[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5189711B1 - Optical film thickness measuring apparatus and thin film forming apparatus using optical film thickness measuring apparatus - Google Patents

Optical film thickness measuring apparatus and thin film forming apparatus using optical film thickness measuring apparatus Download PDF

Info

Publication number
JP5189711B1
JP5189711B1 JP2012538014A JP2012538014A JP5189711B1 JP 5189711 B1 JP5189711 B1 JP 5189711B1 JP 2012538014 A JP2012538014 A JP 2012538014A JP 2012538014 A JP2012538014 A JP 2012538014A JP 5189711 B1 JP5189711 B1 JP 5189711B1
Authority
JP
Japan
Prior art keywords
light
film thickness
substrate
beam splitter
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012538014A
Other languages
Japanese (ja)
Other versions
JPWO2013121546A1 (en
Inventor
旭陽 佐井
友松 姜
健二 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shincron Co Ltd
Original Assignee
Shincron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shincron Co Ltd filed Critical Shincron Co Ltd
Application granted granted Critical
Publication of JP5189711B1 publication Critical patent/JP5189711B1/en
Publication of JPWO2013121546A1 publication Critical patent/JPWO2013121546A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0691Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of objects while moving
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0073Reactive sputtering by exposing the substrates to reactive gases intermittently
    • C23C14/0078Reactive sputtering by exposing the substrates to reactive gases intermittently by moving the substrates between spatially separate sputtering and reaction stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

モニタ基板を用いずに、製品の膜厚をリアルタイムに直接測定し、高精度で測定する光学式膜厚計測装置を提供する。
光学式膜厚計測装置は、投光部と、受光部と、測定光を基体へ反射する複数の基体保持手段内の内部ビームスプリッタと、複数の内部ビームスプリッタのうち最も近い内部ビームスプリッタからの測定光を全反射する内部光反射部材と、複数の内部ビームスプリッタからの測定光を受光部へ向けて反射する複数の外部ビームスプリッタと、光反射部材からの測定光を受光部へ向けて反射する外部光反射部材を備えている。内部ビームスプリッタ及び内部光反射部材により反射された測定光を、基体を透過させた後で、外部ビームスプリッタ及び外部光反射部材で反射させて受光部へ導き、測定光を受光する。
【選択図】図2
Provided is an optical film thickness measurement device that directly measures the film thickness of a product in real time without using a monitor substrate and measures the film thickness with high accuracy.
The optical film thickness measuring device includes a light projecting unit, a light receiving unit, an internal beam splitter in a plurality of substrate holding means that reflects measurement light to the substrate, and a closest internal beam splitter among the plurality of internal beam splitters. Internal light reflecting member that totally reflects measurement light, multiple external beam splitters that reflect measurement light from multiple internal beam splitters toward the light receiving unit, and measurement light from the light reflecting member is reflected toward the light receiving unit An external light reflecting member is provided. After the measurement light reflected by the internal beam splitter and the internal light reflecting member is transmitted through the substrate, it is reflected by the external beam splitter and the external light reflecting member and guided to the light receiving unit to receive the measurement light.
[Selection] Figure 2

Description

本発明は光学式膜厚計測装置及び光学式膜厚計測装置を用いた薄膜形成装置に係り、特に製品の膜厚を直接測定し、膜分布計測が可能な光学式膜厚計測装置及び光学式膜厚計測装置を用いた薄膜形成装置に関する。   The present invention relates to an optical film thickness measuring apparatus and a thin film forming apparatus using the optical film thickness measuring apparatus, and more particularly to an optical film thickness measuring apparatus and an optical type capable of directly measuring a film thickness of a product and measuring a film distribution. The present invention relates to a thin film forming apparatus using a film thickness measuring apparatus.

従来、一般に、デジタルカメラやプロジェクタ、DVDなどには、精密光学フィルタを使用しており、これらの精密光学フィルタの成膜には、スパッタリングや真空蒸着などのPVD(物理蒸着法)が用いられている。また、基板の表面に光学薄膜を形成させる技術として、CVDなどの化学蒸着が知られている。   Conventionally, in general, precision optical filters have been used for digital cameras, projectors, DVDs, etc., and PVD (physical vapor deposition) such as sputtering or vacuum deposition has been used for film formation of these precision optical filters. Yes. Further, chemical vapor deposition such as CVD is known as a technique for forming an optical thin film on the surface of a substrate.

このような薄膜形成技術の分野で、基板(基体)を保持する基体保持手段の回転機構の一つとして、カルーセル式の回転機構が知られている。カルーセル式の回転機構では、横断面形状が円形または多角形の回転ドラム(すなわち、基体保持手段)の外周面に複数の基板(基体)が保持されており、この状態で、回転軸を中心に回転ドラムは回転している。このように、カルーセル式の薄膜形成装置では、回転ドラムの外周面に基板(基体)が保持されているため、回転ドラムが回転している間は一箇所にとどまった状態の基板(基体)が存在せず、すべての基板(基体)は回転軸を中心に回転している。   In the field of such a thin film forming technique, a carousel type rotation mechanism is known as one of rotation mechanisms of a substrate holding means for holding a substrate (substrate). In the carousel type rotation mechanism, a plurality of substrates (substrates) are held on the outer peripheral surface of a rotary drum (that is, a substrate holding means) having a circular or polygonal cross section, and in this state, the rotation axis is the center. The rotating drum is rotating. Thus, in the carousel type thin film forming apparatus, since the substrate (base) is held on the outer peripheral surface of the rotating drum, the substrate (base) stayed in one place while the rotating drum is rotating. It does not exist, and all the substrates (bases) rotate around the rotation axis.

このため、光学方式で膜厚等の薄膜の光学特性を測定するには、回転ドラムの回転を一旦停止してから基板(基体)に対して光学測定を行う必要があった。このような測定方法では、膜厚測定のたびに薄膜形成工程を停止しなければならないため、薄膜形成工程に時間がかかるという不都合があった。   For this reason, in order to measure the optical characteristics of the thin film such as the film thickness by the optical method, it is necessary to stop the rotation of the rotating drum and then perform optical measurement on the substrate (base). In such a measuring method, the thin film forming process must be stopped every time the film thickness is measured, and thus there is a disadvantage that the thin film forming process takes time.

上述のような不都合を解決するために、回転ドラムが回転した状態でリアルタイムに膜厚を光学測定することが考えられる。例えば、回転ドラムの外側から基板(基体)に向けて測定光を投光し、基板(基体)から反射する反射光を受光する方法が考えられる。しかしながら、この方法では、上述したように回転ドラムは回転しているため、基板(基体)に入射する光の角度が随時変わってしまい、膜厚の正確な測定が困難であるという不都合があった。   In order to solve the inconvenience as described above, it is conceivable to optically measure the film thickness in real time with the rotating drum rotating. For example, a method of projecting measurement light from the outside of the rotating drum toward the substrate (base) and receiving reflected light reflected from the substrate (base) can be considered. However, in this method, since the rotating drum is rotating as described above, the angle of light incident on the substrate (base) changes at any time, and it is difficult to accurately measure the film thickness. .

上述のような各課題を解決するため、中空軸である回転ドラムの回転軸を介して投光・受光を行う膜厚計測装置、及びこの膜厚計測装置を備えた薄膜形成装置が開発されている。この膜厚計測装置は、中空軸である回転軸を備えた回転ドラムと、この回転軸内に配置された全反射ミラーと、回転軸の軸延長上に配置された全反射ミラーと、ハーフミラーを介して回転軸延長上に配置された全反射ミラーに測定光を照射する光源と、回転軸延長上に配置された全反射ミラーからの反射光をこのハーフミラーを介して受光する受光器と、を備えている(例えば、特許文献1参照)。   In order to solve the above-described problems, a film thickness measuring device that projects and receives light through the rotating shaft of a rotating drum that is a hollow shaft, and a thin film forming apparatus including the film thickness measuring device have been developed. Yes. The film thickness measuring device includes a rotary drum having a rotary shaft that is a hollow shaft, a total reflection mirror disposed in the rotation shaft, a total reflection mirror disposed on an axial extension of the rotation shaft, and a half mirror. A light source for irradiating measurement light to a total reflection mirror disposed on the extension of the rotation axis via a light receiver, and a light receiver for receiving reflected light from the total reflection mirror disposed on the extension of the rotation axis via the half mirror (For example, refer patent document 1).

この膜厚計測装置によれば、光源からの測定光は、ハーフミラーを介して回転軸延長上に配置された全反射ミラーに照射する。この回転軸内の全反射ミラーに照射された測定光は回転ドラムに保持された測定用ガラス(モニタ基板)に反射する。一方、測定用ガラス(モニタ基板)に照射する測定光は同じく全反射ミラーに反射する。この反射光はハーフミラーを介して受光器に照射する。   According to this film thickness measuring apparatus, the measurement light from the light source irradiates the total reflection mirror disposed on the rotation axis extension via the half mirror. The measurement light irradiated on the total reflection mirror in the rotating shaft is reflected on the measuring glass (monitor substrate) held on the rotating drum. On the other hand, the measurement light applied to the measurement glass (monitor substrate) is also reflected by the total reflection mirror. This reflected light is applied to the light receiver through the half mirror.

このように、従来の薄膜形成装置によれば、中空軸である回転ドラムの回転軸を介して測定光や反射光を導いているので、回転ドラムが回転しているにもかかわらずリアルタイムに測定用ガラスの膜厚を測定することが可能となる。   As described above, according to the conventional thin film forming apparatus, the measurement light and the reflected light are guided through the rotating shaft of the rotating drum which is a hollow shaft, so that the measurement is performed in real time even though the rotating drum is rotating. It becomes possible to measure the film thickness of the glass.

しかしながら、この膜厚計測装置では、回転軸内に設けられた単一の全反射ミラーを介して測定用ガラスへの測定光の照射と測定用ガラス(モニタ基板)からの反射光の反射が行われているため、回転軸の同じ端部から測定光と反射光が導入出される。このため、回転軸のぶれ、振動などにより測定光や反射光の強度が変化して、得られる膜厚値に誤差が生じることがある。   However, in this film thickness measuring apparatus, the measurement glass is irradiated with the measurement light and the reflected light from the measurement glass (monitor substrate) is reflected through a single total reflection mirror provided in the rotation axis. Therefore, measurement light and reflected light are introduced and extracted from the same end of the rotation axis. For this reason, the intensity of the measurement light or the reflected light may change due to shake of the rotation axis, vibration, or the like, and an error may occur in the obtained film thickness value.

そこで、上記不都合を解消するべく、本出願人は既に、膜厚測定技術を提案している。この提案技術は、回転軸線の一方の側から基体保持手段の内部に向けて測定光を投光する投光部と、基体保持手段の内部に設けられると共に投光部から投光された測定光を基体へ反射する第一の光反射部材と、基体保持手段の内部に設けられると共に基体から反射された反射光を回転軸線の他方の側へ向けて反射する第二の光反射部材と、第二の光反射部材により反射された反射光を受光する受光部と、受光部で受光された反射光に基づいて基体に形成される薄膜の膜厚を演算する膜厚演算部とを備えた技術である(特許文献2)。   Therefore, in order to solve the above inconvenience, the present applicant has already proposed a film thickness measurement technique. The proposed technique includes a light projecting unit that projects measurement light from one side of the rotation axis toward the inside of the substrate holding unit, and a measurement light that is provided inside the substrate holding unit and is projected from the light projecting unit. A first light reflecting member that reflects the light reflected from the base body, a second light reflecting member that reflects the reflected light reflected from the base toward the other side of the rotation axis, A technology including a light receiving unit that receives reflected light reflected by the two light reflecting members, and a film thickness calculating unit that calculates the thickness of a thin film formed on the base based on the reflected light received by the light receiving unit. (Patent Document 2).

特開2000−088531号公報(第1〜5頁、第1図、第2図)JP 2000-088531 A (pages 1 to 5, FIGS. 1 and 2) 特開2007−211311号公報JP 2007-211311 A

上記特許文献2で提案された技術は、回転軸線の異なる方向から測定光と反射光がそれぞれ入射および出射されるため、誤差が少なく精度の高い膜厚値を得ることが可能となり、特に反射率の低い材料からなる薄膜の膜厚を測定するような場合であっても、高い感度で精度の高い膜厚値を得ることが期待されるなど優れたものである。   In the technique proposed in Patent Document 2 above, measurement light and reflected light are incident and emitted from different directions of the rotation axis, respectively, so that it is possible to obtain a highly accurate film thickness value with little error, and in particular, reflectivity. Even when measuring the film thickness of a thin film made of a low material, it is excellent in that it is expected to obtain a high film thickness value with high sensitivity.

しかし、上記提案技術は、複数の基板を計測するときに、モニタ基板を用いるために、場所の異なる位置に配置された基板(120度異なる位置)を測定することになってしまう。つまり、モニタ基板(モニタガラス)と成膜する製品基板(ワークの基板)の間は位置的または空間的に異なるため、間接の計測であり、モニタ基板(モニタガラス)と成膜する製品基板(ワークの基板)間に差ができてしまうため、所定のパラメータで補正を行うことで、膜厚を計測している。   However, since the proposed technique uses a monitor substrate when measuring a plurality of substrates, the substrate disposed at different positions (positions different by 120 degrees) will be measured. In other words, since the monitor substrate (monitor glass) and the product substrate (workpiece substrate) to be formed are different in position or space, it is an indirect measurement, and the monitor substrate (monitor glass) and the product substrate to be formed (monitor glass). Therefore, the film thickness is measured by correcting with a predetermined parameter.

上記間接的な計測に対して、直視式光学モニタによる光学式膜厚計が知られている。しかし、直視式光学モニタによる光学式膜厚計は、単一の製品基板(ワークの基板)に対して対応しているのが一般的であり、複数の製品基板を対象とするものは存在しなかった。   An optical film thickness meter using a direct-view optical monitor is known for the indirect measurement. However, the optical film thickness meter with a direct-view optical monitor is generally compatible with a single product substrate (work substrate), and there are devices that target multiple product substrates. There wasn't.

このように、光学フィルタをPVD等によって大量生産、製造するときに、例えばスパッタや蒸着の場合、トラム或いはドーム上に製品基板(ワークの基板)を配置させ、この製品基板(ワークの基板)に成膜するが、膜厚を均一にして、膜を試作し、補正版の修正という工程を繰り返すことにより、均一な性能の揃った光学フィルタを得ることができる。
そして、このためには、膜分布計測を計測することになるが、複数チャンネルの光ファイバを用い、複数台の分光器を備えた高価の膜厚計となり、操作が煩雑であり、コストもかかるという不都合があった。
Thus, when mass-producing and manufacturing an optical filter by PVD or the like, for example, in the case of sputtering or vapor deposition, a product substrate (work substrate) is arranged on a tram or dome, and this product substrate (work substrate) is placed on the product substrate. Although the film is formed, an optical filter with uniform performance can be obtained by making the film thickness uniform, making a prototype of the film, and correcting the correction plate.
For this purpose, the film distribution measurement is measured. However, an expensive film thickness meter using a plurality of optical fibers and a plurality of spectroscopes is used, which is complicated and expensive. There was an inconvenience.

