[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006009099A - Film thickness control method and apparatus, and optical multilayer film manufacturing method - Google Patents

Film thickness control method and apparatus, and optical multilayer film manufacturing method Download PDF

Info

Publication number
JP2006009099A
JP2006009099A JP2004188753A JP2004188753A JP2006009099A JP 2006009099 A JP2006009099 A JP 2006009099A JP 2004188753 A JP2004188753 A JP 2004188753A JP 2004188753 A JP2004188753 A JP 2004188753A JP 2006009099 A JP2006009099 A JP 2006009099A
Authority
JP
Japan
Prior art keywords
substrate
film
light
film thickness
film formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004188753A
Other languages
Japanese (ja)
Other versions
JP4547612B2 (en
Inventor
Takaaki Murakami
貴章 村上
Eiji Shidouji
栄治 志堂寺
Toru Ikeda
徹 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004188753A priority Critical patent/JP4547612B2/en
Publication of JP2006009099A publication Critical patent/JP2006009099A/en
Application granted granted Critical
Publication of JP4547612B2 publication Critical patent/JP4547612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To decrease noise in a transmitted light quantity caused by interference of light on a substrate and to control the film thickness with high accuracy. <P>SOLUTION: A carousel type sputtering apparatus which gives preferable uniformity in the film thickness without autorotation of a substrate during film formation is used, as well as a substrate 18 having the back face 18B inclined at a predetermined angle with respect to the film formation face 18A of the substrate is used. The inclination angle θ of the back face 18B with respect to the film formation face 18A is preferably in a range of 0°<θ≤2°. The substrate is fixed so that the thickest part or the thinnest part of the substrate 18 is aligned in the vertical direction of a substrate holder. The optical axis is preferably adjusted in such a manner that the light outputted from a projecting unit is perpendicular to the film formation surface 18A on the film formation surface 18A. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スパッタ装置を用いて薄膜を作製する場合の膜厚制御方法及び装置、並びに光学多層膜の製造方法に係り、特にWDM(Wavelength Division Multiplexing:波長多重分割)技術に用いられるWDM用フィルターの製造に好適な膜厚制御方法及び装置、並びに光学多層膜の製造方法に関する。   The present invention relates to a film thickness control method and apparatus for producing a thin film using a sputtering apparatus, and an optical multilayer film manufacturing method, and more particularly to a WDM filter used in WDM (Wavelength Division Multiplexing) technology. The present invention relates to a film thickness control method and apparatus suitable for manufacturing the optical multilayer film, and an optical multilayer film manufacturing method.

WDM技術で用いられるWDM用フィルターは、低屈折率材料と高屈折率材料とを組み合わせ、極めて多くの層(例えば100層程度)をガラス基板上に積層して形成される。かかる光学多層膜の製造に際しては、各層の膜厚を設計値通り精度良く形成することが極めて重要であり、このため、薄膜形成装置に備え付けた膜厚モニタリングシステムを用いて、成膜時もしくは成膜後のガラス基板のモニタリング光の透過光量(あるいは透過率)を監視することにより、膜厚を精密に制御する必要がある(特許文献1〜3参照)。   A WDM filter used in the WDM technology is formed by combining a low refractive index material and a high refractive index material and laminating an extremely large number of layers (for example, about 100 layers) on a glass substrate. In the production of such an optical multilayer film, it is extremely important to accurately form the film thickness of each layer as designed, and for this reason, the film thickness monitoring system provided in the thin film forming apparatus is used for film formation or formation. It is necessary to precisely control the film thickness by monitoring the transmitted light amount (or transmittance) of the monitoring light of the glass substrate after film formation (see Patent Documents 1 to 3).

従来の膜厚モニタリングシステムにおいては、受光光量が大きく(S/N比に優れ)、波長の単色性に優れたレーザ光源やASE(Amplified Spontaneous Emission)光源などを投光部に使用するものが知られている。コヒーレント長の長いレーザ光源などを投光部に用いた透過型膜厚モニタリングシステムの場合、ガラス基板での光干渉により発生する上記透過光量のノイズを低減するために、光学多層膜形成前に予めガラス基板の裏面(成膜面の反対の面)に高性能な低反射膜を形成しておく必要がある。
国際公開第02/063064号パンフレット 特開2002−340523号公報 特開2003−121118号公報
Conventional film thickness monitoring systems use a laser light source or ASE (Amplified Spontaneous Emission) light source that has a large received light quantity (excellent S / N ratio) and excellent wavelength monochromaticity for the light projecting unit. It has been. In the case of a transmission type film thickness monitoring system using a laser light source having a long coherent length as a light projecting unit, in order to reduce the noise of the transmitted light amount generated by light interference on the glass substrate, the optical film is formed in advance. It is necessary to form a high-performance low-reflection film on the back surface (the surface opposite to the film formation surface) of the glass substrate.
International Publication No. 02/063064 Pamphlet JP 2002-340523 A JP 2003-121118 A

しかしながら、高性能な低反射膜の作製は極めて困難であるとともに、製品コストを高くする要因の一つとなっている。   However, it is extremely difficult to produce a high-performance low-reflection film, and it is one of the factors that increase the product cost.

本発明はこのような事情に鑑みてなされたもので、高性能な低反射膜を要せずとも容易に上記透過光量のノイズを低減させ、高精度に膜厚制御することが可能な膜厚制御方法及び装置、並びにこれを用いた光学多層膜の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to easily reduce the noise of the transmitted light amount and control the film thickness with high accuracy without requiring a high-performance low-reflection film. It is an object of the present invention to provide a control method and apparatus, and an optical multilayer film manufacturing method using the same.

前記目的を達成するために、請求項1に係る発明は、基板上に形成される膜の膜厚を制御する膜厚制御方法であって、基板の成膜面と反対の基板裏面を前記成膜面に対して所定角度で傾斜させた形状を有する基板をスパッタ装置の基板ホルダーに固定し、当該スパッタ装置によって成膜を行うとともに、前記基板ホルダー上の基板に向けて投光部から光を照射し、照射した光を基板を挟んで投光部の反対側に位置する受光部によって受光して受光量に応じた透過光量を測定し、前記透過光量に基づいて膜付き基板の透過光量データを取得し、その測定結果に基づいて成膜量に影響するパラメータを制御することにより所望の膜厚を得ることを特徴とする。   In order to achieve the above object, an invention according to claim 1 is a film thickness control method for controlling a film thickness of a film formed on a substrate, wherein the substrate back surface opposite to the film formation surface of the substrate is formed on the substrate back surface. A substrate having a shape inclined at a predetermined angle with respect to the film surface is fixed to a substrate holder of a sputtering apparatus, and film formation is performed by the sputtering apparatus, and light is emitted from a light projecting unit toward the substrate on the substrate holder. Irradiate the received light by the light receiving unit located on the opposite side of the light projecting unit across the substrate, measure the transmitted light amount according to the received light amount, and transmit the transmitted light amount data of the film-coated substrate based on the transmitted light amount And obtaining a desired film thickness by controlling a parameter that affects the amount of film formation based on the measurement result.

本発明によれば、成膜に用いる基板の裏面が成膜面に対して所定の角度で傾斜した形状(略楔形状)を有しているため、投光部からコヒーレント長の長い光を出射した場合でも、当該基板での光干渉(基板内で反射する光同士の干渉)がほとんど発生せず、基板自体での光干渉に起因するノイズ成分を大幅に低減することができる。これにより、従来必要とされていた基板裏面の高性能な低反射膜の形成が不要となり、高精度の膜厚制御を実現できる。   According to the present invention, since the back surface of the substrate used for film formation has a shape (substantially wedge shape) inclined at a predetermined angle with respect to the film formation surface, light having a long coherent length is emitted from the light projecting unit. Even in this case, optical interference on the substrate (interference between light reflected in the substrate) hardly occurs, and noise components due to optical interference on the substrate itself can be greatly reduced. This eliminates the need for the formation of a high-performance low-reflection film on the back surface of the substrate, which has been conventionally required, and realizes highly accurate film thickness control.

成膜時に膜厚をモニタリングし、その情報を制御系にフィードバックして成膜をコントロールする場合、成膜量に影響するパラメータの制御としては、例えば、スパッタ電源の電力制御、基板ホルダー(ドラム)の回転速度、成膜時間、シャッター開閉度、スパッタ圧力等の制御がある。これらに代表される各種パラメータのうち少なくとも一つのパラメータを制御して成膜量をコントロールする。   When the film thickness is monitored during film formation, and the information is fed back to the control system to control the film formation, for example, the power control of the sputtering power supply, the substrate holder (drum) can be controlled as parameters that affect the film formation amount. The rotation speed, film formation time, shutter opening / closing degree, sputtering pressure, etc. are controlled. The film formation amount is controlled by controlling at least one of various parameters represented by these.

また、特許文献2,3に開示された従来の装置では、量産性(膜厚分布)の改善のために、成膜時に基板を自転させる必要があるのに対し、本発明で用いるカルーセル型のスパッタ装置は、成膜時に基板を自転させなくても、実用上充分な膜厚均一性が得られるという特徴を有している。   In addition, in the conventional apparatuses disclosed in Patent Documents 2 and 3, it is necessary to rotate the substrate during film formation in order to improve mass productivity (film thickness distribution). The sputtering apparatus has a feature that practically sufficient film thickness uniformity can be obtained without rotating the substrate during film formation.

仮に、本発明で用いる裏面傾斜処理の基板を自転させながら透過光量の測定を行うと、基板の回転位置に応じて、基板の透過光の出射方向が変化するため、透過光量を正確に測定できず、かえってノイズを増加させる要因となり得る。   If the transmitted light amount is measured while rotating the back-tilted substrate used in the present invention, the transmitted light emission direction of the substrate changes according to the rotation position of the substrate, so that the transmitted light amount can be measured accurately. Instead, it may be a factor that increases noise.

したがって、本発明では基板の自転が不要なカルーセル型のスパッタ装置を用いることで、上述の基板裏面の傾斜構造と相まって透過光量のノイズを低減している。   Therefore, in the present invention, by using a carousel type sputtering apparatus that does not require the rotation of the substrate, the noise of the transmitted light amount is reduced in combination with the inclined structure on the back surface of the substrate.

請求項2に係る発明は、請求項1記載の膜厚制御方法の一態様に係り、基板での光干渉による透過光量のノイズ低減、及び基板のハンドリング性等を考慮すると、成膜面に対する基板裏面の所定角度θは0°<θ≦2°とすることが好ましく、0.3°≦θ≦2°、特に0.5°≦θ≦2°であることがより好ましい。   The invention according to claim 2 relates to an aspect of the film thickness control method according to claim 1, and the substrate with respect to the film formation surface is considered in consideration of noise reduction of the transmitted light amount due to light interference in the substrate and handling property of the substrate. The predetermined angle θ on the back surface is preferably 0 ° <θ ≦ 2 °, more preferably 0.3 ° ≦ θ ≦ 2 °, and particularly preferably 0.5 ° ≦ θ ≦ 2 °.

請求項3に係る発明は、請求項1または2記載の膜厚制御方法の一態様に係り、前記基板は、前記所定角度の傾斜面を有する形状の最も厚い部分または最も薄い部分が基板ホルダーの上下方向になるように前記基板ホルダーに固定されることを特徴とする。   A third aspect of the present invention relates to an aspect of the film thickness control method according to the first or second aspect, wherein the substrate has a thickest portion or a thinnest portion having the inclined surface having the predetermined angle as a substrate holder. It is fixed to the substrate holder so as to be in the vertical direction.

カルーセル型のスパッタ装置は、回転ドラムに取り付けられた基板ホルダーが回転しながら成膜が行われるため、基板の最も厚い部分又は最も薄い部分を基板ホルダーの上下方向に向けた姿勢で基板を固定することが好ましい。こうすることで、ドラムの回転方向(すなわち、投光部から照射される光の走査ライン)に沿って基板の厚みが一定となり、透過光量のノイズを一層低減することができる。   In the carousel type sputtering apparatus, film formation is performed while the substrate holder attached to the rotating drum rotates, so the substrate is fixed in a posture in which the thickest part or the thinnest part of the substrate is directed in the vertical direction of the substrate holder. It is preferable. By doing so, the thickness of the substrate becomes constant along the rotation direction of the drum (that is, the scanning line of the light emitted from the light projecting unit), and the noise of the transmitted light amount can be further reduced.

請求項4に係る発明は、請求項1、2または3記載の膜厚制御方法の一態様に係り、前記投光部から照射した光の光軸が、前記基板の成膜面膜厚の制御中におけるいずれか1点で、当該成膜面と垂直になるように調整されることを特徴とする。   The invention according to a fourth aspect relates to an aspect of the film thickness control method according to the first, second, or third aspect, wherein the optical axis of the light emitted from the light projecting unit is controlling the film thickness of the film formation surface of the substrate. In any of the above, the film is adjusted to be perpendicular to the film formation surface.

基板裏面の傾斜形状に応じて光軸を微調整できるように光軸調整機構を設ける態様が好ましい。   An embodiment in which an optical axis adjustment mechanism is provided so that the optical axis can be finely adjusted according to the inclined shape of the back surface of the substrate is preferable.

請求項1乃至4の何れか1項記載の膜厚制御方法に用いられるスパッタ装置は、請求項5に示すように、チャンバーと、該チャンバー内に回転自在に設置され、横断面が多角形状または円形状のドラムと、前記ドラムの外周面上に取り付けられた前記基板ホルダーと、前記チャンバー壁の内側に配置されたマグネトロンスパッタ源と、から構成される。   The sputtering apparatus used for the film thickness control method according to any one of claims 1 to 4, as shown in claim 5, is a chamber and is rotatably installed in the chamber, and has a polygonal cross section. It comprises a circular drum, the substrate holder mounted on the outer peripheral surface of the drum, and a magnetron sputtering source disposed inside the chamber wall.

請求項6に係る発明は、前記目的を達成するための膜厚制御装置を提供する。すなわち、請求項6に係る発明は、基板上に形成される膜の膜厚を制御する膜厚制御装置であって、基板の成膜面と反対の基板裏面を前記成膜面に対して所定角度で傾斜させた形状を有する基板をスパッタ装置の基板保持部に固定するための基板保持機構と、前記基板保持機構に保持された基板に向けて光を照射する投光手段と、前記基板を通過した光を受光し、受光量に応じた電気信号を出力する受光手段と、前記受光手段から出力される電気信号から受光量に応じた透過光量を測定し、前記透過光量に基づいて膜付き基板の透過光量データを取得する演算処理手段と、前記演算処理手段で得た前記透過光量データに基づいて成膜量に影響するパラメータを制御する制御手段と、を備えたことを特徴とする。   The invention according to claim 6 provides a film thickness control apparatus for achieving the object. That is, the invention according to claim 6 is a film thickness control device for controlling the film thickness of the film formed on the substrate, wherein the substrate back surface opposite to the film forming surface of the substrate is predetermined with respect to the film forming surface. A substrate holding mechanism for fixing a substrate having a shape inclined at an angle to a substrate holding portion of a sputtering apparatus; a light projecting means for irradiating light toward the substrate held by the substrate holding mechanism; and A light receiving means for receiving the passed light and outputting an electrical signal corresponding to the amount of received light, and measuring the amount of transmitted light according to the amount of received light from the electrical signal output from the light receiving means, and with a film based on the amount of transmitted light Computational processing means for acquiring transmitted light amount data of the substrate, and control means for controlling a parameter that affects the film formation amount based on the transmitted light amount data obtained by the arithmetic processing means.

また、請求項7に示したように、前記基板保持機構は、前記所定角度の傾斜面を有する形状の前記基板の最も厚い部分または最も薄い部分が上下方向になるように、当該基板を固定するものであることが好ましい。   According to a seventh aspect of the present invention, the substrate holding mechanism fixes the substrate so that the thickest portion or the thinnest portion of the substrate having the inclined surface having the predetermined angle is in the vertical direction. It is preferable.

さらに、請求項8に示したように、前記投光手段から照射した光が前記基板の成膜面で当該成膜面と垂直になるように光軸を調整する光軸調整機構を備えている構成が好ましい。   Furthermore, as shown in claim 8, there is provided an optical axis adjusting mechanism for adjusting an optical axis so that light emitted from the light projecting means is perpendicular to the film forming surface of the substrate. A configuration is preferred.

請求項9に係る発明は、前記目的を達成するための光学多層膜の製造方法を提供する。すなわち、請求項9に係る発明は、屈折率の異なる2種類の薄膜を基板上に交互に積層形成して成る光学多層膜を製造する製造方法であって、基板の成膜面と反対の基板裏面を前記成膜面に対して所定角度で傾斜させた形状を有する基板を用いるとともに、相対的に低屈折率の薄膜を形成するためのターゲットが取り付けられた低屈折率膜形成用のマグネトロンスパッタ源と、相対的に高屈折率の薄膜を形成するためのターゲットが取り付けられた高屈折率膜形成用のマグネトロンスパッタ源とが併設されたスパッタ装置を用い、当該スパッタ装置の基板ホルダーに前記基板を固定して成膜を行い、成膜中に前記基板ホルダー上の基板に向けて投光部から光を照射し、照射した光を受光部によって受光して受光量に応じた透過光量を測定し、前記透過光量に基づいて膜付き基板の透過光量データを取得し、その測定結果に基づいて成膜量に影響するパラメータを制御することにより、所望の膜厚の薄膜を形成することを特徴とする。なお、光学多層膜の総層数は2〜2000層、総層厚は50nm〜400μmであることが好ましい。   The invention according to claim 9 provides a method for producing an optical multilayer film for achieving the object. That is, the invention according to claim 9 is a manufacturing method for manufacturing an optical multilayer film formed by alternately laminating two types of thin films having different refractive indexes on a substrate, wherein the substrate is opposite to the film formation surface of the substrate. A magnetron sputter for forming a low refractive index film using a substrate having a shape in which the back surface is inclined at a predetermined angle with respect to the film forming surface and to which a target for forming a relatively low refractive index thin film is attached. And a magnetron sputtering source for forming a high refractive index film to which a target for forming a thin film having a relatively high refractive index is attached, and the substrate is mounted on a substrate holder of the sputtering apparatus. Film is formed, and light is emitted from the light projecting unit toward the substrate on the substrate holder during film formation, and the transmitted light is received by the light receiving unit and the amount of transmitted light corresponding to the amount of light received is measured. And The transmission light amount data of the substrate with film is acquired based on the transmitted light amount, and a thin film having a desired film thickness is formed by controlling a parameter that affects the film formation amount based on the measurement result. . The total number of layers of the optical multilayer film is preferably 2 to 2000, and the total layer thickness is preferably 50 nm to 400 μm.

本発明に係る光学多層膜の製造方法によれば、基板の自転が不要なカルーセル型のスパッタ装置と、基板での光干渉を回避する基板形状との組み合わせにより、膜厚を正確に把握することが可能となり、各層の膜厚を設計値通りに形成することが可能となる。また、従来必要とされた基板裏面への高性能な低反射膜の形成が不要となり、低コスト化を実現できる。   According to the method for producing an optical multilayer film according to the present invention, the film thickness can be accurately grasped by a combination of a carousel type sputtering apparatus that does not require rotation of the substrate and a substrate shape that avoids optical interference with the substrate. Thus, the film thickness of each layer can be formed as designed. In addition, it is not necessary to form a high-performance low-reflection film on the back surface of the substrate, which has been conventionally required, and cost reduction can be realized.

本発明によれば、スパッタ装置を利用するとともに、基板の成膜面に対して基板裏面が所定角度で傾斜している形状の基板を用いることにより、基板での光干渉により発生する透過光量のノイズを大幅に低減させることが可能になり、高精度の膜厚制御を実現できる。   According to the present invention, by using a sputtering apparatus and using a substrate having a shape in which the back surface of the substrate is inclined at a predetermined angle with respect to the film formation surface of the substrate, the amount of transmitted light generated by light interference on the substrate can be reduced. Noise can be greatly reduced, and high-precision film thickness control can be realized.

以下添付図面に従って本発明に係る膜厚制御方法及び装置、並びに光学多層膜の製造方法の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of a film thickness control method and apparatus and an optical multilayer film manufacturing method according to the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の実施形態に係る膜厚制御装置を適用した光学多層膜成膜用のスパッタ装置の構成を示す平面模式図である。図1に示したスパッタ装置10は、高さ2m、直径1.5mの略円筒形のチャンバー12内に、ドラム(図1中不図示、図5中符号17)と該ドラム17の外周面上に設けられた基板ホルダー14とを有し、直径1mの正十二角形を構成する各基板ホルダー14がドラム17の中心軸16を回転中心として回転可能に支持された構造から成るカルーセル型のスパッタ装置である。   FIG. 1 is a schematic plan view showing a configuration of a sputtering apparatus for forming an optical multilayer film to which a film thickness control apparatus according to an embodiment of the present invention is applied. 1 includes a drum (not shown in FIG. 1, reference numeral 17 in FIG. 5) and an outer peripheral surface of the drum 17 in a substantially cylindrical chamber 12 having a height of 2 m and a diameter of 1.5 m. A carousel type sputter having a structure in which each substrate holder 14 constituting a regular dodecagon having a diameter of 1 m is rotatably supported around a central axis 16 of a drum 17. Device.

反応室となるチャンバー12は、図示せぬ排気用ポンプと連結され、スパッタに必要な低圧を得ることができる。また、図示されていないが、チャンバー12には、スパッタに必要なガスを導入するためのガス供給手段やローディング用ドアが設けられている。なお、チャンバー12の内壁は、ドラム17と概略所定間隔をもって対向する形状(内周形状)を有している。   The chamber 12 serving as a reaction chamber is connected to an exhaust pump (not shown) and can obtain a low pressure necessary for sputtering. Although not shown, the chamber 12 is provided with a gas supply means for introducing a gas necessary for sputtering and a loading door. The inner wall of the chamber 12 has a shape (inner peripheral shape) that faces the drum 17 at a substantially predetermined interval.

詳細は後述するが(図4乃至図9)、各基板ホルダー14には成膜用の基板(例えば、ガラス基板)18が取り付けられ、基板ホルダー14は、図示せぬ回転駆動装置によるドラム17の回転に伴って一定の回転速度(例えば、6rpm )で回転する。ドラム17が回転するに伴い、基板ホルダー14に取りつけられた基板18上に例えば低屈折率膜又は高屈折率膜が成膜される。高屈折率膜と低屈折率膜とを組み合わせて積層することで光学多層膜が形成される。   Although details will be described later (FIGS. 4 to 9), a film-forming substrate (for example, a glass substrate) 18 is attached to each substrate holder 14, and the substrate holder 14 is attached to a drum 17 by a rotary drive device (not shown). Along with the rotation, it rotates at a constant rotation speed (for example, 6 rpm). As the drum 17 rotates, for example, a low refractive index film or a high refractive index film is formed on the substrate 18 mounted on the substrate holder 14. An optical multilayer film is formed by stacking a combination of a high refractive index film and a low refractive index film.

図1に示したように、チャンバー12の内側には、低屈折率膜形成用のACマグネトロン20と、高屈折率膜形成用のACマグネトロン30とが設置されている。   As shown in FIG. 1, an AC magnetron 20 for forming a low refractive index film and an AC magnetron 30 for forming a high refractive index film are installed inside the chamber 12.

低屈折率膜形成用のACマグネトロン20は、二つのマグネトロン部22、23に対して一つの交流電源26が接続され、アノード/カソードの関係を所定周波数で交互に切り替える交流型マグネトロンスパッタ源である。   The AC magnetron 20 for forming a low refractive index film is an AC magnetron sputtering source in which one AC power source 26 is connected to the two magnetron portions 22 and 23 and the anode / cathode relationship is alternately switched at a predetermined frequency. .

同様に、高屈折率膜形成用のACマグネトロン30は、二つのマグネトロン部32、33に対して一つの交流電源36が接続され、アノード/カソードの関係を所定周波数で交互に切り替える交流型マグネトロンスパッタ源である。   Similarly, in the AC magnetron 30 for forming a high refractive index film, one AC power source 36 is connected to the two magnetron portions 32 and 33, and the AC magnetron sputtering is used to alternately switch the anode / cathode relationship at a predetermined frequency. Is the source.

ACマグネトロン20,30の動作原理は、特開平5−222530号、特開平5−222531号、特開平6−212421号、特開平10−130830号の各公報に開示されている。概説すると、ACのマグネトロンとは、ターゲットを二個並べて配置し、一方のターゲットがカソードの時は、他方がアノードとなり、数十kHz の周波数でカソードとアノードが入れ替わるマグネトロン装置であり、種々の制御を行うことにより、安定かつ高速に酸化物膜や窒化物膜等を成膜することができる。   The operating principles of the AC magnetrons 20 and 30 are disclosed in JP-A-5-222530, JP-A-5-222231, JP-A-6-212421, and JP-A-10-130830. In general, an AC magnetron is a magnetron device in which two targets are arranged side by side, and when one target is a cathode, the other is an anode, and the cathode and anode are switched at a frequency of several tens of kHz. By performing the above, an oxide film, a nitride film, or the like can be formed stably and at high speed.

ACマグネトロン20,30と基板18との間には、それぞれ開閉可能なシャッター28,38が設けられている。図1では両方のシャッター28,38が開放された状態が示されているが、成膜に使用する一方のスパッタ源のシャッター28又は38のみを選択的に開け、成膜に使用しない他方のスパッタ源のシャッター38又は28を閉じておくことにより、ターゲットの劣化を防止できる。反応性スパッタプロセスにより所望の膜厚が得られた時点でシャッター28又は38を閉じることによって、成膜反応を確実に停止させることができる。   Shutters 28 and 38 that can be opened and closed are provided between the AC magnetrons 20 and 30 and the substrate 18, respectively. Although FIG. 1 shows a state in which both shutters 28 and 38 are opened, only the shutter 28 or 38 of one sputtering source used for film formation is selectively opened, and the other sputtering not used for film formation is performed. By closing the source shutter 38 or 28, the target can be prevented from deteriorating. By closing the shutter 28 or 38 when a desired film thickness is obtained by the reactive sputtering process, the film formation reaction can be reliably stopped.

また、スパッタ装置10は、成膜中に膜厚を測定する手段(膜厚モニタリングシステム)として、光源40、光ファイバー42、投光部44、受光部46、受光処理部48及びパーソナルコンピュータ(以下「パソコン」という。)50を備えている 光源40には、可変波長レーザが好適に用いられる。光源40から出射された光は、光ファイバー42を介して投光部44に導かれる。投光部44は、基板ホルダー14の内側(ドラム17の内側)に設置され、投光部44から回転中の基板18に向けて光が照射される。   The sputtering apparatus 10 is a means for measuring the film thickness during film formation (film thickness monitoring system). The light source 40, the optical fiber 42, the light projecting unit 44, the light receiving unit 46, the light receiving processing unit 48, and a personal computer (hereinafter “ A variable wavelength laser is suitably used for the light source 40 provided with 50. The light emitted from the light source 40 is guided to the light projecting unit 44 through the optical fiber 42. The light projecting unit 44 is installed inside the substrate holder 14 (inside the drum 17), and light is emitted from the light projecting unit 44 toward the rotating substrate 18.

チャンバー12の外側には、受光部46が設置されており、チャンバー12の外壁には受光部46に光を導く窓部(不図示)が設けられている。基板18を透過した光は、受光部46で受光され、受光量に応じた電気信号に変換された後、受光処理部48に送られる。受光処理部48は、受入した信号に対して所定の信号処理を行い、受光量に応じた透過光量という電気信号に変換する。受光処理部48で処理された透過光量は、パソコン50に送られる。   A light receiving unit 46 is installed outside the chamber 12, and a window (not shown) for guiding light to the light receiving unit 46 is provided on the outer wall of the chamber 12. The light transmitted through the substrate 18 is received by the light receiving unit 46, converted into an electrical signal corresponding to the amount of received light, and then sent to the light receiving processing unit 48. The light reception processing unit 48 performs predetermined signal processing on the received signal and converts the received signal into an electrical signal called a transmitted light amount corresponding to the amount of received light. The transmitted light amount processed by the light receiving processing unit 48 is sent to the personal computer 50.

パソコン50は、中央演算処理装置(CPU)を備え、演算処理装置として機能し、透過光量に基づいて膜付き基板の透過光量データを取得する。透過光量の測定は下記のとおり行われる。図2は、透過光量を測定する様子を示した模式図である。図2(a)〜(c)において基板18が取り付けられているドラム17は、図の反時計回りに回転しており、投光部44から照射された単色レーザ光44Aは、基板18を通過して受光部46に受光される。また、単色レーザ光44Aの波長は、特に限定されないが、ガラスの吸収性の点で、350〜2000nmであることが好ましい。   The personal computer 50 includes a central processing unit (CPU), functions as an arithmetic processing unit, and acquires transmitted light amount data of the film-coated substrate based on the transmitted light amount. The amount of transmitted light is measured as follows. FIG. 2 is a schematic diagram showing how the amount of transmitted light is measured. 2A to 2C, the drum 17 to which the substrate 18 is attached rotates counterclockwise in the drawing, and the monochromatic laser light 44A emitted from the light projecting unit 44 passes through the substrate 18. The light receiving unit 46 receives the light. The wavelength of the monochromatic laser beam 44A is not particularly limited, but is preferably 350 to 2000 nm from the viewpoint of glass absorbability.

図2(a)〜(c)に示したように、成膜中の膜厚をモニタリングする場合、ドラム17の回転に伴い、基板18の成膜面18Aに対する単色レーザ光44Aの入射角度が時々刻々と変化する。このため成膜時(ドラム回転時)に基板を通過して測定される受光量は、入射角度に応じて時々刻々変化し得る。ドラム17の回転中に受光部46から連続して得られた受光量は透過光量という電気信号に変換される。つまり、ドラム17の回転中に受光部46から連続して受光量を得れば、基板(膜付き基板)18の位置に応じた入射角度における透過光量が得られる。   As shown in FIGS. 2A to 2C, when monitoring the film thickness during film formation, the incident angle of the monochromatic laser beam 44 </ b> A with respect to the film formation surface 18 </ b> A of the substrate 18 sometimes varies with the rotation of the drum 17. It changes every moment. For this reason, the amount of received light measured through the substrate during film formation (drum rotation) can change from moment to moment depending on the incident angle. The amount of light received continuously from the light receiving unit 46 during the rotation of the drum 17 is converted into an electrical signal called transmitted light amount. That is, if the amount of received light is continuously obtained from the light receiving unit 46 while the drum 17 is rotating, the amount of transmitted light at the incident angle corresponding to the position of the substrate (substrate with film) 18 can be obtained.

図2(b)は、入射角度0°の時の図であり、このとき、単色レーザ光44Aは基板18の中心を通過する。図2(b)の成膜面への光の入射角度を0°基準として、図2(a)は負の入射角度の状態であり、図2(c)は正の入射角度の状態を表すものとする。   FIG. 2B is a diagram when the incident angle is 0 °, and at this time, the monochromatic laser light 44 </ b> A passes through the center of the substrate 18. 2A is a negative incident angle state, and FIG. 2C is a positive incident angle state with the incident angle of light on the film formation surface of FIG. Shall.

上記のような方法で得られた透過光量のスペクトルの一例が、図3に記載されている。図3は成膜面への光の入射角度を横軸とし、該角度における透過光量を縦軸としたものである。この図3において、0.63V程度の透過光量が得られた領域はレーザ光が基板を通過した時のものである。   An example of the spectrum of the transmitted light amount obtained by the method as described above is shown in FIG. In FIG. 3, the horizontal axis represents the incident angle of light on the film formation surface, and the vertical axis represents the amount of transmitted light at this angle. In FIG. 3, the region where a transmitted light amount of about 0.63 V is obtained is when the laser light passes through the substrate.

