[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5185541B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP5185541B2
JP5185541B2 JP2007034861A JP2007034861A JP5185541B2 JP 5185541 B2 JP5185541 B2 JP 5185541B2 JP 2007034861 A JP2007034861 A JP 2007034861A JP 2007034861 A JP2007034861 A JP 2007034861A JP 5185541 B2 JP5185541 B2 JP 5185541B2
Authority
JP
Japan
Prior art keywords
refrigerant
cooler
receiver
liquid
refrigerant circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007034861A
Other languages
Japanese (ja)
Other versions
JP2008196823A (en
Inventor
晴久 内田
英人 三浦
猛志 竹田
優樹 安成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO. SS. CO., LTD.
Original Assignee
TOYO. SS. CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO. SS. CO., LTD. filed Critical TOYO. SS. CO., LTD.
Priority to JP2007034861A priority Critical patent/JP5185541B2/en
Publication of JP2008196823A publication Critical patent/JP2008196823A/en
Application granted granted Critical
Publication of JP5185541B2 publication Critical patent/JP5185541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Description

本発明は、アンモニア等の冷媒を用いた1次冷媒回路により生成した冷熱を、二酸化炭素等を冷媒として用いた2次冷媒回路の凝縮熱として利用し、この二酸化炭素冷媒回路により生成した冷熱を負荷側に供給する自然冷媒を用いた冷却システムに関し、より詳しくは、二酸化炭素冷媒回路に有する負荷側冷却器にヒータデフロスト装置を設けてなる冷却システムに関する。   The present invention uses the cold generated by the primary refrigerant circuit using a refrigerant such as ammonia as the condensation heat of the secondary refrigerant circuit using carbon dioxide or the like as the refrigerant, and uses the cold generated by the carbon dioxide refrigerant circuit. More specifically, the present invention relates to a cooling system in which a heater defrost device is provided in a load-side cooler included in a carbon dioxide refrigerant circuit.

今日、オゾン層破壊防止や温暖化防止等の地球環境保全の観点から、室内の空調や物品の冷却・冷凍に用いる冷凍装置の冷媒を、広く冷媒として用いられてきたフロンに代えて、自然冷媒であってオゾン破壊係数ゼロまた地球温暖化係数がゼロもしくは限りなくゼロに近いアンモニアが見直され、このアンモニアを冷媒として用いる冷凍装置の採用が増加している。   Today, from the viewpoint of global environmental conservation such as prevention of ozone layer destruction and prevention of global warming, natural refrigerants are used instead of chlorofluorocarbons, which have been widely used as refrigerants, as refrigerants for indoor air conditioning and cooling / freezing of articles. However, ammonia whose ozone depletion coefficient is zero or whose global warming coefficient is zero or nearly zero is reviewed, and the adoption of refrigeration apparatuses using this ammonia as a refrigerant is increasing.

しかしながら、アンモニアは人体に有毒であるので、アンモニア冷媒回路の冷熱を直接負荷側に供給するのではなく、アンモニアと同じく自然冷媒であるが、毒性のない二酸化炭素を冷媒として使用する2次冷媒回路を介在せしめて負荷側に冷熱を供給する構成の自然冷媒冷却システムが実用に供されている(例えば、特許文献1参照)。   However, since ammonia is toxic to the human body, it is not a direct refrigerant supply to the load side, but a secondary refrigerant circuit that uses carbon dioxide that is a natural refrigerant as well as non-toxic carbon dioxide as a refrigerant. A natural refrigerant cooling system configured to supply cold energy to the load side with the intervening material is put into practical use (see, for example, Patent Document 1).

上述した二酸化炭素を冷媒とする回路は、アンモニア冷媒回路により生じる冷熱を凝縮冷熱として利用し、二酸化炭素を液化してレシーバーに貯留し、この液冷媒を液ポンプで負荷側冷却器に送り、この負荷側冷却器で熱交換を終えた冷媒のうち気化したものはカスケードコンデンサを介し凝縮されてレシーバーに戻り、また気化せず液体のものは直接レシーバーに戻るようになっている。   The circuit using carbon dioxide as a refrigerant described above uses the cold generated by the ammonia refrigerant circuit as condensation cold heat, liquefies carbon dioxide and stores it in a receiver, and sends this liquid refrigerant to a load-side cooler using a liquid pump. Of the refrigerant that has finished heat exchange in the load side cooler, the vaporized refrigerant is condensed via a cascade condenser and returned to the receiver, and the liquid that does not vaporize returns directly to the receiver.

そして、この二酸化炭素を冷媒とする回路に有する負荷側冷却器に付着する霜の除霜(デフロスト)は散水デフロストによって行われるのが一般的であるが、この散水デフロストによる負荷側冷却器の除霜は、以下に記載するような問題があった。   The defrosting of the frost adhering to the load side cooler in the circuit using carbon dioxide as a refrigerant is generally performed by watering defrosting, but the load side cooling by the watering defrosting is removed. The frost has a problem as described below.

すなわち、負荷側冷却器には冷却器負荷の多少に関係なく液ポンプによって二酸化炭素の液冷媒が一定量供給されているので、着霜の影響により交換熱量(液冷媒の気化量)が減少して冷却器内の液冷媒量が多い状態となっている負荷側冷却器に対し散水デフロストによる除霜を行うと、この散水によって負荷側冷却器内における液冷媒の温度が上昇して、通常より多い量の負荷側冷却器内の液冷媒が急激に気化するため二酸化炭素を冷媒とする回路の圧力が急上昇し、負荷側冷却器や冷媒回路の損傷、またカスケードコンデンサによる二酸化炭素の液化ができなくなる恐れがあった。   That is, since a certain amount of carbon dioxide liquid refrigerant is supplied to the load-side cooler by the liquid pump regardless of the load on the cooler, the amount of exchange heat (the amount of liquid refrigerant vaporized) decreases due to the influence of frost formation. If defrosting is performed on the load-side cooler with a large amount of liquid refrigerant in the cooler by watering defrost, the temperature of the liquid refrigerant in the load-side cooler increases due to the watering. The large amount of liquid refrigerant in the load-side cooler suddenly vaporizes, so the pressure in the circuit that uses carbon dioxide as a refrigerant rises rapidly, damaging the load-side cooler and refrigerant circuit, and liquefying carbon dioxide with a cascade capacitor. There was a fear of disappearing.

特開2002−243350号公報(第1〜5頁、図1〜5)JP 2002-243350 A (pages 1 to 5, FIGS. 1 to 5)

本発明は、二酸化炭素等の自然冷媒を用いた2次冷媒回路の負荷側冷却器に付着する霜を除霜(デフロスト)する際、2次冷媒回路に急激な圧力上昇を生じさせることなく除霜ができる冷却システムを提供できるようにした。   The present invention removes frost adhering to a load-side cooler of a secondary refrigerant circuit using a natural refrigerant such as carbon dioxide without causing a sudden pressure increase in the secondary refrigerant circuit. A cooling system that can generate frost can be provided.

上述した課題を解決するために、本発明に係る冷却システムは、少なくともいずれか一方に自然冷媒が循環される1次冷媒回路と2次冷媒回路を備え、1次冷媒回路にて生じる冷熱により2次冷媒回路の冷媒をカスケードコンデンサにより凝縮してレシーバーに貯留し、同レシーバー内の液冷媒を液ポンプによって負荷側の冷却器に送る自然冷媒冷却システムにおいて、前記冷却器をデフロストする際、前記レシーバー内における液冷媒の圧力または温度状態を検知しながら前記冷却器に備えるヒータの加熱量を調整して、同ヒータの加熱による冷却器内における液冷媒の気化量を調整するように構成したものとしてある。   In order to solve the above-described problems, a cooling system according to the present invention includes a primary refrigerant circuit and a secondary refrigerant circuit in which natural refrigerant is circulated in at least one of them, and the cooling system generates 2 by the cold generated in the primary refrigerant circuit. In a natural refrigerant cooling system in which the refrigerant in the secondary refrigerant circuit is condensed by a cascade condenser and stored in a receiver, and the liquid refrigerant in the receiver is sent to a load-side cooler by a liquid pump, when the defroster is defrosted, the receiver The heating amount of the heater provided in the cooler is adjusted while detecting the pressure or temperature state of the liquid refrigerant in the inside, and the vaporization amount of the liquid refrigerant in the cooler due to the heating of the heater is adjusted. is there.

また前記ヒータを電気ヒータで構成し、この電気ヒータの電源をON/OFFすることにより、あるいは、電気ヒータの放熱量を増減調整することによりヒータの加熱量を調整できるように構成したものとしてある。   Further, the heater is constituted by an electric heater, and the heating amount of the heater can be adjusted by turning on / off the electric heater, or by increasing / decreasing the heat radiation amount of the electric heater. .

本発明の冷却システムによれば、冷却システム運転中に2次冷媒回路の負荷側冷却器に付着する霜を除霜(デフロスト)する場合は、この2次冷媒回路に有するレシーバー内における二酸化炭素等の自然冷媒が液化した液冷媒の圧力または温度状態を検知しながら負荷側冷却器に備えるヒータの加熱量を調整して負荷側冷却器に付着する霜を除霜(デフロスト)するので、負荷側冷却器内部の温度が急激に上昇せず、負荷側冷却器内部の液冷媒も急激に気化することがない。   According to the cooling system of the present invention, when defrosting frost adhering to the load side cooler of the secondary refrigerant circuit during operation of the cooling system, carbon dioxide in the receiver of the secondary refrigerant circuit, etc. The frost adhering to the load-side cooler is defrosted (defrosted) by adjusting the heating amount of the heater provided in the load-side cooler while detecting the pressure or temperature state of the liquid refrigerant in which the natural refrigerant is liquefied. The temperature inside the cooler does not rise rapidly, and the liquid refrigerant inside the load side cooler does not vaporize rapidly.

したがって、負荷側冷却器や二酸化炭素等を冷媒とする2次冷媒回路を損傷させることなく安全に負荷側冷却器に付着する霜を除霜でき、また、カスケードコンデンサに気化した冷媒が急激に流入することがなくアンモニア等を冷媒とする1次冷媒回路も安定した運転ができる。   Therefore, the frost adhering to the load-side cooler can be safely defrosted without damaging the load-side cooler and the secondary refrigerant circuit using carbon dioxide as a refrigerant, and the vaporized refrigerant rapidly flows into the cascade condenser. Therefore, the primary refrigerant circuit using ammonia or the like as a refrigerant can be operated stably.

また、これまで一般的であった2次冷媒回路に有する負荷側冷却器の散水デフロストによる除霜を、ヒータによるヒータデフロストにしたので、散水デフロストに必要であったデフロスト水槽や送水管等の設備を設置しなくてもよく、したがってこれら設備に掛かる設置コストやメンテナンスコストの節約を図ることができる。   Moreover, since the defrosting by the water spray defrost of the load side cooler in the secondary refrigerant circuit, which has been generally used so far, is made the heater defrost by the heater, facilities such as a defrost water tank and a water pipe that are necessary for the water spray defrost Therefore, it is possible to save installation costs and maintenance costs for these facilities.

そして冷却システムを休止する際は、前述する冷却器の除霜と同じように、レシーバー内における二酸化炭素等の自然冷媒が液化した液冷媒の圧力または温度状態を検知しながら負荷側冷却器に備えるヒータの加熱量を調整しながら同ヒータを作動することにより、負荷側冷却器内に残留する二酸化炭素等の液冷媒を安全にかつ短時間で回収することもできる。   When the cooling system is suspended, the load-side cooler is provided while detecting the pressure or temperature state of the liquid refrigerant in which natural refrigerant such as carbon dioxide in the receiver is liquefied, as in the defrosting of the cooler described above. By operating the heater while adjusting the heating amount of the heater, liquid refrigerant such as carbon dioxide remaining in the load side cooler can be recovered safely and in a short time.

以下、本発明の冷却システムを添付図面に基づいて説明する。
図において、符号1は冷媒をアンモニアとする1次冷媒回路を、符号2は冷媒を二酸化炭素とする2次冷媒回をそれぞれ示している。
Hereinafter, the cooling system of the present invention will be described with reference to the accompanying drawings.
In the figure, reference numeral 1 denotes a primary refrigerant circuit in which the refrigerant is ammonia, and reference numeral 2 denotes a secondary refrigerant circuit in which the refrigerant is carbon dioxide.

前記1次冷媒回路1においては、レシーバーを兼用する液化したアンモニア冷媒を貯留する凝縮器3の液相3aに一端が接続されたアンモニア冷媒往管5の他端が膨張弁4を介してカスケードコンデンサ6の1次側入口に接続され、同カスケードコンデンサ6の1次側出口に一端が接続されたアンモニア冷媒復管7の他端が圧縮機8を介して前記凝縮器3の気相3bに接続されている。   In the primary refrigerant circuit 1, the other end of the ammonia refrigerant forward pipe 5 whose one end is connected to the liquid phase 3 a of the condenser 3 that stores liquefied ammonia refrigerant that also serves as a receiver is connected to the cascade condenser via the expansion valve 4. The other end of the ammonia refrigerant return pipe 7 connected to the primary side inlet of the cascade condenser 6 and one end connected to the primary side outlet of the cascade condenser 6 is connected to the gas phase 3b of the condenser 3 via the compressor 8. Has been.

前記2次冷媒回路2においては、レシーバー9の液相9aに一端が接続された二酸化炭素冷媒往管12の他端が液ポンプ10、調整弁11、電磁弁13を介して冷却器14の冷媒入口14aに接続され、同冷却器14の冷媒出口14bに一端が接続された二酸化炭素冷媒復管16の他端が復管分岐部16aに接続され、同復管分岐部16aに一端が接続された直帰管17の他端が前記レシーバー9の気相9bに接続され、また同復管分岐部16aに一端が接続された経由入管18の他端がカスケードコンデンサ6の2次側入口に接続され、同カスケードコンデンサ6の2次側出口に一端が接続された経由出管19の他端が前記レシーバー9の気相9cに接続されている。   In the secondary refrigerant circuit 2, the other end of the carbon dioxide refrigerant forward pipe 12 whose one end is connected to the liquid phase 9 a of the receiver 9 is the refrigerant of the cooler 14 via the liquid pump 10, the regulating valve 11, and the electromagnetic valve 13. The other end of the carbon dioxide refrigerant return pipe 16 connected to the inlet 14a and connected at one end to the refrigerant outlet 14b of the cooler 14 is connected to the return pipe branch 16a, and one end is connected to the return pipe branch 16a. The other end of the return pipe 17 is connected to the gas phase 9b of the receiver 9, and the other end of the via-inlet pipe 18 whose one end is connected to the return branch 16a is connected to the secondary side inlet of the cascade capacitor 6. The other end of the via / outlet pipe 19 having one end connected to the secondary outlet of the cascade capacitor 6 is connected to the gas phase 9c of the receiver 9.

また、前記冷却器14にはこの冷却器14に付着する霜を除霜(デフロスト)する電気ヒータ15を設けていて、この電気ヒータ15は、信号線を介して制御回路24に接続されている。   The cooler 14 is provided with an electric heater 15 for defrosting the frost adhering to the cooler 14, and the electric heater 15 is connected to a control circuit 24 through a signal line. .

また制御回路24は、信号線を介してレシーバー9に設けている圧力センサ20と接続されていて、前記電気ヒータ15によって冷却器14に付着する霜を除霜(デフロスト)する際は、制御回路24が、前記レシーバー9に設けている圧力センサ20が検出するレシーバー9の内圧データを基に、電気ヒータ15の電源をON/OFFして同電気ヒータ15による加熱量を適宜に調整しながら冷却器14に付着する霜を除霜(デフロスト)するようになっている。   The control circuit 24 is connected to the pressure sensor 20 provided in the receiver 9 via a signal line. When the frost adhering to the cooler 14 is defrosted by the electric heater 15, the control circuit 24 24, cooling based on the internal pressure data of the receiver 9 detected by the pressure sensor 20 provided in the receiver 9 while turning on / off the power of the electric heater 15 and appropriately adjusting the heating amount by the electric heater 15 The frost adhering to the vessel 14 is defrosted (defrosted).

すなわち、冷却器14に付着する霜を除霜(デフロスト)する際、同冷却器14内部に気化しないで液状で溜まっている二酸化炭素の液冷媒が、電気ヒータ15の加熱による冷却器14内部の温度上昇によって急激に気化して、この気化した冷媒により冷却器14や二酸化炭素冷媒復管16、この二酸化炭素冷媒復管16後段の直帰管17、経由入管18、カスケードコンデンサ6、経由出管19等の2次冷媒回路2系の構成部材が損傷しないようにするため、電気ヒータ15の電源をON/OFFすることで二酸化炭素の液冷媒の気化量を調整している。   That is, when the frost adhering to the cooler 14 is defrosted (defrosted), the liquid refrigerant of carbon dioxide accumulated in a liquid state without being vaporized inside the cooler 14 is heated inside the cooler 14 by heating of the electric heater 15. The vaporizer rapidly vaporizes due to the temperature rise, and the vaporized refrigerant causes the cooler 14, the carbon dioxide refrigerant return pipe 16, the direct return pipe 17 subsequent to the carbon dioxide refrigerant return pipe 16, the via inlet pipe 18, the cascade condenser 6, and the via outlet pipe. In order to prevent damage to the components of the secondary refrigerant circuit 2 system such as 19, the vaporization amount of the liquid refrigerant of carbon dioxide is adjusted by turning on / off the power supply of the electric heater 15.

また、上述した電気ヒータ15における加熱量の調整は、同電気ヒータ15の電源をON/OFFすることで加熱量を調整しているが、電気ヒータ15の放熱量を増減調整することで加熱量を調整する場合もある。   The above-described adjustment of the heating amount in the electric heater 15 is performed by adjusting the heating amount by turning on / off the power source of the electric heater 15, but the heating amount is adjusted by increasing / decreasing the heat radiation amount of the electric heater 15. May be adjusted.

また制御回路24による電気ヒータ15における加熱量の調整は、本実施例では示していないが、レシーバー9の内圧を検知する圧力センサ20に変えて、レシーバー9に、同レシーバー9内における液冷媒の温度を検知する温度センサを設け、この温度センサの液冷媒の温度データを基にして前記制御回路24によって電気ヒータ15による加熱量を適宜に調整しながら動作させる場合もある。   The adjustment of the heating amount in the electric heater 15 by the control circuit 24 is not shown in this embodiment, but instead of the pressure sensor 20 for detecting the internal pressure of the receiver 9, the liquid refrigerant in the receiver 9 is changed to the receiver 9. In some cases, a temperature sensor for detecting the temperature is provided, and the control circuit 24 is operated while appropriately adjusting the heating amount by the electric heater 15 based on the temperature data of the liquid refrigerant of the temperature sensor.

そして、前述したレシーバー9、レシーバー9と液ポンプ10間の二酸化炭素冷媒往管12、液ポンプ10には信号線を介して液量センサ21を接続してあって、この液量センサ21によってレシーバー9、レシーバー9と液ポンプ10間の二酸化炭素冷媒往管12、液ポンプ10の液量が監視されている。   A liquid level sensor 21 is connected to the receiver 9, the carbon dioxide refrigerant forward pipe 12 between the receiver 9 and the liquid pump 10, and the liquid pump 10 via a signal line. 9, the carbon dioxide refrigerant forward pipe 12 between the receiver 9 and the liquid pump 10 and the liquid amount of the liquid pump 10 are monitored.

また、被空調室等の温度を検出する温度センサ23が信号線を介して制御回路22に接続してあって、この温度センサ23が検出した温度データを基に、制御回路22によって電磁弁13の開度が調節される。   In addition, a temperature sensor 23 for detecting the temperature of the air-conditioned room or the like is connected to the control circuit 22 via a signal line. Based on the temperature data detected by the temperature sensor 23, the control circuit 22 causes the electromagnetic valve 13 to operate. Is adjusted.

本発明に係る冷却システムの実施例を示す構成図。The block diagram which shows the Example of the cooling system which concerns on this invention.

符号の説明Explanation of symbols

1 1次冷媒回路
2 2次冷媒回路
3 凝縮器
3a 液相
3b 気相
4 膨張弁
5 アンモニア冷媒往管
6 カスケードコンデンサ
7 アンモニア冷媒復管
8 圧縮機
9 レシーバー
9a 液相
9b 気相
9c 気相
10 液ポンプ
11 調整弁
12 二酸化炭素冷媒往管
13 電磁弁
14 冷却器
14a 冷媒入口
14b 冷媒出口
15 電気ヒータ
16 二酸化炭素冷媒復管
16a 復管分岐部
17 直帰管
18 経由入管
19 経由出管
20 圧力センサ
21 液量センサ
22 制御回路
23 温度センサ
24 制御回路
DESCRIPTION OF SYMBOLS 1 Primary refrigerant circuit 2 Secondary refrigerant circuit 3 Condenser 3a Liquid phase 3b Gas phase 4 Expansion valve 5 Ammonia refrigerant outgoing pipe 6 Cascade capacitor 7 Ammonia refrigerant return pipe 8 Compressor 9 Receiver 9a Liquid phase 9b Gas phase 9c Gas phase 10 Liquid pump 11 Adjustment valve 12 Carbon dioxide refrigerant outgoing pipe 13 Solenoid valve 14 Cooler 14a Refrigerant inlet 14b Refrigerant outlet 15 Electric heater 16 Carbon dioxide refrigerant return pipe 16a Return pipe branching section 17 Return pipe 18 Via pipe 19 Via outlet pipe 20 Pressure Sensor 21 Liquid sensor 22 Control circuit 23 Temperature sensor 24 Control circuit

Claims (2)

1次冷媒としてアンモニアが循環される1次冷媒回路と、2次冷媒として二酸化炭素が循環される2次冷媒回路と、を備え、1次冷媒回路にて生じる冷熱により2次冷媒回路の冷媒をカスケードコンデンサにより凝縮してレシーバーに貯留し、同レシーバー内の液冷媒を液ポンプによって負荷側の冷却器に送る自然冷媒冷却システムにおいて、
前記冷却器をデフロストする際、前記レシーバー内における液冷媒の圧力または温度状態を検知しながら前記冷却器に備える電気ヒータの電源をON/OFFすることにより同ヒータの加熱量を調整して、同ヒータの加熱による冷却器内における液冷媒の気化量を急激に気化しない程度の気化量に調整して、負荷側冷却器及び/又は冷媒回路を損傷させることなく除霜できるように構成してなる冷却システム。
A primary refrigerant circuit in which ammonia is circulated as a primary refrigerant, and a secondary refrigerant circuit in which carbon dioxide is circulated as a secondary refrigerant, and the refrigerant in the secondary refrigerant circuit is cooled by the cold heat generated in the primary refrigerant circuit. In the natural refrigerant cooling system that condenses by the cascade condenser and stores in the receiver, and sends the liquid refrigerant in the receiver to the load side cooler by the liquid pump.
When defrosting the cooler, the heating amount of the heater is adjusted by turning on / off the power of the electric heater provided in the cooler while detecting the pressure or temperature state of the liquid refrigerant in the receiver. By adjusting the vaporization amount of the liquid refrigerant in the cooler due to the heating of the heater to a vaporization amount that does not rapidly vaporize , the load-side cooler and / or the refrigerant circuit can be defrosted without being damaged. Cooling system.
1次冷媒としてアンモニアが循環される1次冷媒回路と、2次冷媒として二酸化炭素が循環される2次冷媒回路と、を備え、1次冷媒回路にて生じる冷熱により2次冷媒回路の冷媒をカスケードコンデンサにより凝縮してレシーバーに貯留し、同レシーバー内の液冷媒を液ポンプによって負荷側の冷却器に送る自然冷媒冷却システムにおいて、
前記冷却器をデフロストする際、前記レシーバー内における液冷媒の圧力または温度状態を検知しながら前記冷却器に備える電気ヒータの放熱量を増減調整することにより同ヒータの加熱量を調整して、同ヒータの加熱による冷却器内における液冷媒の気化量を急激に気化しない程度の気化量に調整して、負荷側冷却器及び/又は冷媒回路を損傷させることなく除霜できるように構成してなる冷却システム。
A primary refrigerant circuit in which ammonia is circulated as a primary refrigerant, and a secondary refrigerant circuit in which carbon dioxide is circulated as a secondary refrigerant, and the refrigerant in the secondary refrigerant circuit is cooled by the cold heat generated in the primary refrigerant circuit. In the natural refrigerant cooling system that condenses by the cascade condenser and stores in the receiver, and sends the liquid refrigerant in the receiver to the load side cooler by the liquid pump.
When defrosting the cooler, the heating amount of the heater is adjusted by increasing / decreasing the heat radiation amount of the electric heater provided in the cooler while detecting the pressure or temperature state of the liquid refrigerant in the receiver. By adjusting the vaporization amount of the liquid refrigerant in the cooler due to the heating of the heater to a vaporization amount that does not rapidly vaporize , the load-side cooler and / or the refrigerant circuit can be defrosted without being damaged. Cooling system.
JP2007034861A 2007-02-15 2007-02-15 Cooling system Active JP5185541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007034861A JP5185541B2 (en) 2007-02-15 2007-02-15 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007034861A JP5185541B2 (en) 2007-02-15 2007-02-15 Cooling system

Publications (2)

Publication Number Publication Date
JP2008196823A JP2008196823A (en) 2008-08-28
JP5185541B2 true JP5185541B2 (en) 2013-04-17

Family

ID=39755926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007034861A Active JP5185541B2 (en) 2007-02-15 2007-02-15 Cooling system

Country Status (1)

Country Link
JP (1) JP5185541B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312075B2 (en) * 2009-02-05 2013-10-09 株式会社東洋製作所 Defrost equipment in carbon dioxide circulation and cooling system
JP5316973B2 (en) * 2011-12-15 2013-10-16 株式会社東洋製作所 Cooling and defrosting system using carbon dioxide refrigerant, and operation method thereof
KR101551052B1 (en) * 2014-01-10 2015-09-18 한밭대학교 산학협력단 CO2 secondary fluid cooling system equipped with controlling CO2 charge amount

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134481U (en) * 1989-04-07 1990-11-08
JPH05215460A (en) * 1992-01-30 1993-08-24 Sanyo Electric Co Ltd Method and apparatus for deforsting evaporator
JPH0634259A (en) * 1992-07-21 1994-02-08 Fujitsu General Ltd Electrical refrigerator
JP3335263B2 (en) * 1995-03-28 2002-10-15 株式会社東芝 Temperature sensor mounting device
JP3473358B2 (en) * 1997-01-06 2003-12-02 三菱電機株式会社 Refrigeration / air conditioning device and refrigerant circuit assembly method
JPH10300244A (en) * 1997-04-23 1998-11-13 Matsushita Refrig Co Ltd Liquid refrigerant retention preventing apparatus in compressor
JP2002243350A (en) * 2001-02-16 2002-08-28 Sanden Corp Refrigerating system
JP2002277144A (en) * 2001-03-15 2002-09-25 Matsushita Refrig Co Ltd Refrigerator
JP2005172416A (en) * 2003-11-21 2005-06-30 Mayekawa Mfg Co Ltd Ammonia/co2 refrigeration system

Also Published As

Publication number Publication date
JP2008196823A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
AU2008270655B2 (en) Hot gas defrost method and apparatus
EP2792970B1 (en) Container refrigeration device
US7210303B2 (en) Transcritical heat pump water heating system using auxiliary electric heater
US20090228152A1 (en) Chiller Adaptation for Cold Weather Use
EP2092248A1 (en) Air-source heat pump
JP5312075B2 (en) Defrost equipment in carbon dioxide circulation and cooling system
JP2010249448A (en) Heat pump type water heater-air conditioner
JP2013083407A (en) Cooling device
US20140007603A1 (en) Co2 refrigeration system for ice-playing surface
JP5185541B2 (en) Cooling system
JP2003314932A (en) Refrigerator
KR101455973B1 (en) Hot gas defrosting type refrigeration system
JP5084934B2 (en) Defrost equipment in carbon dioxide circulation and cooling system
JP5693932B2 (en) Cooling system and cooling method
KR20150047706A (en) Refrigerating cycle device
JP5084933B2 (en) Defrost equipment in carbon dioxide circulation and cooling system
JP2000179952A (en) Refrigeration cycle controller
KR102713944B1 (en) Refrigerating defrost cycle device
JP2008032265A (en) Refrigerating device
JP2006220332A (en) Composite type air conditioner
KR101538076B1 (en) Dehumidifying cooling and heating apparatus being heat pump unit of water-air system
JP2004162998A (en) Refrigeration unit for vehicle and its control method
US20090272518A1 (en) Air Conditioner Having Cooling and Heating Functions
JP2006220335A (en) Composite type air conditioner
JP5058348B2 (en) Defrost equipment in carbon dioxide circulation and cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130118

R150 Certificate of patent or registration of utility model

Ref document number: 5185541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250