本発明は、上記事情に鑑みてなされたものであって、その目的は、特にカルーセル式の回転機構を備えた薄膜形成装置において、モニタ基板を用いることなく、製品の膜厚を直接測定することが可能であり、同一列に配置された複数の基板に形成される薄膜の膜厚をリアルタイムに、かつ高い精度で測定することが可能な光学式膜厚計測装置を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to directly measure the film thickness of a product without using a monitor substrate, particularly in a thin film forming apparatus equipped with a carousel type rotation mechanism. It is possible to provide an optical film thickness measuring apparatus capable of measuring the film thickness of a thin film formed on a plurality of substrates arranged in the same row in real time with high accuracy.

本発明の他の目的は、モニタ基板ではなく、製品を直接測定し、この製品の膜厚を制御できる光学式膜厚計測装置を用いた薄膜形成装置を提供することにある。
本発明の更に他の目的は、一つの光学系を用いて、回転ドラムの上下複数段にある製品の膜厚を測定すると共に、膜厚制御することのできる光学式膜厚計測装置及び光学式膜厚計測装置を用いた薄膜形成装置を提供することにある。
Another object of the present invention is to provide a thin film forming apparatus using an optical film thickness measuring device capable of directly measuring a product, not a monitor substrate, and controlling the film thickness of the product.
Still another object of the present invention is to provide an optical film thickness measuring apparatus and an optical system that can control the film thickness while measuring the film thickness of the products on the upper and lower stages of the rotating drum using one optical system. The object is to provide a thin film forming apparatus using a film thickness measuring apparatus.

上記課題は、本発明の光学式膜厚計測装置によれば、回転型の基体保持手段を備えた光学薄膜形成装置の光学式膜厚計測装置であって、前記回転型の基体保持手段の回転軸線の一方の側から前記基体保持手段の内部に向けて測定光を投光する投光部と、該投光部からの測定光を受光する受光部と、前記基体保持手段の内部に設けられると共に、前記投光部から投光された前記測定光を基体へ反射する複数の内部ビームスプリッタと、前記基体保持手段の内部に設けられると共に、前記複数の内部ビームスプリッタのうち最も近い内部ビームスプリッタからの測定光を全反射する内部光反射部材と、前記基体保持手段の外側に設けられると共に、前記複数の内部ビームスプリッタからの測定光を前記受光部へ向けて反射する複数の外部ビームスプリッタと、前記基体保持手段の外側に設けられると共に、前記内部光反射部材からの測定光を前記受光部へ向けて反射する外部光反射部材と、を備え、前記複数の内部ビームスプリッタ及び前記内部光反射部材により反射された測定光を、前記基体を透過させた後で、前記複数の外部ビームスプリッタ及び前記外部光反射部材で反射させて前記受光部へ導き、測定光を受光すること、により解決される。
According to the optical film thickness measuring apparatus of the present invention, the above-mentioned problem is an optical film thickness measuring apparatus for an optical thin film forming apparatus provided with a rotating substrate holding means, wherein the rotating substrate holding means is rotated. Provided inside the base body holding means, a light projecting section for projecting measurement light from one side of the axis toward the inside of the base body holding means, a light receiving section for receiving measurement light from the light projecting section, and And a plurality of internal beam splitters that reflect the measurement light projected from the light projecting unit to the substrate, and the inner beam splitter that is provided inside the substrate holding means and that is the closest of the plurality of internal beam splitters An internal light reflecting member that totally reflects measurement light from the substrate, and a plurality of external beams that are provided outside the substrate holding means and reflect the measurement light from the plurality of internal beam splitters toward the light receiving unit. And liters, with provided outside of the substrate holding means, and an external light reflecting member for reflecting the measurement light from the internal light reflecting member to the light receiving portion, said plurality of internal beam splitter and the internal After allowing the measurement light reflected by the light reflecting member to pass through the substrate, the measurement light is reflected by the plurality of external beam splitters and the external light reflecting member and guided to the light receiving unit, and the measurement light is received. Solved.

このように構成されているために、モニタ基板を用いることなく、製品の膜厚を直接測定することが可能であり、同一列に配置された複数の基板に形成される薄膜の膜厚をリアルタイムに、かつ高い精度で測定することが可能である。そして、一つの光学系を用いて、且つ可動光学部品を使用していないので、信頼性が高く、メンテナンス性が向上する。   Because of this configuration, it is possible to directly measure the film thickness of a product without using a monitor substrate, and the film thickness of a thin film formed on a plurality of substrates arranged in the same row can be measured in real time. In addition, it is possible to measure with high accuracy. In addition, since one optical system is used and no movable optical component is used, the reliability is high and the maintainability is improved.

このとき、前記基体保持手段の回転軸線は、前記基体保持手段の中心を構成する中空状の回転軸体内に位置し、前記内部ビームスプリッタ及び前記内部光反射部材は、前記回転軸体内に配置され、前記回転軸体の壁面は、前記反射された測定光を通過可能に構成すると好適である。また、前記内部ビームスプリッタ及び前記内部光反射部材によって、反射される測定光は、略等しい光量にしている。
このように、各製品である基体(基板)には、同一光量の測定光が照射されると、同じ測定感度(精度)が得られる。
At this time, the rotation axis of the substrate holding means is located in a hollow rotation shaft constituting the center of the substrate holding means, and the internal beam splitter and the internal light reflecting member are disposed in the rotation shaft. It is preferable that the wall surface of the rotating shaft body is configured to allow the reflected measurement light to pass therethrough. Further, the measurement light reflected by the internal beam splitter and the internal light reflecting member is made to have substantially the same amount of light.
In this way, the same measurement sensitivity (accuracy) is obtained when the same amount of measurement light is irradiated onto the substrate (substrate) that is each product.

また、前記受光部で受光された前記測定光に基づいて前記基体に形成される薄膜の膜厚を演算する膜厚演算部を備えると好適である。   In addition, it is preferable to provide a film thickness calculator that calculates the film thickness of the thin film formed on the substrate based on the measurement light received by the light receiver.

さらに、前記複数の外部ビームスプリッタ及び前記外部光反射部材は、中空の筐体で覆われ、該筐体の測定光が入射する部分は、測定光を通過可能に構成すると好適である。
このように構成すると、外部ビームスプリッタ及び外部光反射部材の汚れ等を防止でき、メンテナンス性がより向上する。
Further, it is preferable that the plurality of external beam splitters and the external light reflecting member are covered with a hollow housing, and a portion of the housing where the measurement light is incident is configured to be able to pass the measurement light.
If comprised in this way, a contamination, etc. of an external beam splitter and an external light reflection member can be prevented, and maintainability improves more.

さらにまた、前記複数の外部ビームスプリッタ及び前記外部光反射部材の間には、シャッタ装置が設けられていると好適である。
このようにシャッタ装置を用いることにより、光路を遮断することが可能となり、測定すべき対象である基体(基板)が装着されていない場合において、測定対象から外すことが可能となる。
Furthermore, it is preferable that a shutter device is provided between the plurality of external beam splitters and the external light reflecting member.
By using the shutter device in this way, it is possible to block the optical path, and when the substrate (substrate) that is the object to be measured is not mounted, it can be removed from the object to be measured.

また、前記投光部と前記受光部は、前記光学薄膜形成装置の同じ方向または同じ面の位置に設けられていると好適である。
このように、前記投光部と前記受光部が光学薄膜形成装置の同じ方向または同じ面の位置、例えば基板保持手段の上面に設けられていると、前記投光部と前記受光部が同じ方向または同じ面の位置であるために、前記投光部と前記受光部の据付等が容易であり、光学式膜厚計測装置の取付けやメンテナンス性が向上する。特に上面側に位置しているので、下面側に配置するよりも、取付けやメンテナンス等各種作業が容易となる。
In addition, it is preferable that the light projecting unit and the light receiving unit are provided in the same direction or on the same surface of the optical thin film forming apparatus.
Thus, when the light projecting unit and the light receiving unit are provided in the same direction or the same surface position of the optical thin film forming apparatus, for example, on the upper surface of the substrate holding unit, the light projecting unit and the light receiving unit are in the same direction. Or since it is the position of the same surface, installation etc. of the said light projection part and the said light-receiving part are easy, and attachment and maintenance property of an optical film thickness measuring device improve. In particular, since it is located on the upper surface side, various operations such as mounting and maintenance become easier than arrangement on the lower surface side.

また、前記投光部と前記受光部は、前記光学薄膜形成装置の反対側の方向または反対側の面の位置に設けるように構成することも可能である。
このように構成すると、投光部と受光部の位置を従来装置のように、反対側に設けることができるので、従来技術の装置のレイアウトを変更することを防止することが可能となる。
In addition, the light projecting unit and the light receiving unit may be configured to be provided in the opposite direction of the optical thin film forming apparatus or in the position of the opposite surface.
If comprised in this way, since the position of a light projection part and a light-receiving part can be provided in the other side like a conventional apparatus, it will become possible to prevent changing the layout of a prior art apparatus.

上記課題は、本発明の薄膜形成装置によれば、真空容器内に配置された基体を保持した状態で回転軸線を中心に回転可能な基体保持手段と、前記真空容器に薄膜を形成する膜原料物質を供給する膜原料物質供給手段と、前記基体に薄膜を形成する成膜プロセス領域と、を備えた薄膜を形成する回転型の薄膜形成装置であって、前記請求項1乃至7のいずれか一項に記載の光学式膜厚計測装置を用いたこと、により解決される。
本発明に係る薄膜形成装置によれば、上記光学式膜厚計測装置の特性を利用した装置を提供することが可能となる。
According to the thin film forming apparatus of the present invention, the above-described problem is that a substrate holding means capable of rotating around a rotation axis while holding a substrate disposed in a vacuum vessel, and a film raw material for forming a thin film in the vacuum vessel 8. A rotary type thin film forming apparatus for forming a thin film, comprising: a film raw material supply means for supplying a material; and a film forming process region for forming a thin film on the substrate. This is solved by using the optical film thickness measuring device according to one item.
According to the thin film forming apparatus according to the present invention, it is possible to provide an apparatus utilizing the characteristics of the optical film thickness measuring apparatus.

このように、本発明の光学式膜厚計測装置及び薄膜形成装置によれば、基体保持手段の回転軸線に沿って複数のビームスプリッタ及び全反射ミラーが配設されているため、基体保持手段の回転軸線に沿って配置された複数の製品となる基体(基板)の膜厚を、それぞれ直接測定することが可能となっているため、これら複数の基体を測定することで、実際の製品である基体(基板)の膜厚を測定でき、モニタ基板ではなく、製品そのものの膜厚を直接制御することが可能となる。   As described above, according to the optical film thickness measuring apparatus and the thin film forming apparatus of the present invention, the plurality of beam splitters and the total reflection mirrors are disposed along the rotation axis of the substrate holding means. Since it is possible to directly measure the film thicknesses of the substrates (substrates) to be a plurality of products arranged along the rotation axis, it is an actual product by measuring these substrates. The film thickness of the substrate (substrate) can be measured, and the film thickness of the product itself can be directly controlled instead of the monitor substrate.

本発明によれば、モニタ基板を用いることなく、製品の膜厚を直接測定することが可能であり、同一列に配置された複数の基板に形成される薄膜の膜厚をリアルタイムに、かつ高い精度で測定することが可能となる。
また、光学式膜厚計に求められる性能を満たし、薄膜を形成するときに、回転型の基体保持手段に取り付けられた基体(製品である基板)を直接測定できるもので、一つの光学系を用いて、回転ドラムの上下複数段にある製品の膜厚を同じ測定感度(精度)が得られると共に、膜厚制御することが可能な光学式膜厚計測装置及び光学式膜厚計測装置を用いた薄膜形成装置を提供することができる。特に、可動光学部品を使用していないので、信頼性が高く、メンテナンス性が向上し、メンテナンスを含めたコストを低減することが可能である。
According to the present invention, the film thickness of a product can be directly measured without using a monitor substrate, and the film thickness of a thin film formed on a plurality of substrates arranged in the same row can be increased in real time. It becomes possible to measure with accuracy.
In addition, when satisfying the performance required for an optical film thickness meter and forming a thin film, the substrate (product substrate) attached to the rotating substrate holding means can be directly measured. Using the optical film thickness measuring device and the optical film thickness measuring device that can obtain the same measurement sensitivity (accuracy) and can control the film thickness of products in multiple stages above and below the rotating drum. The thin film forming apparatus can be provided. In particular, since no movable optical components are used, the reliability is high, the maintainability is improved, and the cost including the maintenance can be reduced.

本発明の実施形態に係る光学式膜厚計測装置及び薄膜形成装置を上方から見た断面説明図である。It is the section explanatory view which looked at the optical film thickness measuring device and thin film forming device concerning the embodiment of the present invention from the upper part. 図1の薄膜形成装置を矢視A−A方向に見た断面説明図である。It is sectional explanatory drawing which looked at the thin film forming apparatus of FIG. 1 in the arrow AA direction. 図2の回転ドラムを斜め上方から見た部分断面斜視図である。FIG. 3 is a partial cross-sectional perspective view of the rotating drum of FIG. 2 as viewed obliquely from above. 第3実施形態を示す図3と同様な部分断面斜視図である。It is a fragmentary sectional perspective view similar to FIG. 3 which shows 3rd Embodiment. 第3実施形態の他の例を示す図2と同様な断面説明図である。It is a cross-sectional explanatory drawing similar to FIG. 2 which shows the other example of 3rd Embodiment. 図5の回転ドラムを斜め上方から見た部分断面斜視図である。FIG. 6 is a partial cross-sectional perspective view of the rotating drum of FIG. 5 as viewed obliquely from above. 第5実施形態の他の例を示す図2と同様な断面説明図である。It is sectional explanatory drawing similar to FIG. 2 which shows the other example of 5th Embodiment. 投光レンズの配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of a light projection lens. ミラーユニットの説明図である。It is explanatory drawing of a mirror unit. ミラーユニットの説明図である。It is explanatory drawing of a mirror unit. 本発明の各実施形態に係る光学式膜厚計測装置及び薄膜形成装置の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the optical film thickness measuring apparatus and thin film forming apparatus which concern on each embodiment of this invention. 他の実施形態を示す図2と同様な断面説明図である。It is sectional explanatory drawing similar to FIG. 2 which shows other embodiment. 投光部と受光部とが同じ方向における光学式膜厚計測装置の基本構成の説明図である。It is explanatory drawing of the basic composition of the optical film thickness measuring device in the direction where a light projection part and a light-receiving part are the same. 投光部と受光部とが反対方向における光学式膜厚計測装置の基本構成の説明図である。It is explanatory drawing of the basic composition of the optical film thickness measuring device in the direction where a light projection part and a light-receiving part are opposite. 図13及び図14の出力光の算出方法と光の相対出力比較の説明図である。It is explanatory drawing of the calculation method of the output light of FIG.13 and FIG.14, and the relative output comparison of light. 第1実施形態における基体(基板)からの出力を示す図である。It is a figure which shows the output from the base | substrate (board | substrate) in 1st Embodiment. 第2実施形態における基体(基板)からの出力を示す図である。It is a figure which shows the output from the base | substrate (board | substrate) in 2nd Embodiment. 第3実施形態における基体(基板)からの出力を示す図である。It is a figure which shows the output from the base | substrate (board | substrate) in 3rd Embodiment. 第4実施形態における基体(基板)からの出力を示す図である。It is a figure which shows the output from the base | substrate (board | substrate) in 4th Embodiment.

1 薄膜形成装置
10 処理容器
11 真空容器
11a 薄膜形成室
11b ロードロック室
11c,11d 扉
13 回転ドラム(基体保持手段)
13a 回転軸
13b,17a ギヤ
13c 開口
14 仕切壁
15 真空ポンプ
16a,16b 配管
17 回転ドラム駆動モータ
20 スパッタ手段
22a,22b ターゲット
24a 交流電源
30 スパッタガス供給手段
31,33 マスフローコントローラ
32 スパッタガスボンベ
34 反応性ガスボンベ
35 配管
35a,35b 補正板駆動モータ
36a,36b,36c 膜厚補正板
40 プラズマ発生手段
41 ケース体
42 誘導体板
43 アンテナ
44 マッチングボックス
45 高周波電源
50 反応性ガス供給手段
51 酸素ガスボンベ
52,54 マスフローコントローラ
53 アルゴンガスボンベ
55 配管
60 光学式膜厚計測装置
61 光源
61a 発光素子
61b フィルタ
62 投光用光ファイバ
63 投光ヘッド
64 投光側集光レンズ
65a 第1ビームスプリッタ
65b 第2ビームスプリッタ
65c 第1全反射ミラー
66a 第3ビームスプリッタ
66b 第4ビームスプリッタ
66c 第2全反射ミラー
66k 全反射ミラー
66l,66m ビームスプリッタ
67 受光側光ファイバ
68 受光側集光レンズ
69 受光ヘッド
71 分光測定装置
71a 受光素子
71b 分光素子
80 膜厚演算コンピュータ
81 CPU
82 メモリ
83 ハードディスク
84 I/Oモータ
83a 膜厚相関関係データ
83b 膜厚演算プログラム
90 膜厚制御装置
91 膜厚制御信号生成部
100a,100b,100c 光路切替シャッタ
101 駆動部
102a,102b,102c 遮蔽板
160 筒状体
165a〜165d ビームスプリッタ(BS1〜BS4)
166a〜166d ビームスプリッタ(BS5〜BS8)
165e,166e 全反射ミラー
V バルブ
S 基体(基板)
DESCRIPTION OF SYMBOLS 1 Thin film forming apparatus 10 Processing container 11 Vacuum container 11a Thin film forming chamber 11b Load lock chamber 11c, 11d Door 13 Rotating drum (base | substrate holding means)
13a Rotating shaft 13b, 17a Gear 13c Opening 14 Partition wall 15 Vacuum pump 16a, 16b Piping 17 Rotating drum drive motor 20 Sputtering means 22a, 22b Target 24a AC power supply 30 Sputtering gas supply means 31, 33 Mass flow controller 32 Sputtering gas cylinder 34 Reactivity Gas cylinder 35 Piping 35a, 35b Correction plate drive motor 36a, 36b, 36c Film thickness correction plate 40 Plasma generating means 41 Case body 42 Derivative plate 43 Antenna 44 Matching box 45 High frequency power supply 50 Reactive gas supply means 51 Oxygen gas cylinder 52, 54 Mass flow Controller 53 Argon gas cylinder 55 Pipe 60 Optical film thickness measuring device 61 Light source 61a Light emitting element 61b Filter 62 Light projecting optical fiber 63 Light projecting head 64 Light projecting side condensing lens 65a Beam splitter 65b Second beam splitter 65c First total reflection mirror 66a Third beam splitter 66b Fourth beam splitter 66c Second total reflection mirror 66k Total reflection mirrors 66l and 66m Beam splitter 67 Light receiving side optical fiber 68 Light receiving side condensing lens 69 Light receiving head 71 Spectrometer 71a Light receiving element 71b Spectroscopic element 80 Film thickness calculation computer 81 CPU
82 Memory 83 Hard Disk 84 I / O Motor 83a Film Thickness Correlation Data 83b Film Thickness Calculation Program 90 Film Thickness Control Device 91 Film Thickness Control Signal Generation Unit 100a, 100b, 100c Optical Path Switching Shutter 101 Drive Unit 102a, 102b, 102c Shielding Plate 160 Cylindrical bodies 165a to 165d Beam splitters (BS1 to BS4)
166a to 166d Beam splitter (BS5 to BS8)
165e, 166e Total reflection mirror V Valve S Substrate (substrate)

以下に、本発明の第一の実施形態について図面を参照して説明する。なお、以下に説明する部材、配置等は、本発明に限定するものではなく、本発明の趣旨に沿って各種改変することができることは勿論である。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. Note that the members, arrangements, and the like described below are not limited to the present invention, and various modifications can be made in accordance with the spirit of the present invention.

図1〜図19は本発明の実施形態に係るものであり、図1は光学式膜厚計測装置及び薄膜形成装置を上方から見た断面説明図、図2は図1の薄膜形成装置を矢視A−A方向に見た断面説明図、図3は図2の回転ドラムを斜め上方から見た部分断面斜視図、図4は第3実施形態を示す図3と同様な部分断面斜視図、図5は第3実施形態の他の例を示す図2と同様な断面説明図、図6は図5の回転ドラムを斜め上方から見た部分断面斜視図、図7は第5実施形態の他の例を示す図2と同様な断面説明図、図8は投光レンズの配置例を示す説明図、図9及び図10はミラーユニットの説明図、図11は各実施形態に係る光学式膜厚計測装置及び薄膜形成装置の機能的構成を示すブロック図、図12は他の実施形態を示す図2と同様な断面説明図、図13は投光部と受光部とが同じ方向における光学式膜厚計測装置の基本構成の説明図、図14は投光部と受光部とが反対方向における光学式膜厚計測装置の基本構成の説明図、図15は図13及び図14の出力光の算出方法と光の相対出力比較の説明図、図16は第1実施形態における基体(基板)からの出力を示す図、図17は第2実施形態における基体(基板)からの出力を示す図、図18は第3実施形態における基体(基板)からの出力を示す図、図19は第4実施形態における基体(基板)からの出力を示す図である。   1 to 19 relate to an embodiment of the present invention, FIG. 1 is a cross-sectional explanatory view of the optical film thickness measuring device and the thin film forming device as viewed from above, and FIG. 2 is an arrow of the thin film forming device of FIG. FIG. 3 is a partial cross-sectional perspective view of the rotary drum of FIG. 2 viewed obliquely from above, and FIG. 4 is a partial cross-sectional perspective view similar to FIG. 3 showing the third embodiment. FIG. 5 is a cross-sectional explanatory view similar to FIG. 2 showing another example of the third embodiment, FIG. 6 is a partial cross-sectional perspective view of the rotating drum of FIG. 5 viewed obliquely from above, and FIG. FIG. 8 is an explanatory view showing an example of the arrangement of a projection lens, FIGS. 9 and 10 are explanatory views of a mirror unit, and FIG. 11 is an optical film according to each embodiment. FIG. 12 is a block diagram showing the functional configuration of the thickness measuring device and the thin film forming device, FIG. 12 is a cross-sectional explanatory view similar to FIG. 3 is an explanatory diagram of the basic configuration of the optical film thickness measuring device in the same direction of the light projecting unit and the light receiving unit, and FIG. 14 is the basic configuration of the optical film thickness measuring device in the opposite direction of the light projecting unit and the light receiving unit. FIG. 15 is an explanatory diagram of the output light calculation method and the relative light output comparison of FIGS. 13 and 14, FIG. 16 is a diagram showing the output from the substrate (substrate) in the first embodiment, and FIG. The figure which shows the output from the base | substrate (board | substrate) in 2nd Embodiment, FIG. 18 is the figure which shows the output from the base | substrate (board | substrate) in 3rd Embodiment, FIG. 19 shows the output from the base | substrate (board | substrate) in 4th Embodiment. FIG.

本実施形態の薄膜形成装置1では、ターゲットをスパッタして膜原料物質を基板表面に付着させることで目的の膜厚よりも相当程度薄い薄膜を基板表面に付着するスパッタ処理と、この膜原料物質に対して酸化などの処理を行って薄膜の組成を変換するプラズマ処理とにより基板表面に中間薄膜を形成し、このスパッタ処理とプラズマ処理を複数回繰り返すことで、中間薄膜を複数層積層して目的の膜厚を有する最終薄膜を基板表面に形成している。   In the thin film forming apparatus 1 of the present embodiment, a sputtering process for depositing a thin film considerably thinner than the target film thickness on the substrate surface by sputtering the target and depositing the film raw material on the substrate surface, and this film raw material An intermediate thin film is formed on the substrate surface by a plasma treatment that converts the composition of the thin film by performing a treatment such as oxidation on the substrate, and by repeating this sputtering treatment and the plasma treatment multiple times, a plurality of intermediate thin films are laminated. A final thin film having a target film thickness is formed on the substrate surface.

具体的には、スパッタ処理とプラズマ処理によって組成変換後における膜厚の平均値が0.01〜1.5nm程度の中間薄膜を基板表面に形成し、回転ドラムの回転毎に繰り返すことにより複数の中間薄膜を積層させ、目的とする数nm〜数百nm程度の膜厚を有する最終薄膜を形成している。   Specifically, an intermediate thin film having an average film thickness of about 0.01 to 1.5 nm after composition conversion is formed on the substrate surface by sputtering treatment and plasma treatment, and is repeated for each rotation of the rotating drum. An intermediate thin film is laminated to form a final thin film having a target film thickness of several nm to several hundred nm.

図1及び2で示すように、薄膜形成装置1は、真空容器11及び回転ドラム13を備えた処理容器10と、スパッタ手段20と、スパッタガス供給手段30と、プラズマ発生手段40と、反応性ガス供給手段50と、光学式膜厚計測装置60と、を主要な構成要素としている。なお、図中では、スパッタ手段20は破線、スパッタガス供給手段30は一点鎖線、プラズマ発生手段40は破線、反応性ガス供給手段50は二点鎖線で囲んで表示している。   As shown in FIGS. 1 and 2, the thin film forming apparatus 1 includes a processing vessel 10 including a vacuum vessel 11 and a rotating drum 13, a sputtering unit 20, a sputtering gas supply unit 30, a plasma generation unit 40, a reactivity. The gas supply means 50 and the optical film thickness measuring device 60 are main components. In the figure, the sputtering means 20 is indicated by a broken line, the sputtering gas supply means 30 is indicated by a one-dot chain line, the plasma generating means 40 is indicated by a broken line, and the reactive gas supply means 50 is indicated by a two-dot chain line.

反応プロセス処理は、成膜プロセス処理で基体(基板)Sの表面に付着した膜原料物質をプラズマ発生手段40でプラズマ処理して、膜原料物質の完全反応物や不完全反応物からなる中間薄膜を形成している。   In the reaction process, a film raw material adhering to the surface of the substrate (substrate) S in the film forming process is subjected to plasma treatment by the plasma generating means 40, and an intermediate thin film composed of a complete reaction product or an incomplete reaction product of the film raw material. Is forming.

プラズマ発生手段40は、ケース体41と、誘電体板42と、アンテナ43と、マッチングボックス44と、高周波電源45と、を有して構成されている。ケース体41は、真空容器11の壁面に形成された開口を塞ぐ形状を備え、真空容器11の開口を塞ぐように固定され、このケース体41が真空容器11の壁面に固定されることで、プラズマ発生手段40は真空容器11の壁面に取り付けられている。   The plasma generating means 40 includes a case body 41, a dielectric plate 42, an antenna 43, a matching box 44, and a high frequency power supply 45. The case body 41 has a shape that closes the opening formed in the wall surface of the vacuum vessel 11, is fixed so as to close the opening of the vacuum vessel 11, and the case body 41 is fixed to the wall surface of the vacuum vessel 11, The plasma generating means 40 is attached to the wall surface of the vacuum vessel 11.

反応性ガス供給手段50は、酸素ガスを貯蔵する酸素ガスボンベ51と、この酸素ガスボンベ51より供給される酸素ガスの流量を調整するマスフローコントローラ52と、アルゴンガスを貯蔵するアルゴンガスボンベ53と、アルゴンガスボンベ53より供給されるアルゴンガスの流量を調整するマスフローコントローラ54と、酸素ガスおよびアルゴンガスからなる混合ガスを反応プロセス領域に導入する配管55を主要な構成要素としている。
そして、スパッタ等により基体(基板)Sの表面に付着した膜原料物質をプラズマ発生手段40でプラズマ処理して、膜原料物質の完全反応物や不完全反応物からなる中間薄膜を形成している。
The reactive gas supply means 50 includes an oxygen gas cylinder 51 that stores oxygen gas, a mass flow controller 52 that adjusts the flow rate of the oxygen gas supplied from the oxygen gas cylinder 51, an argon gas cylinder 53 that stores argon gas, and an argon gas cylinder. Main components are a mass flow controller 54 for adjusting the flow rate of argon gas supplied from 53 and a pipe 55 for introducing a mixed gas composed of oxygen gas and argon gas into the reaction process region.
Then, the film raw material adhering to the surface of the substrate (substrate) S by sputtering or the like is plasma-processed by the plasma generating means 40 to form an intermediate thin film made of a complete reaction product or an incomplete reaction product of the film raw material material. .

酸素ガスボンベ51およびアルゴンガスボンベ53から配管55の導入口を通じて酸素ガスが反応プロセス領域に導入された状態で、アンテナ43に高周波電源45から電力が供給されると、反応プロセス領域内のアンテナ43に面した領域にプラズマが発生する。このプラズマにより、基体(基板)Sの表面に形成された膜原料物質中のケイ素(Si)やケイ素の不完全酸化物(SiOx(ここで、0<x<2))が酸化されて、ケイ素の完全酸化物(SiO2)や不完全酸化物(SiOx(ここで、0<x<2))から形成される中間薄膜となる。   When power is supplied from the high frequency power supply 45 to the antenna 43 in a state where oxygen gas is introduced into the reaction process region from the oxygen gas cylinder 51 and the argon gas cylinder 53 through the introduction port of the pipe 55, the antenna 43 in the reaction process region faces the antenna 43. Plasma is generated in the region. This plasma oxidizes silicon (Si) and incomplete oxides of silicon (SiOx (where 0 <x <2)) in the film raw material formed on the surface of the substrate (substrate) S, thereby producing silicon. The intermediate thin film is formed from a complete oxide (SiO 2) or an incomplete oxide (SiO x (where 0 <x <2)).

次に、本発明に係る実施形態の光学式膜厚計測装置60について説明する。光学式膜厚計測装置60は、基体(基板)Sの表面に形成される薄膜の膜厚を測定するものである。本実施形態では、図2〜図7及び図12に示すように、光学式膜厚計測装置60は、測定光を出射する出射側と、基体(基板)Sを透過した測定光の受光側とを備えている。   Next, the optical film thickness measuring device 60 according to the embodiment of the present invention will be described. The optical film thickness measuring device 60 measures the film thickness of a thin film formed on the surface of a substrate (substrate) S. In the present embodiment, as shown in FIGS. 2 to 7 and 12, the optical film thickness measuring device 60 includes an emission side that emits measurement light, and a light reception side of measurement light that has passed through the substrate (substrate) S. It has.

図8は出射側の投光レンズの配置例を示す説明図であり、出射側は、測定光を発する光源61と、この光源61からの測定光を伝送する投光用光ファイバ62と、投光用光ファイバ62で伝送した測定光を投光ヘッド63へ導くものである。
投光ヘッド63は、回転軸内に配置された第1ビームスプリッタ(BS1)65a、第2ビームスプリッタ(BS2)65b及び第1全反射ミラー65cに測定光を出射するものである。なお、投光側集光レンズ64は、投光ヘッド63からの測定光を収束するものである。
FIG. 8 is an explanatory view showing an arrangement example of the light projecting lens on the exit side. On the exit side, the light source 61 that emits the measurement light, the light projecting optical fiber 62 that transmits the measurement light from the light source 61, and the light projection The measurement light transmitted through the optical fiber 62 is guided to the light projecting head 63.
The light projecting head 63 emits measurement light to the first beam splitter (BS1) 65a, the second beam splitter (BS2) 65b, and the first total reflection mirror 65c arranged in the rotation axis. The light projecting side condensing lens 64 converges the measurement light from the light projecting head 63.

図9及び図10はミラーユニットの説明図であり、図9は汚れ防止シールドを装着した状態のものであり、図10は汚れ防止シールドを外したミラーユニットの説明図である。この図9及び図10に示す全反射ミラーは誘電体ミラーである。   9 and 10 are explanatory views of the mirror unit. FIG. 9 is a view showing a state in which the antifouling shield is attached, and FIG. 10 is an explanatory view of the mirror unit with the antifouling shield removed. The total reflection mirror shown in FIGS. 9 and 10 is a dielectric mirror.

本実施形態では、投光ヘッド63からの測定光の一部を透過させ、一部を基体としての製品基体(基板)Sへ導く第1ビームスプリッタ(BS1)65aと、この第1ビームスプリッタ(BS1)65aを透過した測定光を、さらに一部を透過させ、一部の測定光を製品基体(基板)Sへ導く第2ビームスプリッタ(BS2)65bと、この第2ビームスプリッタ(BS2)65bを透過した測定光を反射する第1全反射ミラー65cと、から構成されている。光源61には投光用光ファイバ62が接続され、投光用光ファイバ62の一端は光源61内に導入され、光源61のフィルタで透過した測定光がその端面に入射し、投光ヘッド63へと導かれるように配置されている。   In the present embodiment, a first beam splitter (BS1) 65a that transmits part of the measurement light from the light projecting head 63 and guides part of the measurement light to a product base (substrate) S as a base, and the first beam splitter ( BS1) a second beam splitter (BS2) 65b that transmits a part of the measurement light that has passed through 65a and guides a part of the measurement light to the product substrate (substrate) S, and the second beam splitter (BS2) 65b. And a first total reflection mirror 65c that reflects the measurement light transmitted through the first reflection mirror 65c. A light projecting optical fiber 62 is connected to the light source 61, one end of the light projecting optical fiber 62 is introduced into the light source 61, and the measurement light transmitted through the filter of the light source 61 is incident on the end face of the light projecting head 63. It is arranged to be led to.

投光ヘッド63は、回転軸13aの上側(図2)の真空容器11外部に配置されており、回転軸13aの内部に配置された第1ビームスプリッタ(BS1)65a,第2ビームスプリッタ(BS2)65b及び第1全反射ミラー65cに指向しており、投光ヘッド63から出射した測定光は、回転軸13aの一端から入射して回転軸13a内を軸線方向に沿って通過して第1ビームスプリッタ(BS1)65a,第2ビームスプリッタ(BS2)65b及び第1全反射ミラー65cに照射される。
第1ビームスプリッタ(BS1)65a,第2ビームスプリッタ(BS2)65b及び第1全反射ミラー65cは、回転軸13aの内側で所定位置に固定できるように構成されており、このとき、角度位置を調整できるように構成されている。
The light projecting head 63 is disposed outside the vacuum vessel 11 above the rotation shaft 13a (FIG. 2). The first beam splitter (BS1) 65a and the second beam splitter (BS2) disposed inside the rotation shaft 13a. ) 65b and the first total reflection mirror 65c are directed, and the measurement light emitted from the light projecting head 63 is incident on one end of the rotary shaft 13a, passes through the rotary shaft 13a along the axial direction, and passes through the first axis. Irradiated to the beam splitter (BS1) 65a, the second beam splitter (BS2) 65b, and the first total reflection mirror 65c.
The first beam splitter (BS1) 65a, the second beam splitter (BS2) 65b, and the first total reflection mirror 65c are configured so as to be fixed at predetermined positions inside the rotation shaft 13a. It is configured to be adjustable.

受光側は、基体(基板)Sを透過した測定光を受光ヘッド69側へ向けて反射する第3ビームスプリッタ(BS3)66a,第4ビームスプリッタ(BS4)66b及び第2全反射ミラー66cと、これら第3ビームスプリッタ(BS3)66a,第4ビームスプリッタ(BS4)66b及び第2全反射ミラー66cで透過或いは反射した測定光を収束する受光側集光レンズ68と、受光ヘッド69と、受光ヘッド69で受光した測定光を伝送する受光側光ファイバ67と、受光側光ファイバ67で伝送された測定光を分光する分光測定装置71と、を主要な構成要素として備えている。つまり、第3ビームスプリッタ(BS3)66a,第4ビームスプリッタ(BS4)66b及び第2全反射ミラー66cで透過或いは反射された、基体(基板)Sを透過した測定光を、第3ビームスプリッタ(BS3)66a,第4ビームスプリッタ(BS4)66b及び第2全反射ミラー66cで反射或いは透過させて、測定光として分光測定装置71へ導くものである。   The light receiving side includes a third beam splitter (BS3) 66a, a fourth beam splitter (BS4) 66b, and a second total reflection mirror 66c that reflect the measurement light transmitted through the substrate (substrate) S toward the light receiving head 69. A light receiving side condensing lens 68 for converging the measurement light transmitted or reflected by the third beam splitter (BS3) 66a, the fourth beam splitter (BS4) 66b, and the second total reflection mirror 66c, a light receiving head 69, and a light receiving head The light receiving side optical fiber 67 that transmits the measurement light received by 69 and the spectroscopic measurement device 71 that splits the measurement light transmitted by the light receiving side optical fiber 67 are provided as main components. In other words, the measurement light transmitted through or reflected by the third beam splitter (BS3) 66a, the fourth beam splitter (BS4) 66b, and the second total reflection mirror 66c and transmitted through the substrate (substrate) S is transferred to the third beam splitter (BS3). BS3) 66a, the fourth beam splitter (BS4) 66b, and the second total reflection mirror 66c are reflected or transmitted and guided to the spectrometer 71 as measurement light.

なお、光源61、投光用光ファイバ62、および投光ヘッド63は、本発明の投光部に相当する。さらに、受光ヘッド69、受光側光ファイバ67、および分光測定装置71は受光部に相当する。また、第1全反射ミラー65cは内部光反射部材、第2全反射ミラー66cは外部光反射部材に相当する。
上記受光側の第3ビームスプリッタ(BS3)66a,第4ビームスプリッタ(BS4)66b及び第2全反射ミラー66cは、不図示の保持部材(例えば棒状体で断面形状は問わない)によって、所定位置で固定できるように構成されており、このとき、角度位置を調整できるように構成されている。
The light source 61, the light projecting optical fiber 62, and the light projecting head 63 correspond to the light projecting unit of the present invention. Further, the light receiving head 69, the light receiving side optical fiber 67, and the spectroscopic measurement device 71 correspond to a light receiving unit. The first total reflection mirror 65c corresponds to an internal light reflection member, and the second total reflection mirror 66c corresponds to an external light reflection member.
The third beam splitter (BS3) 66a, the fourth beam splitter (BS4) 66b, and the second total reflection mirror 66c on the light receiving side are arranged at predetermined positions by a holding member (not shown, for example, a bar-like member having any cross-sectional shape). In this case, the angular position can be adjusted.

また、符号100a〜cは光路切替シャッタであり、駆動部101と遮蔽板102a〜cとから構成されている。
この光路切替シャッタ100a〜cは、駆動部101としてサーボモータ(その他のアクチュエータ等)を用いており、駆動部101によって遮蔽板102a〜cが可動し、遮蔽板102a〜cが出射側からの測定光を、第3ビームスプリッタ(BS3)66a,第4ビームスプリッタ(BS4)66b及び第2全反射ミラー66cを遮断する位置と、遮断しない位置とに可動するように構成されている。遮蔽板102a〜cは、測定光を阻止できるようにすればよく、形状等については特に限定されない。この光路切替シャッタ100a〜cには、駆動元として、真空容器11の外部に駆動部101が取付けられている。
Reference numerals 100a to 100c denote optical path switching shutters, which include a drive unit 101 and shielding plates 102a to 102c.
The optical path switching shutters 100a to 100c use servo motors (other actuators or the like) as the drive unit 101. The shields 102a to 102c are moved by the drive unit 101, and the shield plates 102a to 102c are measured from the emission side. The light is configured to move between a position where the third beam splitter (BS3) 66a, the fourth beam splitter (BS4) 66b and the second total reflection mirror 66c are blocked and a position where the light is not blocked. The shielding plates 102a to 102c may be configured to block the measurement light, and the shape and the like are not particularly limited. A driving unit 101 is attached to the outside of the vacuum vessel 11 as a driving source in the optical path switching shutters 100a to 100c.

遮蔽板102a〜cはビームスプリッタ(BS1,BS2)65a、65b,第一反射ミラー65cからの測定光を遮断位置としない位置に可動するように構成されている。遮蔽板102a〜cは汚れ防止の役割も兼ねている。駆動部101は真空室外に配置している。   The shielding plates 102a to 102c are configured to move to positions where the measurement light from the beam splitters (BS1, BS2) 65a and 65b and the first reflection mirror 65c is not a blocking position. The shielding plates 102a to 102c also serve to prevent dirt. The drive unit 101 is disposed outside the vacuum chamber.

また、第1全反射ミラー65c及び第2全反射ミラー66cはガラスなどの基材の表面にアルミなどの薄膜を形成して作成した部材であり、少なくとも測定光の波長ではほぼ100%の高い反射率を有している。本実施形態の全反射ミラーは、ほぼ正方形の板状部材で構成されている。この全反射ミラーは、回転軸13aの中空体内部に配設されており、回転軸13aの内壁面に溶接やネジ止めなどにより固定されている。   The first total reflection mirror 65c and the second total reflection mirror 66c are members formed by forming a thin film such as aluminum on the surface of a substrate such as glass, and have a high reflection of almost 100% at least at the wavelength of measurement light. Have a rate. The total reflection mirror of the present embodiment is configured by a substantially square plate-like member. The total reflection mirror is disposed inside the hollow body of the rotating shaft 13a, and is fixed to the inner wall surface of the rotating shaft 13a by welding or screwing.

本実施形態の光源61はハロゲンランプ、または白色LEDなどを用いており、真空容器11の外部に設置され、膜厚測定用の測定光を発する装置である。この光源61は、図11で示すように、電源(図示せず)から電力の供給を受けて光を発する発光素子61aと、この発光素子61aから発する光のうち特定の波長領域の光を透過するフィルタ61bを備えている。   The light source 61 of the present embodiment uses a halogen lamp, a white LED, or the like, and is an apparatus that is installed outside the vacuum vessel 11 and emits measurement light for film thickness measurement. As shown in FIG. 11, the light source 61 transmits light from a power source (not shown) and emits light, and transmits light in a specific wavelength region out of light emitted from the light emitting element 61a. A filter 61b is provided.

回転軸13aの中央部には、側壁の一部を切り欠いた開口13cが形成され、ビームスプリッタ(BS1,BS2)65a,65b及び第1全反射ミラー65cから反射した測定光は、この開口13cを通過して、回転ドラム13に保持された基体(基板)Sに照射される。なお本実施形態では、開口13cを形成した例を示しているが、完全に透過できるガラス材を用いて密閉するように構成することも可能である。   An opening 13c in which a part of the side wall is notched is formed in the central portion of the rotating shaft 13a, and the measurement light reflected from the beam splitters (BS1, BS2) 65a and 65b and the first total reflection mirror 65c is the opening 13c. The substrate (substrate) S held on the rotary drum 13 is irradiated. In addition, although the example which formed the opening 13c is shown in this embodiment, it can also be comprised so that it may seal using the glass material which can permeate | transmit completely.

以上のように、本発明では、従来技術のように膜厚測定用のためのモニタ基板は不要であり、製品となる基板そのものの膜厚を直接測定するもので、従来技術のように、モニタ基板として、透明のガラス材料、或いは測定光の波長を高い透過率で透過する材料としてプラスチックなどを選定する必要がない。   As described above, the present invention does not require a monitor substrate for film thickness measurement as in the prior art, and directly measures the film thickness of the product substrate itself. There is no need to select a transparent glass material as the substrate, or a plastic as a material that transmits the wavelength of the measurement light with high transmittance.

出射側から基体(基板)Sに照射される測定光は、ビームスプリッタによって基体(基板)S側に向かう測定光と、透過する測定光とに別れ、最後に全反射ミラーによって反射される。
つまり第1ビームスプリッタ(BS1)65aに照射された測定光は、一部が反射して、基体(基板)Sの裏面側(すなわち、回転軸13a側)から入射して、基体(基板)S内部を透過する。第1ビームスプリッタ(BS1)65aで反射せずに、透過した測定光は、次の第2ビームスプリッタ(BS2)65bに導かれ、この第2ビームスプリッタ(BS2)65bで一部が反射して、基体(基板)Sの裏面側(すなわち、回転軸13a側)から入射して、基体(基板)S内部を透過する。さらに、第2ビームスプリッタ(BS2)65bで反射せずに、透過した測定光は、第1全反射ミラー65cに導かれる。なお、第1全反射ミラー65cは、測定光の波長ではほぼ100%の高い反射率を有する部材から構成されている。これら出射側から照射された測定光は、受光側で受光される。
The measurement light applied to the substrate (substrate) S from the emission side is divided into measurement light directed toward the substrate (substrate) S by the beam splitter and transmitted measurement light, and finally reflected by the total reflection mirror.
That is, a part of the measurement light irradiated to the first beam splitter (BS1) 65a is reflected and incident from the back surface side of the base body (substrate) S (that is, the rotating shaft 13a side). Transparent inside. The transmitted measurement light without being reflected by the first beam splitter (BS1) 65a is guided to the next second beam splitter (BS2) 65b, and a part of the reflected light is reflected by the second beam splitter (BS2) 65b. Then, the light enters from the back surface side of the base body (substrate) S (that is, the rotating shaft 13a side) and passes through the base body (substrate) S. Further, the transmitted measurement light without being reflected by the second beam splitter (BS2) 65b is guided to the first total reflection mirror 65c. The first total reflection mirror 65c is composed of a member having a high reflectance of approximately 100% at the wavelength of the measurement light. The measurement light emitted from the emission side is received by the light receiving side.

受光ヘッド69は、投光ヘッド63と同様に、回転軸13aの上側(図2)の真空容器11外部に配置されており、出射側から照射された測定を反射して受光ヘッド69に導くための、第3ビームスプリッタ(BS3)66a,第4ビームスプリッタ(BS4)66b及び第2全反射ミラー66cが真空容器11内に配置された回転ドラム13の外周側の所定位置に配置されている。本実施形態では、図2で示すように、スパッタ手段20及びプラズマ発生手段40から最も遠い位置に配置されている。これによりスパッタ手段20及びプラズマ発生手段40からの影響を受けにくいように構成されている。   Similar to the light projecting head 63, the light receiving head 69 is disposed outside the vacuum vessel 11 on the upper side of the rotating shaft 13a (FIG. 2), and reflects the measurement irradiated from the emission side to guide it to the light receiving head 69. The third beam splitter (BS3) 66a, the fourth beam splitter (BS4) 66b, and the second total reflection mirror 66c are arranged at predetermined positions on the outer peripheral side of the rotary drum 13 arranged in the vacuum vessel 11. In the present embodiment, as shown in FIG. 2, it is disposed at a position farthest from the sputtering means 20 and the plasma generation means 40. Thereby, it is configured so as not to be easily influenced by the sputtering means 20 and the plasma generation means 40.

受光ヘッド69は、第1ビームスプリッタ(BS1)65a,第2ビームスプリッタ(BS2)65b及び第1全反射ミラー65cで反射した測定光が入射する位置に配置され、受光ヘッド69には、受光側光ファイバ67の一端が接続されており、他端は分光測定装置71に接続されている。基体(基板)Sを透過した測定光は、第3ビームスプリッタ(BS3)66a,第4ビームスプリッタ(BS4)66b及び第2全反射ミラー66cで反射して、受光側集光レンズ68収束されたのち、受光ヘッド69に入射する。この入射した測定光は、受光側光ファイバ67に導かれ分光測定装置71に導入される。   The light receiving head 69 is disposed at a position where measurement light reflected by the first beam splitter (BS1) 65a, the second beam splitter (BS2) 65b, and the first total reflection mirror 65c is incident. One end of the optical fiber 67 is connected, and the other end is connected to the spectroscopic measurement device 71. The measurement light transmitted through the substrate (substrate) S is reflected by the third beam splitter (BS3) 66a, the fourth beam splitter (BS4) 66b, and the second total reflection mirror 66c, and is converged on the light receiving side condenser lens 68. After that, the light enters the light receiving head 69. The incident measurement light is guided to the light receiving side optical fiber 67 and introduced into the spectroscopic measurement device 71.

このように投光ヘッド63と受光ヘッド69は、いずれも真空容器11の外部に設けられているので、回転ドラム13の内部に配置した場合に生じる光ファイバが回転ドラム13の回転によりねじれたり、絡まったりする虞を防止することが可能となる。また、真空容器11の外部にあるため、回転ドラム13が成膜の過程で加熱されて高温となり、この熱による投光ヘッドや受光ヘッドが熱変性するといった不都合が生じることもない。このように、本発明では、光ファイバのねじれや絡まりや、成膜の過程で発生する熱による影響を防止して、安定した膜厚測定を行うことが可能となる。   As described above, since both the light projecting head 63 and the light receiving head 69 are provided outside the vacuum vessel 11, the optical fiber generated when the light projecting head 63 and the light receiving head 69 are arranged inside the rotating drum 13 is twisted by the rotation of the rotating drum 13. It is possible to prevent the possibility of tangling. In addition, since the rotary drum 13 is heated during the film formation process and becomes a high temperature because it is outside the vacuum vessel 11, there is no inconvenience that the light projecting head and the light receiving head are thermally denatured by this heat. As described above, according to the present invention, it is possible to prevent the twisting and entanglement of the optical fiber and the influence of heat generated in the film formation process, and to perform stable film thickness measurement.

分光測定装置71は、反射光のうち所定の波長の光の強度を測定する装置であり、膜厚測定で使用される公知の分光測定装置と同様の構成を備えている。すなわち、図11に示すように、分光測定装置71は、反射光のうち所定の波長領域の光を透過する分光素子71bと、この分光素子71bを透過した光を受光して光の強度に応じた電流値を出力する受光素子71aを備えている。   The spectroscopic measurement device 71 is a device that measures the intensity of light having a predetermined wavelength in the reflected light, and has the same configuration as a known spectroscopic measurement device used in film thickness measurement. That is, as shown in FIG. 11, the spectroscopic measurement device 71 receives the light transmitted through the spectroscopic element 71b and the spectroscopic element 71b that transmits light in a predetermined wavelength region of the reflected light, and responds to the intensity of the light. A light receiving element 71a for outputting the measured current value.

分光素子71bは、例えばグレイティングのような回折格子を備えた部材で構成され、所定の波長領域の光を透過する。本実施形態では、分光素子71bは測定光の波長を少なくともほぼ100%の透過率で透過する。この分光素子71bを透過した光は受光素子71aに導かれる。受光素子71aは、例えばフォトダイオードなどの半導体素子から構成されるもので、例えばp型およびn型の半導体を接合した素子が持ち入れられる。このp型およびn型の接合面に光が当たるとその光の強度に応じた電流が発生し、この電流は、分光測定装置71内のA/D変換回路によりデジタル信号化されて、分光測定装置71から後述する膜厚演算コンピュータ80に出力される。   The spectroscopic element 71b is formed of a member including a diffraction grating such as grating, and transmits light in a predetermined wavelength region. In the present embodiment, the spectroscopic element 71b transmits the wavelength of the measurement light with a transmittance of at least approximately 100%. The light transmitted through the spectroscopic element 71b is guided to the light receiving element 71a. The light receiving element 71a is composed of a semiconductor element such as a photodiode, for example, and an element obtained by bonding a p-type and an n-type semiconductor, for example, is brought in. When light strikes the p-type and n-type joint surfaces, a current corresponding to the intensity of the light is generated, and this current is converted into a digital signal by an A / D conversion circuit in the spectroscopic measurement device 71 for spectroscopic measurement. The data is output from the apparatus 71 to a film thickness calculation computer 80 described later.

膜厚演算コンピュータ80は、分光測定装置71で測定した測定光の強度に基づいて、基体(基板)Sに形成された薄膜の膜厚を演算する手段である。図11に示すように、膜厚演算コンピュータ80は、演算手段としてのCPU81と、記憶手段としてのハードディスク83およびメモリ(具体的には、ROM、RAM)82と、外部装置等との間で信号を送受信する際の入出力ポートとしてのI/Oポート84と、を備えている。なお、膜厚演算コンピュータ80は本発明の膜厚演算部に相当する。   The film thickness calculation computer 80 is means for calculating the film thickness of the thin film formed on the substrate (substrate) S based on the intensity of the measurement light measured by the spectrometer 71. As shown in FIG. 11, the film thickness calculation computer 80 receives signals between a CPU 81 as calculation means, a hard disk 83 and memory (specifically ROM, RAM) 82 as storage means, and an external device or the like. And an I / O port 84 as an input / output port when transmitting / receiving data. The film thickness calculation computer 80 corresponds to the film thickness calculation unit of the present invention.

膜厚演算コンピュータ80には、分光測定装置71が電気的に接続されており、分光測定装置71でデジタル化された測定光の強度の信号は、膜厚演算コンピュータ80のI/Oポート84を介して、記憶手段としてのハードディスク83およびメモリ(具体的には、ROM、RAM)82に入力される。例えば、ハードディスク83には、測定光の強度の変化と基体(基板)Sに形成された薄膜の膜厚との相関関係が記憶された膜厚相関関係データ83aと、分光測定装置71から送信される測定光の強度信号とこの膜厚相関関係データ83aに基づいて膜厚を演算する膜厚演算プログラム83bが記憶されている。なお、この膜厚相関関係データ83a及び膜厚演算プログラム83bは、RAM、ROM等に記憶するように構成することもできる。   A spectroscopic measurement device 71 is electrically connected to the film thickness calculation computer 80, and an intensity signal of the measurement light digitized by the spectroscopic measurement device 71 is sent to the I / O port 84 of the film thickness calculation computer 80. Then, the data is input to a hard disk 83 and a memory (specifically, ROM, RAM) 82 as storage means. For example, the hard disk 83 is transmitted from the spectroscopic measurement device 71 and the film thickness correlation data 83a in which the correlation between the change in the intensity of the measurement light and the film thickness of the thin film formed on the substrate (substrate) S is stored. A film thickness calculation program 83b for calculating the film thickness based on the intensity signal of the measurement light and the film thickness correlation data 83a is stored. The film thickness correlation data 83a and the film thickness calculation program 83b can be configured to be stored in a RAM, a ROM, or the like.

以下に、膜厚演算コンピュータ80で膜厚を測定する原理について説明する。基体(基板)Sに照射された測定光は、基体(基板)Sと薄膜の間の境界、および薄膜と真空容器側の間の境界で反射する。この時、これらの反射光が互いに干渉を起こして、反射光の強度に変化が生じる。   The principle of measuring the film thickness with the film thickness calculation computer 80 will be described below. The measurement light applied to the substrate (substrate) S is reflected at the boundary between the substrate (substrate) S and the thin film and at the boundary between the thin film and the vacuum vessel side. At this time, these reflected lights interfere with each other, and the intensity of the reflected light changes.

ここで、薄膜の反射光若しくは透過光の強度と膜厚との間には、所定の相関関係がある。より詳細には、薄膜の屈折率n,波長λ,幾何学的膜厚dとすると、光学的膜厚ndがλ/4の整数倍となる毎に周期的に反射光の強度はピークを示すことが知られている。ピークの高さ(ピーク値P)と屈折率には所定の相関関係があるため、ピーク値Pを求めることで屈折率を求めることが可能となる。すなわち、反射光の強度を測定することでピーク値Pが求められ、このピーク値Pの屈折率nと波長λの値に基づいて、光学的膜厚ndから幾何学的膜厚dを算出することが可能となる。   Here, there is a predetermined correlation between the intensity of the reflected light or transmitted light of the thin film and the film thickness. More specifically, assuming that the refractive index n, the wavelength λ, and the geometric film thickness d of the thin film, the intensity of the reflected light periodically peaks every time the optical film thickness nd becomes an integral multiple of λ / 4. It is known. Since there is a predetermined correlation between the peak height (peak value P) and the refractive index, the refractive index can be obtained by obtaining the peak value P. That is, the peak value P is obtained by measuring the intensity of the reflected light, and the geometric film thickness d is calculated from the optical film thickness nd based on the refractive index n and the wavelength λ of the peak value P. It becomes possible.

膜厚演算コンピュータ80は、測定光の波長λを予め設定値として記憶している。そして、膜厚演算プログラム83bは、分光測定装置71から送信される反射光の強度信号からピーク値Pの高さを求めて屈折率nを演算する。さらに、この屈折率nと波長λの値に基づいて、幾何学的膜厚dを算出する。   The film thickness calculation computer 80 stores the wavelength λ of the measurement light as a set value in advance. Then, the film thickness calculation program 83b calculates the refractive index n by obtaining the height of the peak value P from the intensity signal of the reflected light transmitted from the spectroscopic measurement device 71. Further, the geometric film thickness d is calculated based on the refractive index n and the wavelength λ.

膜厚演算コンピュータ80は、膜厚制御装置90と電気的に接続されている。膜厚制御装置90は、MPUなどの演算手段と、ROM,RAMなどの記憶手段と、他の装置と電気信号を送受信する入出力ポートを備えている。膜厚制御装置90には、膜厚演算コンピュータ80で測定した膜厚(すなわち、幾何学的膜厚d)が入力される。膜厚制御装置90は、膜厚制御信号生成部91を備えており、この膜厚制御信号生成部91による膜厚の信号に基づいて、成膜レートや成膜時間を調整することにより、膜厚を制御する。   The film thickness calculation computer 80 is electrically connected to the film thickness control device 90. The film thickness controller 90 includes an arithmetic unit such as an MPU, a storage unit such as a ROM and a RAM, and an input / output port that transmits and receives electrical signals to and from other devices. A film thickness (that is, a geometric film thickness d) measured by the film thickness calculation computer 80 is input to the film thickness controller 90. The film thickness control device 90 includes a film thickness control signal generation unit 91. By adjusting the film formation rate and the film formation time based on the film thickness signal from the film thickness control signal generation unit 91, the film thickness control signal generation unit 91 is provided. Control the thickness.

具体的には、膜厚制御装置90は、膜厚演算コンピュータ80で取得した膜厚に基づいて、スパッタ手段20の交流電源24aからターゲット22a,22bに供給される電力の増減、スパッタガス供給手段30により成膜プロセス領域に供給されるスパッタガスや反応性ガスの供給量の増減、補正板駆動モータ35a,35bによる膜厚補正板36a,36bの進退移動のいずれか1つ以上の方法により、成膜レートを調整する。なお、符号36cも膜厚補正板であり、また膜厚制御装置90は膜厚調整手段に相当する。   Specifically, the film thickness control device 90 is configured to increase or decrease the power supplied from the AC power source 24a of the sputtering means 20 to the targets 22a and 22b based on the film thickness acquired by the film thickness calculation computer 80, and the sputtering gas supply means. 30 by any one or more of the following methods: increase / decrease in the supply amount of sputtering gas and reactive gas supplied to the film forming process area 30 and advance / retreat of the film thickness correction plates 36a, 36b by the correction plate drive motors 35a, 35b, Adjust the deposition rate. Reference numeral 36c denotes a film thickness correction plate, and the film thickness controller 90 corresponds to a film thickness adjusting means.

また、成膜時間を調整することによって膜厚を調整することも可能である。すなわち、膜厚演算コンピュータ80で取得した基体(基板)Sの膜厚が予め設定した膜厚よりも小さい場合は、膜厚制御装置90は、所定の成膜終了時間で成膜を終了せずに成膜時間を延長するよう、予め設定した膜厚まで膜厚を増加させる。一方、膜厚演算コンピュータ80で取得した基体(基板)Sの膜厚が予め設定した膜厚よりも大きい場合は、膜厚制御装置90は、所定の成膜終了時間よりも前に成膜を終了させることで成膜時間を短縮して、予め設定した膜厚で成膜を終了する。なお、これらの膜厚制御方法は、いずれか1つのみを用いて膜厚を調整してもよいし、複数の方法を組み合わせて膜厚を調整してもよい。   In addition, the film thickness can be adjusted by adjusting the film formation time. That is, when the film thickness of the substrate (substrate) S acquired by the film thickness calculation computer 80 is smaller than the preset film thickness, the film thickness controller 90 does not end the film formation at a predetermined film formation end time. The film thickness is increased to a preset film thickness so as to extend the film formation time. On the other hand, when the film thickness of the substrate (substrate) S acquired by the film thickness calculation computer 80 is larger than the preset film thickness, the film thickness controller 90 forms the film before a predetermined film formation end time. The film formation time is shortened by completing the process, and the film formation is completed with a preset film thickness. In addition, these film thickness control methods may adjust a film thickness using only any one, and may adjust a film thickness combining several methods.

このように、本実施形態の光学式膜厚計は、成膜中に、自動的にレートを算出して、膜厚の制御を行なうことが可能となる。そして、自動補正板機構へ制御信号を送出することにより、光学薄膜製品の膜厚や品質管理を行なうことができる。例えば、停止測光方式の場合は、基体(基板)Sの分光特性の測定結果から、膜厚の解析により、制御が行える。
一方、回転中の測光は、基体(基板)Sの透過光量が測定され、膜厚制御を実現することができる。
Thus, the optical film thickness meter of this embodiment can automatically calculate the rate during film formation and control the film thickness. Then, by sending a control signal to the automatic correction plate mechanism, the film thickness and quality control of the optical thin film product can be performed. For example, in the case of the stop photometry method, the control can be performed by analyzing the film thickness from the measurement result of the spectral characteristics of the substrate (substrate) S.
On the other hand, in photometry during rotation, the amount of light transmitted through the substrate (substrate) S is measured, and film thickness control can be realized.

先ず、本発明の基本的な構成は、図13乃至図15で示すように構成している。すなわち、1分岐の場合:投光と受光の間にミラー1、ミラー2を用いている。2分岐の場合:投光と受光の間に2つのBS(BS1、BS2)と2つのミラー(ミラー1、ミラー2)を用いている。3分岐の場合:4つのBS(BS1〜BS4)と2つのミラー(ミラー1、ミラー2)を用いている。4分岐の場合:6つのBS(BS1〜BS6)と2つのミラー(ミラー1、ミラー2)を用いている。5分岐の場合:8つのBS(BS1〜BS8)と2つのミラー(ミラー1、ミラー2)を用いている。   First, the basic configuration of the present invention is configured as shown in FIGS. That is, in the case of one branch: mirror 1 and mirror 2 are used between light projection and light reception. In the case of two branches: Two BSs (BS1, BS2) and two mirrors (mirror 1, mirror 2) are used between light projection and light reception. In the case of three branches: Four BSs (BS1 to BS4) and two mirrors (mirror 1 and mirror 2) are used. In the case of four branches: Six BSs (BS1 to BS6) and two mirrors (mirror 1 and mirror 2) are used. In the case of five branches: eight BSs (BS1 to BS8) and two mirrors (mirror 1 and mirror 2) are used.

そして、投光部と受光部が同じ方向の場合と異なる方向場合とでは、ミラーとBSの配置は、1分岐の場合を除き、同方向の場合には、ミラーが対向して配置され、同方向のミラーの場合には、最後の反射する位置で対向する位置に常時配置され、反対方向の場合には、受光部側のミラーは最初に配置された位置で固定され、投光側配置されるミラーは分岐ごとに順次下方へ移動した位置に配置されるものである。   In the case where the light projecting unit and the light receiving unit are in the same direction or in different directions, the mirror and the BS are arranged in the same direction except in the case of one branch. In the case of a mirror in the direction, it is always placed at the opposite position at the last reflecting position, and in the opposite direction, the mirror on the light receiving unit side is fixed at the position where it was first placed and placed on the light projecting side. The mirror is arranged at a position that sequentially moves downward for each branch.

また、投光部と受光部とが同じ方向の出力光の算出方法は、光の相対出力P=(100%/n)^2であり、1分岐はP=100%、2分岐はn=2 P=25%、3分岐はn=3 P=11.1%・・・というよう計算される。   Further, the light output unit and the light receiving unit calculate the output light in the same direction as the relative light output P = (100% / n) ^ 2, where P = 100% for one branch and n = for two branches. 2 P = 25%, 3 branches are calculated as n = 3 P = 11.1%.

同様に、投光部と受光部とが反対方向の出力光の算出方法は、光の相対出力P=(50%)^nであり、1分岐はP=100%、2分岐はn=2 P=25%、3分岐はn=3 P=12.5%・・・というよう計算される。
各分岐の場合の相対出力比較は図15の表のとおりである。
Similarly, the calculation method of the output light in the opposite direction between the light projecting unit and the light receiving unit is a light relative output P = (50%) ^ n, where P = 100% for one branch and n = 2 for two branches. P = 25%, 3 branches are calculated as n = 3 P = 12.5%.
The relative output comparison in the case of each branch is as shown in the table of FIG.

そこで、図16〜図19を参照して、第1実施形態〜第4実施形態について、具体的に説明する。
<第1実施形態>
第1実施形態は、第1及び第2全反射ミラー65c,66cとして、反射率90%のアルミ反射ミラーを用いた例である。第1ビームスプリッタ(BS1)65aは、反射/透過について、18/82、第2ビームスプリッタ(BS2)65bは反射/透過について、45/55、第1全反射ミラー65c及び第2全反射ミラー66cは、アルミ反射ミラーとして反射率は90%で、第3ビームスプリッタ(BS3)66a及び第4ビームスプリッタ(BS4)66b、反射/透過について、50/50を用いて、上段、中段及び下段の各製品の基体(基板)Sの測定光の透過率(効率)はそれぞれ9%,9.2%,9.1%である。なお、光路切替シャッタ100a〜cによって光路を切り替えることができる。
Therefore, the first to fourth embodiments will be specifically described with reference to FIGS. 16 to 19.
<First Embodiment>
The first embodiment is an example in which aluminum reflection mirrors having a reflectance of 90% are used as the first and second total reflection mirrors 65c and 66c. The first beam splitter (BS1) 65a is 18/82 for reflection / transmission, the second beam splitter (BS2) 65b is 45/55 for reflection / transmission, the first total reflection mirror 65c and the second total reflection mirror 66c. As an aluminum reflecting mirror, the reflectivity is 90%, and the third beam splitter (BS3) 66a and the fourth beam splitter (BS4) 66b are 50/50 for reflection / transmission. The transmittance (efficiency) of the measurement light of the product substrate (substrate) S is 9%, 9.2%, and 9.1%, respectively. The optical path can be switched by the optical path switching shutters 100a to 100c.

ドラム上段、中段、下段の基体(基板)Sの透過率測定の手順は次の通りである。
上段 中段 下段
遮蔽板102a off on on
遮蔽板102b on off on
遮蔽板102c on on off
または、製品の基体(基板)Sの平均透過率測定は、T(平均)=(T1+T2+T3)/3、遮蔽板102a、102b,102cがすべてoff状態である。
The procedure for measuring the transmittance of the base (substrate) S in the upper, middle and lower drums is as follows.
Upper stage Middle stage Lower stage shielding plate 102a off on on
Shield plate 102b on off on
Shielding plate 102c on on off
Alternatively, the average transmittance of the substrate (substrate) S of the product is T (average) = (T1 + T2 + T3) / 3, and the shielding plates 102a, 102b, and 102c are all in the off state.

更に説明すると、上段製品の基体(基板)Sから中段製品の基体(基板)Sを介して下段製品の基体(基板)Sの透過率測定手順は、次のとおりである。
上段製品の基体(基板)S−中段製品の基体(基板)S−下段製品の基体(基板)Sについて、
光路切替シャッタ100a→ON→OFF→ON
光路切替シャッタ100b→OFF→ON→OFF
光路切替シャッタ100c→OFF→OFF→OFF
であり、
暗電流測定は、
暗電流1:光路切替シャッタ100aがonで光路切替シャッタ100b,cがoff、
暗電流2:光路切替シャッタ100bがonで光路切替シャッタ100a,cがoff、
暗電流3:光路切替シャッタ100bがonで光路切替シャッタ100a,bがoff、
であり、製品の基体(基板)Sの平均透過率測定は、T(平均)=(T1+T2+T3)/3であり、3個の光路切替シャッタ100a〜cはoffである。
この第1実施形態における上段製品の基体(基板)S、中段製品の基体(基板)S、下段製品の基体(基板)Sの相対光強度%は、図16の通りであった。測定光は非常に均等に分配できている。
More specifically, the procedure for measuring the transmittance of the substrate (substrate) S of the lower product through the substrate (substrate) S of the middle product from the substrate (substrate) S of the upper product is as follows.
Base product (substrate) S of upper product -Substance (substrate) S of middle product -Substrate (substrate) S of lower product
Optical path switching shutter 100a → ON → OFF → ON
Optical path switching shutter 100b → OFF → ON → OFF
Optical path switching shutter 100c → OFF → OFF → OFF
And
Dark current measurement
Dark current 1: the optical path switching shutter 100a is on and the optical path switching shutters 100b and 100c are off.
Dark current 2: the optical path switching shutter 100b is on and the optical path switching shutters 100a and 100c are off.
Dark current 3: the optical path switching shutter 100b is on and the optical path switching shutters 100a and 100b are off.
The average transmittance measurement of the substrate (substrate) S of the product is T (average) = (T1 + T2 + T3) / 3, and the three optical path switching shutters 100a to 100c are off.
The relative light intensity% of the substrate (substrate) S of the upper product, the substrate (substrate) S of the middle product, and the substrate (substrate) S of the lower product in the first embodiment is as shown in FIG. The measuring light can be distributed very evenly.

<第2実施形態>
第2実施形態の第1ビームスプリッタ(BS1)65a及び第3ビームスプリッタ(BS3)66a、誘電体ミラーからなり、図17に示すように、反射/透過について、33.3/66.7のものを用いている。第2ビームスプリッタ(BS2)65b及び第4ビームスプリッタ(BS4)66bは、反射/透過について、50/50のものを用いている。また第1全反射ミラー65c及び第2全反射ミラー66cは、反射率99.9%の誘電体ミラーのものを用いている(つまり、第1実施形態は、第1及び第2全反射ミラー65c,66cとして、反射率90%のアルミミラーを用いた例であり、これに対して、第2実施形態は、第1及び第2全反射ミラー65c,66cとして反射率99.9%の誘電体ミラーを用いる所は異なる特徴である)。
このように、第2実施形態では、マルチワーク測光光学系であり、第1ビームスプリッタ(BS1)65aは、反射/透過について、33.3/66.7、第2ビームスプリッタ(BS2)65bは反射/透過について、50/50、第1全反射ミラー65c及び第2全反射ミラー66cは誘導体が99.9%である。第3ビームスプリッタ(BS4)66aは反射/透過について、33.3/66.7、第4ビームスプリッタ(BS4)66bは反射/透過について、50/50を用いて、上段、中段及び下段の各製品の基体(基板)Sの測定光の透過率(効率)は、全てが11%,11%,11%である。なお、光路切替シャッタ100a〜cによって光路を切り替えることができる。
この第2実施形態における上段製品の基体(基板)S、中段製品の基体(基板)S、下段製品の基体(基板)Sの相対光強度%は、図17の通りである。
Second Embodiment
17 includes a first beam splitter (BS1) 65a, a third beam splitter (BS3) 66a, and a dielectric mirror according to the second embodiment. As shown in FIG. 17, the reflection / transmission is 33.3 / 66.7. Is used. The second beam splitter (BS2) 65b and the fourth beam splitter (BS4) 66b are 50/50 for reflection / transmission. The first total reflection mirror 65c and the second total reflection mirror 66c are dielectric mirrors having a reflectance of 99.9% (that is, in the first embodiment, the first and second total reflection mirrors 65c are used). , 66c is an example in which an aluminum mirror having a reflectance of 90% is used. On the other hand, in the second embodiment, the first and second total reflection mirrors 65c, 66c are dielectrics having a reflectance of 99.9%. The use of mirrors is a different feature).
As described above, the second embodiment is a multi-work photometric optical system. The first beam splitter (BS1) 65a is 33.3 / 66.7 for reflection / transmission, and the second beam splitter (BS2) 65b is Regarding reflection / transmission, 50/50, the first total reflection mirror 65c, and the second total reflection mirror 66c are 99.9% of the derivative. The third beam splitter (BS4) 66a uses 33.3 / 66.7 for reflection / transmission, and the fourth beam splitter (BS4) 66b uses 50/50 for reflection / transmission. The transmittance (efficiency) of the measurement light of the product substrate (substrate) S is 11%, 11%, and 11%. The optical path can be switched by the optical path switching shutters 100a to 100c.
The relative light intensity% of the base (substrate) S of the upper product, the base (substrate) S of the middle product, and the base (substrate) S of the lower product in the second embodiment is as shown in FIG.

<第3実施形態>
図4及び図18は、第3実施形態を示す図3と同様な部分断面斜視図であり、本実施形態ではシャッタ装置を用いていない例を示すもので、且つ5分岐の例を示すものである。なお前記実施形態と同様材料、同様部材、同様配置等には同一符号を付してその説明を省略する。
本実施形態では、ビームスプリッタ(165a〜165d、166a〜166d)を出射側及び受光側でそれぞれ4個、全反射ミラーを各1個(165e,166e)用いている例を示している。この例のように構成すると、保持部に取付けられた基体(基板)Sの膜厚の全てを測定するようにすることができる。
<Third Embodiment>
FIGS. 4 and 18 are partial sectional perspective views similar to FIG. 3 showing the third embodiment. In this embodiment, an example in which the shutter device is not used is shown, and an example of five branches is shown. is there. In addition, the same code | symbol is attached | subjected to the same material, the same member, the same arrangement | positioning, etc. as the said embodiment, and the description is abbreviate | omitted.
In the present embodiment, an example is shown in which four beam splitters (165a to 165d, 166a to 166d) are used on the emission side and the light reception side, respectively, and one total reflection mirror is used (165e and 166e). If comprised like this example, all the film thicknesses of the base | substrate (substrate | substrate) S attached to the holding | maintenance part can be measured.

このとき、前記した実施例と同様に、全ての基体(基板)Sへの測定光が同じ強さになるように、ビームスプリッタを選定することになる。つまり、5つの基体(基板)Sへ向かう測定光が、等しくなるようにするために、ビームスプリッタは第1ビームスプリッタ(BS1)165aにおいて、測定光が20%基体(基板)S側へ向かうようなものを用いる。同様にして、第1ビームスプリッタ(BS1)165aにおいて透過した80%のうち、第1ビームスプリッタ(BS1)165aと同じ20%測定光が基体(基板)S(基板)S側へ向かうようなビームスプリッタを用いるものであり、順次同様なものを用いる。これによって、最後の全反射ミラー165eにおいても、当初の20%測定光が基体(基板)S側へ向けて照射されることになる。また、受光側においては、出射側とは反対の構成のビームスプリッタを用いる。以上のように構成することによって、光路切替シャッタ100a〜cが不要となる。   At this time, as in the above-described embodiment, the beam splitter is selected so that the measurement light to all the substrates (substrates) S has the same intensity. That is, in order to make the measurement light directed toward the five substrates (substrates) S equal, the beam splitter is directed to the 20% substrate (substrate) S side at the first beam splitter (BS1) 165a. Use something. Similarly, of the 80% transmitted through the first beam splitter (BS1) 165a, a beam in which the same 20% measurement light as the first beam splitter (BS1) 165a is directed to the substrate (substrate) S (substrate) S side. A splitter is used, and the same ones are sequentially used. As a result, the last 20% measurement light is irradiated toward the substrate (substrate) S side also at the last total reflection mirror 165e. On the light receiving side, a beam splitter having a configuration opposite to that on the emission side is used. By configuring as described above, the optical path switching shutters 100a to 100c are not necessary.

より具体的には、第1ビームスプリッタ(BS1)165a及び第5ビームスプリッタ(BS5)166aは20%、第2ビームスプリッタ(BS2)165b及び第6ビームスプリッタ(BS6)166bは25%、第3ビームスプリッタ(BS3)165c及び第7ビームスプリッタ(BS7)166cは33.3%、第4ビームスプリッタ(BS4)165d及び第8ビームスプリッタ(BS8)166dは50%のものを用いている。   More specifically, the first beam splitter (BS1) 165a and the fifth beam splitter (BS5) 166a are 20%, the second beam splitter (BS2) 165b and the sixth beam splitter (BS6) 166b are 25%, The beam splitter (BS3) 165c and the seventh beam splitter (BS7) 166c are 33.3%, and the fourth beam splitter (BS4) 165d and the eighth beam splitter (BS8) 166d are 50%.

5分岐以上の場合も対応可能である。光の相対出力は、
1分岐 100%
2分岐 25%
3分岐 11%
4分岐 6.25%
5分岐 4%
n分岐の場合を仮定し、光の相対出力はP=(100%/n)^2である。
ここで、第1ビームスプリッタ1(BS1)はX1=100%−100%/n,Y1=X1である。
第1ビームスプリッタ1(BS1)はY1:X1を用いる。
第2ビームスプリッタ2(BS2)は、同様に、X2=100%−100%/(n−1),Y2=X2を用いる。
第3ビームスプリッタ3(BS3)は、X3=100%−100%/(n−2),Y3=X3のようになる。
したがって、第iビームスプリッタi(BSi)は、Xi=100%−100%/(n−i),Yi=Xi、i<n、として決定する。
Cases with more than 5 branches are also available. The relative light output is
1 branch 100%
2 branches 25%
3 branches 11%
4 branches 6.25%
5 branches 4%
Assuming an n-branch case, the relative light output is P = (100% / n) ^ 2.
Here, the first beam splitter 1 (BS1) is X1 = 100% -100% / n, Y1 = X1.
The first beam splitter 1 (BS1) uses Y1: X1.
Similarly, the second beam splitter 2 (BS2) uses X2 = 100% −100% / (n−1), Y2 = X2.
The third beam splitter 3 (BS3) becomes X3 = 100% -100% / (n-2), Y3 = X3.
Therefore, the i-th beam splitter i (BSi) is determined as Xi = 100% −100% / (n−i), Yi = Xi, i <n.

<第4実施形態>
図19は、第4実施形態を示すものである。前記したように、第iビームスプリッタi(BSi)は、Xi=100%−100%/(n−i),Yi=Xi、i<n、として決定するもので、この例では4分岐の例を示している。
より具体的には、第1ビームスプリッタ(BS1)及び第4ビームスプリッタ(BS4)は75%、第2ビームスプリッタ(BS2)及び第5ビームスプリッタ(BS5)は33.3%、第3ビームスプリッタ(BS3)及び第6ビームスプリッタ(BS6)は50%のものを用いている。
<Fourth embodiment>
FIG. 19 shows a fourth embodiment. As described above, the i-th beam splitter i (BSi) is determined as Xi = 100% −100% / (n−i), Yi = Xi, i <n. Is shown.
More specifically, the first beam splitter (BS1) and the fourth beam splitter (BS4) are 75%, the second beam splitter (BS2) and the fifth beam splitter (BS5) are 33.3%, and the third beam splitter. (BS3) and the sixth beam splitter (BS6) are 50%.

図5及び図6は、装置の他の実施形態を示すもので、図5は図2と同様な断面説明図、図6は図5の回転ドラムを斜め上方から見た部分断面斜視図である。この実施形態においても、前記各実施形態と同様材料、同様部材、同様配置等には同一符号を付してその説明を省略する。
本実施形態では、出射側の回転軸13aと同様に、受光側のビームスプリッタ166a〜166d及び全反射ミラー166eを筒状体160内に装着した例を示すものである。また、受光側のビームスプリッタ166a〜166d及び全反射ミラー166eは、筒状体160に公知の手段によって取付けられるが、傾きを調整可能に取付けられる。さらに、筒状体160の測定光の光路に相当する位置には、受光側のビームスプリッタ166a〜166d及び全反射ミラー166eへの測定光の邪魔にならないように開口が形成されている。本実施形態では、開口を形成した例を示しているが、完全に透過できるガラス材を用いて密閉するように構成することも可能である。
このように構成することにより、筒状体160を真空容器11内に装着するだけで、受光側の配置が可能となり、取付けが容易であると共に、メンテナンスのときにも、筒状体160を引き出して、調整・修理等を行なうことが可能となる。
5 and 6 show another embodiment of the apparatus. FIG. 5 is a cross-sectional explanatory view similar to FIG. 2, and FIG. 6 is a partial cross-sectional perspective view of the rotating drum of FIG. . Also in this embodiment, the same material, the same member, the same arrangement, and the like as those in the above embodiments are denoted by the same reference numerals, and the description thereof is omitted.
In the present embodiment, an example in which the beam splitters 166a to 166d and the total reflection mirror 166e on the light receiving side are mounted in the cylindrical body 160 in the same manner as the rotating shaft 13a on the emitting side is shown. Further, the beam splitters 166a to 166d and the total reflection mirror 166e on the light receiving side are attached to the cylindrical body 160 by known means, but are attached so that the inclination can be adjusted. Further, an opening is formed in the cylindrical body 160 at a position corresponding to the optical path of the measurement light so as not to obstruct the measurement light to the beam splitters 166a to 166d and the total reflection mirror 166e on the light receiving side. In this embodiment, although the example which formed the opening is shown, it is also possible to comprise so that it may seal using the glass material which can permeate | transmit completely.
With this configuration, it is possible to arrange the light receiving side only by mounting the cylindrical body 160 in the vacuum vessel 11, and it is easy to mount, and the cylindrical body 160 is pulled out during maintenance. Adjustment, repair, etc. can be performed.

<第5実施形態>
次に、図7で示す第5実施形態について説明する。この例は、前記第1実施形態が、受光部が投光部と同じ方向(或いは同じ面)にあるのに対し、図7で示すように、受光部と投光部とが反対側にある例である。この実施形態においても、前記各実施形態と同様材料、同様部材、同様配置等には同一符号を付してその説明を省略する。
この例では、第1ビームスプリッタ(BS1)65a及び第2ビームスプリッタ(BS2)65bは反射/透過について、50%、全反射ミラー66c及び66kは誘電体ミラーでR>99.9%のもの、ビームスプリッタ(BS3)66l及びビームスプリッタ(BS4)66mは50%のものを用いている。基本的には、図14及び図15で示したように構成されているものである。
このようにして、投光部と受光部は、光学薄膜形成装置の反対側の方向または反対側の面の位置に設けるように構成することができる。なお当然のことながら、この実施形態においても、第2実施形態乃至第4実施形態並びに各図で示される構成を可能な限り適用できることは言うまでもない。
<Fifth Embodiment>
Next, a fifth embodiment shown in FIG. 7 will be described. In this example, the light receiving unit is in the same direction (or the same surface) as the light projecting unit, whereas the light receiving unit and the light projecting unit are on the opposite side as shown in FIG. It is an example. Also in this embodiment, the same material, the same member, the same arrangement, and the like as those in the above embodiments are denoted by the same reference numerals, and the description thereof is omitted.
In this example, the first beam splitter (BS1) 65a and the second beam splitter (BS2) 65b are 50% for reflection / transmission, and the total reflection mirrors 66c and 66k are dielectric mirrors with R> 99.9%. The beam splitter (BS3) 66l and the beam splitter (BS4) 66m are 50%. Basically, it is configured as shown in FIGS.
In this way, the light projecting unit and the light receiving unit can be configured to be provided in the opposite direction of the optical thin film forming apparatus or the position of the opposite surface. Needless to say, in this embodiment, it is needless to say that the configurations shown in the second to fourth embodiments and the drawings can be applied as much as possible.

図12は他の実施形態を示す図2と同様な断面説明図である。この例では、回転軸13aの内側に出射側のビームスプリッタ65a,65b、全反射ミラー65cを配置した例を示している。回転軸13aには真空を保つために真空磁気シールドが配置され、真空を保つように構成されている。なお、出射側には窓ガラスが配置されており、異物や不純物の侵入を防止している。このように構成すると、各ビームスプリッタに汚れ防止シールドを配置しない構成とすることが可能となる。
FIG. 12 is a cross-sectional explanatory view similar to FIG. 2 showing another embodiment. In this example, the output side beam splitters 65a and 65b and the total reflection mirror 65c are arranged inside the rotation shaft 13a. The rotary shaft 13a is provided with a vacuum magnetic shield for maintaining a vacuum, and is configured to maintain a vacuum. Note that a window glass is disposed on the emission side to prevent intrusion of foreign matter and impurities. If comprised in this way, it will become possible to set it as the structure which does not arrange | position a dirt prevention shield in each beam splitter.

Claims (9)

回転型の基体保持手段を備えた光学薄膜形成装置の光学式膜厚計測装置であって、
前記回転型の基体保持手段の回転軸線の一方の側から前記基体保持手段の内部に向けて測定光を投光する投光部と、
該投光部からの測定光を受光する受光部と、
前記基体保持手段の内部に設けられると共に、前記投光部から投光された前記測定光を基体へ反射する複数の内部ビームスプリッタと、
前記基体保持手段の内部に設けられると共に、前記複数の内部ビームスプリッタのうち最も近い内部ビームスプリッタからの測定光を全反射する内部光反射部材と、
前記基体保持手段の外側に設けられると共に、前記複数の内部ビームスプリッタからの測定光を前記受光部へ向けて反射する複数の外部ビームスプリッタと、
前記基体保持手段の外側に設けられると共に、前記内部光反射部材からの測定光を前記受光部へ向けて反射する外部光反射部材と、を備え、
前記複数の内部ビームスプリッタ及び前記内部光反射部材により反射された測定光を、前記基体に透過させた後で、前記複数の外部ビームスプリッタ及び前記外部光反射部材で反射させて前記受光部へ導き、測定光を受光することを特徴とする光学式膜厚計測装置。
An optical film thickness measuring device of an optical thin film forming apparatus provided with a rotary type substrate holding means,
A light projecting unit that projects measurement light from one side of the rotation axis of the rotary substrate holding means toward the inside of the substrate holding means;
A light receiving unit for receiving measurement light from the light projecting unit;
A plurality of internal beam splitters provided inside the substrate holding means and reflecting the measurement light projected from the light projecting unit to the substrate;
An internal light reflecting member that is provided inside the substrate holding means and totally reflects measurement light from the nearest internal beam splitter among the plurality of internal beam splitters;
A plurality of external beam splitters provided outside the substrate holding means and reflecting measurement light from the plurality of internal beam splitters toward the light receiving unit;
An external light reflecting member that is provided outside the substrate holding means and reflects measurement light from the internal light reflecting member toward the light receiving unit,
Measurement light reflected by the plurality of internal beam splitters and the internal light reflecting member is transmitted through the substrate, and then reflected by the plurality of external beam splitters and the external light reflecting member to be guided to the light receiving unit. An optical film thickness measuring device that receives measurement light.
前記基体保持手段の回転軸線は、前記基体保持手段の中心を構成する中空状の回転軸体内に位置し、前記内部ビームスプリッタ及び前記内部光反射部材は、前記回転軸体内に配置され、前記回転軸体の壁面は、前記反射された測定光を通過可能に構成されていることを特徴とする請求項1記載の光学式膜厚計測装置。  The rotation axis of the substrate holding means is located in a hollow rotation shaft that forms the center of the substrate holding means, and the internal beam splitter and the internal light reflecting member are disposed in the rotation shaft, and the rotation 2. The optical film thickness measuring apparatus according to claim 1, wherein a wall surface of the shaft body is configured to allow the reflected measurement light to pass therethrough. 前記内部ビームスプリッタ及び前記内部光反射部材によって、反射される測定光は、略等しい光量であることを特徴とする請求項1又は2記載の光学式膜厚計測装置。  The optical film thickness measuring apparatus according to claim 1 or 2, wherein the measurement light reflected by the internal beam splitter and the internal light reflecting member has a substantially equal light amount. 前記受光部で受光された前記測定光に基づいて前記基体に形成される薄膜の膜厚を演算する膜厚演算部を備えたことを特徴とする請求項1乃至3のいずれか一項に記載の光学式膜厚計測装置。  The film thickness calculating part which calculates the film thickness of the thin film formed in the said base | substrate based on the said measurement light light-received by the said light-receiving part is provided. Optical film thickness measuring device. 前記複数の外部ビームスプリッタ及び前記外部光反射部材は、中空の筐体で覆われ、該筐体の測定光が入射する部分は、測定光を通過可能に構成されていることを特徴とする請求項1乃至4のいずれか一項に記載の光学式膜厚計測装置。  The plurality of external beam splitters and the external light reflecting member are covered with a hollow housing, and a portion of the housing where the measurement light is incident is configured to pass the measurement light. Item 5. The optical film thickness measuring device according to any one of Items 1 to 4. 前記複数の外部ビームスプリッタ及び前記外部光反射部材の間には、シャッタ装置が設けられていることを特徴とする請求項1乃至5のいずれか一項に記載の光学式膜厚計測装置。  The optical film thickness measuring device according to claim 1, wherein a shutter device is provided between the plurality of external beam splitters and the external light reflecting member. 前記投光部と前記受光部は、前記光学薄膜形成装置の同じ方向または同じ面の位置に設けられていることを特徴とする請求項1乃至6のいずれか一項に記載の光学式膜厚計測装置。  The optical film thickness according to claim 1, wherein the light projecting unit and the light receiving unit are provided in the same direction or on the same surface of the optical thin film forming apparatus. Measuring device. 前記投光部と前記受光部は、前記光学薄膜形成装置の反対側の方向または反対側の面の位置に設けられていることを特徴とする請求項1乃至7のいずれか一項に記載の光学式膜厚計測装置。  The said light projection part and the said light-receiving part are provided in the position of the surface on the opposite side or the other side of the said optical thin film formation apparatus, The one side of Claim 1 thru | or 7 characterized by the above-mentioned. Optical film thickness measuring device. 真空容器内に配置された基体を保持した状態で回転軸線を中心に回転可能な基体保持手段と、
前記真空容器に薄膜を形成する膜原料物質を供給する膜原料物質供給手段と、
前記基体に薄膜を形成する成膜プロセス領域と、を備えた薄膜を形成する回転型の薄膜形成装置であって、
前記請求項1乃至8のいずれか一項に記載の光学式膜厚計測装置を用いた薄膜形成装置。
A substrate holding means capable of rotating around a rotation axis while holding the substrate disposed in the vacuum vessel;
A film raw material supply means for supplying a film raw material for forming a thin film in the vacuum vessel;
A rotary thin film forming apparatus for forming a thin film comprising a film forming process region for forming a thin film on the substrate,
A thin film forming apparatus using the optical film thickness measuring apparatus according to any one of claims 1 to 8.
JP2012538014A 2012-02-15 2012-02-15 Optical film thickness measuring apparatus and thin film forming apparatus using optical film thickness measuring apparatus Active JP5189711B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053572 WO2013121546A1 (en) 2012-02-15 2012-02-15 Optical film thickness measurement apparatus and thin-film forming apparatus using optical film thickness measurement apparatus

Publications (2)

Publication Number Publication Date
JP5189711B1 true JP5189711B1 (en) 2013-04-24
JPWO2013121546A1 JPWO2013121546A1 (en) 2015-05-11

Family

ID=48481481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012538014A Active JP5189711B1 (en) 2012-02-15 2012-02-15 Optical film thickness measuring apparatus and thin film forming apparatus using optical film thickness measuring apparatus

Country Status (8)

Country Link
US (1) US8922790B2 (en)
EP (1) EP2816317A4 (en)
JP (1) JP5189711B1 (en)
KR (1) KR101264578B1 (en)
CN (1) CN103384811B (en)
HK (1) HK1187398A1 (en)
TW (1) TWI437204B (en)
WO (1) WO2013121546A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7520437B1 (en) 2023-06-20 2024-07-23 株式会社シンクロン Film forming equipment

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094804B1 (en) * 2013-09-23 2020-03-30 엘지디스플레이 주식회사 Observation Apparatus Of Evaporation And Driving Method Using The Same
JP6019310B1 (en) * 2015-04-16 2016-11-02 ナルックス株式会社 Vapor deposition apparatus and manufacturing method including film forming process by vapor deposition apparatus
CN106567044A (en) * 2015-10-08 2017-04-19 北京北方微电子基地设备工艺研究中心有限责任公司 Film preparation cavity and method
US10163732B2 (en) * 2015-10-30 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Moving pyrometer for use with a substrate chamber
CN106854756A (en) * 2015-12-09 2017-06-16 上海新微技术研发中心有限公司 Physical vapor deposition method
EP3366804B1 (en) * 2017-02-22 2022-05-11 Satisloh AG Box coating apparatus for vacuum coating of substrates, in particular spectacle lenses
JP6956673B2 (en) * 2018-04-09 2021-11-02 三菱電機株式会社 Film thickness measuring device
JP7162483B2 (en) * 2018-09-28 2022-10-28 芝浦メカトロニクス株式会社 Film forming apparatus and film forming product manufacturing method
CN109811323B (en) * 2019-01-23 2023-09-08 北京北方华创微电子装备有限公司 Magnetron sputtering device and tray detection method
CN109959637B (en) * 2019-04-04 2021-06-01 中南大学 Etalon effect inhibition method and device for detecting residual oxygen of glass medicine bottle
US11939665B2 (en) * 2020-03-10 2024-03-26 Tokyo Electron Limted Film thickness measuring apparatus and film thickness measuring method, and film forming system and film forming method
CN114045468B (en) * 2021-11-01 2022-07-19 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) Thin film deposition apparatus, physical vapor deposition device, and thin film deposition method
JP7379442B2 (en) * 2021-11-01 2023-11-14 キヤノントッキ株式会社 Reflectance measurement equipment, film deposition equipment
DE102023104397A1 (en) * 2023-02-23 2024-08-29 VON ARDENNE Asset GmbH & Co. KG Process arrangement

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925951A (en) * 1972-06-29 1974-03-07
JPS4913157B1 (en) * 1970-08-13 1974-03-29
JPS60173006U (en) * 1984-04-24 1985-11-16 日本ビクター株式会社 Optical monitoring device for film formation status
JPH01147066A (en) * 1987-12-01 1989-06-08 Nippon Kentetsu Co Ltd Sputtering film forming apparatus
JPH03226573A (en) * 1990-01-31 1991-10-07 Shin Meiwa Ind Co Ltd Method for controlling thickness of thin film
JPH03237304A (en) * 1990-02-14 1991-10-23 Anelva Corp Thin film manufacturing device
JPH08315432A (en) * 1995-05-15 1996-11-29 Nippondenso Co Ltd Apparatus for producing optical information recording medium and production method therefor
JPH11241162A (en) * 1997-12-01 1999-09-07 Natl Res Council Of Canada Sputtering method capable of optically monitoring and device therefor
JP2000088531A (en) * 1998-09-14 2000-03-31 Shincron:Kk Apparatus and method for measuring thickness of thin film
JP2000218149A (en) * 1999-01-27 2000-08-08 Shin Meiwa Ind Co Ltd Vacuum film forming apparatus
DE19926019A1 (en) * 1999-05-31 2000-12-21 Dieter Steinberg Process for monitoring growing layers used in vacuum coating processes comprises directing a measuring beam before starting the layer growth into a galvanic bath and onto a layer substrate
JP2002004046A (en) * 2000-06-20 2002-01-09 Canon Inc Method and system for film deposition
JP2003269924A (en) * 2002-03-19 2003-09-25 Nippon Telegr & Teleph Corp <Ntt> Device and method for monitoring film thickness
US20050247877A1 (en) * 2004-05-06 2005-11-10 The Board Of Trustees Of The University Of Illinois Apparatus and method for determining a thickness of a deposited material
JP2006009099A (en) * 2004-06-25 2006-01-12 Asahi Glass Co Ltd Method and apparatus for controlling film thickness, and method for manufacturing optical multilayer film
JP2006265739A (en) * 2006-06-26 2006-10-05 Asahi Glass Co Ltd Sputtering system and sputtering deposition method
JP2007522342A (en) * 2004-01-15 2007-08-09 デポジッション サイエンス インク Method and apparatus for monitoring optical properties of thin films during a deposition process
JP2007211311A (en) * 2006-02-10 2007-08-23 Shincron:Kk Thin-film-forming apparatus and thin-film-forming method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694424A (en) * 1992-09-09 1994-04-05 Toppan Printing Co Ltd Film thickness measuring device for film material
JPH07103724A (en) * 1993-09-30 1995-04-18 Toppan Printing Co Ltd Apparatus for measuring film thickness and apparatus for forming film in vacuum
JP3357596B2 (en) * 1998-03-05 2002-12-16 インターナショナル・ビジネス・マシーンズ・コーポレーション Film deposition apparatus and method for measuring film thickness in-situ in film deposition process
JP4216209B2 (en) * 2004-03-04 2009-01-28 大日本スクリーン製造株式会社 Film thickness measuring method and apparatus
CN101161856B (en) * 2007-02-01 2010-09-29 河南中光学集团有限公司 Optical coating film thickness monitoring automatic control system and monitoring method
JP4878632B2 (en) * 2009-07-03 2012-02-15 株式会社シンクロン Optical film thickness meter and thin film forming apparatus equipped with optical film thickness meter
CN102109328A (en) * 2009-12-28 2011-06-29 福华电子股份有限公司 Film-plating equipment and method for monitoring change of thickness of film in real time

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913157B1 (en) * 1970-08-13 1974-03-29
JPS4925951A (en) * 1972-06-29 1974-03-07
JPS60173006U (en) * 1984-04-24 1985-11-16 日本ビクター株式会社 Optical monitoring device for film formation status
JPH01147066A (en) * 1987-12-01 1989-06-08 Nippon Kentetsu Co Ltd Sputtering film forming apparatus
JPH03226573A (en) * 1990-01-31 1991-10-07 Shin Meiwa Ind Co Ltd Method for controlling thickness of thin film
JPH03237304A (en) * 1990-02-14 1991-10-23 Anelva Corp Thin film manufacturing device
JPH08315432A (en) * 1995-05-15 1996-11-29 Nippondenso Co Ltd Apparatus for producing optical information recording medium and production method therefor
JPH11241162A (en) * 1997-12-01 1999-09-07 Natl Res Council Of Canada Sputtering method capable of optically monitoring and device therefor
JP2000088531A (en) * 1998-09-14 2000-03-31 Shincron:Kk Apparatus and method for measuring thickness of thin film
JP2000218149A (en) * 1999-01-27 2000-08-08 Shin Meiwa Ind Co Ltd Vacuum film forming apparatus
DE19926019A1 (en) * 1999-05-31 2000-12-21 Dieter Steinberg Process for monitoring growing layers used in vacuum coating processes comprises directing a measuring beam before starting the layer growth into a galvanic bath and onto a layer substrate
JP2002004046A (en) * 2000-06-20 2002-01-09 Canon Inc Method and system for film deposition
JP2003269924A (en) * 2002-03-19 2003-09-25 Nippon Telegr & Teleph Corp <Ntt> Device and method for monitoring film thickness
JP2007522342A (en) * 2004-01-15 2007-08-09 デポジッション サイエンス インク Method and apparatus for monitoring optical properties of thin films during a deposition process
US20050247877A1 (en) * 2004-05-06 2005-11-10 The Board Of Trustees Of The University Of Illinois Apparatus and method for determining a thickness of a deposited material
JP2006009099A (en) * 2004-06-25 2006-01-12 Asahi Glass Co Ltd Method and apparatus for controlling film thickness, and method for manufacturing optical multilayer film
JP2007211311A (en) * 2006-02-10 2007-08-23 Shincron:Kk Thin-film-forming apparatus and thin-film-forming method
JP2006265739A (en) * 2006-06-26 2006-10-05 Asahi Glass Co Ltd Sputtering system and sputtering deposition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7520437B1 (en) 2023-06-20 2024-07-23 株式会社シンクロン Film forming equipment

Also Published As

Publication number Publication date
WO2013121546A1 (en) 2013-08-22
HK1187398A1 (en) 2014-04-04
EP2816317A1 (en) 2014-12-24
US8922790B2 (en) 2014-12-30
TW201333418A (en) 2013-08-16
JPWO2013121546A1 (en) 2015-05-11
CN103384811A (en) 2013-11-06
EP2816317A4 (en) 2015-10-14
TWI437204B (en) 2014-05-11
KR101264578B1 (en) 2013-05-14
US20140016139A1 (en) 2014-01-16
CN103384811B (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5189711B1 (en) Optical film thickness measuring apparatus and thin film forming apparatus using optical film thickness measuring apparatus
JP7025897B2 (en) Systems and methods for calibrating optical signals in semiconductor processing systems
US7927472B2 (en) Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus
US10522375B2 (en) Monitoring system for deposition and method of operation thereof
US9170156B2 (en) Normal-incidence broadband spectroscopic polarimeter containing reference beam and optical measurement system
JPS60194331A (en) Spectrophotometer
JPWO2002063064A1 (en) Sputtering apparatus and sputtering film forming method
KR101317536B1 (en) Optical film thickness meter and thin film forming apparatus provided with optical film thickness meter
JP5319856B1 (en) Film thickness measuring apparatus and film forming apparatus
JP4806268B2 (en) Thin film forming apparatus and thin film forming method
KR101693397B1 (en) LED light source device, film thickness measuring device and thin film deposition device
WO2015004755A1 (en) Optical film thickness measurement device, thin film forming device, and method for measuring film thickness
JP2012158808A (en) Film deposition device and method
US20220170857A1 (en) Detection device and method therefor
WO2007015616A1 (en) Apparatus and method for measuring curvature using multiple beams
JPH0416704A (en) Optical film thickness monitor and sputtering apparatus using the monitor
JP2010230623A (en) Optical film thickness measuring device and vacuum film forming apparatus including the same
US20070019204A1 (en) Spectrometer based multiband optical monitoring of thin films
JP2011074434A (en) Film deposition method and film deposition system
JP2022181017A (en) Sputtering apparatus, film deposition method, and manufacturing method of article
Zoeller et al. Direct optical monitoring enables high performance applications in mass production
JP2006292444A (en) Film thickness measuring device, and thin film forming device using film thickness measuring device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250