次に、各入射角度における透過光量から、膜付き基板のある部分における透過光量データを取得する。膜付き基板のある部分とは、膜付き基板の成膜がされている範囲の中の1点であれば特に限定されないが、膜厚制御の点から、膜付き基板の中央の点であることが好ましい。その他、制御に有用な透過光量データを取得するために、他の処理(ノイズ低減のための移動平均処理や膜付き基板の1点のデータを取得するためのソフト処理等)を透過光量に施してもよい。   Next, the transmitted light amount data in a certain part of the film-coated substrate is acquired from the transmitted light amount at each incident angle. The portion with the film-coated substrate is not particularly limited as long as it is one point within the range where the film-coated substrate is formed, but from the point of film thickness control, it is the center point of the film-coated substrate. Is preferred. In addition, in order to acquire transmitted light amount data useful for control, other processing (moving average processing for noise reduction, soft processing for acquiring data of one point of the substrate with film, etc.) is performed on the transmitted light amount. May be.

また、図1に示したパソコン50は、各スパッタ電源(26,36)を制御する制御装置としても機能する。また、パソコン50によって光源40の発光制御(光量制御を含む)や、基板ホルダー14の回転制御、チャンバー12の圧力制御、導入ガスの供給制御及びシャッター52,54の開閉制御等を行うことができる。ドラム17に取り付けられた各基板18について、ドラム回転毎に膜付き基板のある部分の透過光量データを計算し、計算されたドラム回転毎の膜付き基板の透過光量データに基づき、成膜量に影響するパラメータであるスパッタ電力制御、基板ホルダーの回転速度、成膜時間、シャッター開閉度、スパッタ制御を制御しつつ、透過光量データが所望の値になったところで成膜を中止する。パソコン50には各制御に必要なプログラムや各種データが組み込まれている。   The personal computer 50 shown in FIG. 1 also functions as a control device that controls each sputtering power source (26, 36). Further, the personal computer 50 can perform light emission control (including light amount control) of the light source 40, rotation control of the substrate holder 14, pressure control of the chamber 12, supply control of introduced gas, and opening / closing control of the shutters 52 and 54. . For each substrate 18 attached to the drum 17, the transmitted light amount data of a certain portion of the film-coated substrate is calculated for each drum rotation, and the film formation amount is calculated based on the calculated transmitted light amount data of the film-coated substrate for each drum rotation. While controlling the sputter power control, the rotation speed of the substrate holder, the film formation time, the shutter opening / closing degree, and the sputter control, which are influential parameters, the film formation is stopped when the transmitted light amount data reaches a desired value. The personal computer 50 incorporates programs and various data necessary for each control.

本実施形態の膜厚モニタリングシステムにおいて、例えば光源40には、アジレント・テクノロジー社製のライトウェーブ・メジャメント・システム8164Bに内蔵された波長可変レーザモジュール8168Bを用いることができる。受光部46には、アジレント・テクノロジー社製のオプティカル・ヘッド81624 Bを用い、基板18には、OHARA社製のガラス基板WMS02やWMS13もしくはWMS15を好適に用いることができる。なお、上記のライトウェーブ・メジャメント・システム8164Bは、受光部からの電気信号を受け取り、データ処理する機能を備えている。   In the film thickness monitoring system of the present embodiment, for example, the light source 40 may be a wavelength tunable laser module 8168B built in a light wave measurement system 8164B manufactured by Agilent Technologies. An optical head 81624B manufactured by Agilent Technologies is used for the light receiving unit 46, and a glass substrate WMS02, WMS13, or WMS15 manufactured by OHARA can be preferably used for the substrate 18. Note that the light wave measurement system 8164B has a function of receiving an electrical signal from the light receiving unit and processing the data.

膜厚モニタリングの際に、基板18での光干渉による透過光量のノイズを消失させるために、本実施形態の基板18には、図4に示したように、成膜面18Aの反対側の面(「基板裏面」という。)18Bを所定角度θで傾斜させた形状、例えば、θ=1°の傾斜をさせた形状となるように研磨加工したものを用いる。なお、図4において右図は基板18を回転方向から見た図であり、左図は基板18を回転軸16方向から見た図である。所定角度(ここでは、研磨角度)θは、必ずしも1°である必要はなく、0°より大きければ充分である。   In order to eliminate the noise of the transmitted light amount due to the light interference at the substrate 18 during the film thickness monitoring, the substrate 18 of the present embodiment has a surface opposite to the film forming surface 18A as shown in FIG. (Referred to as “back surface of substrate”) 18B is used in a shape that is inclined at a predetermined angle θ, for example, polished so as to have a shape that is inclined at θ = 1 °. In FIG. 4, the right view is a view of the substrate 18 as viewed from the rotation direction, and the left view is a view of the substrate 18 as viewed from the direction of the rotation axis 16. The predetermined angle (here, the polishing angle) θ does not necessarily have to be 1 °, and it is sufficient if it is larger than 0 °.

ただし、投光部44と基板18との距離や投光部光軸調整部材(後述)で調整可能な煽り角度などの光学系の配置や性能、更には基板18の大きさや厚さtなどを考慮すると、所定角度θは、0°よりも大きく2°以下(つまり、0°<θ≦2°)であることが好ましく、0.3°≦θ≦2°、0.5°≦θ≦2°であることが特に好ましい。なお、前記所定角度θが2°を超えると、基板18の加工時間が長くなるため、生産性の点で問題がある。   However, the arrangement and performance of the optical system such as the distance between the light projecting unit 44 and the substrate 18 and the tilt angle that can be adjusted by the light projecting unit optical axis adjusting member (described later), and the size and thickness t of the substrate 18 In consideration, the predetermined angle θ is preferably greater than 0 ° and 2 ° or less (that is, 0 ° <θ ≦ 2 °), and 0.3 ° ≦ θ ≦ 2 °, 0.5 ° ≦ θ ≦. 2 ° is particularly preferable. If the predetermined angle θ exceeds 2 °, the processing time of the substrate 18 becomes long, which is problematic in terms of productivity.

基板18の厚さtについては特に限定されず、標準的な値としてはt=6mm程度である。本例では円形の基板18を例示するが、本発明の実施に際して基板18の平面形状は特に限定されず、多角形、楕円形など多様な形状があり得る。   The thickness t of the substrate 18 is not particularly limited, and a standard value is about t = 6 mm. Although the circular substrate 18 is illustrated in this example, the planar shape of the substrate 18 is not particularly limited when the present invention is implemented, and may have various shapes such as a polygon and an ellipse.

基板18を上記構成とすることで、投光部44からのコヒーレント長の長い光を照射した場合であっても、基板18での光干渉がほとんど発生せず、基板自体の光干渉に起因する透過光量のノイズを大幅に低減することができる。また、この構成により、従来必要とされていた高性能な低反射膜の形成が不要となり、高精度の膜厚制御を実現できる。   By configuring the substrate 18 as described above, even when light having a long coherent length from the light projecting unit 44 is irradiated, optical interference on the substrate 18 hardly occurs and is caused by optical interference of the substrate itself. The noise of the transmitted light amount can be greatly reduced. Also, with this configuration, it is not necessary to form a high-performance low-reflection film that has been conventionally required, and high-precision film thickness control can be realized.

ここで基板ホルダー14の構造について説明する。   Here, the structure of the substrate holder 14 will be described.

図5はドラム17に取り付けられた基板ホルダー14の斜視図である。同図に示すように、矩形の基板ホルダー14は、円筒形状のドラム17の外周面に取り付けられており、回転自在に設置されたドラム17と一体的に回転する。なお、ドラム17の形状は円筒形状に限らず、多角筒形状(横断面が多角形状)等であってもよい。   FIG. 5 is a perspective view of the substrate holder 14 attached to the drum 17. As shown in the figure, the rectangular substrate holder 14 is attached to the outer peripheral surface of a cylindrical drum 17 and rotates integrally with the drum 17 installed rotatably. In addition, the shape of the drum 17 is not limited to a cylindrical shape, and may be a polygonal cylindrical shape (a cross section is a polygonal shape) or the like.

基板ホルダー14の縦方向略中央部には、膜厚測定のための光通過用開口(以下「測定用穴」という。)14Aが形成されており、この測定用穴14Aを通して基板18(図5中不図示)に光が照射される。   A light passage opening (hereinafter referred to as “measuring hole”) 14A for film thickness measurement is formed at a substantially central portion in the vertical direction of the substrate holder 14, and the substrate 18 (FIG. 5) is formed through the measuring hole 14A. Light is irradiated to the middle (not shown).

図6は基板ホルダー14を構成しているベースプレート60の正面図、図7は図6に示したベースプレート60の点線部分に取り付けられる基板保持ユニット62の正面図、図8は図7の基板保持ユニット62を矢印A方向から見た図、図9は図7の矢印B方向から見た図である。   6 is a front view of the base plate 60 constituting the substrate holder 14, FIG. 7 is a front view of the substrate holding unit 62 attached to the dotted line portion of the base plate 60 shown in FIG. 6, and FIG. 8 is the substrate holding unit of FIG. FIG. 9 is a view when 62 is viewed from the direction of arrow A, and FIG. 9 is a view when viewed from the direction of arrow B in FIG.

図6に示したように、ベースプレート60は測定用穴14Aを有しており、該ベースプレート60は、図5で説明したようにドラム17の外周面に固定される。図6の符号61は固定用のボルト(不図示)を通すためのボルト通し穴である。図6の点線で示した部分には、図7乃至図9に示す基板保持ユニット62が取り付けられる。   As shown in FIG. 6, the base plate 60 has the measurement hole 14A, and the base plate 60 is fixed to the outer peripheral surface of the drum 17 as described in FIG. Reference numeral 61 in FIG. 6 denotes a bolt through hole for passing a fixing bolt (not shown). The substrate holding unit 62 shown in FIGS. 7 to 9 is attached to the portion indicated by the dotted line in FIG.

図7に示したように基板保持ユニット62は、保持枠プレート64と押えプレート65とで基板18を挟持する構造から成る。押えプレート65の開口部65Aは、基板18の直径よりも小さい径となっており、この開口部65Aから露出する基板面に薄膜が形成される。   As shown in FIG. 7, the substrate holding unit 62 has a structure in which the substrate 18 is sandwiched between the holding frame plate 64 and the pressing plate 65. The opening 65A of the pressing plate 65 has a diameter smaller than the diameter of the substrate 18, and a thin film is formed on the substrate surface exposed from the opening 65A.

図7において、符号66は押えプレート65を保持枠プレート64に固定するためのボルト、符号67は保持枠プレート64をベースプレートに固定するためのボルトである。   In FIG. 7, reference numeral 66 denotes a bolt for fixing the presser plate 65 to the holding frame plate 64, and reference numeral 67 denotes a bolt for fixing the holding frame plate 64 to the base plate.

保持枠プレート64は、図7の左右方向に取付け位置を微調整できるように、ボルト67の通し穴68が左右方向に長い長穴形状に形成されている。また、保持枠プレート64の上辺及び下辺に沿ってガイド部材69が設けられており、ガイド部材69に沿って保持枠プレート64をスライドさせることが可能となっている。   In the holding frame plate 64, the through holes 68 of the bolts 67 are formed in an elongated hole shape that is long in the left-right direction so that the attachment position can be finely adjusted in the left-right direction in FIG. A guide member 69 is provided along the upper and lower sides of the holding frame plate 64, and the holding frame plate 64 can be slid along the guide member 69.

図9に示したように、保持枠プレート64は、基板18の裏面傾斜角(図4で説明した所定角度θ)に合わせて基板18を安定的に支持する基板支持面64Aを有しており(図9参照)、押えプレート65と共に基板18の成膜面18Aを略鉛直方向と平行な状態で保持する。   As shown in FIG. 9, the holding frame plate 64 has a substrate support surface 64 </ b> A that stably supports the substrate 18 in accordance with the back surface inclination angle (the predetermined angle θ described in FIG. 4) of the substrate 18. (See FIG. 9) The film forming surface 18A of the substrate 18 is held together with the presser plate 65 in a state substantially parallel to the vertical direction.

なお、基板支持面64Aの斜面角度が異なる別の保持枠プレートに取り替えることによって、基板18の姿勢を(成膜面18Aの角度)を調整することができる。勿論、基板18の姿勢を自在に微調整可能な機構を設けてもよい。   The posture of the substrate 18 (the angle of the film forming surface 18A) can be adjusted by replacing the substrate support surface 64A with another holding frame plate having a different slope angle. Of course, a mechanism capable of finely adjusting the posture of the substrate 18 may be provided.

上記構成とすることで、ドラム17の各面に設置された各基板ホルダー14毎に角度を調整することが可能となる。   With the above configuration, the angle can be adjusted for each substrate holder 14 installed on each surface of the drum 17.

膜厚モニタリングにおける透過光量のノイズ低減もしくは消失以外の特性を阻害しないよう、基板18は、所定角度θの傾斜面を有する形状の最も厚い部分、あるいは薄い部分が基板ホルダー14の上下方向になるよう基板ホルダー14に固定する。図9では最も厚い部分が基板ホルダーの下方向になるように固定されている。   In order not to impede characteristics other than the noise reduction or disappearance of the transmitted light amount in the film thickness monitoring, the substrate 18 has a thickest portion or a thin portion having an inclined surface with a predetermined angle θ in the vertical direction of the substrate holder 14. Fix to the substrate holder 14. In FIG. 9, the thickest portion is fixed so as to be below the substrate holder.

基板ホルダー内の基板18の位置は、基板ホルダー14の中心付近に限らなくともよく、また、複数枚の基板を固定できるようにしてもよい。例えば、各基板ホルダー14には、厚さ(最も厚い部分)6mm、直径φ10cmの円形基板を9枚ずつ縦方向に並べて取り付けることも可能である。   The position of the substrate 18 in the substrate holder is not limited to the vicinity of the center of the substrate holder 14, and a plurality of substrates may be fixed. For example, each substrate holder 14 can be mounted with nine circular substrates each having a thickness (thickest portion) of 6 mm and a diameter of 10 cm arranged in the vertical direction.

次に、投光部の光軸調整機構について説明する。   Next, the optical axis adjustment mechanism of the light projecting unit will be described.

図10は、図1で説明した投光部44を支持する光軸調整部材の側面図であり、図11は平面図、図12は図10の矢印C方向から見た図である。   10 is a side view of the optical axis adjusting member that supports the light projecting unit 44 described in FIG. 1, FIG. 11 is a plan view, and FIG. 12 is a view as seen from the direction of arrow C in FIG.

これらの図面に示したように、光軸調整部材70は、投光部44を所定の煽り角度ψで保持するための傾斜面を有するテーパー台71及び固定部材72を含んで構成される。符号74は支持プレート、符号75は固定用ボルトの通し穴である。当該光軸調整部材70は不図示の固定台に固定用ボルトを用いて取り付けられる。   As shown in these drawings, the optical axis adjusting member 70 includes a tapered base 71 and a fixing member 72 having an inclined surface for holding the light projecting portion 44 at a predetermined turning angle ψ. Reference numeral 74 is a support plate, and reference numeral 75 is a through hole for a fixing bolt. The optical axis adjusting member 70 is attached to a fixing base (not shown) using a fixing bolt.

テーパー台71と固定部材72には、それぞれ対向する面に投光部44を挟むための溝71A、72Aが形成されており、この溝間(図11及び図12の符号77で示した投光部保持穴)に投光部44(図10〜図12において不図示)を挟持して不図示のボルトで固定する。図12中、符号78はテーパー台71を支持プレートに固定するためのボルト(不図示)が挿入される穴(支持プレート74側は雌ねじ)、符号79は固定部材72をテーパー台71に固定するためのボルト(不図示)が挿入される穴(テーパー台71側は雌ねじ)である。   Grooves 71A and 72A for sandwiching the light projecting portion 44 are formed on the taper base 71 and the fixing member 72, respectively, and the space between the grooves (light projection indicated by reference numeral 77 in FIGS. 11 and 12). The light projecting portion 44 (not shown in FIGS. 10 to 12) is sandwiched in the portion holding hole) and fixed with a bolt (not shown). In FIG. 12, reference numeral 78 denotes a hole (a female screw on the support plate 74 side) into which a bolt (not shown) for fixing the taper base 71 to the support plate is inserted, and reference numeral 79 fixes the fixing member 72 to the taper base 71. This is a hole (a taper base 71 side is a female screw) into which a bolt (not shown) is inserted.

煽り角度ψを変更する場合には、別の角度の傾斜面を有するテーパー台に取り替える。勿論、光軸の方向を自在に微調整可能な機構であってもよい。   When changing the turning angle ψ, the angle is replaced with a taper base having an inclined surface of another angle. Of course, a mechanism that can freely finely adjust the direction of the optical axis may be used.

かかる光軸調整部材70を用い、投光部44から出射した光が成膜面18Aで当該成膜面18Aと垂直となるように、煽り角度ψを調整することにより、光軸を調整する。或いは、この光軸調整部材70による光軸調整に代えて、又はこれと併用して、図7で説明した基板ホルダー光軸調整部材の角度と位置を微調整する。   Using this optical axis adjusting member 70, the optical axis is adjusted by adjusting the turning angle ψ so that the light emitted from the light projecting unit 44 is perpendicular to the film forming surface 18A on the film forming surface 18A. Alternatively, instead of or in combination with the optical axis adjustment by the optical axis adjustment member 70, the angle and position of the substrate holder optical axis adjustment member described in FIG. 7 are finely adjusted.

投光部の光軸調整部材70には、煽り方向だけでなく、カルーセル回転方向にも角度を調整可能な機能を持たせてもよい。また、投光部44から出射した光は必ずしも成膜面18Aにおいて成膜面18Aと垂直である必要はなく、ある任意の角度をつけてもよい。本発明によって用いられる低屈折率膜としてはSiO2 が例示され、高屈折率膜としてはNb25 、TiO2 、Ta2 5 等が例示される。 The light axis adjusting member 70 of the light projecting unit may have a function capable of adjusting the angle not only in the turning direction but also in the carousel rotation direction. In addition, the light emitted from the light projecting unit 44 does not necessarily have to be perpendicular to the film forming surface 18A on the film forming surface 18A, and may have an arbitrary angle. Examples of the low refractive index film used in the present invention include SiO 2 , and examples of the high refractive index film include Nb 2 O 5 , TiO 2 , and Ta 2 O 5 .

次に、上記の如く構成されたスパッタ装置10及び膜厚モニタリングシステム(制御装置)を用いてバンドパスフィルターを作製する方法を説明する。ここでは、低屈折率膜としてSiO2 、高屈折率膜としてNb25 をそれぞれ反応性スパッタにより成膜し、バンドパスフィルターを形成する例を説明する。 Next, a method for producing a band-pass filter using the sputtering apparatus 10 and the film thickness monitoring system (control apparatus) configured as described above will be described. Here, an example will be described in which SiO 2 is formed as a low refractive index film and Nb 2 O 5 is formed as a high refractive index film by reactive sputtering to form a bandpass filter.

作製するバンドパスフィルターの膜構成は例えば、下記に示した26層膜とする。   The film configuration of the bandpass filter to be manufactured is, for example, the 26-layer film shown below.

ガラス基板/(H/L)×6/H×2/(L/H)×6/L …(1)
上記(1)で示した膜構成におけるH及びLはそれぞれ高屈折率膜、低屈折率膜について光学膜厚がλ/4の膜であることを意味するものとする(ただし、λ=1550nmとする。)このとき、Hの物理膜厚は174.5nm、Lの物理膜厚は264.5nmである。
Glass substrate / (H / L) × 6 / H × 2 / (L / H) × 6 / L (1)
H and L in the film configuration shown in (1) above mean that the optical film thickness is λ / 4 for the high refractive index film and the low refractive index film (where λ = 1550 nm and At this time, the physical film thickness of H is 174.5 nm, and the physical film thickness of L is 264.5 nm.

図4乃至図9で説明したように、基板18を最も厚い部分が下、最も薄い部分が上として基板ホルダー14にセットし、図10乃至図12の光軸調整部材70によって膜厚モニタリングシステムの光軸を調整し、次いで、チャンバー12をロータリーポンプで5Pa まで粗引きした後、クライオポンプで1 ×10-3Pa まで排気する。 4 to 9, the substrate 18 is set on the substrate holder 14 with the thickest part at the bottom and the thinnest part at the top, and the optical axis adjusting member 70 in FIGS. The optical axis is adjusted, and then the chamber 12 is roughly evacuated to 5 Pa with a rotary pump and then evacuated to 1 × 10 −3 Pa with a cryopump.

次に、アルゴンガス100sccm、酸素ガスを30sccm、マスフローコントローラを通してチャンバー内に導入する。このときのガス圧は0.4Pa である。   Next, 100 sccm of argon gas and 30 sccm of oxygen gas are introduced into the chamber through a mass flow controller. The gas pressure at this time is 0.4 Pa.

Nb25 膜を形成するために、Nb ターゲットが取り付けられているACマグネトロン30に交流20kWの電力をそれぞれ供給し、ターゲットと基板間に配置されたシャッター38を閉めて5分間の予備放電を行った後、シャッター38を開けて成膜を開始する。 In order to form the Nb 2 O 5 film, AC power of 20 kW is supplied to the AC magnetron 30 to which the Nb target is attached, respectively, and the shutter 38 disposed between the target and the substrate is closed to perform a preliminary discharge for 5 minutes. Then, the shutter 38 is opened and film formation is started.

成膜時の透過光量の測定は、膜厚モニタリングシステムにより、以下の方法でなされる。光源40から1550nmの単色レーザ光が出射され、この光は回転するドラム17に取り付けられた基板18を通過して受光部46に入射する。受光部46に入射したレーザ光の受光量は透過光量という電気信号に変換された後、パソコン50に透過光量データとして取り込まれる。   The amount of transmitted light during film formation is measured by the following method using a film thickness monitoring system. A monochromatic laser beam of 1550 nm is emitted from the light source 40, and this light passes through the substrate 18 attached to the rotating drum 17 and enters the light receiving unit 46. The received light amount of the laser light incident on the light receiving unit 46 is converted into an electrical signal called transmitted light amount, and then taken into the personal computer 50 as transmitted light amount data.

図2で既に説明したとおり、ドラム17に取り付けられた各基板18について、上記の透過光量を取得し、基板18の中心におけるドラム回転毎のこの透過光量に基づき膜付き基板の透過光量データを計算する。計算されたドラム回転毎の膜付き基板の透過光量データに基づき、透過光量データが所望の値になったところで成膜を停止する。   As described above with reference to FIG. 2, the transmitted light amount is acquired for each substrate 18 attached to the drum 17, and the transmitted light amount data of the film-coated substrate is calculated based on the transmitted light amount for each drum rotation at the center of the substrate 18. To do. Based on the calculated transmitted light amount data of the film-coated substrate for each drum rotation, the film formation is stopped when the transmitted light amount data reaches a desired value.

次に、SiO2 膜を形成するために、Siターゲットが取り付けられているACマグネトロン20に交流20kWの電力をそれぞれ供給し、5分間の予備放電を行い、その後シャッター28を開けて成膜を開始する。 Next, in order to form the SiO 2 film, AC power of 20 kW is supplied to the AC magnetron 20 to which the Si target is attached, respectively, and a preliminary discharge is performed for 5 minutes, and then the shutter 28 is opened to start the film formation. To do.

成膜時の透過光量の測定と膜付き基板の透過光量データの計算は、上述したNb25 膜の成膜時における測定方法と同様である。こうして、膜付き基板18の透過光量データが所望の値になったところで成膜を停止する。 The measurement of the amount of transmitted light at the time of film formation and the calculation of the amount of transmitted light data of the substrate with the film are the same as the measurement method at the time of forming the Nb 2 O 5 film. Thus, the film formation is stopped when the transmitted light amount data of the film-coated substrate 18 reaches a desired value.

上述の高屈折率材料(Nb25 )の成膜工程と低屈折率材料(SiO2 )の成膜工程とを交互に繰り返すことにより、目的の光学多層膜を形成する。 The target optical multilayer film is formed by alternately repeating the film formation process of the high refractive index material (Nb 2 O 5 ) and the film formation process of the low refractive index material (SiO 2 ).

前出の図3は、バンドパスフィルターの1層目を成膜時(カルーセル回転数:100回転目)に上述の方法及び装置で取得した透過光量(電圧値)の例である。図3において横軸は成膜面への光の入射角度を示し、縦軸は受光部46から得られる透過光量を示す。   FIG. 3 described above is an example of the transmitted light amount (voltage value) acquired by the above-described method and apparatus when the first layer of the bandpass filter is formed (carousel rotation speed: 100th rotation). In FIG. 3, the horizontal axis indicates the incident angle of light on the film formation surface, and the vertical axis indicates the amount of transmitted light obtained from the light receiving unit 46.

図示の透過光量について、ノイズと光量の比は0.01以下と小さく、基板中心の透過光量を正確に測定できる。なお、「ノイズ」とは、後述する図14を用いて説明すると、成膜面へ光が入っている状態(図14における入射角度−5°〜5°の範囲)における、上下に振幅するグラフの最大値と最小値との差であり、「光量」は、図14において成膜面へ光が入っている状態における、透過光量の平均値(図14においては、約0.61)を意味する。   In the illustrated transmitted light amount, the ratio of noise to light amount is as small as 0.01 or less, and the transmitted light amount at the center of the substrate can be accurately measured. Note that the “noise” is a graph that swings up and down in a state where light enters the film formation surface (incident angle in the range of −5 ° to 5 ° in FIG. 14). The “light quantity” means the average value of the transmitted light quantity (about 0.61 in FIG. 14) in a state where light enters the film formation surface in FIG. To do.

本発明を適用して膜厚制御を行う場合、図3のように、透過光量のノイズが非常に少ない。したがって、このような低ノイズの透過光量データに基づいて算出される透過率の成膜経過は、図13に示すように、理論値とよく一致した透過率変化を示す。図13は、1層目のNb25 膜を作るときの基板18の中心におけるドラム回転毎の透過率変化の理論値と実際の測定結果を示したグラフである。なお、図13の縦軸が規格化されているのは、後述する図17との比較を容易にするためであり、図13の透過率とは透過光量データよりガラス基板の透過率で規格化したものである。 When the present invention is applied to control the film thickness, the amount of transmitted light noise is very small as shown in FIG. Therefore, the film formation progress of the transmittance calculated based on such low-noise transmitted light amount data shows a transmittance change that closely matches the theoretical value as shown in FIG. FIG. 13 is a graph showing the theoretical value and the actual measurement result of the transmittance change for each drum rotation at the center of the substrate 18 when forming the first Nb 2 O 5 film. The reason why the vertical axis in FIG. 13 is standardized is to facilitate comparison with FIG. 17 described later, and the transmittance in FIG. 13 is normalized by the transmittance of the glass substrate from the transmitted light amount data. It is a thing.

本発明による実施形態によれば、図13のとおり、他特性を阻害せずに、基板での光干渉がない状態で透過光量をより正確に測定できるため、高性能な低反射膜を要せずとも、容易にかつ高精度に膜厚制御することが可能である。   According to the embodiment of the present invention, as shown in FIG. 13, the amount of transmitted light can be measured more accurately without impairing other characteristics and without optical interference with the substrate, so a high-performance low-reflection film is required. It is possible to control the film thickness easily and with high accuracy.

〔比較例〕
比較のために、基板裏面に低反射膜を形成する従来の方法を適用してカルーセル型のスパッタ装置により光学多層膜を形成した場合の例を示す。
[Comparative Example]
For comparison, an example in which an optical multilayer film is formed by a carousel type sputtering apparatus by applying a conventional method of forming a low reflection film on the back surface of a substrate will be described.

この従来の方法に用いるガラス基板の厚さは一定(基板裏面の所定角度0°)であり、その裏面に例えば下記(2)に示した膜厚構成の低反射膜を施す。なお、基板の両面にこの低反射膜をコーティングした場合、波長1550nm付近において約0.2%の低反射性能を有するものとする。   The thickness of the glass substrate used in this conventional method is constant (a predetermined angle of 0 ° on the back surface of the substrate), and a low reflection film having a film thickness configuration shown in (2) below is applied to the back surface, for example. When the low reflection film is coated on both surfaces of the substrate, it has a low reflection performance of about 0.2% near the wavelength of 1550 nm.

SiO2 (膜厚275nm )/Nb25 (膜厚141nm )/SiO2 (膜厚78nm)
/Nb25 (膜厚73nm)/ガラス基板 …(2)
裏面に上記の低反射膜がコーティングされた基板を基板ホルダーにセットする。このとき、図5乃至図7で説明した基板保持ユニット62に代えて、平板状(厚さ一定)の基板を保持するのに適した構造の基板保持ユニットを用いる。
SiO 2 (film thickness 275 nm) / Nb 2 O 5 (film thickness 141 nm) / SiO 2 (film thickness 78 nm)
/ Nb 2 O 5 (film thickness 73 nm) / glass substrate (2)
A substrate having the low-reflection film coated on the back surface is set on a substrate holder. At this time, instead of the substrate holding unit 62 described with reference to FIGS. 5 to 7, a substrate holding unit having a structure suitable for holding a flat plate (constant thickness) substrate is used.

次に、基板の成膜面で投光部からの出射光が成膜面と垂直となるよう、投光部光軸調整部材の煽り角を調整する。或いは、この煽り角の調整に代えて、又はこれと併用して、基板ホルダー光軸調整部材の角度と位置を微調整する。   Next, the turning angle of the light projecting portion optical axis adjusting member is adjusted so that the light emitted from the light projecting portion is perpendicular to the film forming surface on the film forming surface of the substrate. Alternatively, the angle and position of the substrate holder optical axis adjusting member are finely adjusted in place of or in combination with the turning angle.

チャンバーを真空引きした後、上述した実施形態の実施条件と同様の条件で成膜を開始し、膜厚のモニタリングを行いながら、高屈折率材料(Nb25 )の成膜工程と低屈折率材料(SiO2 )の成膜工程とを交互に繰り返すことにより、目的の光学多層膜を形成する。 After evacuating the chamber, film formation is started under the same conditions as those in the above-described embodiment, and while monitoring the film thickness, the film formation process of the high refractive index material (Nb 2 O 5 ) and low refraction are performed. The target optical multilayer film is formed by alternately repeating the film forming step of the refractive index material (SiO 2 ).

作成したバンドパスフィルター1層目の成膜時に取得した透過光量を図14乃至図16に示す。   FIG. 14 to FIG. 16 show the amount of transmitted light acquired at the time of forming the first layer of the created bandpass filter.

図14乃至図16は、1層目のNb25 膜作成時におけるカルーセル回転数がそれぞれ10回転目(図14)、100回転目(図15)、150回転目(図15)の透過光量である。これらの図面に示すように、従来の手法では、ノイズと光量の比が0.03以上と大きかった。ノイズ/光量比は0.02以下が反射率を良好とする点で好ましい。 14 to 16 show the amounts of transmitted light when the carousel rotation speed is 10th rotation (FIG. 14), 100th rotation (FIG. 15), and 150th rotation (FIG. 15), respectively, at the time of forming the first Nb 2 O 5 film. It is. As shown in these drawings, in the conventional method, the ratio of noise to light quantity is as large as 0.03 or more. The noise / light quantity ratio is preferably 0.02 or less from the viewpoint of improving the reflectance.

また、基板裏面に形成した低反射膜では、基板裏面での光の反射を完全に防止することはできないため、基板での光干渉に起因してドラムの回転に伴い波状に変動する透過光量が得られる。この波状の透過光量は成膜の進行に伴い図14乃至図16に示したように変化するため、この透過光量に基づいて算出される基板中心(入射角度0°)での透過率の成膜経過(バンドパスフィルター1層目)は、図17に示したように、うねり状の透過率変化を示す。   In addition, since the low reflection film formed on the back surface of the substrate cannot completely prevent the reflection of light on the back surface of the substrate, the amount of transmitted light that fluctuates in a wavy manner with the rotation of the drum due to light interference on the substrate. can get. Since this wave-like transmitted light amount changes as shown in FIGS. 14 to 16 with the progress of film formation, film formation of transmittance at the center of the substrate (incidence angle 0 °) calculated based on this transmitted light amount. The progress (first band-pass filter layer) shows a wavy change in transmittance as shown in FIG.

このうねり状の透過率変化により、本来成膜停止すべき所望の膜厚において、透過率は極値とならず、あるいは、極値が複数存在するため本来成膜停止すべき極値を判別することが極めて困難である。   With this wavy transmittance change, the transmittance does not become an extreme value at a desired film thickness that should originally stop film formation, or the extreme value that should originally stop film formation is determined because there are a plurality of extreme values. Is extremely difficult.

なお、このうねり状の透過率変化は、基板裏面に0.003%以下の極めて高性能な低反射膜を施すことにより、ほぼ消失せしめることができることが分かるが、このような高性能な低反射膜を再現性よく得ることは極めて難しい。   It is understood that this wavy change in transmittance can be almost eliminated by applying an extremely high performance low reflection film of 0.003% or less on the back surface of the substrate. It is extremely difficult to obtain a film with good reproducibility.

したがって、従来の手法を適用して膜厚制御を行う場合、本来成膜停止すべき所望の透過率で成膜を停止し、高精度に膜厚制御することは極めて困難である。   Therefore, when film thickness control is performed by applying a conventional method, it is extremely difficult to stop film formation at a desired transmittance that should originally be stopped and control the film thickness with high accuracy.

〔基板裏面の研磨角度についての他の実施形態〕
上述した実施形態では、基板裏面の所定角度θ=1°の場合を例示したが、本発明の実施上、所定角度θは基板での光干渉を防止する観点から適宜設計される。図18は、所定角度が0.5°の基板を用いた場合について、バンドパスフィルターの1層目を成膜時(カルーセル回転数:10回転目)に取得した透過光量(電圧値)の一例である。基板裏面の傾斜角度以外の他の成膜条件は、図12の場合と同様である。
[Other Embodiments Regarding Polishing Angle of Substrate Back Side]
In the above-described embodiment, the case where the predetermined angle θ of the back surface of the substrate is 1 ° has been exemplified. However, for the implementation of the present invention, the predetermined angle θ is appropriately designed from the viewpoint of preventing optical interference on the substrate. FIG. 18 shows an example of the transmitted light amount (voltage value) acquired when the first layer of the bandpass filter is formed (carousel rotation speed: 10th rotation) when a substrate having a predetermined angle of 0.5 ° is used. It is. The film forming conditions other than the inclination angle of the back surface of the substrate are the same as in the case of FIG.

図18に示されているとおり、所定角度(成膜面に対する裏面の傾斜角度)が0.5°の基板を用いた場合も、図3(所定角度=1°)と同様に、ノイズと光量の比は0.01以下と小さく、基板中心の透過率をより正確に測定できる。   As shown in FIG. 18, even when a substrate having a predetermined angle (inclination angle of the back surface with respect to the film formation surface) of 0.5 ° is used, noise and light intensity are used as in FIG. 3 (predetermined angle = 1 °). Is as small as 0.01 or less, and the transmittance at the center of the substrate can be measured more accurately.

本発明の実施形態に係る膜厚制御装置を適用した光学多層膜成膜用のスパッタ装置の構成を示す一態様の平面模式図1 is a schematic plan view of an aspect showing a configuration of a sputtering apparatus for forming an optical multilayer film to which a film thickness control apparatus according to an embodiment of the present invention is applied. 透過光量を測定する様子を示した一態様の模式図Schematic diagram of one mode showing how to measure the amount of transmitted light 本実施形態においてバンドパスフィルターの1層目を成膜時(カルーセル回転数:100回転目)に取得した透過光量(電圧値)の例を示す図The figure which shows the example of the transmitted light amount (voltage value) acquired at the time of film-forming (carousel rotation speed: 100th rotation) in the 1st layer of a band pass filter in this embodiment. 基板の形状を示した一態様の模式図Schematic diagram of one embodiment showing the shape of the substrate 図1のスパッタ装置で使用される基板ホルダーの一態様の斜視図The perspective view of the one aspect | mode of the substrate holder used with the sputtering device of FIG. 基板ホルダーのベースプレートの一態様の正面図Front view of one embodiment of base plate of substrate holder ベースプレートに取り付けられる基板保持ユニットの一態様の正面図Front view of one mode of substrate holding unit attached to base plate 図7の基板保持ユニットを矢印A方向から見た図The figure which looked at the board | substrate holding unit of FIG. 7 from the arrow A direction 図7の基板保持ユニットを矢印B方向から見た図The figure which looked at the board | substrate holding unit of FIG. 7 from the arrow B direction 投光部を支持する光軸調整部材の一態様の側面図Side view of one aspect of optical axis adjusting member for supporting light projecting unit 図10に示した光軸調整部材の平面図Plan view of the optical axis adjusting member shown in FIG. 図10の光軸調整部材を矢印C方向から見た図The figure which looked at the optical-axis adjustment member of FIG. 10 from the arrow C direction 本発明の実施形態によって得られるバンドパスフィルター1層目の透過率の変化及び理論成膜経過の一例を示すグラフThe graph which shows an example of the change of the transmittance | permeability of the 1st layer of the band pass filter obtained by embodiment of this invention, and a theoretical film-forming progress 従来の方法によって作成したバンドパスフィルター1層目の成膜時(カルーセル回転数:10回転目)に取得した透過光量を示す参考図Reference diagram showing the amount of transmitted light obtained when the first layer of the bandpass filter prepared by the conventional method is formed (carousel rotation speed: 10th rotation) 従来の方法によって作成したバンドパスフィルター1層目の成膜時(カルーセル回転数:100回転目)に取得した透過光量を示す参考図Reference diagram showing the amount of transmitted light obtained when the first layer of the bandpass filter prepared by the conventional method is formed (carousel rotation speed: 100th rotation) 従来の方法によって作成したバンドパスフィルター1層目の成膜時(カルーセル回転数:150回転目)に取得した透過光量を示す参考図Reference diagram showing the amount of transmitted light obtained when the first layer of the bandpass filter prepared by the conventional method is formed (carousel rotation speed: 150th rotation) 従来の方法によって得られるバンドパスフィルター1層目の透過率の変化を示すグラフThe graph which shows the change of the transmittance | permeability of the 1st layer of the band pass filter obtained by the conventional method 裏面の研磨角度が0.5°の基板を用いてバンドパスフィルターの1層目を成膜時(カルーセル回転数:10回転目)に取得した透過光量の例を示す図The figure which shows the example of the transmitted light amount acquired at the time of film-forming (carousel rotation speed: 10th rotation) using the board | substrate with the back surface grinding | polishing angle of 0.5 degree | times.

符号の説明Explanation of symbols

10…スパッタ装置、12…チャンバー、14…基板ホルダー、14A…測定用穴、16…中心軸、17…ドラム、18…基板、18A…成膜面、18B…基板裏面、20…ACマグネトロン、22,23…マグネトロン部、26…交流電源、28…シャッター、30…ACマグネトロン、32,33…マグネトロン部、36…交流電源、38…シャッター、40…光源、42…光ファイバー、44…投光部、46…受光部、48…受光処理部、50…パソコン、52,53,54,55…シャッター、60…ベースプレート、61…ボルト、62…基板保持ユニット、64…保持枠プレート、64A…基板支持面、65…押えプレート、66,67…ボルト、68…通し穴、69…ガイド部材、70…光軸調整部材、71…テーパー台、71A…溝、72…固定部材、72A…溝、74…支持プレート、75…通し穴、78,79…ボルト挿入穴   DESCRIPTION OF SYMBOLS 10 ... Sputtering device, 12 ... Chamber, 14 ... Substrate holder, 14A ... Measurement hole, 16 ... Center axis, 17 ... Drum, 18 ... Substrate, 18A ... Deposition surface, 18B ... Substrate back surface, 20 ... AC magnetron, 22 , 23 ... Magnetron unit, 26 ... AC power source, 28 ... Shutter, 30 ... AC magnetron, 32, 33 ... Magnetron unit, 36 ... AC power source, 38 ... Shutter, 40 ... Light source, 42 ... Optical fiber, 44 ... Projection unit, 46: light receiving unit, 48: light receiving processing unit, 50: personal computer, 52, 53, 54, 55 ... shutter, 60 ... base plate, 61 ... bolt, 62 ... substrate holding unit, 64 ... holding frame plate, 64A ... substrate support surface 65, presser plate, 66, 67, bolt, 68, through hole, 69, guide member, 70, optical axis adjusting member, 71, taper base, 7 A ... groove, 72 ... fixing member, 72A ... groove, 74 ... support plate, 75 ... through hole, 78, 79 ... bolt insertion hole

Claims (9)

基板上に形成される膜の膜厚を制御する膜厚制御方法であって、
基板の成膜面と反対の基板裏面を前記成膜面に対して所定角度で傾斜させた形状を有する基板をスパッタ装置の基板ホルダーに固定し、当該スパッタ装置によって成膜を行うとともに、
前記基板ホルダー上の基板に向けて投光部から光を照射し、
照射した光を基板を挟んで投光部の反対側に位置する受光部によって受光して受光量に応じた透過光量を測定し、前記透過光量に基づいて膜付き基板の透過光量データを取得し、
その測定結果に基づいて成膜量に影響するパラメータを制御することにより所望の膜厚を得ることを特徴とする膜厚制御方法。
A film thickness control method for controlling the film thickness of a film formed on a substrate,
A substrate having a shape in which a substrate back surface opposite to a film formation surface of the substrate is inclined at a predetermined angle with respect to the film formation surface is fixed to a substrate holder of a sputtering apparatus, and film formation is performed by the sputtering apparatus.
Irradiate light from the light projecting unit toward the substrate on the substrate holder,
The irradiated light is received by the light receiving unit located on the opposite side of the light projecting unit across the substrate, the transmitted light amount is measured according to the received light amount, and the transmitted light amount data of the film-coated substrate is obtained based on the transmitted light amount. ,
A film thickness control method characterized in that a desired film thickness is obtained by controlling a parameter that affects a film formation amount based on the measurement result.
前記所定角度は、0°よりも大きく2°以下であることを特徴とする請求項1記載の膜厚制御方法。   The film thickness control method according to claim 1, wherein the predetermined angle is greater than 0 ° and 2 ° or less. 前記基板は、前記所定角度の傾斜面を有する形状の最も厚い部分または最も薄い部分が基板ホルダーの上下方向になるように前記基板ホルダーに固定されることを特徴とする請求項1または2記載の膜厚制御方法。   The said board | substrate is fixed to the said board | substrate holder so that the thickest part or the thinnest part of the shape which has the inclined surface of the said predetermined angle may become the up-down direction of a board | substrate holder. Film thickness control method. 前記投光部から照射した光の光軸が、前記基板の成膜面膜厚の制御中におけるいずれか1点で、当該成膜面と垂直になるように調整されることを特徴とする請求項1、2または3記載の膜厚制御方法。   The optical axis of the light emitted from the light projecting unit is adjusted to be perpendicular to the film formation surface at any one point during the control of the film formation surface film thickness of the substrate. The film thickness control method according to 1, 2 or 3. 前記スパッタ装置は、
チャンバーと、
該チャンバー内に回転自在に設置され、横断面が多角形状または円形状のドラムと、
前記ドラムの外周面上に取り付けられた前記基板ホルダーと、
前記チャンバー壁の内側に配置されたマグネトロンスパッタ源と、
から構成されることを特徴とする請求項1乃至4の何れか1項記載の膜厚制御方法。
The sputtering apparatus is
A chamber;
A drum that is rotatably installed in the chamber and has a polygonal or circular cross section;
The substrate holder mounted on the outer peripheral surface of the drum;
A magnetron sputter source disposed inside the chamber wall;
The film thickness control method according to any one of claims 1 to 4, wherein
基板上に形成される膜の膜厚を制御する膜厚制御装置であって、
基板の成膜面と反対の基板裏面を前記成膜面に対して所定角度で傾斜させた形状を有する基板をスパッタ装置の基板保持部に固定するための基板保持機構と、
前記基板保持機構に保持された基板に向けて光を照射する投光手段と、
前記基板を通過した光を受光し、受光量に応じた電気信号を出力する受光手段と、
前記受光手段から出力される電気信号から受光量に応じた透過光量を測定し、前記透過光量に基づいて膜付き基板の透過光量データを取得する演算処理手段と、
前記演算処理手段で得た前記透過光量データに基づいて成膜量に影響するパラメータを制御する制御手段と、
を備えたことを特徴とする膜厚制御装置。
A film thickness control device for controlling the film thickness of a film formed on a substrate,
A substrate holding mechanism for fixing a substrate having a shape in which a substrate back surface opposite to a film forming surface of the substrate is inclined at a predetermined angle with respect to the film forming surface to a substrate holding portion of a sputtering apparatus;
A light projecting means for irradiating light toward the substrate held by the substrate holding mechanism;
A light receiving means for receiving light that has passed through the substrate and outputting an electrical signal corresponding to the amount of light received;
An arithmetic processing unit that measures a transmitted light amount according to a received light amount from an electrical signal output from the light receiving unit, and obtains transmitted light amount data of the film-coated substrate based on the transmitted light amount;
Control means for controlling a parameter affecting the film formation amount based on the transmitted light amount data obtained by the arithmetic processing means;
A film thickness control apparatus comprising:
前記基板保持機構は、前記所定角度の傾斜面を有する形状の前記基板の最も厚い部分または最も薄い部分が上下方向になるように、当該基板を固定することを特徴とする請求項6記載の膜厚制御装置。   The film according to claim 6, wherein the substrate holding mechanism fixes the substrate so that a thickest portion or a thinnest portion of the substrate having the inclined surface having the predetermined angle is in the vertical direction. Thickness control device. 前記投光手段から照射した光が前記基板の成膜面で当該成膜面と垂直になるように光軸を調整する光軸調整機構を備えていることを特徴とする請求項6または7記載の膜厚制御装置。   8. An optical axis adjustment mechanism for adjusting an optical axis so that light emitted from the light projecting unit is perpendicular to the film formation surface of the substrate. Film thickness control device. 屈折率の異なる2種類の薄膜を基板上に交互に積層形成して成る光学多層膜を製造する製造方法であって、
基板の成膜面と反対の基板裏面を前記成膜面に対して所定角度で傾斜させた形状を有する基板を用いるとともに、
相対的に低屈折率の薄膜を形成するためのターゲットが取り付けられた低屈折率膜形成用のマグネトロンスパッタ源と、相対的に高屈折率の薄膜を形成するためのターゲットが取り付けられた高屈折率膜形成用のマグネトロンスパッタ源とが併設されたスパッタ装置を用い、
当該スパッタ装置の基板ホルダーに前記基板を固定して成膜を行い、
成膜中に前記基板ホルダー上の基板に向けて投光部から光を照射し、
照射した光を受光部によって受光して受光量に応じた透過光量を測定し、前記透過光量に基づいて膜付き基板の透過光量データを取得し、
その測定結果に基づいて成膜量に影響するパラメータを制御することにより、所望の膜厚の薄膜を形成することを特徴とする光学多層膜の製造方法。
A manufacturing method for manufacturing an optical multilayer film formed by alternately laminating two types of thin films having different refractive indexes on a substrate,
While using a substrate having a shape in which the substrate back surface opposite to the film formation surface of the substrate is inclined at a predetermined angle with respect to the film formation surface,
Magnetron sputtering source for forming a low refractive index film with a target for forming a relatively low refractive index thin film, and high refraction with a target for forming a relatively high refractive index thin film Using a sputtering apparatus provided with a magnetron sputtering source for forming an index film,
The substrate is fixed to the substrate holder of the sputtering apparatus to form a film,
Irradiate light from the light projecting unit toward the substrate on the substrate holder during film formation,
The irradiated light is received by the light receiving unit, the transmitted light amount is measured according to the received light amount, and the transmitted light amount data of the film-coated substrate is obtained based on the transmitted light amount,
A method for producing an optical multilayer film, comprising: forming a thin film having a desired film thickness by controlling a parameter that affects a film formation amount based on the measurement result.
JP2004188753A 2004-06-25 2004-06-25 Film thickness control method and apparatus, and optical multilayer film manufacturing method Expired - Lifetime JP4547612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188753A JP4547612B2 (en) 2004-06-25 2004-06-25 Film thickness control method and apparatus, and optical multilayer film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188753A JP4547612B2 (en) 2004-06-25 2004-06-25 Film thickness control method and apparatus, and optical multilayer film manufacturing method

Publications (2)

Publication Number Publication Date
JP2006009099A true JP2006009099A (en) 2006-01-12
JP4547612B2 JP4547612B2 (en) 2010-09-22

Family

ID=35776660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188753A Expired - Lifetime JP4547612B2 (en) 2004-06-25 2004-06-25 Film thickness control method and apparatus, and optical multilayer film manufacturing method

Country Status (1)

Country Link
JP (1) JP4547612B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211311A (en) * 2006-02-10 2007-08-23 Shincron:Kk Thin film forming apparatus and thin film forming method
JP2010229485A (en) * 2009-03-27 2010-10-14 Panasonic Corp Sputtering method
JP5189711B1 (en) * 2012-02-15 2013-04-24 株式会社シンクロン Optical film thickness measuring apparatus and thin film forming apparatus using optical film thickness measuring apparatus
JP5265050B1 (en) * 2012-02-27 2013-08-14 株式会社シンクロン LED light source device, film thickness measuring device, and thin film forming device
CN114761611A (en) * 2019-11-27 2022-07-15 康宁股份有限公司 System and method for film deposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002063064A1 (en) * 2001-02-07 2002-08-15 Asahi Glass Company, Limited Spatter device and spatter film forming method
JP2003121118A (en) * 2001-10-15 2003-04-23 Nippon Telegr & Teleph Corp <Ntt> Film thickness monitoring apparatus and method
JP2003149436A (en) * 2001-11-12 2003-05-21 Nikon Corp Optical thin film body and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002063064A1 (en) * 2001-02-07 2002-08-15 Asahi Glass Company, Limited Spatter device and spatter film forming method
JP2003121118A (en) * 2001-10-15 2003-04-23 Nippon Telegr & Teleph Corp <Ntt> Film thickness monitoring apparatus and method
JP2003149436A (en) * 2001-11-12 2003-05-21 Nikon Corp Optical thin film body and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211311A (en) * 2006-02-10 2007-08-23 Shincron:Kk Thin film forming apparatus and thin film forming method
JP2010229485A (en) * 2009-03-27 2010-10-14 Panasonic Corp Sputtering method
JP5189711B1 (en) * 2012-02-15 2013-04-24 株式会社シンクロン Optical film thickness measuring apparatus and thin film forming apparatus using optical film thickness measuring apparatus
JP5265050B1 (en) * 2012-02-27 2013-08-14 株式会社シンクロン LED light source device, film thickness measuring device, and thin film forming device
CN114761611A (en) * 2019-11-27 2022-07-15 康宁股份有限公司 System and method for film deposition
CN114761611B (en) * 2019-11-27 2024-02-02 康宁股份有限公司 System and method for film deposition

Also Published As

Publication number Publication date
JP4547612B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
US6863785B2 (en) Sputtering apparatus and sputter film deposition method
JP4487264B2 (en) Sputtering apparatus and sputter deposition method
JP3774094B2 (en) Film thickness and processing depth measuring device and film forming method
US6646753B2 (en) In-situ thickness and refractive index monitoring and control system for thin film deposition
US20040008435A1 (en) Optical film thickness controlling method, optical film thickness controlling apparatus, dielectric multilayer film manufacturing apparatus, and dielectric multilayer film manufactured using the same controlling apparatus or manufacturing apparatus
CA2128743C (en) An optical film, an antireflection film, a reflection film, a method for forming the optical film, the antireflection film or the reflection film and an optical device
US20070115486A1 (en) Film forming device, and production method for optical member
JP4547612B2 (en) Film thickness control method and apparatus, and optical multilayer film manufacturing method
JP4418926B2 (en) Optical thin film forming apparatus and method
WO2015004755A1 (en) Optical film thickness measurement device, thin film forming device, and method for measuring film thickness
JP2002022936A (en) Optical multilayer filter film forming method, film forming apparatus, and optical film thickness meter
US5812264A (en) Method of measuring surface reflectance and a method of producing antireflective polarizing film
JP2006071402A (en) Multilayer film thickness control method and film formation apparatus
JP4280890B2 (en) Sputtering apparatus and sputter deposition method
JP4792242B2 (en) Thin film forming apparatus and thin film forming method
US7074342B2 (en) Method of manufacturing optical crystal element of laser
JP2014133926A (en) Apparatus and method for thin film formation and optical film thickness monitoring device
JP2004061810A (en) Apparatus for forming multilayer optical filter and method for manufacturing multilayer optical filter
JP2004069490A (en) Film thickness measuring method and device for optical thin film
JPH11246968A (en) Production of optical thin film
JP2004244722A (en) Thin film deposition apparatus, thin film deposition method, and optical element
TWI472636B (en) Coating method and shading element using the method
JP2005301032A (en) Optical thin film forming apparatus, optical thin film forming method and optical element
JP2002266071A (en) Thin film deposition method and thin film deposition apparatus
CN116676582A (en) Direct light control system and method of coating equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R151 Written notification of patent or utility model registration

Ref document number: 4547612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term