy particles and Zn metal particles is used instead of the Zn alloy particles, and the Zn metal particles are the same as the Zn alloy particles of the present invention described above. Can be used.

本発明は、Zn合金粒子に加えて、更に、平均粒子径2〜50μmのZnおよび不可避的不純物からなるZn金属粒子を含有し、Zn合金粒子と該Zn金属粒子との全金属粒子中のMg含有量が、質量%で、0.01〜30%となるように混合するとともに、Zn合金粒子とZn金属粒子の合計を、乾燥塗膜中に質量%で30%以上含有すると好ましい。   In addition to Zn alloy particles, the present invention further contains Zn metal particles composed of Zn having an average particle diameter of 2 to 50 μm and inevitable impurities, and Mg in all metal particles of Zn alloy particles and the Zn metal particles. While mixing so that the content is 0.01% to 30% by mass, it is preferable that the total amount of Zn alloy particles and Zn metal particles is 30% by mass or more in the dry coating film.

本発明における上記した破砕面および/または、き裂を有するZn合金粒子は、利用に際して平均粒径0.05〜50μmのZn金属粒子を含有し、質量%で、前記Zn合金粒子量と前記Zn金属粒子量の比の値を1/xとしたとき、xを300以下で混在させて使用することができる。ここでいうZn金属粒子とは、Znおよび不可避的不純物からなる粒子を意味し、該Zn金属粒子と上記した破砕面および/または、き裂を有するZn合金粒子を混合して塗料顔料に用いることで、従来のようにZn金属粒子を単独使用した顔料に比較して著しく優れた耐食性・防錆性をもたらすが、Zn合金粒子量:Zn金属粒子量の質量%の比の値を1/xとしたとき、xが300.0超では、耐食性・防錆性の向上に及ぼす、Zn合金粒子の効果が十分に発揮されない。したがって、x値を300.0以下とした。さらに耐食性、経済性を考慮すると、x値は1〜120が好ましい。さらに混合安定性を考慮するとx値は1〜30が好ましい。   The Zn alloy particles having the above-described fractured surface and / or crack in the present invention contain Zn metal particles having an average particle diameter of 0.05 to 50 μm when used, and the amount of Zn alloy particles and the amount of Zn are expressed in mass%. When the ratio value of the amount of metal particles is 1 / x, x can be mixed and used at 300 or less. The term “Zn metal particles” as used herein means particles composed of Zn and inevitable impurities. The Zn metal particles are mixed with the above-described fractured surface and / or Zn alloy particles having cracks and used for paint pigments. Thus, the corrosion resistance and rust preventive property are remarkably improved as compared with the conventional pigments using Zn metal particles alone, but the ratio of Zn alloy particle amount: mass% of Zn metal particle amount is 1 / x. When x is more than 300.0, the effect of the Zn alloy particles on the improvement of the corrosion resistance and rust resistance is not sufficiently exhibited. Therefore, the x value is set to 300.0 or less. Furthermore, in consideration of corrosion resistance and economy, the x value is preferably 1 to 120. Further, considering the mixing stability, the x value is preferably 1-30.

前記Zn合金粒子と混合するZn金属粒子の平均粒径を0.05〜50μmとする。上記した本発明における耐食性向上の効果は、混合するZn金属粒子の平均粒径が0.05〜300μmの範囲で認められるが、工業的に安定かつ安価に供給可能な平均粒径であることから、Zn金属粒子の平均粒径を0.05〜50μmとした。一方、上記した本発明の破砕面および/または、き裂を有するZn合金粒子と前記Zn金属粒子の混合効果は、おおよそ全防錆顔料中に含まれるMgの含有量でも整理することが可能で、質量%で、本発明の物理的破砕面および/または、き裂を有するZn合金粒子と前記Zn金属粒子の混合粒子の合計を100%としたとき、Mgの含有量を0.01〜30%未満として使用することができる。さらに付け加えると破砕面および/または、き裂を有する合金粒子とZn金属粒子の混合効果が最も顕著な範囲である0.1〜20%とすることが耐食性向上の効果安定性からは好ましく、加えて経済性を考慮すると0.5〜15%とすることがより好ましいが、目的に応じて適宜適用できる。   The average particle diameter of the Zn metal particles mixed with the Zn alloy particles is set to 0.05 to 50 μm. The above-mentioned effect of improving the corrosion resistance in the present invention is recognized when the average particle diameter of the Zn metal particles to be mixed is in the range of 0.05 to 300 μm, but is an average particle diameter that can be supplied industrially and inexpensively. The average particle diameter of the Zn metal particles was set to 0.05 to 50 μm. On the other hand, the mixing effect of the above-described fracture surface and / or cracked Zn alloy particles of the present invention and the Zn metal particles can be roughly arranged by the content of Mg contained in the entire antirust pigment. When the total of the Zn alloy particles having a physically crushed surface and / or crack of the present invention and the Zn metal particles is 100% by mass%, the Mg content is 0.01-30. % Can be used. Furthermore, it is preferable from the stability of the effect of improving the corrosion resistance that the mixing effect of the fractured surface and / or cracked alloy particles and Zn metal particles is the most prominent range of 0.1 to 20%. In view of economy, it is more preferably 0.5 to 15%, but it can be appropriately applied depending on the purpose.

次に乾燥塗膜中でのZn合金粒子とZn金属粒子の含有量は、質量%で、30質量%以上含有することが必要である。30質量%未満では耐食性等の効果が得られるまでに到らない。上限は、特に規定するものではないが、85質量%を超えると樹脂成分が少なくなり過ぎ、塗膜に欠陥が生じ易くなるため、85質量%以下が望ましい。   Next, the content of the Zn alloy particles and the Zn metal particles in the dry coating film is mass%, and it is necessary to contain 30 mass% or more. If it is less than 30% by mass, effects such as corrosion resistance cannot be obtained. The upper limit is not particularly specified, but if it exceeds 85% by mass, the resin component becomes too small and defects are likely to occur in the coating film, so 85% by mass or less is desirable.

上記いずれの本発明においても、塗膜中の樹脂成分としては、成膜性を確保するため、少なくとも15%とすることが好ましい。さらに、上記Zn合金粒子を30%以上含有していれば、チタン、カーボン、べんがら、クロムバーミリオン、紺青、黄鉛などの着色顔料や、鉛丹、亜酸化鉛、塩基性クロム酸鉛などの錆止め顔料、炭酸カルシウム、タルクなどの体質顔料を添加しても良い。   In any of the present inventions, the resin component in the coating film is preferably at least 15% in order to ensure film formability. Furthermore, if the Zn alloy particles are contained in an amount of 30% or more, coloring pigments such as titanium, carbon, red pepper, chrome vermilion, bitumen, and yellow lead, lead tan, lead suboxide, basic lead chromate, etc. You may add extender pigments, such as a rust prevention pigment, a calcium carbonate, and a talc.

なお、本発明において、無機系バインダー、有機系バインダーのいずれの樹脂(バインダー)でも利用できるが、船舶の現状を鑑みると、アルカリシリケートやアルキルシリケート等の無機系バインダーが好ましい。   In the present invention, any of an inorganic binder and an organic binder (binder) can be used. However, in view of the current state of ships, inorganic binders such as alkali silicate and alkyl silicate are preferred.

また、船舶鋼材の塗装厚みであるが、2〜300μmに限定した。塗装厚みが2μm未満では、十分な防食効果が期待できず、また、300μmを超えると割れやダレを生じやすく、耐食性・防食性が低下する。   Moreover, although it is the coating thickness of ship steel materials, it limited to 2-300 micrometers. When the coating thickness is less than 2 μm, a sufficient anticorrosive effect cannot be expected.

さらに、船舶であるが、海上を往来している船舶であれば、種類、サイズなど特に限定するものではない。例えば、LNG船、客船、コンテナ船、油タンカー、自動車専用船、雑貨船、バラ積み船などの商船から、漁船、巡視船、工作船、検疫船などの運賃収入を目的にしない船舶まで船舶全般において有用である。   Furthermore, although it is a ship, if it is a ship which is going and going on the sea, a kind, size, etc. will not be specifically limited. For example, LNG ships, passenger ships, container ships, oil tankers, car carriers, miscellaneous ships, bulk carriers, etc., and vessels that do not aim for fare revenue such as fishing boats, patrol boats, work boats, quarantine vessels, etc. Useful in.

以下に、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

Zn合金粒子は、ガスアトマイズ法により作製したものを、あるいはガスアトマイズ法により作製したZn合金粒子同士を、含水率0.3%以下のトルエンに加えてスラリー状としたものを対向するジェット噴流として、該ジェット噴流同士を衝突させることによって、Zn合金粒子に物理的破砕面および/またはき裂を生じさせた粒子を用いた。このような製造方法で製造した結果として、Zn合金粒子のアスペクト比は1〜1.5の範囲となる。アスペクト比について記載していない下記表1〜3のものについても同様である。一方、下記表4の比較例78〜82については、Zn合金粒子をガスアトマイズ法で作製した後一旦、高純度アルミナボールを用いたボールミルに投入して1〜3分間、軽い粉砕を行った後、取り出し、次に含水率0.3%以下のトルエンに加えてスラリー状としたものを対向するジェット噴流として、該ジェット噴流同士を衝突させることによって、作製した。   The Zn alloy particles produced by the gas atomization method, or Zn alloy particles produced by the gas atomization method, added to a slurry with a water content of 0.3% or less as a slurry, Particles in which Zn alloy particles were physically fractured and / or cracked by colliding jets were used. As a result of manufacturing by such a manufacturing method, the aspect ratio of the Zn alloy particles is in the range of 1 to 1.5. The same applies to those shown in Tables 1 to 3 which do not describe the aspect ratio. On the other hand, for Comparative Examples 78 to 82 in Table 4 below, after preparing Zn alloy particles by a gas atomization method, the mixture was once put into a ball mill using high-purity alumina balls and lightly pulverized for 1 to 3 minutes. Next, it was produced by colliding the jet jets as a jet jet facing each other in the form of a slurry in addition to toluene having a moisture content of 0.3% or less.

なお、用いた各Zn合金粒子の化学組成を、表1〜7「Zn合金粒子の内容」の欄に記した。Zn合金粒子をプライマーに添加する前に、粉末X線回折試験を実施して、Mg固溶相、MgZn2、Mg2Zn11およびその他のZn−Mg金属間化合物の存在有無の確認を行った。さらに、電界放射型電子銃装備の走査電子顕微鏡による観察を実施し、Zn合金粒子の平均粒径を粒子数100個以上で、画像解析により平均球相当直径としてそれぞれ求め、表に記した。なお、それらの値は、別途、該Zn合金粒子のレーザー回折分散法によって求めた平均球相当直径と、10%未満の誤差で一致していた。表1〜3に記載のZn合金粒子のMg濃度について*)を付しているが、ここに表示したMg濃度は、Zn合金粒子とZn金属粒子を混合した場合は、その混合した金属粒子中のMg含有量を示す意味である。 In addition, the chemical composition of each used Zn alloy particle was described in the column of Table 1-7 "Content of Zn alloy particle". Prior to the addition of Zn alloy particles in the primer, to implement a powder X-ray diffraction analysis, Mg solid solution phase, the confirmation of the presence or absence of MgZn 2, Mg 2 Zn 11, and other Zn-Mg intermetallic compounds was performed . Further, observation with a scanning electron microscope equipped with a field emission electron gun was carried out, and the average particle diameter of Zn alloy particles was determined as an average sphere equivalent diameter by image analysis with 100 or more particles, and described in the table. In addition, those values agreed with the average sphere equivalent diameter separately obtained by the laser diffraction dispersion method of the Zn alloy particles with an error of less than 10%. The Mg concentration of the Zn alloy particles described in Tables 1 to 3 is marked with *), but the Mg concentration indicated here is the same when the Zn alloy particles and Zn metal particles are mixed. It is the meaning which shows Mg content.

また、同時に、Zn合金粒子の表面状態を前記走査電子顕微鏡観察で確認し、物理的破砕面および/またはき裂の有無、およびその面数の概要を観察者が観察像を見て判断した。表1〜表3については、物理的破砕面の有無を観察した。観察結果について、●:破砕面有り、×:破砕面なしと表示した。表4〜表7については、物理的破砕面とき裂の有無を観察した。観察結果について、◎:破砕面及び/又はき裂有り、×:破砕面及びき裂なしと表示した。当該観察では、それぞれの粒子の片面しか見ていないが、影になっている反対側にも、同様の形状が連続的、面対照的に存在しているものと仮定して面数を判断し、粒子数100個以上で、その平均値を有効数字1桁で表した。前述のように、物理的破砕によって生じた一つの閉じた稜線で囲まれる平面または曲面を1面としている。   At the same time, the surface state of the Zn alloy particles was confirmed by observation with the scanning electron microscope, and the observer determined the presence or absence of physical fracture surfaces and / or cracks and the outline of the number of faces by observing the observation image. About Table 1-Table 3, the presence or absence of the physical crushing surface was observed. The observation results are indicated as follows: ●: With crushing surface, ×: Without crushing surface. About Table 4-Table 7, the physical crushing surface and the presence or absence of a crack were observed. Regarding the observation results, “A” indicates that there is a crushed surface and / or crack, and “X” indicates that there is no crushed surface and no crack. In this observation, only one side of each particle is seen, but the number of faces is judged on the assumption that the same shape exists continuously and in contrast on the opposite side in the shadow. The average value was expressed by one significant digit when the number of particles was 100 or more. As described above, one plane is a plane or curved surface surrounded by one closed ridge line generated by physical crushing.

また事前に、該Zn合金粒子の粉末X線回折測定によって、存在するMg固溶相、Zn−Mg金属間化合物の種類を確認した上で、前記走査電子顕微鏡観察において、適宜、同時にX線エネルギー分散型分析装置でZn、Mgの濃度の半定量マッピング観察・濃度比測定または、反射電子顕微鏡像観察で、物理的破砕面またはき裂の表面におけるMg固溶相およびZn−Mg金属間化合物の存在状態を確認した。   Moreover, after confirming the kind of Mg solid solution phase and Zn-Mg intermetallic compound by powder X-ray diffraction measurement of the Zn alloy particles in advance, the X-ray energy is appropriately and simultaneously measured in the scanning electron microscope observation. Observation of the solid solution phase and Zn-Mg intermetallic compound on the physical fracture surface or crack surface by semi-quantitative mapping observation / concentration ratio measurement or reflection electron microscope image observation of Zn and Mg concentrations with a distributed analyzer The existence state was confirmed.

その後、表1〜7に示す条件で塗装試験片を作製した。塗料調合は、一般的な方法で実施し、バインダーとしては、市販のアルカリシリケートあるいはアルキルシリケート樹脂の無機系または、エポキシ系樹脂の有機系を使用し、塗装は、エアレスプレー塗装を採用した。なお、鋼板は、500mm角の鋼板を用い、Sa1/2 (ISO 8501−1) になるようにブラスト処理を施した後、前記塗装を実施し、船舶内のアッパーデッキ外板、アッパーデッキ裏、ハッチカバー、ウォーターバラストタンクロンジ、カーゴホールド内壁、喫水ラインより上方の船舶外板に設置した。各試験片ともに、巨視的な欠陥をカッターにてXカットを挿入し、地鉄が露出していることを確認した。また、別途、乾燥塗膜中のZn合金粒子の割合を求めている。本試験中、表面が湿度33%、温度35℃環境であることを温湿度センサーにて確認後、本発明の防錆方法に従った試験片(本発明例10、20、30、40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240、250、260、270、280、290、300、310、320、330、340、350、360)プライマ表面を指で触れて目視で観察したところ、試験片全体がいずれも湿り気を含んでおり、保湿効果が保たれていることがわかった。   Then, the coating test piece was produced on the conditions shown in Tables 1-7. The paint preparation was carried out by a general method, and a commercially available alkali silicate or alkyl silicate resin inorganic type or an epoxy type resin organic type was used as the binder, and air spray spray coating was adopted. In addition, the steel plate is a 500 mm square steel plate, blasted so as to be Sa1 / 2 (ISO 8501-1), and then the coating is performed, and the upper deck outer plate in the ship, the upper deck back, The hatch cover, water ballast tank longge, cargo hold inner wall, and the ship outer plate above the draft line were installed. In each test piece, an X-cut was inserted with a cutter for macroscopic defects, and it was confirmed that the ground iron was exposed. Separately, the ratio of Zn alloy particles in the dried coating film is obtained. During this test, after confirming that the surface is in an environment of 33% humidity and 35 ° C. temperature with a temperature and humidity sensor, test pieces according to the rust prevention method of the present invention (Examples 10, 20, 30, 40, 50 of the present invention). , 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300 , 310, 320, 330, 340, 350, 360) When the surface of the primer was touched with a finger and visually observed, it was found that all the test pieces contained moisture and the moisturizing effect was maintained.

本試験の結果は、船舶の前記各位置に設置した試験片の実暴露試験を3年間実施した後の、鋼板の最大腐食深さで評価した。元厚に対し、20%以上減肉した場合は、不良と判断し×、20〜15%の減肉した場合は、優れた防食性を示したと判断し○、15%未満の減肉した場合は、特に優れた防食性を示したと判断し◎で表示した。表4から表6にそれぞれの船内曝露試験の試験結果を示す。   The result of this test was evaluated by the maximum corrosion depth of the steel sheet after the actual exposure test of the test piece installed at each position of the ship was conducted for 3 years. If the thickness is reduced by 20% or more relative to the original thickness, it is judged as defective. × When the thickness is reduced by 20 to 15%, it is judged that excellent anticorrosive properties are exhibited. ○, when the thickness is reduced by less than 15% Was judged as having exhibited particularly excellent anticorrosion properties, and indicated by ◎. Tables 4 to 6 show the test results of the respective ship exposure tests.

表1の比較例1から比較例18は従来の無機系プライマー、表1の比較例19以降および、表2の比較例すべて、表3の比較例すべては、Zn合金粒子または、Zn合金粒子とZn金属粒子の混合物である。また、表1の本発明例1から120は、Zn合金粒子または、Zn合金粒子とZn金属粒子の混合物である。表1〜表7から、上記乾湿が繰り返される環境において、本発明例は著しく優れた耐食性・防錆性を示すことがわかった。   Comparative Example 1 to Comparative Example 18 in Table 1 are conventional inorganic primers, Comparative Example 19 and later in Table 1, all Comparative Examples in Table 2, and all Comparative Examples in Table 3 are Zn alloy particles or Zn alloy particles. It is a mixture of Zn metal particles. Inventive Examples 1 to 120 in Table 1 are Zn alloy particles or a mixture of Zn alloy particles and Zn metal particles. From Tables 1 to 7, it was found that the examples of the present invention exhibit remarkably excellent corrosion resistance and rust resistance in an environment where the above-described wet and dry conditions are repeated.

また、表1から表3の本発明例1から360のそれぞれ無機系および有機系プライマーの上層に、さらに100〜200μmの変性エポキシ樹脂を塗装した試験片を用意し、試験片四周部の塗膜を外側から3〜5mmを全てカッターで傷をつけ、剥離し、地金を露出させた。これらも、船舶内のアッパーデッキ外板、アッパーデッキ裏、カーゴホールド内壁に設置し、実暴露試験を3年間実施したところ、表面保湿効果は有効に発揮され、元厚に対する減肉量は、いずれも10%を下回り、著しく優れた耐食性・防錆性を示すことがわかった。   Moreover, the test piece which apply | coated the modified epoxy resin of 100-200 micrometers further to the upper layer of each inorganic type and organic type primer of this invention example 1 to 360 of Table 1 to Table 3 was prepared, and the coating film of a test piece 4 circumference part All 3-5mm from the outside was scratched with a cutter and peeled to expose the bare metal. These were also installed on the upper deck outer plate, the upper deck back and the cargo hold inner wall in the ship, and when the actual exposure test was conducted for 3 years, the surface moisturizing effect was exhibited effectively, and the amount of thinning relative to the original thickness was Was less than 10%, and it was found that the corrosion resistance and rust resistance were remarkably excellent.

Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071

Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071

Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071

Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071

Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071

Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071

Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071
Figure 0005130071

Claims (7)

質量%で、Mg:0.01〜30%を含有し、残部Znおよび不可避的不純物からなるZn合金粒子であって、
該Zn合金粒子は、物理的破砕面および/またはさもしくは深さ0.01μm以上のき裂を有し、該物理的破砕面とき裂は、ガスアトマイズ法により作製したZn合金粒子同士を、含水率0.3%以下のトルエンまたはキシレンに加えてスラリー状としたものを対向するジェット噴流として、該ジェット噴流同士を衝突させることによって形成されてなり、
平均粒径が0.05〜200μmで、最大径と最小径のアスペクト比(最大径/最小径)平均値1〜1.5であるZn合金粒子を、
乾燥塗膜中に、質量%で、30%以上含有し、残部無機系バインダーからなる無機系プライマーまたは残部有機系バインダーからなる有機系プライマーを、下地層として塗布し、塗装厚みが2〜300μmのプライマー層を形成することを特徴とする、相対湿度30%以上〜100%以下の環境下に置かれる船舶鋼材の防錆方法。
Zn alloy particles containing Mg: 0.01 to 30% in mass%, the balance being Zn and inevitable impurities ,
The Zn alloy particles, physical crushing surface, and / or the length or else properly has more crack depth 0.01 [mu] m, Crack the physical disruption plane, Zn alloy particles produced by a gas atomizing method It is formed by making the jet jets collide with each other as a jet jet facing each other in addition to toluene or xylene having a moisture content of 0.3% or less ,
An average particle diameter of 0.05~200Myuemu, the Zn alloy particles the maximum diameter and the minimum diameter of the aspect ratio (maximum diameter / minimum diameter) is 1 to 1.5 in the average value,
In the dried coating film, 30% or more by mass, and an inorganic primer composed of the remaining inorganic binder or an organic primer composed of the remaining organic binder was applied as a base layer, and the coating thickness was 2 to 300 μm. A rust prevention method for marine steel materials placed in an environment having a relative humidity of 30% to 100%, characterized by forming a primer layer.
前記Zn合金粒子が、更に、質量%で、Al:0.01〜30%、Si:0.01〜3.0%の1種又は2種を含有することを特徴とする、請求項1に記載の船舶鋼材の防錆方法。 The Zn alloy particles further contain one or two kinds of Al: 0.01 to 30% and Si: 0.01 to 3.0 % by mass%. The rust-proofing method of the ship steel materials as described. 前記Zn合金粒子が、表面にMg固溶相及びZn−Mg金属間化合物を有することを特徴とする、請求項1または2に記載の船舶鋼材の防錆方法。   3. The rust prevention method for marine steel according to claim 1, wherein the Zn alloy particles have a Mg solid solution phase and a Zn—Mg intermetallic compound on a surface thereof. 前記Zn合金粒子の金属間化合物が、MgZn2、Mg2Zn11、Mg2Zn3、MgZnまたはMg7Zn3のうち1種以上を含むことを特徴とする、請求項3に記載の船舶鋼材の防錆方法。 The marine steel material according to claim 3, wherein the intermetallic compound of the Zn alloy particles includes one or more of MgZn 2 , Mg 2 Zn 11 , Mg 2 Zn 3 , MgZn, or Mg 7 Zn 3. Rust prevention method. 前記Zn合金粒子が、略球状多面体の面数が2面以上であることを特徴とする、請求項1〜4の何れか1項に記載の船舶鋼材の防錆方法。   The ship alloy steel rust prevention method according to any one of claims 1 to 4, wherein the Zn alloy particles have two or more substantially spherical polyhedrons. 前記無機系プライマーまたは前記有機系プライマーは、前記Zn合金粒子に加え、更に、平均粒子径0.05〜50μmのZnおよび不可避的不純物からなるZn金属粒子を含有することを特徴とする請求項1〜5の何れか1項に記載の船舶鋼材の防錆方法。   The inorganic primer or the organic primer contains Zn metal particles composed of Zn having an average particle diameter of 0.05 to 50 μm and inevitable impurities in addition to the Zn alloy particles. The rust prevention method for marine steel materials according to any one of -5. 質量%で、(前記Zn合金粒子量):(前記Zn金属粒子量)の比の値を1/xとしたとき、Xが300.0以下であり、かつ、質量%で、前記Zn合金粒子と前記Zn金属粒子の混合粒子の合計を100%としたとき、Mgの含有量が、0.01%以上30%未満であることを特徴とする、請求項6に記載の船舶鋼材の防錆方法。 When the ratio value of (the amount of Zn alloy particles) :( the amount of Zn metal particles) is 1 / x, X is 300.0 or less, and the Zn alloy particles are in mass%. The content of Mg is 0.01 % or more and less than 30% when the total of the mixed particles of Zn and the Zn metal particles is 100%. Method.
JP2008027574A 2007-02-08 2008-02-07 Rust prevention method for marine steel Expired - Fee Related JP5130071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008027574A JP5130071B2 (en) 2007-02-08 2008-02-07 Rust prevention method for marine steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007029247 2007-02-08
JP2007029247 2007-02-08
JP2008027574A JP5130071B2 (en) 2007-02-08 2008-02-07 Rust prevention method for marine steel

Publications (3)

Publication Number Publication Date
JP2008223137A JP2008223137A (en) 2008-09-25
JP2008223137A5 JP2008223137A5 (en) 2012-04-12
JP5130071B2 true JP5130071B2 (en) 2013-01-30

Family

ID=39842088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027574A Expired - Fee Related JP5130071B2 (en) 2007-02-08 2008-02-07 Rust prevention method for marine steel

Country Status (1)

Country Link
JP (1) JP5130071B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037949A (en) * 2009-08-07 2011-02-24 Nippon Steel Corp Zn ALLOY PARTICLE HAVING FRACTURED SURFACE FOR HIGHLY CORROSION-RESISTANT AND RUSTPROOF COATING, HIGHLY CORROSION-RESISTANT AND RUSTPROOF COATING, HIGHLY CORROSION-RESISTANT STEEL MATERIAL AND STEEL STRUCTURE
CN102086313B (en) * 2010-11-04 2012-08-29 江苏麟龙新材料股份有限公司 Magnesium-containing coating for marine climate-resistant anticorrosion treatment
DE102012107634A1 (en) 2012-08-20 2014-02-20 Eckart Gmbh Zinc-magnesium anticorrosion pigments, anticorrosive paint and process for the preparation of anticorrosive pigments
DE102012107633A1 (en) * 2012-08-20 2014-02-20 Eckart Gmbh Zinc magnesium alloy corrosion protection pigments, anticorrosive paint and process for the preparation of anticorrosive pigments
JP6810420B2 (en) * 2017-02-07 2021-01-06 ダイキ工業株式会社 Undercoat material and coating film forming method using this
CN111020246A (en) * 2019-11-19 2020-04-17 河海大学 High-toughness medical biodegradable zinc alloy based on superfine three-phase eutectic structure reinforcement and preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129070A (en) * 1982-01-29 1983-08-01 Mitsui Mining & Smelting Co Ltd Rust preventing coating material composition
JPS58199805A (en) * 1982-05-14 1983-11-21 Nippon Soda Co Ltd Manufacture of alloy powder
JPS5918765A (en) * 1982-07-23 1984-01-31 Mitsui Mining & Smelting Co Ltd Coating material composition for coated steel plate
JPS5952645A (en) * 1982-09-17 1984-03-27 日新製鋼株式会社 Welding painted steel plate having excellent powdering-resisting property
JPS59171645A (en) * 1983-03-19 1984-09-28 日新製鋼株式会社 Weldable coated steel plate having excellent corrosion protection
JPS59212256A (en) * 1983-05-17 1984-12-01 日新製鋼株式会社 Weldable double layer coated steel plate having excellent corrosion protection
JPS60149788A (en) * 1984-01-17 1985-08-07 Nisshin Steel Co Ltd Weldable painted steel sheet having excellent resistance to powdering
JP3753162B2 (en) * 1997-04-07 2006-03-08 吉川工業株式会社 Method for producing metal powder for paint pigment
JPH11140511A (en) * 1997-11-11 1999-05-25 Daiken Kagaku Kogyo Kk Production of monodispersed metal fine particle powder
JP4637978B2 (en) * 1998-09-07 2011-02-23 新日本製鐵株式会社 Corrosion-resistant paint and corrosion-resistant steel material coated with the same
JP2001164194A (en) * 1999-12-13 2001-06-19 Nippon Steel Corp Zinc-rich coating excellent in corrosion-resistant property and coated metal plate
JP2003213394A (en) * 2002-01-25 2003-07-30 Nisshin Steel Co Ltd Coated steel sheet and production method therefor
JP4585224B2 (en) * 2004-04-28 2010-11-24 新日本製鐵株式会社 High corrosion resistance zinc-based alloy coated steel coating
JP2005336432A (en) * 2004-05-31 2005-12-08 Nippon Steel Corp Coating for steel material and steel material having excellent corrosion resistance and rust preventing property

Also Published As

Publication number Publication date
JP2008223137A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
CN102161093B (en) Zn alloy particles for highly anticorrosive and rust-inhibiting paint, process for production of particles, highly anticorrosive and rust-inhibiting paint
US8114527B2 (en) Highly corrosion-resistant, rust-prevention coating material, highly corrosion-resistant steel, and steel structure
JP5130071B2 (en) Rust prevention method for marine steel
JP5905097B2 (en) Primary rust preventive coating composition and use thereof
JP5774859B2 (en) Corrosion resistant steel for ship superstructure
CN103122186B (en) Environment-friendly treating fluid for preventing steel rails from corrosion and steel rail corrosion prevention material
WO2019088155A1 (en) Anti-rust coating composition and use thereof
KR101929104B1 (en) Corrosion-proof steel material, production method therefor, method for corrosion proofing steel material, and ballast tank
JP5155097B2 (en) Steel used for containers containing minerals
WO2014119784A1 (en) Primary anti-corrosive coating composition, and coated steel structure which has been coated with same
JP6785382B2 (en) paint
JP2012092404A (en) Steel for ship having excellent coating corrosion resistance
JP2009167246A (en) Paste for highly anticorrosive rust-preventive coating exhibiting excellent processability in service, highly anticorrosive rust-preventive coating, highly anticorrosive steel coated with the coating, and steel structure
JP5130062B2 (en) Steel coating method and coated steel
JP2011037949A (en) Zn ALLOY PARTICLE HAVING FRACTURED SURFACE FOR HIGHLY CORROSION-RESISTANT AND RUSTPROOF COATING, HIGHLY CORROSION-RESISTANT AND RUSTPROOF COATING, HIGHLY CORROSION-RESISTANT STEEL MATERIAL AND STEEL STRUCTURE
KR20140074980A (en) Coated steel material with excellent laser cuttability, primary rust prevention performance, and legibility
JPS6245385A (en) Pretreatment of steel plate
JP2023128912A (en) Aqueous anticorrosive coating for aerosol, and aerosol product
JP4400299B2 (en) Surface treatment weathering steel and surface treatment method of weathering steel
JPS6354315B2 (en)
JPS61171778A (en) Corrosion-proofing coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees