JP2009167246A - Paste for highly anticorrosive rust-preventive coating exhibiting excellent processability in service, highly anticorrosive rust-preventive coating, highly anticorrosive steel coated with the coating, and steel structure - Google Patents
Paste for highly anticorrosive rust-preventive coating exhibiting excellent processability in service, highly anticorrosive rust-preventive coating, highly anticorrosive steel coated with the coating, and steel structure Download PDFInfo
- Publication number
- JP2009167246A JP2009167246A JP2008004392A JP2008004392A JP2009167246A JP 2009167246 A JP2009167246 A JP 2009167246A JP 2008004392 A JP2008004392 A JP 2008004392A JP 2008004392 A JP2008004392 A JP 2008004392A JP 2009167246 A JP2009167246 A JP 2009167246A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- alloy particles
- rust
- paste
- high corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Paints Or Removers (AREA)
Abstract
Description
本発明は、利用加工性に優れた高耐食性防錆塗料用ペースト、高耐食性防錆塗料、高耐食性防錆塗料塗装鋼材および鋼構造物に関し、特に分散剤を混合させた塗料を各種鉄鋼材料表面に塗布したときに著しく優れた犠牲防食作用と溶接性、溶断性等の優れた利用加工性を併せ持つ高耐食性防錆塗料用ペースト、高耐食性防錆塗料、高耐食性防錆塗料塗装鋼材および鋼構造物に関する。 The present invention relates to a paste for high corrosion resistance rust preventive paint excellent in processability, high corrosion resistance rust preventive paint, high corrosion resistance rust preventive paint coated steel materials and steel structures, and in particular, paints mixed with a dispersant on the surface of various steel materials. Highly corrosion-resistant rust-proof paint paste, high corrosion-resistant rust-proof paint, steel material and steel structure that have both excellent sacrificial anti-corrosive action when applied to, and excellent workability such as weldability and fusing Related to things.
鉄鋼材料の腐食対策として、不可避的不純物を含有するZn金属粒子を顔料とし有機材、無機材をビヒクル(液状バインダー成分)とした構成のジンクリッチペイントが多用されている。ジンクリッチペイントは主に重防食塗装の下塗りに用いられるが、その防食機構の特徴は塗膜に含まれるZn金属粒子の犠牲防食作用である。しかし、ジンクリッチペイントの塗膜の防食能は、前述のようにZn金属粒子の犠牲防食作用に強く依存することから、使用環境によっては、亜鉛の消失速度が大きく鉄鋼材料に対する保護作用が長続きしない場合がある。 As a countermeasure against corrosion of steel materials, zinc rich paint having a structure in which Zn metal particles containing inevitable impurities are used as a pigment, an organic material, and an inorganic material as a vehicle (liquid binder component) is frequently used. Zinc rich paint is mainly used for undercoating of heavy anticorrosion coating, and the feature of the anticorrosion mechanism is sacrificial anticorrosive action of Zn metal particles contained in the coating film. However, since the anticorrosive ability of the zinc rich paint coating depends strongly on the sacrificial anticorrosive action of the Zn metal particles as described above, the disappearance rate of zinc is large and the protective action against steel materials does not last long depending on the use environment. There is a case.
そこで、塗膜中のZn金属粒子の含有量を高めたり、膜厚を厚くしたりする等の対策がとられているが、鋼材面との密着性の低下や塗膜のヒビ割れ或いはダレなどが起こりやすくなり、塗膜の防食性能と物理的性質や施工性を両立しがたく万全とはいえない。 Therefore, measures such as increasing the content of Zn metal particles in the coating film or increasing the film thickness have been taken. However, such as a decrease in adhesion to the steel surface, cracking or sagging of the coating film, etc. It is difficult to achieve both anticorrosion performance and physical properties and workability of the coating film.
このような状況にあって、従来のジンクリッチペイントの長所を保持し、更に長期にわたり犠牲防食作用を発揮する高性能ジンクリッチペイントの開発が期待され、これまでにも各種の提案がなされてきた。例えば、特許文献1から、特許文献4では、Zn金属粒子の他にZn−Mg合金粒子またはZn−Mg−Al合金粒子を含有させた有機系ジンクリッチペイントに関する発明が、また特許文献5では、Zn金属粒子の他にZn−Mg合金粒子とMn金属粒子を含有させた有機系ジンクリッチペイントに関する発明が提案された。 Under such circumstances, the development of a high-performance zinc rich paint that retains the advantages of the conventional zinc rich paint and exhibits sacrificial anticorrosive action for a long period of time is expected, and various proposals have been made so far. . For example, from Patent Document 1 to Patent Document 4, an invention related to an organic zinc rich paint containing Zn-Mg alloy particles or Zn-Mg-Al alloy particles in addition to Zn metal particles, and Patent Document 5, An invention related to an organic zinc rich paint containing Zn-Mg alloy particles and Mn metal particles in addition to Zn metal particles has been proposed.
このような状況の中、これらの有機系塗料の紫外線や水分、酸素などの影響を受ける複合環境では劣化し、比較的短期間でのメンテナンスが必要になる等の欠点を有しない無機系塗料の防食性能向上を目的に、これまでにいくつかの提案がなされてきた。例えば、本発明とは目的が異なるが、特許文献6では、溶接・溶断時塗装劣化の抑制を目標にZn金属粒子とMgまたはMg合金の混合物を含有する塗料組成物に関する発明が提案されている。 Under such circumstances, these organic paints deteriorate in a complex environment that is affected by ultraviolet rays, moisture, oxygen, etc., and inorganic paints that do not have the disadvantage of requiring maintenance in a relatively short period of time. Several proposals have been made so far for the purpose of improving the anticorrosion performance. For example, although the object is different from that of the present invention, Patent Document 6 proposes an invention relating to a coating composition containing a mixture of Zn metal particles and Mg or Mg alloy with the aim of suppressing coating deterioration during welding and fusing. .
しかしながら、前記特許文献1から5は有機系塗料であり、紫外線や水分、酸素などの影響を考慮する必要のある複合環境では劣化することを考慮すると、比較的短時間でメンテナンスが必要になるという副次的な問題が残されている。また、特許文献6は溶断ヒュームが多くなること、ブローホール発生頻度が大きいという問題が生じ、溶接、溶断時の作業効率が低下する問題が残されており、更なる改善が求められていた。 However, Patent Documents 1 to 5 are organic paints, and it is said that maintenance is required in a relatively short time in consideration of deterioration in a complex environment that needs to consider the influence of ultraviolet rays, moisture, oxygen, and the like. A side problem remains. Further, Patent Document 6 has a problem that the fusing fume increases and the frequency of occurrence of blowholes is high, and there remains a problem that the work efficiency at the time of welding and fusing is lowered, and further improvement has been demanded.
そこで、本発明は、飽和脂肪酸アミドまたは不飽和脂肪酸アミドをペースト中に混合し無機系または有機系のバインダーと組み合せることで、優れた耐食性・防錆性を発揮し、さらに優れた溶接性、溶断性等の利用加工性を併せ持つ高耐食性防錆塗料用ペースト、高耐食性防錆塗料及び該塗料を塗装することで高耐食性・防錆性が付与された鉄鋼材料を提供することを目的とする。 Therefore, the present invention is a mixture of a saturated fatty acid amide or an unsaturated fatty acid amide in a paste and combined with an inorganic or organic binder to exhibit excellent corrosion resistance and rust prevention, and further excellent weldability, The purpose is to provide a high corrosion resistance rust preventive paint paste having high processability such as fusing property, a high corrosion resistance rust preventive paint, and a steel material imparted with high corrosion resistance and rust resistance by applying the paint. .
本発明者らは、種々検討の結果、分散剤を含有する有機溶媒中に、平均粒径0.05〜200μmのZn合金粒子を顔料として分散し、かつ、前記分散剤として、飽和脂肪酸アミドおよび不飽和脂肪酸アミドの一方又は両方をペースト中の有機溶媒に対し、質量%で、0.01〜10%を含有すると、優れた耐食性、防錆性に加え、優れた利用加工性を併せ持つことを新たに見出し、本発明の基本を構築するに至った。 As a result of various studies, the present inventors have dispersed Zn alloy particles having an average particle size of 0.05 to 200 μm as a pigment in an organic solvent containing a dispersant, and as the dispersant, a saturated fatty acid amide and When one or both of the unsaturated fatty acid amides are contained in an amount of 0.01 to 10% by mass with respect to the organic solvent in the paste, in addition to excellent corrosion resistance and rust resistance, it also has excellent processability. A new headline has been reached, which has led to the construction of the basics of the present invention.
さらに、前記利用加工性に優れた高耐食性防錆塗料中のZn合金粒子を詳細検討し、Zn合金粒子中に質量%で、Al:0.01〜10%、Si:0.01〜3%の1種または2種を含有することで、さらなる防錆性、利用加工性が発現することを見出した。 Furthermore, the Zn alloy particles in the high corrosion resistance rust preventive paint having excellent utilization processability are examined in detail, and the Zn alloy particles are in mass%, Al: 0.01 to 10%, Si: 0.01 to 3%. It was found that further rust prevention and utilization processability were exhibited by containing one or two of the above.
さらに、飽和脂肪酸アミドまたは不飽和脂肪酸アミドの一方又は両方を分散剤として含む有機溶媒がトルエンあるいはキシレンである場合に、安定して優れた耐食性、防錆性および利用加工性を併せ持つことを見出したものである。前記したZn合金粒子を含有する高耐食性防錆塗料は、そのままでも優れた耐食性・防錆性をもたらすが、さらなる検討の結果、従来から顔料として一般的に用いられているZn金属粒子と混合し、塗料調合後、鋼板表面などの塗装に用いたものは、Zn金属粒子を単独使用し、鋼板表面などの塗装に用いたものと比較して著しく優れた耐食性・防錆性及び優れた利用加工性を併せ持つことを見出した。 Furthermore, when the organic solvent containing one or both of saturated fatty acid amide and unsaturated fatty acid amide as a dispersant is toluene or xylene, it has been found that it has stable and excellent corrosion resistance, rust prevention property and processability. Is. Although the high corrosion resistance rust preventive paint containing the Zn alloy particles described above brings excellent corrosion resistance and rust preventive properties as they are, as a result of further studies, they are mixed with Zn metal particles that have been conventionally used as pigments. After the paint preparation, the one used for painting on the steel plate surface, etc. uses Zn metal particles alone, and has significantly superior corrosion resistance / rust prevention and superior utilization processing compared to those used for painting the steel plate surface etc. I found out that it also has sex.
一般に塗膜厚に関し、耐食性・防錆性と、溶接性、溶断性等の利用加工性は相反する性質であり、耐食性、防錆性を向上させようと塗膜厚を増加させると、利用加工性は低下する。一方、利用加工性を向上させようと塗膜厚を低下させると耐食性、防錆性は著しく低下する。本発明では、塗膜厚2μm〜50μmの薄膜塗装において優れた耐食性、防錆性を発揮しつつ、さらに、優れた溶接性、溶断性を発揮することを見出した。 In general, with regard to coating thickness, corrosion resistance / rust prevention, and workability such as weldability and fusing properties are contradictory properties, and if coating thickness is increased in order to improve corrosion resistance and rust prevention properties, use processing Sex declines. On the other hand, when the coating thickness is reduced to improve the processability of use, the corrosion resistance and rust resistance are significantly reduced. In the present invention, it has been found that, while exhibiting excellent corrosion resistance and rust resistance in thin film coating having a coating thickness of 2 μm to 50 μm, it also exhibits excellent weldability and fusing properties.
本発明は以上の検討の結果もたらされたもので、その具体的な課題解決の手段は、以下のとおりである。
(1)分散剤として、有機溶媒に対し、質量%で、飽和脂肪酸アミドおよび不飽和脂肪酸アミドの一方又は両方を0.01〜10%含有し、かつ、当該有機溶媒中に、平均粒径0.05〜200μmのZn合金粒子が顔料として分散されており、該Zn合金粒子は、質量%で、Mg:0.01〜30%を含有し、残部Zn及び不可避的不純物からなり、かつ該Zn合金粒子表面に物理的破砕面および/または長さ0.01μm以上のき裂もしくは深さ0.01μm以上のき裂を有するものであることを特徴とする、利用加工性に優れた高耐食性防錆塗料用ペースト。
(2)前記有機溶媒がトルエンおよび/またはキシレンであることを特徴とする、前記(1)に記載の利用加工性に優れた高耐食性防錆塗料用ペースト。
(3)更に、前記Zn合金粒子が質量%で、Al:0.01〜30%、Si:0.01〜3%の1種又は2種を含有することを特徴とする前記(1)または(2)に記載の高耐食性防錆塗料用ペースト。
(4)前記Zn合金粒子が、物理的破砕面にMg固溶相およびZn−Mg金属間化合物を有することを特徴とする前記(1)〜(3)の何れかに記載の高耐食性防錆塗料用ペースト。
(5)前記Zn−Mg金属間化合物が、MgZn2、Mg2Zn11、Mg2Zn3、MgZnまたは、Mg7Zn3のうち、1種以上を含むことを特徴とする前記(4)に記載の高耐食性防錆塗料用ペースト。
(6)前記Zn合金粒子が、非球状多面体で、面数が2面以上であることを特徴とする前記(1)〜(5)の何れかに記載の高耐食性防錆塗料用ペースト。
(7)前記(1)〜(6)の何れかに記載の高耐食性防錆塗料用ペーストを用いた、高耐食性防錆塗料であって、前記Zn合金粒子を乾燥塗膜換算の質量%で、30%以上85%以下含有することを特徴とする、高耐食性防錆塗料。
(8)前記Zn合金粒子に加え、さらに平均粒径0.05〜50μmのZn及び不可避的不純物からなるZn金属粒子を分散させた高耐食性防錆塗料であって、質量%で、(前記Zn合金粒子量):(前記Zn金属粒子量)の比の値を1/xとしたとき、xが300.0以下であることを特徴とする前記(7)に記載の高耐食性防錆塗料。
(9)質量%で、前記Zn合金粒子と前記Zn金属粒子の混合粒子の合計を100%としたとき、Mgの含有量が0.01〜30%未満であることを特徴とする前記(8)に記載の高耐食性防錆塗料。
(10)前記高耐食性防錆塗料のバインダーが、無機系バインダーまたは有機系バインダーであることを特徴とする、前記(7)〜(9)の何れかに記載の高耐食性防錆塗料。
(11)鋼材面に前記(7)〜(10)の何れかに記載の高耐食性防錆塗料が塗装された鉄鋼材料であって、塗装厚みが2〜50μmであることを特徴とする高耐食性鉄鋼材料。
(12) 前記(11)に記載の高耐食性鉄鋼材料を一部又は全部に有することを特徴とする鋼構造物。
The present invention has been brought about as a result of the above studies, and specific means for solving the problems are as follows.
(1) As a dispersant, 0.01% to 10% of one or both of a saturated fatty acid amide and an unsaturated fatty acid amide is contained by mass% with respect to the organic solvent, and the average particle size is 0 in the organic solvent. 0.05-200 μm Zn alloy particles are dispersed as a pigment, and the Zn alloy particles contain Mg: 0.01-30% by mass, the balance being Zn and inevitable impurities, and the Zn alloy particles High corrosion resistance prevention with excellent workability, characterized by having a physical fracture surface and / or a crack with a length of 0.01 μm or more or a crack with a depth of 0.01 μm or more on the alloy particle surface Rust paint paste.
(2) The paste for high corrosion resistance rust preventive paint excellent in utilization workability as described in (1) above, wherein the organic solvent is toluene and / or xylene.
(3) Furthermore, the Zn alloy particles contain 1% or 2 types of Al: 0.01 to 30% and Si: 0.01 to 3% by mass%. The paste for high corrosion resistance rust preventive paint according to (2).
(4) The high corrosion resistance rust prevention according to any one of (1) to (3), wherein the Zn alloy particles have a Mg solid solution phase and a Zn-Mg intermetallic compound on a physically crushed surface. Paint paste.
(5) In the above (4), the Zn—Mg intermetallic compound contains one or more of MgZn 2 , Mg 2 Zn 11 , Mg 2 Zn 3 , MgZn, or Mg 7 Zn 3. The paste for high-corrosion-resistant rust preventive paint as described.
(6) The high corrosion resistance rust preventive paint paste according to any one of (1) to (5), wherein the Zn alloy particles are non-spherical polyhedron and have two or more faces.
(7) A high corrosion resistance rust preventive paint using the paste for high corrosion resistance rust preventive paint according to any one of (1) to (6), wherein the Zn alloy particles are contained in mass% in terms of dry paint film. High corrosion resistance rust preventive paint characterized by containing 30% or more and 85% or less.
(8) A highly corrosion-resistant rust-preventing paint in which Zn metal particles composed of Zn having an average particle diameter of 0.05 to 50 μm and inevitable impurities are dispersed in addition to the Zn alloy particles, The high corrosion resistance rust preventive paint according to (7) above, wherein x is 300.0 or less when the value of the ratio of alloy particle amount: (Zn metal particle amount) is 1 / x.
(9) The above-mentioned (8), wherein the Mg content is 0.01% to less than 30% when the total of the mixed particles of the Zn alloy particles and the Zn metal particles is 100% by mass%. ) High corrosion resistance rust preventive paint described in).
(10) The high corrosion resistance rust preventive paint according to any one of (7) to (9), wherein the binder of the high corrosion resistance rust preventive paint is an inorganic binder or an organic binder.
(11) A steel material having the steel surface coated with the anticorrosive anticorrosion paint according to any one of (7) to (10), wherein the coating thickness is 2 to 50 μm, and the high corrosion resistance Steel material.
(12) A steel structure comprising the high corrosion resistance steel material according to (11) in part or in whole.
本発明の高耐食性防錆塗料用ペースト、高耐食性防錆塗料、高耐食性防錆塗装鋼板、鋼構造物は、相反する性質となる耐食性、防錆性と溶接性、溶断性の良利用加工性の両者を併せ持つことが可能となるため、その産業上の効果は計り知れない。 High corrosion resistance rust preventive paint paste, high corrosion resistance rust preventive paint, high corrosion resistance rust coated steel sheet, steel structure according to the present invention have conflicting properties such as corrosion resistance, rust resistance and weldability, and fusing ability. Because it is possible to have both, the industrial effect is immeasurable.
本発明における高耐食性防錆塗料用ペーストに用いられるZn合金粒子では、Mg:0.01〜30%を含有し、残部Zn及び不可避的不純物からなり、物理的破砕面および/または、長さ0.01μm以上のき裂もしくは深さ0.01μm以上のき裂を有し、平均粒径が0.05〜200μmであることを特徴とする。最大径と最小径のアスペクト比(最大径/最小径)の平均値が1〜1.5であると好ましい。 In the Zn alloy particles used in the paste for high corrosion resistance rust preventive paint in the present invention, Mg: 0.01 to 30%, consisting of the balance Zn and inevitable impurities, a physically crushed surface and / or a length of 0. It has a crack of 0.01 μm or more or a crack of 0.01 μm or more in depth, and has an average particle size of 0.05 to 200 μm. The average value of the aspect ratio (maximum diameter / minimum diameter) of the maximum diameter and the minimum diameter is preferably 1 to 1.5.
平均粒径が0.05〜200μmで、物理的破砕面および/または長さ0.01μm以上のき裂、もしくは深さ0.01μm以上のき裂を有するZn合金粒子を作製する方法としては、ガスアトマイズ法またはミスト法により作製したZn合金粒子同士を、含水率0.8質量%以下のトルエンまたはキシレン中に添加しスラリー状としたものを、対向するジェット噴流とし、互いに衝突させる方法によって細粒化することで製造できる。また、前記ジェット噴流を固体に衝突させる方法でも製造できる。当該方法を用いることにより、最大径と最小径のアスペクト比の平均値を1〜1.5とすることもできる。 As a method for producing Zn alloy particles having an average particle diameter of 0.05 to 200 μm, a physically fractured surface and / or a crack having a length of 0.01 μm or more, or a crack having a depth of 0.01 μm or more, The Zn alloy particles produced by the gas atomization method or the mist method are added to toluene or xylene having a water content of 0.8% by mass or less to form a slurry. Can be manufactured. It can also be produced by a method in which the jet jet collides with a solid. By using this method, the average value of the aspect ratios of the maximum diameter and the minimum diameter can be set to 1 to 1.5.
本発明ではZn合金粒子中のMg含有量は、Mg:0.01〜30%とすることが必要である。物理的破砕面を有し、かつ平均粒径が0.05〜200μmの場合に、Mg0.01%未満でも物理的破砕面を有しない同量のMgを添加したZn合金粒子に比較して耐食性・防錆性の有意な向上は認められるが、物理的破砕面および/または、き裂との組み合わせによってもたらされると見られる著しい耐食性・防錆性の向上効果が顕著には得られない。すなわち、物理的破砕面および/または、き裂を有しMgを0.01%以上添加したZn合金粒子の相乗効果による著しい耐食性・防錆性の向上効果が本発明の基本技術である。一方Mgを30%を超えて添加すると、前記効果が飽和するばかりか、経済性および製造性を阻害することから、Mgの添加量は0.01%以上30%以下とした。より好ましい添加量の最適値は平均粒径によって変化し、一般にスプレー塗装において最適と考えられる平均粒径0.2〜30μmの場合には、下限は0.1%とし、上限は20%とすることが耐食性・防錆性の向上効果、経済性の観点から好ましい。さらに、製造安定性、経済性、耐食性を考慮すると0.2%〜15%が好ましい。なお、本発明でいう物理的破砕面とは、球状の粒子の一部が欠落した形状を指す。Zn合金粒子が物理的破砕面を有することにより、後述のように耐食性・防錆性の向上効果が顕著に得られる。 In the present invention, the Mg content in the Zn alloy particles needs to be Mg: 0.01 to 30%. Corrosion resistance compared to Zn alloy particles with the same amount of Mg added, even if less than 0.01% Mg, having a physically crushed surface and an average particle size of 0.05 to 200 μm. -Significant improvement in rust prevention is recognized, but the remarkable effect of improving corrosion resistance and rust prevention, which seems to be brought about by the combination with a physically fractured surface and / or crack, is not obtained remarkably. That is, the fundamental technology of the present invention is the remarkable effect of improving corrosion resistance and rust resistance due to the synergistic effect of the Zn alloy particles having a physically crushed surface and / or cracks and containing 0.01% or more of Mg. On the other hand, when Mg is added in excess of 30%, not only the above effects are saturated, but also economy and manufacturability are inhibited. Therefore, the amount of Mg added is set to 0.01% to 30%. The optimum value of the more preferable addition amount varies depending on the average particle diameter. In the case of an average particle diameter of 0.2 to 30 μm, which is generally considered optimal in spray coating, the lower limit is 0.1% and the upper limit is 20%. It is preferable from the viewpoint of improving the corrosion resistance and rust resistance and economical. Furthermore, if considering production stability, economy, and corrosion resistance, 0.2% to 15% is preferable. In addition, the physical crushing surface as used in the field of this invention points out the shape where a part of spherical particle was missing. When the Zn alloy particles have a physically crushed surface, the effect of improving corrosion resistance and rust resistance can be significantly obtained as described later.
また、本発明でいうき裂とは、粒子表面上に存在する長さ0.01μm以上もしくは表面からの深さ0.01μm以上の割れを意味する。き裂は長さ及び深さで0.01μm未満では十分な耐食性・防錆性の向上効果が得られず、0.01μm以上の長さもしくは深さを必要とする。 The crack in the present invention means a crack having a length of 0.01 μm or more existing on the particle surface or a depth of 0.01 μm or more from the surface. If the crack is less than 0.01 μm in length and depth, sufficient effects of improving corrosion resistance and rust resistance cannot be obtained, and a length or depth of 0.01 μm or more is required.
Zn合金粒子の平均粒径はスプレー塗装時に於ける付着性確保のため、0.05μm以上とし、刷毛塗り時の作業安定性確保のため、200μm以下とする。塗装安定性を考慮すると0.2〜50μmが好ましい。また、塗膜密着性を考慮すると0.2〜30μmが好ましい。 The average particle size of the Zn alloy particles is set to 0.05 μm or more for ensuring adhesion during spray coating, and 200 μm or less for ensuring work stability during brush coating. In consideration of coating stability, 0.2 to 50 μm is preferable. Moreover, when considering the coating film adhesion, 0.2 to 30 μm is preferable.
さらに本発明では、前記構成の粒子にAl:0.01〜30%、Si:0.01〜3%の1種又は2種を含有することができる。Alは物理的破砕面および/または、き裂を有する粒子に0.01%以上添加することで、さらに防錆性が向上する。Al添加量を約0.01%以上とすることで防錆性に加えて、粒子の自己腐食に対する耐食性が著しく向上するが、30%を超えて添加しても効果が飽和するばかりか、合金粒子に物理的破砕面および/または、き裂を形成することが困難となることから、その添加量は0.01〜30%とした。さらに製造安定性、耐食性の観点から0.5〜20%が好ましい。さらに、経済性を考慮すると、1.0〜10%が好ましい。Siも同様に物理的破砕面および/または、き裂を有する粒子に0.01%以上添加することでさらに防錆性が向上するがその効果は3%を超えて添加すると逆に低下する事から、その添加量は0.01〜3%とした。製造安定性、耐食性の観点から0.5〜3%が好ましい。さらに、経済性を考慮すると、1.0〜1.5%が好ましい。 Furthermore, in this invention, the particle | grains of the said structure can contain 1 type or 2 types of Al: 0.01-30% and Si: 0.01-3%. By adding 0.01% or more of Al to particles having a physically crushed surface and / or cracks, the rust prevention property is further improved. When the Al content is about 0.01% or more, in addition to rust prevention, the corrosion resistance against self-corrosion of the particles is remarkably improved. Since it becomes difficult to form a physically crushed surface and / or a crack in the particles, the addition amount is set to 0.01 to 30%. Furthermore, 0.5 to 20% is preferable from the viewpoint of manufacturing stability and corrosion resistance. Furthermore, if considering the economy, 1.0 to 10% is preferable. Similarly, Si is further added to 0.01% or more of particles having a physically crushed surface and / or cracks, and the rust prevention property is further improved. However, the effect of the addition of Si exceeds 3%. Therefore, the addition amount was set to 0.01 to 3%. From the viewpoint of production stability and corrosion resistance, 0.5 to 3% is preferable. Furthermore, if considering the economy, 1.0 to 1.5% is preferable.
さらに本発明の物理的破砕面および/または、き裂を有するZn合金粒子では、破砕部および/または、き裂を含む粒子の表面にMg固溶相及びZn−Mg金属間化合物を有することでさらに耐食性と防錆性を向上することが可能である。Mg固溶相とZn−Mg金属間化合物を表面に露出することで耐食性と防錆性が向上する理由については不明点が多いが、これらの相のいずれか一方以上が破砕面および/または、き裂に共存することでこれらの特性向上が特に安定に得られることを見いだしており、物理的破砕面および/または、き裂に存在することで、これらの相の化学的性質がより耐食性および防錆性に好ましいものに変化することを実験的に確認している。Mg固溶相及びZn−Mg金属間化合物はX線回折法または、エネルギー分散型X線分析装置付き走査電子顕微鏡観察により、物理的破砕面またはき裂表面のMgとZnの組成比分析によって、同定することができる。 Further, in the Zn alloy particles having a physically crushed surface and / or crack of the present invention, the Mg solid solution phase and the Zn-Mg intermetallic compound are present on the surface of the crushed portion and / or the particle including the crack. Furthermore, corrosion resistance and rust prevention can be improved. There are many unclear points about the reason why the corrosion resistance and rust prevention properties are improved by exposing the Mg solid solution phase and the Zn-Mg intermetallic compound to the surface, but one or more of these phases are crushing surfaces and / or, Co-existence with cracks has found that these properties can be obtained in a particularly stable manner, and the presence of the physical fracture surface and / or cracks makes the chemical nature of these phases more resistant to corrosion and It has been experimentally confirmed that the rust resistance is improved. Mg solid solution phase and Zn-Mg intermetallic compound are obtained by X-ray diffraction method or scanning electron microscope observation with an energy dispersive X-ray analyzer, and by analyzing the composition ratio of Mg and Zn on the physical fracture surface or crack surface. Can be identified.
さらに、本発明では前記金属間化合物相をMgZn2、Mg2Zn11、Mg2Zn3、MgZnまたは、Mg7Zn3のうち、1種以上を含むことで、前記の耐食性と防錆性はより一層向上させることが可能である。MgZn2、Mg2Zn11、Mg2Zn3、MgZnまたは、Mg7Zn3はX線回折法または、エネルギー分散型X線分析装置付き走査電子顕微鏡観察による物理的破砕面またはき裂表面のMgとZnの組成比分析によって、同定することができる。 Furthermore, in the present invention, the intermetallic compound phase contains one or more of MgZn 2 , Mg 2 Zn 11 , Mg 2 Zn 3 , MgZn, or Mg 7 Zn 3. Further improvement is possible. MgZn 2 , Mg 2 Zn 11 , Mg 2 Zn 3 , MgZn, or Mg 7 Zn 3 is an Mg on the physical fracture surface or crack surface by X-ray diffraction or scanning electron microscope observation with an energy dispersive X-ray analyzer. And Zn composition ratio analysis.
以上のように、本発明の物理的破砕面および/または、き裂を有するZn合金粒子は一面以上の物理的破砕面および/または、き裂の付与と同時に合金粒子の化学組成を制御することで耐食性および防錆性を従来になく向上することが可能であるが、さらにその破砕面を有する粒子の形状を非扁平の球状に近い、一つの閉じた稜線で囲まれる平面または曲面を1面とした、多面体(き裂は面として含まない)であって、該面数が2面以上有する形状とすることで、一層優れた耐食性と防錆性および塗装性を同時に得ることができる。耐食性や防錆性向上の観点からは、物理的破砕面数は多いほど好ましいが、その破砕面数が1面以下では、現時点で理由は不明であるが、前記効果向上の効果のばらつきが大きくなる。さらに前記した形状範囲は原料としてのZn合金粒子を規定するものであり、実際に塗料に混ぜて使用するまでに、空気中の水分等を吸収して、これらのZn合金粒子が凝集し結合した場合や、塗膜として鋼材上で硬化した場合のそれぞれの粒子が結合した場合等のZn合金粒子の形状までも規定するものではない。 As described above, the Zn alloy particles having a physically fractured surface and / or crack of the present invention can control the chemical composition of the alloy particle simultaneously with the application of one or more physically fractured surfaces and / or cracks. However, it is possible to improve the corrosion resistance and rust prevention as never before, but the shape of the particles having the crushing surface is close to a non-flat spherical shape, one plane or curved surface surrounded by one closed ridgeline. By using a polyhedron (a crack is not included as a surface) and having a shape having two or more surfaces, it is possible to obtain more excellent corrosion resistance, rust prevention property and paintability at the same time. From the standpoint of improving corrosion resistance and rust prevention, the larger the number of physically crushed surfaces, the better. However, if the number of crushed surfaces is 1 or less, the reason is unknown at this time, but there is a large variation in the effect of improving the effect. Become. Furthermore, the above-mentioned shape range defines Zn alloy particles as a raw material, and absorbs moisture etc. in the air and actually agglomerates and binds these Zn alloy particles before being used in the paint. In addition, the shape of the Zn alloy particles such as the case where the particles are bonded to each other when cured on a steel material as a coating film is not specified.
本発明の分散剤であるが、ステアリン酸アミド、パルミチン酸アミド、ベヘン酸アミド等の飽和脂肪酸アミド、もしくはオレイン酸アミド、エルカ酸アミド等の不飽和脂肪酸アミドの一方又は両方を、有機溶媒に対し、0.01〜10%添加することで沈降・凝集防止効果を発揮する高耐食性防錆塗料用ペーストが得られ、このペーストを用いた塗料を鋼材に塗布すると、後述のように塗膜厚が2〜50μmと薄手であっても優れた耐食性・防錆性が達成でき、従来にない有利な効果が得られる。すなわち、この効果によって、耐食性・防錆性を犠牲にすることなしに、後述のように溶接性、溶断性等の利用加工性を付与できる。なお、分散剤として、前記飽和脂肪酸アミドまたは、不飽和脂肪酸アミド以外に、シリカ等の他の分散剤を含んでも問題ないが、飽和脂肪酸アミドおよび不飽和脂肪酸アミドの一方又は両方が、前記ペースト中の有機溶媒に対し、0.01〜10%添加することで、前記有利な効果が得られる。この理由については不明な点が残されているが、前記飽和脂肪酸アミド及び不飽和脂肪酸アミドの一方又は両方を所定量含む分散剤は網目状構造をなして、本発明で用いるZn合金粒子の沈降・凝集を防ぐかもしくは、該Zn合金粒子に個別に付着し沈降・凝集を防ぐ役割を果たすが、これら分散剤と接触することで該Zn合金粒子の活性度が向上するという、該Zn合金粒子の高耐食防錆効果を顕著に増幅させ、耐食性・防錆性が向上すると推定している。前記分散剤は、0.01%未満では、沈降・凝集防止効果及び耐食性・防錆性の向上効果は得られず、さらに10%を超えて添加すると、逆に耐食性が低下する。前記分散剤は1種の分散剤のみで使用しても2種以上を混合して使用しても沈降防止、耐食性に大きく影響しない。 In the dispersant of the present invention, one or both of a saturated fatty acid amide such as stearic acid amide, palmitic acid amide, and behenic acid amide, or an unsaturated fatty acid amide such as oleic acid amide, erucic acid amide, and the like are added to an organic solvent. , 0.01 to 10% to add a high corrosion resistance rust preventive paint paste that exhibits the effect of preventing sedimentation and aggregation, and when a paint using this paste is applied to a steel material, the coating thickness is as described below Even if it is as thin as 2 to 50 μm, excellent corrosion resistance and rust resistance can be achieved, and an advantageous effect that has never been obtained can be obtained. That is, by this effect, utilization processability such as weldability and fusing property can be imparted as described later without sacrificing corrosion resistance and rust prevention. In addition to the saturated fatty acid amide or the unsaturated fatty acid amide, other dispersants such as silica may be used as the dispersant, but one or both of the saturated fatty acid amide and the unsaturated fatty acid amide are contained in the paste. The said advantageous effect is acquired by adding 0.01 to 10% with respect to the organic solvent of this. Although there remains an unclear point about this reason, the dispersant containing a predetermined amount of one or both of the saturated fatty acid amide and the unsaturated fatty acid amide has a network structure, and the precipitation of the Zn alloy particles used in the present invention. The Zn alloy particles that prevent agglomeration or adhere to the Zn alloy particles individually and prevent sedimentation and agglomeration, but the activity of the Zn alloy particles is improved by contact with these dispersants. It is presumed that the high corrosion resistance and rust prevention effect will be significantly amplified and the corrosion resistance and rust resistance will be improved. If the dispersant is less than 0.01%, the effect of preventing sedimentation / aggregation and the effect of improving corrosion resistance / rust resistance cannot be obtained. If the dispersant exceeds 10%, the corrosion resistance decreases. Even if it uses only 1 type of dispersing agent, or it mixes and uses 2 or more types, the said dispersing agent does not have a big influence on sedimentation prevention and corrosion resistance.
さらに、本発明の有機溶媒であるが、トルエンおよび/またはキシレンにすることで更に優れた犠牲防食効果と長期の防錆効果を得ることができる。理由については不明な点が残されているが、トルエン、キシレン中に極微量含まれる水分が塗料中に均一に分散されることによると推定している。トルエンおよび/またはキシレン以外では、ガソリン、灯油、軽油に含まれるオクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン等のアルカン炭化水素あるいは、パラフィン類のうちの1種または2種以上の混合物でも同じ効果が得られる。 Furthermore, although it is the organic solvent of this invention, the further superior sacrificial anticorrosive effect and long-term rust preventive effect can be acquired by using toluene and / or xylene. Although the reason remains unclear, it is estimated that the moisture contained in a trace amount in toluene and xylene is uniformly dispersed in the paint. Other than toluene and / or xylene, one or two of alkane hydrocarbons such as octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, and hexadecane contained in gasoline, kerosene and light oil, or paraffins The same effect can be obtained with the above mixture.
本発明における前記した破砕面および/または、き裂を有するZn合金粒子は、利用に際して塗膜中に30%以上含有することが必要である。30質量%未満では耐食性等の効果が得られるまでに到らない。上限は、特に規定するものではないが、85%を超えるとバインダー成分が少なくなり過ぎ、塗膜に欠陥が生じ易くなるため、これ以下が望ましい。なお、塗膜中のバインダー成分としては、成膜性を確保するために少なくとも15%とすることが好ましい。さらに、前記Zn合金粒子を30%以上含有していれば、それ以外の粉末粒子を添加しても良く、例えば(意匠性を目的とした)Al、ステンレス等の金属粉末や酸化チタン、酸化亜鉛等の酸化物粉末、タルク、石粉等の体質顔料を含有していても良い。 The Zn alloy particles having the above-described crushed surface and / or crack in the present invention are required to be contained in the coating film by 30% or more when used. If it is less than 30% by mass, effects such as corrosion resistance cannot be obtained. The upper limit is not particularly specified, but if it exceeds 85%, the binder component becomes too small and defects are likely to occur in the coating film. In addition, as a binder component in a coating film, in order to ensure film forming property, it is preferable to set it as at least 15%. Furthermore, as long as it contains 30% or more of the Zn alloy particles, other powder particles may be added. For example, metal powders such as Al and stainless steel (for the purpose of design), titanium oxide, and zinc oxide It may contain an extender pigment such as oxide powder such as talc and stone powder.
さらに本発明における前記した破砕面および/または、き裂を有するZn合金粒子は、利用に際して平均粒径0.05〜50μmのZn金属粒子を含有し、質量%で、前記Zn合金粒子量と前記Zn金属粒子量の比の値を1/xとしたとき、xを300以下で混在させて使用することができる。ここでいうZn金属粒子とは、Znおよび不可避的不純物からなる粒子を意味し、該Zn金属粒子と前記した破砕面および/または、き裂を有するZn合金粒子を混合して塗料顔料に用いることで、従来のようにZn金属粒子を単独使用した顔料に比較して著しく優れた耐食性・防錆性をもたらすが、Zn合金粒子量:Zn金属粒子量の質量%の比の値を1/xとしたとき、xが300.0超では、耐食性・防錆性の向上に及ぼす、Zn合金粒子の効果が十分に発揮されない。したがって、x値を300.0以下とした。さらに耐食性、経済性を考慮すると、x値は1〜120が好ましい。さらに混合安定性を考慮するとx値は1〜30が好ましい。また、本発明では混合に用いるZn金属粒子の平均粒径を0.05〜50μmとする。前記した本発明における耐食性・防錆性の向上の効果は、混合するZn金属粒子の平均粒径が0.05〜300μmの範囲で認められるが、工業的に安定かつ安価に供給可能な平均粒径であることから、Zn金属粒子の平均粒径を0.05〜50μmとした。 Furthermore, the above-described fractured surface and / or cracked Zn alloy particles in the present invention contain Zn metal particles having an average particle size of 0.05 to 50 μm when used, and in mass%, When the ratio value of the amount of Zn metal particles is 1 / x, x can be mixed and used at 300 or less. The term “Zn metal particles” as used herein means particles composed of Zn and inevitable impurities, and the Zn metal particles are mixed with the above-described fractured surface and / or Zn alloy particles having cracks to be used for paint pigments. Thus, the corrosion resistance and rust preventive property are remarkably improved as compared with the conventional pigments using Zn metal particles alone, but the ratio of Zn alloy particle amount: mass% of Zn metal particle amount is 1 / x. When x is more than 300.0, the effect of the Zn alloy particles on the improvement of the corrosion resistance and rust resistance is not sufficiently exhibited. Therefore, the x value is set to 300.0 or less. Furthermore, in consideration of corrosion resistance and economy, the x value is preferably 1 to 120. Further, considering the mixing stability, the x value is preferably 1-30. Moreover, in this invention, the average particle diameter of Zn metal particle used for mixing shall be 0.05-50 micrometers. The effect of improving the corrosion resistance and rust prevention in the present invention is recognized when the average particle diameter of the Zn metal particles to be mixed is in the range of 0.05 to 300 μm. Because of the diameter, the average particle diameter of the Zn metal particles was set to 0.05 to 50 μm.
一方、前記した本発明の破砕面および/または、き裂を有するZn合金粒子と前記Zn金属粒子の混合効果は、おおよそ全防錆顔料中に含まれるMgの含有量でも整理することが可能で、質量%で、本発明の物理的破砕面および/または、き裂を有するZn合金粒子と前記Zn金属粒子の混合粒子の合計を100%としたとき、Mgの含有量を0.01〜30%未満として使用することができる。さらに付け加えると破砕面および/または、き裂を有するZn合金粒子とZn金属粒子の混合効果が最も顕著な範囲である0.1〜20%とすることが耐食性・防錆性の向上の効果安定性からは好ましく、加えて経済性を考慮すると0.5〜15%とすることがより好ましいが、目的に応じて適宜適用できる。 On the other hand, the mixing effect of the above-described fracture surface and / or cracked Zn alloy particles and Zn metal particles of the present invention can be roughly arranged by the content of Mg contained in the entire antirust pigment. When the total of the Zn alloy particles having a physically crushed surface and / or crack of the present invention and the Zn metal particles is 100% by mass%, the Mg content is 0.01-30. % Can be used. In addition, the effect of improving the corrosion resistance and rust prevention is to be 0.1 to 20%, which is the most remarkable range of the mixing effect of the fractured surface and / or cracked Zn alloy particles and Zn metal particles. From the viewpoint of economy, in addition, considering economic efficiency, it is more preferably 0.5 to 15%, but it can be appropriately applied depending on the purpose.
なお、ペースト中のZn合金粒子または、Zn合金粒子およびZn金属粒子の混合粒子の割合は、いずれの場合も、取り扱いのしやすさから、質量%で当初60〜95%に調整することが多いが、これらのペーストを用いた塗料を作製するために、Zn合金粒子または、Zn合金粒子およびZn金属粒子の混合粒子を、塗料作製の度に、順次、払い出すと、最終的にはペースト中のZn合金粒子または、Zn合金粒子およびZn金属粒子の混合粒子の割合は、当然0%まで減少する。したがって、ペースト中のZn合金粒子または、Zn合金粒子およびZn金属粒子の割合の範囲については、特に指定する意義はない。 In any case, the ratio of the Zn alloy particles or the mixed particles of the Zn alloy particles and the Zn metal particles in the paste is often adjusted to 60 to 95% by mass% from the viewpoint of easy handling. However, in order to produce a paint using these pastes, Zn alloy particles or mixed particles of Zn alloy particles and Zn metal particles are sequentially discharged every time the paint is produced. The ratio of the Zn alloy particles or the mixed particles of Zn alloy particles and Zn metal particles naturally decreases to 0%. Accordingly, there is no particular significance for the range of the ratio of Zn alloy particles or Zn alloy particles and Zn metal particles in the paste.
ただし、Zn合金粒子または、Zn合金粒子およびZn金属粒子の混合粒子のペースト中の割合は、経済性の観点から、1%以上必要であり、また、当該粒子の分散の必要性から、上限は99%が望ましい。さらに、経済性または取り扱い性を重視する場合は、5%以上95%以下の範囲が望ましい。なお、ペースト中のZn合金粒子または、Zn合金粒子およびZn金属粒子の割合が0%超〜99%の範囲内で、変化しても、その変化によって、当該ペーストを用いて作製した塗料の、鋼材への耐食性・防錆性付与能力が、影響を受けることは、ほとんどない。 However, the proportion of the Zn alloy particles or the mixed particles of Zn alloy particles and Zn metal particles in the paste is required to be 1% or more from the viewpoint of economy, and the upper limit is from the necessity of dispersion of the particles. 99% is desirable. Furthermore, when importance is attached to economy or handleability, the range of 5% or more and 95% or less is desirable. In addition, even if the ratio of the Zn alloy particles or the Zn alloy particles and the Zn metal particles in the paste is changed within the range of more than 0% to 99%, the change of the paint produced using the paste, The ability to impart corrosion resistance and rust resistance to steel materials is hardly affected.
次に、本発明において塗料のバインダーの種類は、特に規定するものではなく、無機系、有機系いずれのバインダー(樹脂)でも利用できる。本発明の範囲を限定するものではないが、その例を挙げると無機系では、アルカリシリケートやアルキルシリケート等が、有機系ではエポキシ系樹脂、変性エポキシ樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル樹脂等が適宜適用できる。また、硬化剤の配合タイプも、1液硬化タイプや2液硬化タイプ等の複数液による硬化タイプがその目的に応じ適宜適用できる。さらに硬化方法も、常温硬化、加熱硬化、UV硬化、電子線硬化、水中硬化等がそれぞれの目的に応じて適宜適用できる。 Next, in the present invention, the kind of the binder of the paint is not particularly defined, and any inorganic or organic binder (resin) can be used. The scope of the present invention is not limited, but examples include inorganic silicates, alkyl silicates, etc., organic epoxies, modified epoxy resins, acrylic resins, urethane resins, polyester resins. Etc. can be applied as appropriate. Moreover, the compounding type of a hardening | curing agent can apply suitably the hardening type by multiple liquids, such as 1 liquid hardening type and 2 liquid hardening type, according to the objective. Further, as a curing method, room temperature curing, heat curing, UV curing, electron beam curing, underwater curing, and the like can be appropriately applied according to each purpose.
本発明の高耐食性防錆塗料が対象とする鋼材および鋼構造物については特に規定はないが、本発明例の耐食性・防錆性及び利用加工性を考慮し塗膜厚さを2〜50μmと規定した。本発明の塗料を鋼材および鋼構造物の表面に塗布して耐食性や防錆性を得るためには塗装厚みを2μm以上とすることが必要である。一方、塗膜厚が50μmを越えると、塗装膜が表面にある状態で鋼材を溶接する際に、厚い塗膜がブローホールの発生原因となって、溶接部の健全性を損なうことで溶接性を劣化させ、また、溶断の際は、厚い塗膜がヒュームの発生原因となって、作業環境を悪化させることで、溶断性を劣化させる。したがって、溶接性または溶断性等の利用加工性を確保するため、塗膜厚を50μm以下とした。 The steel material and the steel structure targeted by the high corrosion resistance rust preventive paint of the present invention are not particularly specified, but the coating thickness is 2 to 50 μm in consideration of the corrosion resistance / rust preventive property and utilization processability of the present invention example. Stipulated. In order to obtain the corrosion resistance and rust resistance by applying the coating material of the present invention to the surfaces of steel materials and steel structures, it is necessary to make the coating thickness 2 μm or more. On the other hand, if the coating thickness exceeds 50 μm, when welding steel with the coating film on the surface, the thick coating causes blowholes and damages the soundness of the weld. In the case of fusing, a thick coating film causes the generation of fume, which deteriorates the working environment and deteriorates the fusing property. Therefore, in order to ensure utilization processability such as weldability or fusing property, the coating thickness is set to 50 μm or less.
また、本発明が対象とする鉄鋼材料および鋼構造物とは、本発明の高耐食防錆塗料が厚さで2μm以上50μm以下塗装されたものであって、鋼材化学組成、形状や構造、あるいは他の防食手段が併用される表面を有するものを含み、いずれを選択したとしてもそれをもって本発明の範囲を逸脱するものではない。なお、塗装作業性を考慮すると、本発明の高耐食防錆塗料の厚さは、5〜30μmが好ましい。さらに、経済性、利用加工性の観点から、7〜20μmが好ましい。本発明の技術的範囲を規定するものではないが、塗装対象として例を列挙すると、鋳鉄、炭素鋼、特殊鋼、ステンレス鋼、耐食鋼、溶接継手等が、形状としては厚板、薄板、鋼管、棒鋼、等々およびこれらを加工して得られる形状が、構造としては、(1)自動車や船舶等の内燃機関排気系統、ボイラ排気系統、低温熱交換機、焼却炉床等の高温湿潤腐食環境、(2)橋梁、支柱、建築内外装材、屋根材、建具、厨房部材、各種手すり、ガードレール、各種フック、ルーフドレイン、鉄道車両等の大気腐食環境、(3)各種貯蔵タンク、支柱、杭、矢板等の土壌腐食環境、(4)缶容器、各種容器、低温熱交換機、浴室部材、自動車構造部材等の結露腐食環境(冷凍、湿潤、乾燥が複合する腐食環境を含む)、(5)貯水槽、給水管、給湯管、缶容器、各種容器、食器、調理機器、浴槽、プール、洗面化粧台等の水道水腐食環境、(6)各種容器、食器、調理機器等の飲料水腐食環境、(7)各種鉄筋構造物、支柱等のコンクリート腐食環境、(8)船舶、橋梁、杭、矢板、海洋構造物等の海水腐食環境等々が、さらに、他の併用できる防食手段としてはめっき、塗装、電気防食等々がある。 In addition, the steel material and steel structure targeted by the present invention are those in which the high corrosion resistance and rust preventive paint of the present invention is applied in a thickness of 2 μm or more and 50 μm or less, and the steel material chemical composition, shape or structure, or Including those having a surface on which other anticorrosion means are used in combination, any selection does not depart from the scope of the present invention. In consideration of coating workability, the thickness of the highly corrosion-resistant and anticorrosive paint of the present invention is preferably 5 to 30 μm. Furthermore, 7-20 micrometers is preferable from a viewpoint of economical efficiency and utilization processability. Although it does not prescribe the technical scope of the present invention, enumerated examples of coating objects include cast iron, carbon steel, special steel, stainless steel, corrosion-resistant steel, welded joints, etc. , Steel bars, etc., and the shapes obtained by processing these include (1) high-temperature and wet corrosive environments such as internal combustion engine exhaust systems such as automobiles and ships, boiler exhaust systems, low-temperature heat exchangers, incinerator floors, (2) Bridges, struts, interior / exterior materials for buildings, roofing materials, joinery, kitchen members, various handrails, guardrails, various hooks, roof drains, railcars, etc., (3) various storage tanks, struts, piles, Soil corrosive environments such as sheet piles, (4) Condensed corrosive environments (including corrosive environments where freezing, wetting and drying are combined) such as can containers, various containers, low-temperature heat exchangers, bathroom members, automobile structural members, (5) water storage Tank, water supply pipe, hot water supply pipe Canned containers, various containers, tableware, cooking equipment, bathtubs, pools, vanity tables and other tap water corrosive environments, (6) Various containers, tableware, cooking equipment corrosive drinking water environments, (7) Various reinforcing bar structures, Concrete corrosive environments such as struts, (8) seawater corrosive environments such as ships, bridges, piles, sheet piles, offshore structures, and the like, and other anticorrosive means that can be used in combination include plating, painting, and cathodic protection.
以下に、実施例を用いて本発明を説明する。 Hereinafter, the present invention will be described using examples.
表1〜11のそれぞれペーストの内容の欄に示す条件で塗料用ペーストを作製した。Zn合金粒子は、表1の比較例5〜8を除き、ガスアトマイズ法により作製したZn合金粒子を、含水率0.8質量%以下のトルエンまたはキシレン中に添加しスラリー状としたものを、対向するジェット噴流とし、互いに衝突させる方法によって細粒化し製造した、表面に物理的破砕面および/または長さ0.01μm以上のき裂もしくは深さ0.01μm以上のき裂を有するZn合金粒子を、使用した。ここで、Zn合金粒子および後述のZn金属粒子の平均粒径を求めるにあたって、レーザー回折散乱法による測定方法を採用した。したがって、平均粒径は、球相当直径として評価している。表1の比較例5〜8に記載のZn合金粒子については、ガスアトマイズ法又はミスト法によって製造した。 The paste for coating materials was produced on the conditions shown in the column of the content of each paste of Tables 1-11. The Zn alloy particles, except for Comparative Examples 5 to 8 in Table 1, were prepared by adding Zn alloy particles produced by a gas atomizing method to toluene or xylene having a water content of 0.8% by mass or less to form a slurry. Zn jet particles having a physically crushed surface and / or a crack with a length of 0.01 μm or more or a crack with a depth of 0.01 μm or more produced on a surface by pulverizing by a method of making jet jets that collide with each other ,used. Here, in determining the average particle diameter of the Zn alloy particles and the Zn metal particles described later, a measurement method by a laser diffraction scattering method was employed. Therefore, the average particle diameter is evaluated as a sphere equivalent diameter. About the Zn alloy particle | grains of Comparative Examples 5-8 of Table 1, it manufactured by the gas atomizing method or the mist method.
また、電解放射型電子銃式の走査電子顕微鏡観察で、それぞれ無作為に抽出した50〜100個のZn合金粒子の形状を観察し、それぞれの粒子表面に物理的破砕面または、長さ0.01μm以上のき裂もしくは深さ0.01μm以上のき裂を有することを確認した。一部のZn合金粒子では、表面に物理的破砕面および、長さ0.01μm以上のき裂もしくは深さ0.01μm以上のき裂を有していた。表中の「破砕面、き裂の有無」において、◎は破砕面およびまたはき裂有り、×は破砕面およびき裂なし、を意味する。 In addition, the shape of 50 to 100 Zn alloy particles extracted at random was observed with an electron emission electron gun type scanning electron microscope, and a physical crushing surface or a length of 0. It was confirmed to have a crack of 01 μm or more or a crack of 0.01 μm or more in depth. Some of the Zn alloy particles had a physically fractured surface and a crack having a length of 0.01 μm or more or a crack having a depth of 0.01 μm or more on the surface. In the table, “crushed surface, presence / absence of crack” means that crushed surface and / or cracked, and × means fractured surface and no crack.
Zn合金粒子の面数は、当該走査電子顕微鏡観察において決定した。当該観察では、それぞれの粒子の片面しか見ていないが、影になっている反対側にも、同様の形状が連続的、面対称的に存在しているものと仮定して面数を判断し、その平均値を有効数字1桁で表した。 The number of faces of the Zn alloy particles was determined by observation with the scanning electron microscope. In this observation, only one side of each particle is seen, but the number of faces is judged on the assumption that the same shape exists continuously and symmetrically on the opposite side of the shadow. The average value was expressed by one significant digit.
本発明例では、各ペーストで用いたZn合金粒子をジェット噴流として互いに衝突させて細粒化する前に、粉末X線回折法解析によって、Zn合金粒子に含まれる固溶体または、金属間化合物の種類を確認しておき、次に、前記細粒化した後に、エネルギー分散型X線分析装置付き走査電子顕微鏡観察によって、視野内で観察しやすい粒子の物理的破砕面または、長さ0.01μm以上のき裂もしくは深さ0.01μm以上のき裂表面を10箇所選んで分析し、そのMgとZnの組成比分析の結果と、前述の粉末X回折法による測定結果から、それぞれの表面の固溶体および金属間化合物の存在の有無および、金属間化合物の種類を同定した。調査した各10箇所の表面のうち、1箇所でも固溶体および金属間化合物の存在が認められれば、固溶体および金属間化合物が「有」と判断し、そうでなければ「無」とした。また、金属間化合物の種類については、X線回折で、MgZn2、Mg2Zn11、Mg2Zn3、MgZnまたは、Mg7Zn3のうち、1種以上のZn−Mg金属間化合物の存在が確認され、かつ、X線回折で確認した当該金属間化合物のうち1種以上のMgとZnの原子組成比が、エネルギー分散型X線分析装置付き走査電子顕微鏡による、物理的破砕面または、き裂表面の分析においても、1箇所でも成分誤差10%以内で確認できた場合に、前記Zn−Mg金属間化合物の存在が確認できたとみなし、「有」とし、そうでなければ「無」とした。 In the present invention example, before the Zn alloy particles used in each paste collide with each other as a jet jet and are refined, the solid solution or the type of intermetallic compound contained in the Zn alloy particles is analyzed by powder X-ray diffraction analysis. Next, after finely pulverizing the particles, a physical crushing surface of particles that are easy to observe in the field of view by scanning electron microscope observation with an energy dispersive X-ray analyzer, or a length of 0.01 μm or more The crack surface of the crack or the crack surface with a depth of 0.01 μm or more is selected and analyzed. From the result of the composition ratio analysis of Mg and Zn and the measurement result by the above-mentioned powder X diffraction method, the solid solution on each surface The presence or absence of intermetallic compounds and the types of intermetallic compounds were identified. If the presence of a solid solution and an intermetallic compound was observed even at one of the 10 surfaces investigated, the solid solution and the intermetallic compound were judged as “present”; As for the type of intermetallic compound, the presence of one or more kinds of Zn—Mg intermetallic compounds among MgZn 2 , Mg 2 Zn 11 , Mg 2 Zn 3 , MgZn, or Mg 7 Zn 3 by X-ray diffraction. And the atomic composition ratio of one or more of Mg and Zn among the intermetallic compounds confirmed by X-ray diffraction is a physically fractured surface by a scanning electron microscope with an energy dispersive X-ray analyzer, or Also in the analysis of the crack surface, if the component error can be confirmed within 10% even at one place, it is considered that the presence of the Zn-Mg intermetallic compound is confirmed, and it is determined as “Yes”, otherwise “No”. It was.
表1、7〜11では、前記Zn合金粒子に加え、Zn金属粒子を混合したものを使用した。 In Tables 1 and 7 to 11, a mixture of Zn metal particles in addition to the Zn alloy particles was used.
有機溶媒には、トルエン、キシレン、トルエンとキシレンの質量比1:1の混合物を用い、有機溶媒中に分散剤を各種濃度で添加したものを調整した。分散剤として、各表に記載のものを使用した。 As the organic solvent, toluene, xylene, a mixture of toluene and xylene in a mass ratio of 1: 1 was used, and organic solvents were prepared by adding a dispersant at various concentrations. As the dispersant, those listed in each table were used.
前記方法で調整した高耐食性防錆塗料用ペーストを塗料調合した。なお、塗料調合は一般的な方法で実施し、バインダーは市販のアルカリシリケートあるいはアルキルシリケート樹脂の無機系バインダー、または市販の4種類の有機系バインダーを使用した。刷毛塗装またはスプレー塗装により、鋼板に調合した塗料を塗布した。 The paste for high corrosion resistance rust preventive paint prepared by the above method was prepared. In addition, paint preparation was implemented by the general method, and the binder used the inorganic binder of the commercially available alkali silicate or the alkyl silicate resin, or the commercially available four types of organic binder. The paint prepared on the steel sheet was applied by brush painting or spray painting.
評価試験は腐食評価試験と利用加工性評価を実施した。 In the evaluation test, a corrosion evaluation test and a use workability evaluation were performed.
腐食試験評価は、JIS K 5600に準拠した塩水噴霧試験(5%NaCl噴霧、35度)を実施した。塗装試験片には、サイズが150×70×3.2mmの試験片を用い、その試験片下部には、カッターでXカットを挿入した。腐食試験の評価は、試験片表面からの赤錆発生時間で評価することとし、赤錆発生時間が900時間未満で赤錆が発生した場合は、耐食性不良と評価し、表中×で表示した。また、赤錆発生時間が900以上1400時間未満の間の場合は、耐食性やや不良と評価し、表中△で表示した。また、赤錆発生時間が1400時間以上2000時間未満の間の場合は、耐食性良好と評価し、表中○で表示した。また、赤錆発生時間が2000時間以上の場合は、耐食性極めて良好と評価し、表中◎で表示した。 For the corrosion test evaluation, a salt spray test (5% NaCl spray, 35 degrees) based on JIS K 5600 was performed. A test piece having a size of 150 × 70 × 3.2 mm was used as a coating test piece, and an X cut was inserted into the lower part of the test piece with a cutter. The corrosion test was evaluated based on the red rust generation time from the surface of the test piece. When red rust was generated for less than 900 hours, the corrosion resistance was evaluated as poor and indicated by x in the table. Moreover, when the red rust generation time was between 900 and less than 1400 hours, the corrosion resistance was evaluated as slightly poor and indicated by Δ in the table. Moreover, when red rust generation | occurrence | production time was between 1400 hours and less than 2000 hours, it evaluated that corrosion resistance was favorable and displayed by (circle) in the table | surface. Moreover, when the red rust generation time was 2000 hours or more, it was evaluated that the corrosion resistance was very good, and indicated by “◎” in the table.
また、利用加工性評価試験は、溶接時の耐ピット・ブローホール性および、溶断時の耐ヒューム性を実施した。 In addition, in the useability evaluation test, pit / blowhole resistance during welding and fume resistance during fusing were performed.
耐ピット・ブローホール試験は、前記要件で塗装したt15w100−L500mm鋼板を準備し、T型溶接を実施した。溶接条件は、水平隅肉の自動炭酸ガス溶接で実施した。溶接材料は日鐵住金溶接工業(株)製のワイヤSM−1Fφ1.2mmを使用した。電流250A、電圧30V、溶接速度は800mm/min、ワイヤ突き出し25mm、ト−チ角度45°で1パス実施した。評価は溶接後の溶接金属表面の目視観察によるピット発生の有無及び、Vノッチを入れ、ハンマーで破断後の破断面のブローホール発生率で評価した。ここで、ブローホール発生率とは、破断面に対してほぼ垂直方向から、溶接金属部の視野を10倍で10視野ずつ観察し、画像解析装置で解析して求まる破断面内のブローホール面積率である。ブローホールは、その断面が、直径0.3mm以上の概略円形のものがブローホールであると認識できたので、その面積率をブローホール発生率としている。 In the pit / blowhole test, a t15w100-L500 mm steel plate coated with the above-mentioned requirements was prepared, and T-type welding was performed. The welding conditions were horizontal fillet automatic carbon dioxide welding. As a welding material, a wire SM-1Fφ 1.2 mm manufactured by Nippon Steel & Sumikin Welding Co., Ltd. was used. One pass was performed at a current of 250 A, a voltage of 30 V, a welding speed of 800 mm / min, a wire protrusion of 25 mm, and a torch angle of 45 °. The evaluation was performed based on the presence or absence of pit generation by visual observation of the surface of the weld metal after welding, and the blow hole occurrence rate of the fracture surface after breaking with a hammer and a V notch. Here, the blowhole occurrence rate is the blowhole area in the fractured surface obtained by observing the field of view of the weld metal part 10 times by 10 times and analyzing with an image analyzer from a direction substantially perpendicular to the fractured surface. Rate. The blowhole was recognized as a blowhole having a substantially circular cross section with a diameter of 0.3 mm or more, and the area ratio is taken as the blowhole occurrence rate.
ピットについてもブローホールについても、溶接用試験片全長500mmのうち、両端50mmずつは評価から除外した。ピット発生有無、ブローホール発生率ともに、全長500mmの溶接用試験片を3試験片ずつ用意して求めた。 For both pits and blowholes, 50 mm on both ends of the total length of the test specimen for welding of 500 mm was excluded from the evaluation. Both the presence / absence of pit generation and the blowhole generation rate were obtained by preparing three test pieces for welding each having a total length of 500 mm.
評価基準として、溶接性では、溶接後の溶接金属表面にピットが発生した場合は×とした。また、ピット発生がなく、さらにブローホール発生率が8%以下◎、8〜10%○、10%以上を×とした。ピットが発生するまたは、ブローホール発生率が10%以上になると、溶接部として機械的健全性が保証できないからである。 As an evaluation standard, in the case of weldability, when pits occurred on the surface of the weld metal after welding, it was evaluated as x. Moreover, there was no pit generation, and the blow hole generation rate was 8% or less ◎, 8 to 10% ○, 10% or more was rated as x. This is because when the pits are generated or the blowhole generation rate is 10% or more, the mechanical soundness as a welded portion cannot be guaranteed.
また、耐ヒューム性は、下向き自動炭酸ガス溶接、ワイヤSM−1F φ1.2mm日鐵住金溶接工業製、電流250A 電圧29V 溶接速度40cm/min、溶接時間30sec(ヒュ−ム吸引時間+30sec 計60sec)で溶接を実施し、JIS Z 3930に記載された方法で、ヒュームを捕捉し、捕捉した全ヒューム量で、ヒューム発生量とし、評価した。この方法は溶接によって発生するヒューム量を求めているが、溶接だけでなく、溶断時のヒューム発生量の少なさ、すなわち、耐ヒューム性も評価できる。溶断性として、耐ヒューム性評価は、ヒューム発生量400mg以下の場合◎、400〜450mgの場合○、450mg以上の場合は×とした。ヒューム発生量450mg以上では、作業環境が明らかに悪化し、局所排気装置が必要になるからである。 Also, the fume resistance is downward automatic carbon dioxide welding, wire SM-1F φ1.2 mm, manufactured by Nippon Steel & Sumikin Welding Industries, current 250A, voltage 29V, welding speed 40 cm / min, welding time 30 sec (fume suction time +30 sec, total 60 sec) Welding was carried out, fume was captured by the method described in JIS Z 3930, and the total amount of fume captured was evaluated as the amount of generated fume. This method determines the amount of fumes generated by welding, but it can evaluate not only welding but also the small amount of fumes generated at the time of fusing, that is, the resistance to fumes. As the fusing property, the evaluation of fume resistance was ◎ for a fume generation amount of 400 mg or less, ◯ for 400 to 450 mg, and x for 450 mg or more. This is because the working environment is clearly deteriorated at a fume generation amount of 450 mg or more, and a local exhaust device is required.
表3、4、6、8、9、11に示す実施例では、Zn合金粒子としてAl、Siを含有する場合を示した。Al、Siを含有以外は、これらを含有しない実施例と同じ製造方法を用いている。 In the examples shown in Tables 3, 4, 6, 8, 9, and 11, the case of containing Al and Si as Zn alloy particles was shown. Except for containing Al and Si, the same production method as in the examples not containing these is used.
表4〜6、9〜11に示す実施例では、Zn合金粒子表面のMg固溶層およびZn−Mg金属間化合物層の有無を評価するとともに、MgZn2、Mg2Zn11、Mg2Zn3、MgZnまたは、Mg7Zn3のうちいずれかひとつの有無を評価した。Mg固溶層およびZn−Mg金属間化合物層を有する実施例において、耐食性を向上させる効果が見られた。これ以外の表に示す実施例は、Mg固溶層及び金属間化合物層の有無評価を行わなかった。 In the examples shown in Tables 4 to 6 and 9 to 11 , the presence or absence of the Mg solid solution layer and the Zn—Mg intermetallic compound layer on the surface of the Zn alloy particles was evaluated, and MgZn 2 , Mg 2 Zn 11 , Mg 2 Zn 3 The presence or absence of any one of MgZn or Mg 7 Zn 3 was evaluated. In the example having the Mg solid solution layer and the Zn—Mg intermetallic compound layer, the effect of improving the corrosion resistance was observed. In the examples shown in the other tables, the presence or absence of the Mg solid solution layer and the intermetallic compound layer was not evaluated.
表5、6、10、11に示す実施例では、Zn合金粒子の面数の評価を行った。面数が多くなるほど、性能を向上させる傾向が見られた。これ以外の表に示す実施例においては、Zn合金粒子の面数の評価を行わなかった。 In the examples shown in Tables 5, 6, 10, and 11, the number of faces of the Zn alloy particles was evaluated. There was a tendency to improve performance as the number of faces increased. In the examples shown in the other tables, the number of faces of the Zn alloy particles was not evaluated.
表2〜6よりZn合金粒子は優れた耐食性・防錆性、耐ブローホール性、耐ヒューム性を示すことがわかる。さらに表7〜11においてZn合金粒子とZn金属粒子で作製された、乾燥塗膜換算の質量%で(Zn合金粒子量%):(Zn金属粒子量%)の比を1:xとした場合、xが300.0以下である場合、優れた耐食性・防錆性を示すことが分かる。 From Tables 2 to 6, it can be seen that the Zn alloy particles exhibit excellent corrosion resistance, rust resistance, blowhole resistance, and fume resistance. Further, in Tables 7 to 11, when the ratio of (Zn alloy particle amount%) :( Zn metal particle amount%) is 1: x in terms of mass% in terms of a dry coating film prepared with Zn alloy particles and Zn metal particles When x is 300.0 or less, it can be seen that excellent corrosion resistance and rust resistance are exhibited.
なお、ペースト中のZn合金粒子およびZn金属粒子の合計した割合は、いずれの場合も、質量%で当初60〜95%に調整したが、これらのペーストを用いた塗料を作製するために、Zn合金粒子または、Zn合金粒子およびZn金属粒子の混合粒子を、塗料作製の度に、順次、払い出したため、最終的にはペースト中のZn合金粒子または、Zn合金粒子およびZn金属粒子の混合粒子の割合が0%超〜30%まで減少した。しかし、Zn合金粒子または、Zn合金粒子およびZn金属粒子の払い出しの度に、ペースト中のZn合金粒子または、Zn合金粒子およびZn金属粒子の割合が変化しても、その変化の度のペーストを用いて作製した塗料の、鋼材への耐食性・防錆性付与能力が、変動することは、見出されず、その影響は、無視できた。 The total ratio of Zn alloy particles and Zn metal particles in the paste was initially adjusted to 60 to 95% by mass%, but in order to produce a paint using these pastes, Zn was used. Since the alloy particles or the mixed particles of Zn alloy particles and Zn metal particles were sequentially dispensed every time the paint was prepared, the Zn alloy particles in the paste or the mixed particles of Zn alloy particles and Zn metal particles in the paste were finally obtained. The percentage decreased from over 0% to 30%. However, even if the ratio of Zn alloy particles or Zn alloy particles and Zn metal particles in the paste changes each time the Zn alloy particles or Zn alloy particles and Zn metal particles are dispensed, It was not found that the ability of imparting corrosion resistance and rust resistance to the steel material of the coating material produced by using the coating material fluctuated, and the influence could be ignored.
表1に比較例を示す。比較例1〜4はZn合金粒子のMg濃度が本発明範囲から外れ、比較例5〜8はZn合金粒子に破砕面とき裂がなく、比較例9〜12はZn合金粒子の平均粒径が本発明範囲から外れ、比較例13〜16は分散剤の含有量が本発明範囲から外れ、いずれも塗膜の品質が本発明レベルに達しなかった。比較例21はZn合金粒子に対するZn金属粒子の割合が本発明範囲を外れ、比較例22〜24は全金属粒子中のMg含有量が本発明範囲を外れ、いずれも塗膜の品質が本発明レベルに達しなかった。比較例17〜20は乾燥塗膜中の金属粒子が本発明範囲を外れ、比較例25〜28は塗膜厚みが本発明範囲を外れ、いずれも塗膜の品質が本発明レベルに達しなかった。 Table 1 shows a comparative example. In Comparative Examples 1 to 4, the Mg concentration of the Zn alloy particles deviated from the scope of the present invention. In Comparative Examples 5 to 8, the Zn alloy particles had no cracks and cracks. In Comparative Examples 9 to 12, the average particle diameter of the Zn alloy particles was Out of the scope of the present invention, in Comparative Examples 13 to 16, the content of the dispersant was out of the scope of the present invention, and the quality of the coating film did not reach the level of the present invention. In Comparative Example 21, the ratio of the Zn metal particles to the Zn alloy particles is out of the range of the present invention. In Comparative Examples 22 to 24, the Mg content in all the metal particles is out of the range of the present invention. The level was not reached. In Comparative Examples 17 to 20, the metal particles in the dried coating film were out of the scope of the present invention. In Comparative Examples 25 to 28, the coating film thickness was out of the scope of the present invention, and the quality of the coating film did not reach the level of the present invention. .
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008004392A JP5130058B2 (en) | 2008-01-11 | 2008-01-11 | High corrosion resistance rust preventive paint paste with excellent processability, high corrosion resistance rust preventive paint, high corrosion resistant steel and steel structure coated with the paint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008004392A JP5130058B2 (en) | 2008-01-11 | 2008-01-11 | High corrosion resistance rust preventive paint paste with excellent processability, high corrosion resistance rust preventive paint, high corrosion resistant steel and steel structure coated with the paint |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2009167246A true JP2009167246A (en) | 2009-07-30 |
JP2009167246A5 JP2009167246A5 (en) | 2012-04-12 |
JP5130058B2 JP5130058B2 (en) | 2013-01-30 |
Family
ID=40968817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008004392A Expired - Fee Related JP5130058B2 (en) | 2008-01-11 | 2008-01-11 | High corrosion resistance rust preventive paint paste with excellent processability, high corrosion resistance rust preventive paint, high corrosion resistant steel and steel structure coated with the paint |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5130058B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011037949A (en) * | 2009-08-07 | 2011-02-24 | Nippon Steel Corp | Zn ALLOY PARTICLE HAVING FRACTURED SURFACE FOR HIGHLY CORROSION-RESISTANT AND RUSTPROOF COATING, HIGHLY CORROSION-RESISTANT AND RUSTPROOF COATING, HIGHLY CORROSION-RESISTANT STEEL MATERIAL AND STEEL STRUCTURE |
JP2014025015A (en) * | 2012-07-30 | 2014-02-06 | Kubota Corp | Coating material |
JP2015178538A (en) * | 2014-03-18 | 2015-10-08 | 田中貴金属工業株式会社 | Metal-containing composition for spray coating to metal base material |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5206866B2 (en) | 2009-03-30 | 2013-06-12 | 富士通株式会社 | Optical transmission system and optical transmission method |
RU2769698C1 (en) * | 2021-05-18 | 2022-04-05 | Общество с ограниченной ответственностью "Химсинтез" | Single-pack zinc-lamellar coating with a fixed value of the twist coefficient |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58129070A (en) * | 1982-01-29 | 1983-08-01 | Mitsui Mining & Smelting Co Ltd | Rust preventing coating material composition |
JPS58199805A (en) * | 1982-05-14 | 1983-11-21 | Nippon Soda Co Ltd | Manufacture of alloy powder |
JPS5918765A (en) * | 1982-07-23 | 1984-01-31 | Mitsui Mining & Smelting Co Ltd | Coating material composition for coated steel plate |
JPS5952645A (en) * | 1982-09-17 | 1984-03-27 | 日新製鋼株式会社 | Welding painted steel plate having excellent powdering-resisting property |
JPS59171645A (en) * | 1983-03-19 | 1984-09-28 | 日新製鋼株式会社 | Weldable coated steel plate having excellent corrosion protection |
JPS59212256A (en) * | 1983-05-17 | 1984-12-01 | 日新製鋼株式会社 | Weldable double layer coated steel plate having excellent corrosion protection |
JPS60149788A (en) * | 1984-01-17 | 1985-08-07 | Nisshin Steel Co Ltd | Weldable painted steel sheet having excellent resistance to powdering |
JPH10280012A (en) * | 1997-04-07 | 1998-10-20 | Nippon Steel Corp | Metal powder for coating pigment and its production |
JPH11140511A (en) * | 1997-11-11 | 1999-05-25 | Daiken Kagaku Kogyo Kk | Production of monodispersed metal fine particle powder |
JP2000080309A (en) * | 1998-09-07 | 2000-03-21 | Nippon Steel Chem Co Ltd | Corrosion resistant paint and corrosion resistant steel material coated with same |
JP2001164194A (en) * | 1999-12-13 | 2001-06-19 | Nippon Steel Corp | Zinc-rich coating excellent in corrosion-resistant property and coated metal plate |
JP2003213394A (en) * | 2002-01-25 | 2003-07-30 | Nisshin Steel Co Ltd | Coated steel sheet and production method therefor |
JP2005314501A (en) * | 2004-04-28 | 2005-11-10 | Nippon Steel Corp | Coating material for highly corrosion-resistant zinc-based alloy-plated steel material |
JP2005336432A (en) * | 2004-05-31 | 2005-12-08 | Nippon Steel Corp | Coating for steel material and steel material having excellent corrosion resistance and rust preventing property |
-
2008
- 2008-01-11 JP JP2008004392A patent/JP5130058B2/en not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58129070A (en) * | 1982-01-29 | 1983-08-01 | Mitsui Mining & Smelting Co Ltd | Rust preventing coating material composition |
JPS58199805A (en) * | 1982-05-14 | 1983-11-21 | Nippon Soda Co Ltd | Manufacture of alloy powder |
JPS5918765A (en) * | 1982-07-23 | 1984-01-31 | Mitsui Mining & Smelting Co Ltd | Coating material composition for coated steel plate |
JPS5952645A (en) * | 1982-09-17 | 1984-03-27 | 日新製鋼株式会社 | Welding painted steel plate having excellent powdering-resisting property |
JPS59171645A (en) * | 1983-03-19 | 1984-09-28 | 日新製鋼株式会社 | Weldable coated steel plate having excellent corrosion protection |
JPS59212256A (en) * | 1983-05-17 | 1984-12-01 | 日新製鋼株式会社 | Weldable double layer coated steel plate having excellent corrosion protection |
JPS60149788A (en) * | 1984-01-17 | 1985-08-07 | Nisshin Steel Co Ltd | Weldable painted steel sheet having excellent resistance to powdering |
JPH10280012A (en) * | 1997-04-07 | 1998-10-20 | Nippon Steel Corp | Metal powder for coating pigment and its production |
JPH11140511A (en) * | 1997-11-11 | 1999-05-25 | Daiken Kagaku Kogyo Kk | Production of monodispersed metal fine particle powder |
JP2000080309A (en) * | 1998-09-07 | 2000-03-21 | Nippon Steel Chem Co Ltd | Corrosion resistant paint and corrosion resistant steel material coated with same |
JP2001164194A (en) * | 1999-12-13 | 2001-06-19 | Nippon Steel Corp | Zinc-rich coating excellent in corrosion-resistant property and coated metal plate |
JP2003213394A (en) * | 2002-01-25 | 2003-07-30 | Nisshin Steel Co Ltd | Coated steel sheet and production method therefor |
JP2005314501A (en) * | 2004-04-28 | 2005-11-10 | Nippon Steel Corp | Coating material for highly corrosion-resistant zinc-based alloy-plated steel material |
JP2005336432A (en) * | 2004-05-31 | 2005-12-08 | Nippon Steel Corp | Coating for steel material and steel material having excellent corrosion resistance and rust preventing property |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011037949A (en) * | 2009-08-07 | 2011-02-24 | Nippon Steel Corp | Zn ALLOY PARTICLE HAVING FRACTURED SURFACE FOR HIGHLY CORROSION-RESISTANT AND RUSTPROOF COATING, HIGHLY CORROSION-RESISTANT AND RUSTPROOF COATING, HIGHLY CORROSION-RESISTANT STEEL MATERIAL AND STEEL STRUCTURE |
JP2014025015A (en) * | 2012-07-30 | 2014-02-06 | Kubota Corp | Coating material |
JP2015178538A (en) * | 2014-03-18 | 2015-10-08 | 田中貴金属工業株式会社 | Metal-containing composition for spray coating to metal base material |
Also Published As
Publication number | Publication date |
---|---|
JP5130058B2 (en) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5190235B2 (en) | Zn alloy particles for high corrosion resistance rust preventive paint having crushing surface, manufacturing method thereof, high corrosion resistance rust preventive paint, high corrosion resistance steel material and steel structure | |
JP5190238B2 (en) | High corrosion resistance rust-proof paint, high corrosion resistance steel material and steel structure | |
AU620542B2 (en) | Improved shop primer compositions | |
JP6967079B2 (en) | Anti-corrosion paint composition and its uses | |
JP5130058B2 (en) | High corrosion resistance rust preventive paint paste with excellent processability, high corrosion resistance rust preventive paint, high corrosion resistant steel and steel structure coated with the paint | |
JP4585224B2 (en) | High corrosion resistance zinc-based alloy coated steel coating | |
JP5698122B2 (en) | Conductive metal paint, anticorrosion method using conductive metal paint, and anticorrosion repair method | |
JP5130071B2 (en) | Rust prevention method for marine steel | |
JP6733180B2 (en) | Paint composition and coating member using the same | |
JP2010269497A (en) | Steel material having at least one primer layer and primer composition for steel material | |
JP2011037949A (en) | Zn ALLOY PARTICLE HAVING FRACTURED SURFACE FOR HIGHLY CORROSION-RESISTANT AND RUSTPROOF COATING, HIGHLY CORROSION-RESISTANT AND RUSTPROOF COATING, HIGHLY CORROSION-RESISTANT STEEL MATERIAL AND STEEL STRUCTURE | |
JP5130018B2 (en) | High corrosion resistance rust preventive paint paste with excellent long-term storage, high corrosion resistance rust preventive paint prepared with this paste, and steel and steel structures coated with this high corrosion resistance rust preventive paint | |
JP2009279824A (en) | Anticorrosive steel material having excellent weldability | |
JP6551074B2 (en) | Plating welding H-shaped steel and manufacturing method of plating welding H-shaped steel | |
JP2007254796A (en) | Highly corrosion-resistant steel panel for fuel tank | |
JP5130062B2 (en) | Steel coating method and coated steel | |
Giúdice et al. | Coatings for corrosion protection in seawater structures | |
Dohojda et al. | Protection of steel structures with paint coatings in the context of environmental pollution | |
JP2007070572A (en) | Coating composition and fuel tank | |
JPS59122556A (en) | Inorganic corrosion-protection paint | |
JP2023128912A (en) | Aqueous anticorrosive coating for aerosol, and aerosol product | |
Gebril et al. | The evaluation of corrosion rate on welded specimen of low carbon steel | |
Carneiro | Surface Modification of Nanocontainers of Corrosion Inhibitors for Improved Compatibility with Protective Polymer Coatings | |
JPH05339521A (en) | Inorganic zinc shop primer composition | |
STEEL | New Surface Protection Processes and their Application in Structural Steelwork, in Particular in Préfabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120229 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121016 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121105 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5130058 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151109 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151109 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |