[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5195395B2 - 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体 - Google Patents

画像処理装置、画像処理方法、画像処理プログラム及び記録媒体 Download PDF

Info

Publication number
JP5195395B2
JP5195395B2 JP2008324221A JP2008324221A JP5195395B2 JP 5195395 B2 JP5195395 B2 JP 5195395B2 JP 2008324221 A JP2008324221 A JP 2008324221A JP 2008324221 A JP2008324221 A JP 2008324221A JP 5195395 B2 JP5195395 B2 JP 5195395B2
Authority
JP
Japan
Prior art keywords
correction
rgb
signal
image processing
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008324221A
Other languages
English (en)
Other versions
JP2010147908A (ja
Inventor
徳子 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008324221A priority Critical patent/JP5195395B2/ja
Priority to US12/591,870 priority patent/US8363125B2/en
Publication of JP2010147908A publication Critical patent/JP2010147908A/ja
Application granted granted Critical
Publication of JP5195395B2 publication Critical patent/JP5195395B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/202Gamma control

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Description

本発明は、画像処理装置、画像処理方法、画像処理プログラム及び記録媒体に関するものである。
ディジタルカメラで画像の撮影を行った場合に、明るさ(明度)の補正が必要になることがある。例えば、逆光状態での撮影や夜間撮影のために露出不足となり被写体が暗く写っていたり、物陰に該当する部分を含んでいるために画像の一部分が暗かったりすることがある。そのような画像に対して、ユーザが補正レベルやガンマ形状を指定して明るさを補正することや、画像の特徴に基づいて自動でガンマテーブルを作成してガンマ変換することで明るさを補正すること等が行われている。なお、画像の補正に関連する技術として、例えば、下記の特許文献1乃至3に掲載の技術が提案されている。
特許文献1には、R、G、B信号から輝度信号を作成し、この輝度信号を任意形状の所望の階調特性にガンマ変換し、このガンマ変換された信号の輝度信号に対する比をR、G、B信号の各々に乗ずることにより、階調補正されたR、G、B出力信号を得る階調補正方法等が掲載されている。
特許文献2には、入力された輝度信号と2つの色差信号からなる映像信号を3原色信号に変換する原色変換手段と、原色変換手段の出力から最大レベルのものを選択通過させる最大値検出手段と、3原色信号の許容最大レベルを設定する基準値設定手段と、輝度信号に応じて最大値検出手段の出力を基準値設定手段の出力以下に制限する補正係数を決定する係数決定手段と、補正係数を2つの色差信号に乗ずる乗算手段とを備え、乗算手段の出力を新たな色差信号として出力することを特徴とする色変換装置等が掲載されている。
特許文献3には、各画素のRGB信号から、画像の明度と色味の属性値を分離し、明度信号の明度分布を変換する画像明度変換装置において、プレスキャンで測定されたカラー画像の明度を表すヒストグラムから算出された明度変換のための変換テーブルと、RGB信号から分離された明度信号のヒストグラムから明度変換を行う変換手段とを有し、ヒストグラムの特徴に基づいた明度の再変換を行うことを特徴とする画像明度変換装置等が掲載されている。
特許第2748678号公報 特許第3134660号公報 特開平9−200531号公報
画像を明るくするためにガンマ変換をRGB信号の各々に適用すると、特許文献1において言及されているように、色相と彩度が変化してしまうということが起こり得る。特にガンマ形状(ガンマ特性)の傾きが1よりも小さいハイライト側(最大明度側)の領域において、RGB比が1:1:1に近づいてしまう彩度低下が起こり得る。
また、RGB信号から線形変換によって輝度信号と2つの色差信号とを求め、画像を明るくするガンマ変換を輝度信号に対して行う場合には、輝度だけ増加され色差は維持される。そのため、特にガンマ形状(ガンマ特性)の傾きが1よりも大きいシャドー側(最小明度側)の領域において、補正度合いが大きいため、RGB比が1:1:1に近づく彩度低下が目立つようになる。
上記の点に関して、特許文献1掲載の技術によれば、色相や彩度を変化させずに明るさ調整を行うことができる。しかしながら、特許文献1掲載の技術では、特許文献2において言及されているように、階調補正前の色によっては、階調補正後の色が飽和してしまうことが起こり得る。そのようなことが起こった場合、階調補正後の輝度レベルが所望の輝度レベルより小さくなってしまい、また、色相や彩度も変化してしまう。
一方、特許文献2掲載の技術によれば、色再現の飽和を防止するために色差信号の補正係数を制限しており、これにより所望のガンマ特性通りの輝度補正を行うことができる。
一般的なモニタで使用されている色空間であるsRGB色空間においては、RGBの各信号が0〜1の範囲に制限(正規化)されている。一般的なディジタルカメラで撮影された画像で使用されているsYCC色空間においては、色は輝度信号Y及び色差信号Cb,Crで表される。sYCC色空間とsRGB色空間とは線形変換できる関係にあるが、sYCC色空間においては、sRGB色空間よりも広い範囲の色を表現できる。しかし、モニタではsRGB色空間が使用されているので、ディジタルカメラで撮影された画像をモニタに表示する際には、sRGB色空間で表現できる範囲内の色しか表示することが出来ず、RGBの各信号は0〜1の範囲に制限される。
なお、RGB信号からYCbCr信号を算出する式として、下記の式(1)〜(3)が用いられている。
Y=0.2990×R+0.5870×G+0.1140×B ・・・(1)
Cb=−0.1687×R−0.3312×G+0.5000×B ・・・(2)
Cr=0.5000×R−0.4187×G−0.0813×B ・・・(3)
また、YCbCr信号からRGB信号を算出する式として、下記の式(4)〜(6)が用いられている。
R=Y+1.4020×Cr ・・・(4)
G=Y−0.3441×Cb−0.7141×Cr ・・・(5)
B=Y+1.7720×Cr ・・・(6)
ところで、1枚の画像全体に対して1つのガンマテーブルを適用するという明るさ補正では、ユーザの狙い通りの補正を行えない場合がある。例えば、夜景画像中に赤色の電光看板がある場合、視認性が悪い暗い部分だけを明るく補正したいが、視認性が悪くない赤色の電光看板部分は補正したくないというような場合である。この場合、1枚の画像全体に対して1つのガンマテーブルを均一に適用すると、視認性が悪い暗い部分が明るく補正されることに伴って、赤色の電光看板部分も明るく補正されてしまうことになる。これにより、電光看板部分の赤色は、白っぽくて色褪せたような赤色になってしまい、画質が低下するという問題が生ずる。このような画像に対してユーザの狙い通りの補正を実現するために、色や周辺情報(シーン等)を判定して1枚の画像内で局所的にガンマテーブルを切り替えることが、対策の1つとして考えられる。しかしながら、この対策では、ガンマテーブルを切り替えることにより階調の不連続が発生すること、周辺情報を参照することにより情報処理量が増加すること等が、懸念事項として容易に考えられる。
ガンマ変換後の輝度信号のガンマ変換前の輝度信号に対する比をR、G、B信号の各々に乗ずることによりRGB比を維持して明るさを補正する特許文献1掲載の技術と、色差信号の補正係数を制限して画像を補正する特許文献2掲載の技術とを比較すると、特許文献2掲載の技術においては1枚の画像内で適応的な明るさ補正が行えないことによる画質の低下が目立つが、特許文献1掲載の技術においてはそのような問題はないと考えられる。以下、画像の例を用いて、特許文献1掲載の技術と特許文献2掲載の技術とを比較して説明する。
例えば、夜景中に赤色の電光看板がある画像において、赤色の部分のRGB信号がR=0.95、G=0.20、B=0.20である場合に、式(1)〜(3)を用いて輝度信号Y及び色差信号Cb,Crを算出すると、Y=0.42、Cb=−0.13、Cr=0.38となる。
特許文献1掲載の技術によれば、輝度信号Y(本例では、0.42)を2倍して輝度信号Y_g(ここでは、0.85とする。)を得るガンマ変換を行う場合、色差信号Cr,Cbも2倍に補正され、補正後の色差信号はCb_g=−0.25、Cr_g=0.75になる。式(4)〜(6)を用いて、これらの輝度信号Y_g及び色差信号Cb_g、Cr_gをRGB信号に変換すると、Rg=1.90、Gg=0.40、Bg=0.40になる。レッド(R)成分のRgが上限値である1よりも大きいので、Rgを1に制限すると、制限後のRGB信号はRg=1.00、Gg=0.40、Bg=0.40になる。式(1)を用いて、制限後のRg、Gg、Bg信号に対応する輝度信号Ytを算出すると、Yt=0.58になる。
一方、特許文献2掲載の技術のように色差信号Cb,Crの補正係数を制限し、例えば色差信号Cb、Crを1.2倍する補正を行うと、Cb_g=−0.15、Cr_g=0.45になる。式(4)〜(6)を用いて、これらの輝度信号Y_g及び色差信号Cb_g、Cr_gをRGB信号に変換すると、Rg=1.48、Gg=0.58、Bg=0.58になる。レッド(赤)成分のRgが上限値である1よりも大きいので、Rgを1に制限すると、制限後のRGB信号はRg=1.00、Gg=0.58、Bg=0.58になる。式(1)を用いて、制限後のRg、Gg、Bg信号に対応する輝度信号Ytを算出すると、Yt=0.71になる。
ここで特許文献1掲載の技術と特許文献2掲載の技術とを比較すると、特許文献1掲載の技術においては、輝度信号Ytが0.58となるのに対し、特許文献2掲載の技術においては、輝度信号Ytが0.71となる。結果として、特許文献1掲載の技術による輝度信号Yt(0.58)の方が、特許文献2掲載の技術による輝度信号Yt(0.71)よりも、明るさ補正前の輝度信号Y(0.42)に近くなる。
上記したように、赤や青の高輝度有彩色に対してガンマ補正を行った場合に、飽和が発生し、所望のガンマ特性とは異なる輝度に補正される場合がある。それが結果として、局所的に明るさの補正度合いを変えることになる。しかしながら、特許文献1掲載の技術による明るさ補正では、上記の例のような赤色(R=0.95、G=0.20、B=0.20)の場合には、良い方向に働くことを本発明者は見出した。
本発明は、上記に鑑みてなされたものであって、簡易な構成で、赤や青の高輝度有彩色の領域が色褪せたような色に補正されることを防止しつつ、その他の領域で色相や彩度の変化を抑制した明るさ補正を行うことが可能な画像処理装置、画像処理方法、画像処理プログラム及び記録媒体を提供することを目的としている。
上述した課題を解決し、目的を達成するために、本発明にかかる画像処理装置は、輝度成分及び色差成分を含む色空間の信号である第1の画像信号の輝度成分に基づいて、前記第1の画像信号に対してガンマ変換を実施するガンマ変換手段と、前記ガンマ変換が実施された後の画像信号である第2の画像信号をRGB色空間の信号に変換するRGB変換手段と、前記RGB色空間の信号に基づいて、前記第1の画像信号の輝度成分を階調補正する目標値である補正目標値を算出する補正目標値算出手段と、前記第1の画像信号の輝度成分を前記補正目標値に補正するとともに、前記RGB色空間の信号の成分の最大値であるRGB最大値が大きくなるに従って階調補正前後の色差成分の比である色差補正比が小さくなるように前記第1の画像信号を補正する階調補正手段と、を備えたことを特徴とする。
また、本発明にかかる画像処理方法は、輝度成分及び色差成分を含む色空間の信号である第1の画像信号の輝度成分に基づいて、前記第1の画像信号に対してガンマ変換を実施するガンマ変換ステップと、前記ガンマ変換が実施された後の画像信号である第2の画像信号をRGB色空間の信号に変換するRGB変換ステップと、前記RGB色空間の信号に基づいて、前記第1の画像信号の輝度成分を階調補正する目標値である補正目標値を算出する補正目標値算出ステップと、前記第1の画像信号の輝度成分を前記補正目標値に補正するとともに、前記RGB色空間の信号の成分の最大値であるRGB最大値が大きくなるに従って階調補正前後の色差成分の比である色差補正比が小さくなるように前記第1の画像信号を補正する階調補正ステップと、を有することを特徴とする。
また、本発明にかかる画像処理プログラムは、請求項8乃至14のいずれか1つに記載された画像処理方法をコンピュータに実行させる。
また、本発明にかかる記録媒体は、請求項15に記載された画像処理プログラムを格納したコンピュータの読み取り可能な記録媒体であることを特徴とする。
本発明によれば、簡易な構成で、赤や青の高輝度有彩色の領域が色褪せたような色に補正されることを防止しつつ、その他の領域で色相や彩度の変化を抑制した明るさ補正を行うことが可能となるという効果を奏する。
以下に添付図面を参照して、この発明にかかる画像処理装置、画像処理方法、画像処理プログラム及び記録媒体の最良な実施の形態を詳細に説明する。
(本発明の第1の実施の形態)
図1は、本発明の第1の実施の形態にかかる画像処理装置の構成を示すブロック図である。図1の画像処理装置1は、YCbCr色空間の入力輝度信号Y及び2つの入力色差信号Cb,Crに画像処理を実施し、YCbCr色空間の出力輝度信号Y’及び2つの出力色差信号Cb’,Cr’を出力する。
画像処理装置1は、本発明のガンマ変換手段としてのガンマ変換部10と、RGB変換部11と、本発明の補正目標値算出手段としての補正目標値算出部12と、本発明の階調補正手段としての階調補正部13と、を有する。
次に、画像処理装置1の画像処理の手順について説明する。図2は、画像処理装置1の画像処理の手順を示すフローチャートである。
まず、ガンマ変換部10が、YCbCr色空間の入力信号(Y,Cb,Cr)にガンマ変換を実施し、ガンマ変換によって得られるYCbCr色空間の信号(Y_g,Cb_g,Cr_g)を出力する(ステップS11)。
詳細には、ガンマ変換部10は、図3に一例として示すようなガンマ変換特性を有する1つのガンマテーブルを記憶しており、このガンマテーブル内の入力輝度信号Yに対応するアドレスに記憶されている値を出力輝度信号Y_gとして読み出す。
さらに、ガンマ変換部10は、出力輝度信号Y_gの入力輝度信号Yに対する比である輝度補正比bpを次式により算出する。
bp=Y_g/Y ・・・(7)
そして、ガンマ変換部10は、次式のように輝度補正比bpに2つの入力色差信号Cb,Crを乗じることにより、2つの出力色差信号Cb_g,Cr_gを算出する。
Cb_g=bp×Cb ・・・(8)
Cr_g=bp×Cr ・・・(9)
このように、ガンマ変換部10のYCbCr色空間の出力信号(Y_g,Cb_g,Cr_g)は、YCbCr色空間の入力信号(Y,Cb,Cr)と輝度補正比bpとを乗じたものになる。式(1)〜(6)に示したようにRGB色空間とYCbCr色空間とは線形変換できる関係にあるので、YCbCr色空間の入力信号(Y,Cb,Cr)と輝度補正比bpとを乗ずることは、YCbCr色空間の入力信号(Y,Cb,Cr)を線形変換して得られるRGB信号(R,G,B)に対して輝度補正比bpを乗ずることに等しい。従って、ガンマ変換部10は、YCbCr色空間の入力信号(Y,Cb,Cr)のRGB比を維持したままYCbCr色空間の入力信号(Y,Cb,Cr)にガンマ変換を実施していることになる。換言すると、YCbCr色空間の入力信号(Y,Cb,Cr)のRGB比とガンマ変換部10のYCbCr色空間の出力信号(Y_g,Cb_g,Cr_g)のRGB比とは等しい。
再び図2を参照すると、RGB変換部11が、式(4)〜(6)を用いて、ガンマ変換部10から出力されるYCbCr色空間の出力信号(Y_g,Cb_g,Cr_g)をRGB色空間の信号(Rg,Gg,Bg)に変換する(ステップS12)。
次に、補正目標値算出部12が、RGB変換部11から出力されるRGB色空間の信号(Rg,Gg,Bg)に基づいて、YCbCr色空間の入力輝度信号を階調補正する目標値となる補正目標値Ytを算出し出力する(ステップS13)。
図4は、補正目標値算出部12の内部構成の一例を示すブロック図である。図4に示すように、補正目標値算出部12は、本発明の制限手段としての制限部12aと、本発明の輝度値変換手段としての輝度値変換部12bと、を含む。
制限部12aは、RGB変換部11から出力されるRGB色空間の信号(Rg,Gg,Bg)の値を0〜1の範囲内に制限したRGB色空間の信号(Rg’,Gg’,Bg’)を出力する。この制限部12aが実施する制限処理は、次式のように表すことができる。
Rg’=Max(0,Min(Rg,1)) ・・・(10)
Gg’=Max(0,Min(Gg,1)) ・・・(11)
Bg’=Max(0,Min(Bg,1)) ・・・(12)
なお、例えばRGBの各成分が8ビット(0〜255の値を取り得る。)で表現されるディジタル信号である場合、RGBの各成分の上限値は255になる。そのような場合、制限部12aは、RGB変換部11から出力されるRGB色空間の信号(Rg,Gg,Bg)の成分の中の255を超えている成分の値を255に補正する制限処理を行う。
また、制限部12aは、RGB変換部11から出力されるRGB色空間の信号(Rg,Gg,Bg)の全てが0〜1の範囲内である場合には、RGB変換部11から出力される信号(Rg,Gg,Bg)をそのまま信号(Rg’,Gg’,Bg’)として出力することができる。
輝度値変換部12bは、式(1)を用いて、制限部12aから出力されるRGB色空間の信号(Rg’,Gg’,Bg’)からYCbCr色空間の輝度信号を算出し、この輝度信号の値を補正目標値Ytとして出力する。制限部12aにおいて制限処理が実施され、Rg’≠Rg,Gg’≠Gg,Bg’≠Bgのいずれかになった場合のみYt≠Y_gになり、ガンマ変換部10内のガンマテーブル通りではなく変更された補正目標値が設定されることになる。一方、制限部12aにおいて制限処理が実質的に実施されていない場合(Rg’=Rg且つGg’=Gg且つBg’=Bgの場合)には、Yt=Y_gになり、ガンマ変換部10内のガンマテーブル通りの補正目標値が設定されることになる。
再び図2を参照すると、階調補正部13が、補正目標値算出部12から出力される補正目標値Ytに基づいて、YCbCr色空間の入力信号(Y,Cb,Cr)に階調補正を実施し、それによって得られるYCbCr色空間の信号(Y’,Cb’,Cr’)を出力する(ステップS14)。
図5は、階調補正部13の内部構成の一例を示すブロック図である。図5に示すように、階調補正部13は、第2のRGB変換部13aと、本発明の補正パラメータ算出手段としての補正パラメータ算出部13bと、本発明の色変換手段としての色変換部13cと、を含む。
補正パラメータ算出部13bは、輝度補正比算出部31と、本発明のRGB最大値選択手段としてのRGB最大値選択部32と、RGB最小値選択部33と、本発明の無彩色度算出手段としての無彩色度算出部34と、彩度補正パラメータ算出部35と、を含む。
第2のRGB変換部13aは、式(4)〜(6)を用いて、YCbCr色空間の入力信号(Y,Cb,Cr)を第2のRGB信号に変換する。
輝度補正比算出部31は、入力輝度信号Yを補正目標値Ytに階調補正する場合における輝度補正比、即ち、補正目標値Ytの入力輝度信号Yに対する比である輝度補正比bp_tを次式により算出する。
bp_t=Yt/Y ・・・(13)
RGB最大値選択部32は、RGB変換部13aから出力される第2のRGB信号(R,G,B)の成分の内の最大の成分Max(R,G,B)を選択して出力する。
RGB最小値選択部33は、RGB変換部13aから出力される第2のRGB信号(R,G,B)の成分の内の最小の成分Min(R,G,B)を選択して出力する。
無彩色度算出部34は、RGB最大値選択部32から出力される値Max(R,G,B)、RGB最小値選択部33から出力される値Min(R,G,B)及び予め設定された2つの閾値GRAY_TH1、GRAY_TH2に基づいて、入力輝度信号及び2つの入力色差信号で表される色がどれ位無彩色に近いかの度合いを表す無彩色度grayを算出する。ここでは、無彩色度grayの値が1に近いほど無彩色に近いことを表し、0に近いほど有彩色に近いことを表すものとする。
詳細には、まず、無彩色度算出部34は、RGB最大値選択部32から出力される値Max(R,G,B)とRGB最小値選択部33から出力される値Min(R,G,B)との差分の絶対値Fを算出する。このFは、次式のように表すことができる。
F=|Max(R,G,B)−Min(R,G,B)| ・・・(14)
次に、無彩色度算出部34は、F<GRAY_TH1である場合には、YCbCr色空間の入力信号(Y,Cb,Cr)が無彩色画素信号であると判定して、
gray=1 ・・・(15)
とする。
また、無彩色度算出部34は、GRAY_TH1≦F<GRAY_TH2である場合には、YCbCr色空間の入力信号(Y,Cb,Cr)が中間彩度色画素信号であると判定して、次式によりgrayを算出する。
gray=(F−GRAY_TH2)/(GRAY_TH1−GRAY_TH2)
・・・(16)
また、無彩色度算出部34は、F≧GRAY_TH2である場合には、YCbCr色空間の入力信号(Y,Cb,Cr)が有彩色画素信号であると判定して、
gray=0 ・・・(17)
とする。
GRAY_TH1≦F<GRAY_TH2である場合(YCbCr色空間の入力信号(Y,Cb,Cr)が中間彩度色画素信号であると判定した場合)に、無彩色度算出部34が無彩色度grayを連続的に切り替える(Fに基づいて0〜1の間の値を算出する)のは、後段の彩度補正パラメータ算出部35において無彩色度grayに基づいて算出される彩度補正パラメータが無彩色と有彩色の切り替わりで急峻に変化することによって階調補正後の画像(画像処理装置1から出力される画像)内において彩度ギャップが発生することを防止するためである。
また、無彩色度算出部34において無彩色度grayを算出するのは、次のようなことを目的としている。即ち、無彩色領域であっても画素単位で見れば少し色付いた色ノイズ成分が潜んでいることがあり、そのような色ノイズ成分を有彩色領域と同じ色差補正比で補正処理してしまうと色ノイズ成分が目立って画質が低下してしまう。そこで、後段の彩度補正パラメータ算出部35において無彩色度grayを用いて無彩に近い色の色差補正比を抑制するとともに、画像を明るく補正したときに無彩色領域にある色ノイズ成分の彩度を増幅させないために、無彩色度算出部34において無彩色度grayを算出することとしている。
なお、無彩色度grayの算出に使用する閾値GRAY_TH1、GRAY_TH2は、複数の画像サンプルを画像処理装置1に入力し、階調補正後の画像(画像処理装置1から出力される画像)のノイズの目立ち具合を評価して予め設定するようにしても良い。本発明者が実験したところによれば、GRAY_TH1=0.05程度、GRAY_TH2=0.12程度に設定すると好適である。
彩度補正パラメータ算出部35は、輝度補正比算出部31から出力される輝度補正比bp_t、RGB最大値選択部32から出力される値Max(R,G,B)及び無彩色度算出部34から出力される無彩色度grayに基づいて、後段の色変換部13cにおいてYCbCr色空間の入力色差信号Cb,Crの色変換(階調補正)に用いられる彩度補正パラメータscを算出する。
詳細には、まず、彩度補正パラメータ算出部35は、RGB最大値選択部32から出力される値Max(R,G,B)に基づいて、次式によりsc_p1を算出する。
sc_p1=Max(R,G,B)/2.5 ・・・(18)
次に、彩度補正パラメータ算出部35は、sc_p1と予め設定された閾値sc_p2とを比較して、sc_p1>sc_p2の場合には、次式によりsc_pを算出する。
sc_p=(sc_p2―sc_p1)×gray+sc_p1 ・・・(19)
また、彩度補正パラメータ算出部35は、sc_p1≦sc_p2の場合には、次式によりsc_pを算出する。
sc_p=sc_p1 ・・・(20)
なお、式(19)において、gray=1の場合(入力信号(Y,Cr,Cb)が無彩色画素信号の場合)にsc_p=sc_p2となり、閾値sc_p2は無彩色領域用のパラメータである。そのため、閾値sc_p2も閾値GRAY_TH1、GRAY_TH2と同様に、複数の画像サンプルを画像処理装置1に入力し、階調補正後の画像(画像処理装置1から出力される画像)のノイズの目立ち具合を評価して予め設定するようにしても良い。本発明者が実験したところによれば、sc_p2=0.16程度に設定すると好適である。
また、式(18)においてMax(R,G,B)を使用しているのは、Max(R,G,B)に基づいて彩度補正パラメータscを算出するためであり、Max(R,G,B)が比較的大きい中間濃度からハイライト領域で飽和が発生することによる色相や彩度の変化を防止するためである。
次に、彩度補正パラメータ算出部35は、sc_p及び輝度補正比算出部31から出力される輝度補正比bp_tに基づいて、次式により彩度補正パラメータscを算出する。
sc=(1−bp_t)×sc_p ・・・(21)
色変換部13cは、輝度補正比算出部31から出力される輝度補正比bp_t及び彩度補正パラメータ算出部35から出力される彩度補正パラメータscに基づいて、YCbCr色空間の入力信号(Y,Cb,Cr)に色変換(階調補正)処理を実施し、YCbCr色空間の信号(Y’,Cb’,Cr’)を出力する。
詳細には、色変換部13cは、次式により、Y’,Cb’,Cr’を算出する。
Y’=Yt(=bp_t×Y) ・・・(22)
Cb’=bp_t×(1+sc)×Cb ・・・(23)
Cr’=bp_t×(1+sc)×Cr ・・・(24)
輝度補正比がbp_tであるのに対して、色差補正比はbp_t×(1+sc)である。色差補正比bp_t×(1+sc)は、彩度補正パラメータscの算出において使用されるMax(R,G,B)及び無彩色度grayによって間接的に図6や図7に示すように制御される。
図6は、無彩色度gray=0であるとき(入力信号が有彩色画素信号であるとき)に、Max(R,G,B)の値毎に、横軸方向に輝度補正比bp_tを、縦軸方向に色差補正比bp_t×(1+sc)を示した図である。図6においては、Max(R,G,B)=0.2、Max(R,G,B)=0.4、Max(R,G,B)=0.6の3つの場合を示している。図6に示すように、輝度補正比bp_tが増大するに従って色差補正比bp_t×(1+sc)も増大している。また、Max(R,G,B)が小さいシャドー領域では色差補正比bp_t×(1+sc)が大きくなっており、Max(R,G,B)が大きくなるのに伴って飽和防止のため色差補正比bp_t×(1+sc)が小さくなっている。
即ち、彩度補正パラメータ算出部35は、輝度補正比bp_tが大きくなるに従って大きくなるように彩度補正パラメータscを算出する。また、彩度補正パラメータ算出部35は、Max(R,G,B)が小さいシャドー領域では大きくなるように彩度補正パラメータscを算出し、Max(R,G,B)が大きくなるのに伴って、飽和防止のため、小さくなる(抑制する)ように彩度補正パラメータscを算出する。
図7は、Max(R,G,B)の値が同じであるとき(ここでは、Max(R,G,B)=0.2であるとき)に、無彩色度grayの値毎に、横軸方向に輝度補正比bp_tを、縦軸方向に色差補正比bp_t×(1+sc)を示した図である。図7においては、無彩色度gray=0、gray=1の2つの場合を示している。図7に示すように、輝度補正比bp_tが増大するに従って色差補正比bp_t×(1+sc)も増大している。また、入力信号が有彩色画素信号である場合(gray=0の場合)の色差補正比の方が大きい条件下では、無彩色度grayの値が大きくなるのに伴って、入力信号が無彩色画素信号である場合(gray=1の場合)の色差補正比に近づいて行き(小さくなって行き)、色差補正比bp_t×(1+sc)の値が抑制されて行く。
即ち、彩度補正パラメータ算出部35は、輝度補正比bp_tが増大するに従って増大するように彩度補正パラメータscを算出する。また、彩度補正パラメータ算出部35は、無彩色度grayが大きくなるに従って小さくなる(抑制する)ように彩度補正パラメータscを算出する。
以上説明したように、本実施形態によれば、ガンマ変換部10がRGB比を維持したまま入力輝度信号Y及び2つの入力色差信号Cb,Crにガンマ変換を実施して信号(Y_g,Cb_g,Cr_g)を算出し、RGB変換部11が信号(Y_g,Cb_g,Cr_g)をRGB色空間の信号(Rg,Gg,Bg)に変換し、補正目標値算出部12が信号(Rg,Gg,Bg)に基づいて補正目標値Ytを算出し、階調補正部13が入力輝度信号Yを補正目標値Ytに階調補正するとともに、補正目標値Ytに基づいて、2つの入力色差信号Cb,Crの値を階調補正する。これにより、1枚の画像に対して1つのガンマテーブルを適用するという簡易な構成のままで、赤や青の高輝度有彩色の領域が色褪せたような色に補正されることを防止しつつ、その他の領域で色相や彩度の変化を抑制した明るさ補正を行うことができる。
また、制限部12aが信号(Rg,Gg,Bg)を所定の値以下に制限した信号(Rg’,Gg’,Bg’)を出力し、輝度値変換部12bが信号(Rg’,Gg’,Bg’)から補正目標値Ytを算出して出力する。これにより、1枚の画像に対して1つのガンマテーブルを適用する簡易な構成のまま、画像内で補正目標値を局所的にガンマテーブルどおりとは異なる適切な値に設定することができる。
また、彩度補正パラメータ算出部35が、入力輝度信号Y及び2つの入力色差信号Cb,CrをRGB色空間の信号に変換して得られる第2のRGB信号の成分の内の最大値Max(R,G,B)が増大するに従って小さくなるように彩度補正パラメータscを算出し、色変換部13cにおいて算出される色差補正比bp_t×(1+sc)を抑制する。これにより、中間濃度からハイライト領域の飽和による色相や彩度の変化を抑制した明るさの補正を行うことができる。
更に、彩度補正パラメータ算出部35が、無彩色度grayが増大するに従って小さくなるように彩度補正パラメータscを算出し、色変換部13cにおいて算出される色差補正比bp_t×(1+sc)を抑制する。これにより、無彩色領域の色ノイズ成分の増幅を抑制した明るさの補正を行うことができる。
(本発明の第2の実施の形態)
図8は、本発明の第2の実施の形態にかかる画像処理装置の構成を示すブロック図である。図8の画像処理装置40は、RGB色空間の入力信号R,G,Bに画像処理を実施し、RGB色空間の出力信号R’,G’,B’を出力する。
図8の画像処理装置40は、輝度変換部41と、本発明のガンマ変換手段としてのガンマ変換部42と、本発明の補正目標値算出手段としての補正目標値算出部12と、本発明の階調補正手段としての階調補正部43と、を有する。以下の説明では、上述した第1の実施の形態と同一の構成要素には同一の符号を付してその説明を省略している。なお、補正目標値算出部12については、第1の実施の形態と同様なので説明を省略する。
次に、画像処理装置40の画像処理の手順について説明する。図9は、画像処理装置40の画像処理の手順を示すフローチャートである。
まず、輝度変換部41が、式(1)を用いて、入力RGB信号(R,G,B)からYCbCr色空間の輝度信号Yを算出して出力する(ステップS21)。
次に、ガンマ変換部42が、輝度変換部41から出力される輝度信号Yに基づいて、入力RGB信号(R,G,B)にガンマ変換を実施し、ガンマ変換によって得られるRGB色空間の信号(Rg,Gg,Bg)を出力する(ステップS22)。
詳細には、ガンマ変換部42は、図3に一例として示したようなガンマ変換特性を有する1つのガンマテーブルを記憶しており、このガンマテーブル内の輝度信号Yに対応するアドレスに記憶されている値を輝度信号Y_gとして読み出す。
さらに、ガンマ変換部42は、輝度信号Y_gの輝度信号Yに対する比である輝度補正比bpを次式により算出する。
bp=Y_g/Y ・・・(25)
そして、ガンマ変換部42は、次式のように輝度補正比bpに入力RGB信号(R,G,B)を乗じることにより、RGB信号(Rg,Gg,Bg)を算出して出力する。
Rg=bp×R ・・・(26)
Gg=bp×G ・・・(27)
Bg=bp×B ・・・(28)
このように、ガンマ変換部42から出力されるRGB信号(Rg,Gg,Bg)は、入力RGB信号(R,G,B)と輝度補正比bpとを乗じたものになる。従って、ガンマ変換部42は、入力RGB信号(R,G,B)のRGB比を維持したまま入力RGB信号(R,G,B)にガンマ変換を実施していることになる。換言すると、入力RGB信号(R,G,B)のRGB比とガンマ変換部42から出力されるRGB信号(Rg,Gg,Bg)のRGB比とは等しい。
再び図9を参照すると、補正目標値算出部12が、ガンマ変換部42から出力されるRGB色空間の信号(Rg,Gg,Bg)に基づいて、輝度信号Yを階調補正する目標値となる補正目標値Ytを算出し出力する(ステップS23)。
次に、階調補正部43が、補正目標値算出部12から出力される補正目標値Ytに基づいて、入力RGB信号(R,G,B)に階調補正を実施し、それによって得られるRGB色空間の信号(R’,G’,B’)を出力する(ステップS24)。
図10は、階調補正部43の内部構成の一例を示すブロック図である。図10に示すように、階調補正部43は、本発明の補正パラメータ算出手段としての補正パラメータ算出部13bと、本発明の色変換手段としての色変換部43aと、を含む。なお、補正パラメータ算出部13bについては、第1の実施の形態と同様なので説明を省略する。
色変換部43aは、輝度補正比算出部31から出力される輝度補正比bp_t及び彩度補正パラメータ算出部35から出力される彩度補正パラメータscに基づいて、入力RGB信号(R,G,B)に色変換(階調補正)処理を実施し、RGB信号(R’,G’,B’)を出力する。
第1の実施の形態においては、式(22)〜(24)に示したように、輝度補正比bp_tに対して色差補正比をbp_t×(1+sc)として、入力輝度信号Y及び2つの入力色差信号Cb,Crの色変換を実施したが、それと同等の色変換を入力RGB信号に対して実施することが可能である。式(1)〜(6)で表されるRGB色空間とYCbCr色空間との関係を用いて式(22)〜(24)をRGB信号の色変換式に変換すると、次式のようになる。
R’=bp_t×R+sc×bp_t×(R−Y) ・・・(29)
G’=bp_t×G+sc×bp_t×(G−Y) ・・・(30)
B’=bp_t×B+sc×bp_t×(B−Y) ・・・(31)
色変換部43aは、式(29)〜(31)を用いて、第1の実施の形態と同等の色変換を入力RGB信号に実施する。
以上説明したように、本実施形態によれば、入力がRGB色空間の信号であっても、第1の実施の形態(入力信号が輝度信号と2つの色差信号の場合)と同様の効果を奏する明るさ補正を行うことができる。
即ち、彩度補正パラメータ算出部35は、輝度補正比bp_tが大きくなるに従って大きくなるように彩度補正パラメータscを算出する。また、彩度補正パラメータ算出部35は、入力RGB信号の成分の内の最大値Max(R,G,B)が小さいシャドー領域では大きくなるように彩度補正パラメータscを算出し、入力RGB信号の成分の内の最大値Max(R,G,B)が大きくなるのに伴って、飽和防止のため、小さくなる(抑制する)ように彩度補正パラメータscを算出する。
また、彩度補正パラメータ算出部35は、輝度補正比bp_tが増大するに従って増大するように彩度補正パラメータscを算出する。また、彩度補正パラメータ算出部35は、無彩色度grayが大きくなるに従って小さくなる(抑制する)ように彩度補正パラメータscを算出する。
図11は、本発明の実施の形態に係る画像処理装置を複合機に適用した場合のハードウェア構成の一例を示すブロック図である。本図に示すように、この複合機は、コントローラ110とエンジン部(Engine)160とをPCI(Peripheral Component Interconnect)バスで接続した構成となる。コントローラ110は、複合機全体の制御と描画、通信、図示しない操作部からの入力を制御するコントローラである。エンジン部160は、PCIバスに接続可能なプリンタエンジンなどであり、たとえば白黒プロッタ、1ドラムカラープロッタ、4ドラムカラープロッタ、スキャナまたはファックスユニットなどである。なお、このエンジン部160には、プロッタなどのいわゆるエンジン部分に加えて、誤差拡散やガンマ変換などの画像処理部分が含まれる。
コントローラ110は、CPU111と、ノースブリッジ(NB)113と、システムメモリ(MEM−P)112と、サウスブリッジ(SB)114と、ローカルメモリ(MEM−C)117と、ASIC(Application Specific Integrated Circuit)116と、ハードディスクドライブ(HDD)118とを有し、ノースブリッジ(NB)113とASIC116との間をAGP(Accelerated Graphics Port)バス115で接続した構成となる。また、MEM−P112は、ROM(Read Only Memory)112aと、RAM(Random Access Memory)112bとをさらに有する。
CPU111は、複合機の全体制御をおこなうものであり、NB113、MEM−P112およびSB114からなるチップセットを有し、このチップセットを介して他の機器と接続される。
NB113は、CPU111とMEM−P112、SB114、AGP115とを接続するためのブリッジであり、MEM−P112に対する読み書きなどを制御するメモリコントローラと、PCIマスタおよびAGPターゲットとを有する。
MEM−P112は、プログラムやデータの格納用メモリ、プログラムやデータの展開用メモリ、プリンタの描画用メモリなどとして用いるシステムメモリであり、ROM112aとRAM112bとからなる。ROM112aは、プログラムやデータの格納用メモリとして用いる読み出し専用のメモリであり、RAM112bは、プログラムやデータの展開用メモリ、プリンタの描画用メモリなどとして用いる書き込みおよび読み出し可能なメモリである。
SB114は、NB113とPCIデバイス、周辺デバイスとを接続するためのブリッジである。このSB114は、PCIバスを介してNB113と接続されており、このPCIバスには、ネットワークインターフェース(I/F)部なども接続される。
ASIC116は、画像処理用のハードウェア要素を有する画像処理用途向けのIC(Integrated Circuit)であり、AGP115、PCIバス、HDD118およびMEM−C117をそれぞれ接続するブリッジの役割を有する。このASIC116は、PCIターゲットおよびAGPマスタと、ASIC116の中核をなすアービタ(ARB)と、MEM−C117を制御するメモリコントローラと、ハードウェアロジックなどにより画像データの回転などをおこなう複数のDMAC(Direct Memory Access Controller)と、エンジン部160との間でPCIバスを介したデータ転送をおこなうPCIユニットからなる。このASIC116には、PCIバスを介してFCU(Fax Control Unit)130、USB(Universal Serial Bus)140、IEEE1394(the Institute of Electrical and Electronics Engineers 1394)インターフェース150が接続される。操作表示部120はASIC116に直接接続されている。
MEM−C117は、コピー用画像バッファ、符号バッファとして用いるローカルメモリであり、HDD(Hard Disk Drive)118は、画像データの蓄積、プログラムの蓄積、フォントデータの蓄積、フォームの蓄積を行うためのストレージである。
AGP115は、グラフィック処理を高速化するために提案されたグラフィックスアクセラレーターカード用のバスインターフェースであり、MEM−P112に高スループットで直接アクセスすることにより、グラフィックスアクセラレーターカードを高速にするものである。
なお、本実施形態の画像処理装置で実行される画像処理プログラムは、ROM等に予め組み込まれて提供される。
本実施形態の画像処理装置で実行される画像処理プログラムは、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよい。
さらに、本実施形態の画像処理装置で実行される画像処理プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の画像処理装置で実行される画像処理プログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。
本実施の形態の画像処理装置で実行される画像処理プログラムは、上述した各部(ガンマ変換部、RGB変換部、補正目標値算出部、階調補正部、輝度変換部)を含むモジュール構成となっており、実際のハードウェアとしてはCPU(プロセッサ)が上記ROMから画像処理プログラムを読み出して実行することにより上記各部が主記憶装置上にロードされ、ガンマ変換部、RGB変換部、補正目標値算出部、階調補正部、輝度変換部が主記憶装置上に生成されるようになっている。
なお、上記実施の形態では、本発明の画像処理装置を、コピー機能、プリンタ機能、スキャナ機能およびファクシミリ機能のうち少なくとも2つの機能を有する複合機に適用した例を挙げて説明するが、複写機、プリンタ、スキャナ装置、ファクシミリ装置等の画像処理装置であればいずれにも適用することができる。
以上のように、本発明にかかる画像処理装置、画像処理方法、画像処理プログラム及び記録媒体は、画像の補正を行う技術に有用である。
第1の実施の形態に係る画像処理装置の構成を示すブロック図である。 第1の実施の形態に係る画像処理装置の画像処理の手順を示すフローチャートである。 図1のガンマ変換部10が有するガンマテーブルのガンマ変換特性の一例を示す図である。 図1の補正目標値算出部の構成例を示す図である。 図1の階調補正部の構成例を示す図である。 第1の実施の形態に係る画像処理装置の輝度補正比と色差補正比との関係の一例を示す図である。 第1の実施の形態に係る画像処理装置の輝度補正比と色差補正比との関係の一例を示す図である。 第2の実施の形態に係る画像処理装置の構成を示すブロック図である。 第2の実施の形態に係る画像処理装置の画像処理の手順を示すフローチャートである。 図8の階調補正部の構成例を示す図である。 本発明の実施の形態に係る画像処理装置を複合機に適用した場合のハードウェア構成の一例を示すブロック図である。
符号の説明
1 画像処理装置
10 ガンマ変換部
11 RGB変換部
12 補正目標値算出部
12a 制限部
12b 輝度値変換部
13 階調補正部
13a RGB変換部
13b 補正パラメータ算出部
13c 色変換部
31 輝度補正比算出部
32 RGB最大値選択部
33 RGB最小値選択部
34 無彩色度算出部
35 彩度補正パラメータ算出部
40 画像処理装置
41 輝度変換部
42 ガンマ変換部
43 階調補正部
43a 色変換部
110 コントローラ
111 中央演算ユニット
112 メモリユニット
113 ノースブリッジ
114 サウスブリッジ
115 AGP
116 ASIC
117 ローカルメモリ
118 HDD
120 操作表示部
130 FCU
140 USB
150 IEEE1394
160 エンジン部

Claims (16)

  1. 輝度成分及び色差成分を含む色空間の信号である第1の画像信号の輝度成分に基づいて、前記第1の画像信号に対してガンマ変換を実施するガンマ変換手段と、
    前記ガンマ変換が実施された後の画像信号である第2の画像信号をRGB色空間の信号に変換するRGB変換手段と、
    前記RGB色空間の信号に基づいて、前記第1の画像信号の輝度成分を階調補正する目標値である補正目標値を算出する補正目標値算出手段と、
    前記第1の画像信号の輝度成分を前記補正目標値に補正するとともに、前記RGB色空間の信号の成分の最大値であるRGB最大値が大きくなるに従って階調補正前後の色差成分の比である色差補正比が小さくなるように前記第1の画像信号を補正する階調補正手段と、
    を備えたことを特徴とする画像処理装置。
  2. 前記補正目標値算出手段は、
    前記ガンマ変換手段によってガンマ変換が実施された後の画像信号に含まれるRGB成分の中に所定の値を超えている成分が存在する場合に、当該成分の値を前記所定の値に制限する制限手段と、
    前記制限手段から出力された信号の輝度成分を前記補正目標値として出力する輝度値変換手段と、
    を含むことを特徴とする請求項1に記載の画像処理装置。
  3. 前記階調補正手段は、
    前記補正目標値の前記第1の画像信号の輝度成分に対する比である輝度補正比、及び、前記第1の画像信号の色差成分に対する補正度合いを制御する彩度補正パラメータを算出する補正パラメータ算出手段と、
    前記輝度補正比、及び、前記彩度補正パラメータに基づいて、前記第1の画像信号を階調補正する色変換手段と、
    を含むことを特徴とする請求項1又は請求項2に記載の画像処理装置。
  4. 前記補正パラメータ算出手段は、
    前記RGB色空間の信号の成分から前記RGB最大値を選択するRGB最大値選択手段と、
    前記第1の画像信号で表される色が無彩色に近い度合いを表す無彩色度を算出する無彩色度算出手段を含み、
    前記輝度補正比、前記RGB最大値、及び、前記無彩色度に基づいて、前記彩度補正パラメータを算出することを特徴とする請求項3に記載の画像処理装置。
  5. 前記補正パラメータ算出手段は、
    前記RGB最大値が大きくなるに従って小さくなるように前記彩度補正パラメータを算出することを特徴とする請求項4に記載の画像処理装置。
  6. 前記補正パラメータ算出手段は、
    前記無彩色度が大きくなるに従って小さくなるように前記彩度補正パラメータを算出することを特徴とする請求項4又は請求項5に記載の画像処理装置。
  7. 前記色変換手段は、
    前記輝度補正比及び前記彩度補正パラメータに基づいて、前記輝度補正比が大きくなるに従って大きくなり、前記彩度補正パラメータが大きくなるに従って大きくなる前記色差補正比を算出し、前記画像信号の色差成分に前記色差補正比を乗ずることにより色変換を実施することを特徴とする請求項3乃至6のいずれか一つに記載の画像処理装置。
  8. 輝度成分及び色差成分を含む色空間の信号である第1の画像信号の輝度成分に基づいて、前記第1の画像信号に対してガンマ変換を実施するガンマ変換ステップと、
    前記ガンマ変換が実施された後の画像信号である第2の画像信号をRGB色空間の信号に変換するRGB変換ステップと、
    前記RGB色空間の信号に基づいて、前記第1の画像信号の輝度成分を階調補正する目標値である補正目標値を算出する補正目標値算出ステップと、
    前記第1の画像信号の輝度成分を前記補正目標値に補正するとともに、前記RGB色空間の信号の成分の最大値であるRGB最大値が大きくなるに従って階調補正前後の色差成分の比である色差補正比が小さくなるように前記第1の画像信号を補正する階調補正ステップと、
    を有することを特徴とする画像処理方法。
  9. 前記補正目標値算出ステップは、
    前記ガンマ変換ステップによってガンマ変換が実施された後の画像信号に含まれるRGB成分の中に所定の値を超えている成分が存在する場合に、当該成分の値を前記所定の値に制限する制限ステップと、
    前記制限ステップから出力された信号の輝度成分を前記補正目標値として出力する輝度値変換ステップと、
    を含むことを特徴とする請求項8に記載の画像処理方法。
  10. 前記階調補正ステップは、
    前記補正目標値の前記第1の画像信号の輝度成分に対する比である輝度補正比、及び、前記第1の画像信号の色差成分に対する補正度合いを制御する彩度補正パラメータを算出する補正パラメータ算出ステップと、
    前記輝度補正比、及び、前記彩度補正パラメータに基づいて、前記第1の画像信号を階調補正する色変換ステップと、
    を含むことを特徴とする請求項8又は請求項9に記載の画像処理方法。
  11. 前記補正パラメータ算出ステップは、
    前記RGB色空間の信号の成分から前記RGB最大値を選択するRGB最大値選択ステップと、
    前記第1の画像信号で表される色が無彩色に近い度合いを表す無彩色度を算出する無彩色度算出ステップを含み、
    前記輝度補正比、前記RGB最大値、及び、前記無彩色度に基づいて、前記彩度補正パラメータを算出することを特徴とする請求項10に記載の画像処理方法。
  12. 前記補正パラメータ算出ステップは、
    前記RGB最大値が大きくなるに従って小さくなるように前記彩度補正パラメータを算出することを特徴とする請求項11に記載の画像処理方法。
  13. 前記補正パラメータ算出ステップは、
    前記無彩色度が大きくなるに従って小さくなるように前記彩度補正パラメータを算出することを特徴とする請求項11又は請求項12に記載の画像処理方法。
  14. 前記色変換ステップは、
    前記輝度補正比及び前記彩度補正パラメータに基づいて、前記輝度補正比が大きくなるに従って大きくなり、前記彩度補正パラメータが大きくなるに従って大きくなる前記色差補正比を算出し、前記画像信号の色差成分に前記色差補正比を乗ずることにより色変換を実施することを特徴とする請求項10乃至13のいずれか一つに記載の画像処理方法。
  15. 請求項8乃至14のいずれか1つに記載された画像処理方法をコンピュータに実行させるための画像処理プログラム。
  16. 請求項15に記載された画像処理プログラムを格納したコンピュータの読み取り可能な記録媒体。
JP2008324221A 2008-12-19 2008-12-19 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体 Expired - Fee Related JP5195395B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008324221A JP5195395B2 (ja) 2008-12-19 2008-12-19 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体
US12/591,870 US8363125B2 (en) 2008-12-19 2009-12-03 Image processing apparatus, image processing method, and computer program product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324221A JP5195395B2 (ja) 2008-12-19 2008-12-19 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体

Publications (2)

Publication Number Publication Date
JP2010147908A JP2010147908A (ja) 2010-07-01
JP5195395B2 true JP5195395B2 (ja) 2013-05-08

Family

ID=42265486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324221A Expired - Fee Related JP5195395B2 (ja) 2008-12-19 2008-12-19 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体

Country Status (2)

Country Link
US (1) US8363125B2 (ja)
JP (1) JP5195395B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077905B2 (en) * 2009-02-06 2015-07-07 Canon Kabushiki Kaisha Image capturing apparatus and control method thereof
US8355059B2 (en) * 2009-02-06 2013-01-15 Canon Kabushiki Kaisha Image capturing apparatus and control method thereof
JP5743384B2 (ja) * 2009-04-14 2015-07-01 キヤノン株式会社 画像処理装置及び画像処理方法とコンピュータプログラム
JP5776189B2 (ja) 2010-03-12 2015-09-09 株式会社リコー 画像形成装置、画像形成方法およびプログラム
JP2012049627A (ja) * 2010-08-24 2012-03-08 Sony Corp 信号処理装置、信号処理方法およびプログラム
JP5664261B2 (ja) * 2011-01-18 2015-02-04 株式会社ニコン 画像処理装置、および画像処理プログラム
US8712151B2 (en) * 2011-02-14 2014-04-29 Intuitive Surgical Operations, Inc. Method and structure for image local contrast enhancement
KR101806117B1 (ko) * 2011-04-08 2017-12-08 삼성디스플레이 주식회사 데이터 처리 방법 및 이를 수행하는 표시 장치
JP5882644B2 (ja) * 2011-09-13 2016-03-09 キヤノン株式会社 画像処理装置、その制御方法、及びプログラム
JP2013077879A (ja) * 2011-09-29 2013-04-25 Sony Corp 撮像装置と撮像方法およびプログラム
JP2016048828A (ja) * 2014-08-27 2016-04-07 沖電気工業株式会社 情報処理装置、情報処理方法、及びプログラム
KR102194571B1 (ko) * 2014-10-23 2020-12-24 엘지디스플레이 주식회사 데이터 변환부와 데이터 변환부의 데이터 변환 방법
US11244478B2 (en) * 2016-03-03 2022-02-08 Sony Corporation Medical image processing device, system, method, and program
TWI588814B (zh) * 2016-08-18 2017-06-21 友達光電股份有限公司 像素驅動方法
JP6953297B2 (ja) * 2017-12-08 2021-10-27 キヤノン株式会社 撮像装置及び撮像システム
CN110785772A (zh) * 2019-03-11 2020-02-11 深圳市大疆创新科技有限公司 一种图像处理方法、设备、系统及存储介质
JP7547823B2 (ja) * 2020-07-15 2024-09-10 株式会社Jvcケンウッド 撮像制御装置、撮像制御方法及びプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134660A (ja) 1989-10-20 1991-06-07 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料
JP2748678B2 (ja) 1990-10-09 1998-05-13 松下電器産業株式会社 階調補正方法および階調補正装置
JP3134660B2 (ja) 1994-04-14 2001-02-13 松下電器産業株式会社 色変換方法および色変換装置
JPH09200531A (ja) 1996-01-18 1997-07-31 Ricoh Co Ltd 画像明度変換装置
JP3892410B2 (ja) * 2003-04-21 2007-03-14 パイオニア株式会社 音楽データ選曲装置、音楽データ選曲方法、並びに、音楽データの選曲プログラムおよびそれを記録した情報記録媒体
US7259769B2 (en) * 2003-09-29 2007-08-21 Intel Corporation Dynamic backlight and image adjustment using gamma correction
EP1722327A4 (en) * 2004-02-25 2009-03-04 Panasonic Corp IMAGE PROCESSING UNIT, IMAGE PROCESSING SYSTEM, IMAGE PROCESSING PROGRAM, AND INTEGRATED CIRCUIT DEVICE
KR100617781B1 (ko) * 2004-06-29 2006-08-28 삼성전자주식회사 이미지 센서의 화질 개선장치 및 방법
KR100648310B1 (ko) * 2004-09-24 2006-11-23 삼성전자주식회사 영상의 휘도 정보를 이용한 색변환장치 및 이를 구비하는디스플레이 장치
CA2627187C (en) * 2004-11-03 2015-12-08 Biovite Australia Pty Ltd Arthrospira-based compositions and uses thereof
JP4728695B2 (ja) * 2005-05-12 2011-07-20 株式会社リコー 画像処理装置、画像処理方法、及びコンピュータ読み取り可能な記録媒体
JP4743596B2 (ja) * 2005-06-07 2011-08-10 株式会社リコー 画像処理装置、方法、プログラムおよび記録媒体
JP4687320B2 (ja) * 2005-08-11 2011-05-25 ソニー株式会社 画像処理装置および方法、記録媒体、並びに、プログラム
JP4548733B2 (ja) 2006-03-01 2010-09-22 株式会社リコー 画像処理装置、方法、プログラムおよび記録媒体
US20080056566A1 (en) * 2006-09-01 2008-03-06 Texas Instruments Incorporated Video processing
US8223401B2 (en) * 2007-12-05 2012-07-17 Ricoh Company, Limited Image processing apparatus, image processing system, and image processing method
JP4988624B2 (ja) 2008-02-22 2012-08-01 株式会社リコー 画像処理装置、画像処理方法及び記録媒体

Also Published As

Publication number Publication date
JP2010147908A (ja) 2010-07-01
US8363125B2 (en) 2013-01-29
US20100157112A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5195395B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体
JP3640989B2 (ja) 露光変更方法及び画像処理システム
JP4666274B2 (ja) カラー画像処理装置及びその方法
JP3676402B2 (ja) 自然シーン画像のカスケード処理方法及び装置
KR101182293B1 (ko) 이미지 변환 방법 및 장치와, 이미지 형성 장치
KR101927968B1 (ko) 메타 데이터에 기초하여 영상을 디스플레이하는 방법 및 디바이스, 그에 따른 기록매체
US20130322747A1 (en) Image processing device correcting color of border region between object and background in image
US7969628B2 (en) Apparatus and method for segmenting an output device color gamut and mapping an input device color gamut to the segmented output device color gamut
JP4393491B2 (ja) 画像処理装置およびその制御方法
KR101393487B1 (ko) 디스플레이장치 및 그의 화질개선방법
JPH0832827A (ja) ディジタル画像の階調補正装置
JP2004328564A (ja) カラー補正装置、カラー補正方法及びカラー補正プログラム、並びにカラー補正装置を用いたデジタルカメラ
US7034959B1 (en) Method, apparatus and recording medium for image processing
US20170278227A1 (en) Image processing apparatus, image processing method, program, and non-transitory computer-readable storage medium
KR20140122605A (ko) 입력 영상의 밝기 조절 장치 및 방법
WO2009093294A1 (ja) 画像信号処理装置及び画像信号処理プログラム
JP3360476B2 (ja) 画像処理方法及び装置
JP2012119818A (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP2007312313A (ja) 画像処理装置、画像処理方法及びプログラム
KR102160247B1 (ko) 전자 장치 및 이의 제어 방법
JP2006033212A (ja) 映像信号処理装置及びテレビジョン装置
JP2004297617A (ja) 画像処理装置、画像形成装置、画像処理方法、画像処理プログラム、及び画像処理プログラムを記録したコンピュータ読み取り可能な記録媒体
KR101805621B1 (ko) 입력 영상의 채도 향상 장치 및 방법
JP2008227959A (ja) 画像処理装置、画像処理方法および画像処理システム
KR20100035906A (ko) Rgb 색공간에서의 색역 매핑 장치 및 그 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5195395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees