[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5182159B2 - エジェクタ方式の減圧装置およびこれを備えた冷凍サイクル - Google Patents

エジェクタ方式の減圧装置およびこれを備えた冷凍サイクル Download PDF

Info

Publication number
JP5182159B2
JP5182159B2 JP2009054054A JP2009054054A JP5182159B2 JP 5182159 B2 JP5182159 B2 JP 5182159B2 JP 2009054054 A JP2009054054 A JP 2009054054A JP 2009054054 A JP2009054054 A JP 2009054054A JP 5182159 B2 JP5182159 B2 JP 5182159B2
Authority
JP
Japan
Prior art keywords
passage
gas
refrigerant
liquid
phase refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009054054A
Other languages
English (en)
Other versions
JP2010210111A (ja
Inventor
明人 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009054054A priority Critical patent/JP5182159B2/ja
Publication of JP2010210111A publication Critical patent/JP2010210111A/ja
Application granted granted Critical
Publication of JP5182159B2 publication Critical patent/JP5182159B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Description

本発明は、流体を減圧する減圧手段であり、高速で噴出する作動流体の巻き込み作用によって流体輸送を行う運動量輸送式ポンプであるエジェクタ方式の減圧装置およびこれを備えた冷凍サイクルに関する。
エジェクタ方式の減圧装置においてノズルから噴出された液冷媒は、その液滴の大きさが不均一であり、液滴がもつ慣性力の特性により、混合部の通路の中心軸付近で粒径の大きな液滴が分布し、管壁付近で拡散し易い粒径の小さい液滴が分布する傾向にある。一方、吸引口より吸引された気相冷媒は、混合部で管壁寄りを流れる傾向にあるため、粒径の小さい液滴とは混合し易いが、粒径の大きな液滴とは十分に混合せず、混合部内で液冷媒と気相冷媒とが均一に混合されない。
そこで、第1の従来技術であるエジェクタ方式の減圧装置は、ノズルの噴出口から噴出される液冷媒と、吸引口より吸引された気相冷媒とを均一に混合させる混合手段として、混合部内の中心部に配置されたスワラーまたはニードル弁を備えている(例えば、特許文献1参照)。
第1の従来技術においてノズルの噴出口より噴出された冷媒の液滴は、スワラーまたはニードル弁に衝突して混合部内の管壁方向へ拡散されて微細化され、吸引口から吸引された気相冷媒と混合するようになる。第1の従来技術は、この混合部における液冷媒と気相冷媒との混合によってエジェクタの効率向上を図っている。
しかしながら、このように混合部で冷媒の液滴を微細化する方式では、液冷媒の微細化に限界があり、さらなる液冷媒の微細化の促進を図る必要がある。さらなる液冷媒の微細化促進を図るには、ノズル中の通路断面積の小さい部分(喉部ともいう)を冷媒が通過した後に、減圧膨張によって液冷媒内に気泡を成長させ、この気泡を起因として液相冷媒の分裂を促進して微細化した液滴を生成することが考えられる。
そして、液体内に微細な気泡を発生させる第2の従来技術として、特許文献2には、分離された液体と気体のそれぞれの旋回流を静止した液体中に噴出させることにより、液体内に微細な気泡を発生させる旋回式微細気泡発生装置が開示されている。
この旋回式微細気泡発生装置では、下流側が先細りの円錐形の内壁面で形成されるスペースに対して、接線方向に延びる通路から液体を導入して当該スペース内に液体の旋回流を形成し、旋回流により円錐管軸上に負圧部分が形成される。この負圧部分によって、円錐形のスペースの底部に設けられた気体導入口から気体が吸引される。液体の旋回速度と軸方向速度は円錐形の頂部に設けられた噴出口に向かうほど増加し、この旋回に伴って、液体と気体の比重差から、液体には遠心力が働き気体には向心力が働くため、旋回する気体部分と旋回する液体部分の分離が可能となり、旋回の気体部分が噴出口まで糸状に形成されるようになる。旋回の気体部分は、噴出口からの噴出と同時に周囲の静止した液体によってその旋回が急激に弱められ、その前後で急激な旋回速度が生じる。この旋回速度差によって、糸状の気体部分が連続的に安定して切断され、その結果として大量の微細な気泡が発生する。
特開平6−2964号公報 特開2003−205228号公報
上記第2の従来技術をエジェクタ方式の減圧装置に適用した場合には、円錐形スペースの出口には静止した液体が存在しないため、ノズルよりも下流側の混合部においても、旋回流が存在することになる。この旋回流のため、ノズルから噴出された気泡を含む流体は、気体と液体とに分離されてしまうので、吸引口から吸引された気体と均一に混合されないという問題がある。
本発明は、上記問題点に鑑みなされたものであり、混合部での微細な気泡を含む液相流体と気相流体との十分な混合が図れるエジェクタ方式の減圧装置およびこれを備えた冷凍サイクルを提供することを目的とする。
上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲および下記各手段に記載の括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示す。
すなわち、請求項1に記載のエジェクタ方式の減圧装置に係る発明は、流入する液相流体を減圧膨張するノズル(410)と、流入する液相流体よりも低圧である気相流体がノズルの噴出口(415)から噴出される流体による吸引力によって吸引される吸引口(416)と、ノズルの噴出口の下流側に設けられる通路であってノズルから噴出される流体と吸引口から吸引される気相流体とを混合させる通路を構成する混合部(42)と、混合部の下流側に設けられる通路であって混合部から流出した流体を減速して圧力を上昇させるディフューザ部(43)と、を備えている。
さらにノズルは、上流側の通路であって通路断面積が下流に向けて狭まる第1通路(412)と、第1通路の下流端部に接続される第2通路(413)と、第2通路の下流端部に接続され、通路断面積が下流に向けて大きくなる第3通路(414)と、を含んでおり、
第1通路には、第1通路の内周壁面に開口し、内周壁面の周方向に沿うように液相流体が流入する第1流入口(411)と、第1通路上流側の軸方向端部に位置する内壁面に開口し、第1流入口から第1通路に流入する液相流体よりも低圧である気相流体が第1通路の軸方向に流入する第2流入口(418)と、が設けられており、
第2通路には、上記内周壁面に沿う液相流体の流入によって第1通路で形成された旋回流が第2通路を流通するときに抵抗を与えて旋回流を乱す旋回流抑制手段(44)が設けられていることを特徴とする。
この発明によれば、第2通路に設けられた旋回流抑制手段により、第2通路を流れる旋回流の流れが妨げられるため、下流の第3通路および混合部では旋回流が形成されないようになるので、旋回流の遠心力の作用による気相流体と液滴の分離が発生しない。これにより、ノズル内で発生させた微細な気泡および液相流体と吸引口から吸引された低圧の気相流体とを互いに拡散させて混ざり合わせることができる。したがって、多数の気泡の発生および旋回流の抑制作用により、混合部での微細な気泡を含む液相流体と気相流体との十分な混合が図れ、エジェクタ装置の効率を向上することができる。
請求項2に記載の発明は、請求項1に記載の発明における旋回流抑制手段は、第2通路の内壁面に形成される溝部(441)を備える抵抗体(44)であり、溝部は、第2通路を下流側に進む旋回流の回転方向とは逆向きの回転方向に回転しながら下流側に向けて進むように設けられていることを特徴とする。
この発明によれば、第2通路の内壁面に形成される溝部が旋回流の回転方向に対して逆方向に回転しながら下流側に前進するように設けられることにより、旋回流は内壁面付近の周方向の運動が溝部によって抵抗を受けるため、周方向の速度ベクトルが減衰する。さらに、この状態が下流側に継続されると第3通路や混合部では旋回流が消去されるようになる。さらに、この溝部の構成は、第2通路を流通する流体に対して余分な抵抗を与えず、旋回流を抑制するために必要な抵抗を与えることができる点でも有用である。
請求項3に記載の発明は、請求項1に記載の発明における旋回流抑制手段は、第2通路よりも小さい通路断面積を形成する開口部(441A)を備えた抵抗体(44A)であることを特徴とする。
この発明によれば、第2通路に流入した旋回流は、第2通路よりも小さい通路断面積である開口部を通過するときに、その周囲の抵抗体を構成する壁に衝突する。これにより、開口部を絞るという製作上、簡単な構成によって、旋回流の周方向の速度ベクトルを減衰させることができる。
請求項4に記載の発明は、請求項3に記載の発明において、抵抗体(44A,44B)が備える開口部(441A,441B)はスリット状であることを特徴とする。この発明によれば、開口部を細長い間隙で形成することにより、旋回流を間隙周囲の抵抗体を構成する壁に衝突させて旋回流の周方向の速度ベクトルを減衰させることができる。
請求項5に記載の発明は、請求項3に記載の発明において、抵抗体(44C,44D)が備える開口部(441C,441D)は、円形状の中央部と、中央部から放射状に延びるスリット状部とによって構成されていることを特徴とする。この発明によれば、開口部を円形状の開口と放射状に伸びる細長い間隙とによって形成することにより、旋回流を開口部周囲の抵抗体を構成する壁に衝突させて旋回流の周方向の速度ベクトルを減衰させることができる。さらに、通路の中心軸寄り流れる微細な気泡を含む液体は、中央部の円形状の開口を通過し易いため、通路抵抗を低減してエネルギー損失を抑えることができる。
請求項6に記載の発明は、請求項3に記載の発明において、抵抗体(44E)が備える開口部(441E)は、その開口周縁部が連続する凹凸部で形成されていることを特徴とする。この発明によれば、開口部は周方向に連続する凹凸部で囲まれた開口であるため、旋回流は第2通路の内周面部付近では凹凸部に衝突することになり、旋回流の周方向の速度ベクトルを減衰させることができる。さらに、通路の中心軸寄り流れる微細な気泡を含む液相流体は、凹凸部よりも内側の開口を通過し易いため、通路抵抗を低減してエネルギー損失を抑えることができる。
請求項7に記載の発明は、請求項3に記載の発明において、抵抗体(44F)は通路の中央に向かって突出する壁部を備えることを特徴とする。この発明によれば、通路の中央に向かって突出する壁部に旋回流を衝突させて旋回流の周方向の速度ベクトルを減衰させることができる。また、壁部の突出長さや数量を調整することにより、容易に通路抵抗と旋回流抑制効果のバランスを調整することができる。
請求項8に記載の冷凍サイクルに係る発明は、気相冷媒を吸入して圧縮する圧縮機(2)と、圧縮機から吐出された冷媒を放熱して冷却する放熱器(3)と、放熱器で冷却された冷媒とこの冷媒よりも低圧である気相冷媒とを混合して気液混合冷媒を流出し、放熱器からの冷媒を減圧膨張させる請求項1から請求項7のいずれか一項に記載のエジェクタ方式の減圧装置(4)と、このエジェクタ方式の減圧装置からの気液混合冷媒を気相冷媒と液相冷媒とに分離する気液分離器(5)と、気液分離器で分離された液相冷媒を減圧する減圧装置(6)と、この減圧装置で減圧された液相冷媒を空気と熱交換して蒸発させる蒸発器(7)と、を備え、
上記エジェクタ方式の減圧装置において、
第1流入口には、放熱器で冷却された冷媒が流入し、
第2流入口には、気液分離器で分離された気相冷媒および蒸発器で蒸発された気相冷媒の少なくとも一方が流入することを特徴とする。
この発明によれば、微細な気泡を発生させるためにノズル内に導入する気相冷媒を、冷凍サイクルの運転状態に合わせて気液分離器や蒸発器から適宜選択することができ、またその流量を増加または減少させることができる。したがって、エジェクタ装置の効率向上を図るために、サイクル内に存在する気相冷媒を有効活用する冷凍サイクルが得られる。
請求項9に記載の発明は、請求項8に記載の発明において、気液分離器の気相冷媒が収容されている気相冷媒部と第2流入口とを連通させる第1気相冷媒通路(10)、および蒸発器と第2流入口とを連通させる第2気相冷媒通路(11)のそれぞれに、流通する冷媒流量を調節する流量調整手段(12,13)を備えることを特徴とする。
この発明によれば、ノズルで発生させる気泡の量と蒸発器からノズルへ流入させる液相冷媒の量とを冷凍サイクルの運転状態に対応させて調整することができる。これにより、蒸発器から吸引口に吸引する気相冷媒の確保を優先する場合、気泡の量を増加させたい場合等、様々な運転要求に対応可能な冷凍サイクルを提供することができる。
本発明の一例であるエジェクタ装置が用いられる蒸気圧縮式冷凍サイクルの一例を示した模式図である。 第1実施形態のエジェクタ装置の構成を示した模式的な断面図である。 第1実施形態のエジェクタ装置が備える旋回流抑制手段を示した正面図である。 第2実施形態の旋回流抑制手段の第1例を示した正面図である。 第2実施形態の旋回流抑制手段の第2例を示した正面図である。 第3実施形態の旋回流抑制手段の第1例を示した正面図である。 第3実施形態の旋回流抑制手段の第2例を示した正面図である。 第4実施形態の旋回流抑制手段を示した正面図である。 第5実施形態の旋回流抑制手段を示した正面図である。
以下に、図面を参照しながら本発明を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
本発明の一実施形態である第1実施形態について図1から図3を用いて説明する。図1は、エジェクタ方式の減圧装置(エジェクタ装置4)を備えた蒸気圧縮式冷凍サイクルの一例を示している。この蒸気圧縮式冷凍サイクル1は、圧縮機2と、この圧縮機2から吐出された高圧冷媒と室外空気とを熱交換して冷媒を冷却する放熱器3と、この放熱器3の下流側の高圧冷媒を減圧膨張させる減圧装置としてのエジェクタ装置4と、空気と液相冷媒とを熱交換させる蒸発器7と、冷媒を気相冷媒と液相冷媒とに分離する気液分離器5と、を備え、各構成部品は配管によって接続されている。本実施形態では、サイクル内を循環する流体として、例えば二酸化炭素(冷媒)を用いており、圧縮機2により吐出される高圧冷媒は臨界圧力以上となる。図1中の矢印は、サイクル内の冷媒の流れを示している。
圧縮機2は、電動モータにより駆動されて、冷媒を吸入、圧縮、および吐出するものであり、吐出冷媒温度または吐出冷媒圧力を所定値となるように可変的に制御することができる。また、圧縮機2は、電磁クラッチおよびベルトを介して車両走行用エンジンにより回転駆動されるもの、例えば、外部からの制御信号により吐出容量を連続的に可変制御できる斜板式可変容量型圧縮機で構成してもよい。
放熱器3は、圧縮機2から吐出された高圧冷媒と図示しない送風機により強制的に送風される車室外空気との間で熱交換を行うことにより、高圧冷媒を冷却する熱交換器である。例えば、放熱器3を給湯機に利用する場合には、放熱器3は水・冷媒熱交換器であり、圧縮機2により吐出された高圧冷媒と給湯水とを熱交換することにより給湯水が加熱され、冷媒が冷却されることになる。
エジェクタ装置4は、放熱器3と接続された冷媒通路8を通って流入した主流冷媒(液体)を減圧膨張させることにより蒸発器7で蒸発させた気相冷媒を吸引するとともに、膨張エネルギーを圧力エネルギーに変換して圧縮機2の吸入圧力を上昇させる。さらに、エジェクタ装置4は、ノズル410内で主流冷媒を旋回流に形成するとともに、主流冷媒(液体)よりも低圧である気体の気相冷媒を取り入れ、この気相冷媒は旋回流が形成する負圧部分を流通する。
気液分離器5は、エジェクタ装置4から流出した冷媒を気相冷媒と液相冷媒とに分離して冷媒を蓄える分離手段である。気相冷媒が溜まる気液分離器5の気相冷媒部は、圧縮機2の吸引側とエジェクタ装置4のノズル410内部とに接続されている。液冷媒が溜まる気液分離器5の液相冷媒部は蒸発器7の入口に接続されている。液相冷媒部と蒸発器7の間には固定式の絞り部6(減圧装置)が設けられ、気液分離器5の液相冷媒部から流出した液相冷媒は絞り部6で減圧されてから蒸発器7に流入するようになっている。
蒸発器7は、絞り部6で減圧された気液分離器5内の液相冷媒と図示しない送風機によって強制的に送風される空気との間で熱交換を行うことにより、液相冷媒を蒸発させるとともに空気を冷却して冷房能力を提供する熱交換器である。蒸発器7の出口は、エジェクタ装置4のノズル410周囲に通じる吸引口416と、ノズル410の上流側の軸方向端部と、に接続されている。すなわち、蒸発器7で蒸発された気相冷媒は、ノズル410周囲およびノズル410内部の少なくとも一方に導入される。
蒸気圧縮式冷凍サイクル1は、気液分離器5の気相冷媒が収容されている気相冷媒部と第2流入口418とを連通させる第1気相冷媒通路10と、蒸発器7出口と第2流入口418とを連通させる第2気相冷媒通路11と、を備えている。第1気相冷媒通路10には、流通する冷媒流量を調節する流量調整手段としての流量調整弁12が設けられ、第2気相冷媒通路11には、同じく流量調整手段としての流量調整弁13が設けられている。第2気相冷媒通路11は、蒸発器7出口と吸引口416とを連通させる冷媒通路9から分岐し、第2流入口418に通じる通路である。
流量調整弁12および流量調整弁13は、図示しない制御装置によってそれぞれ作動が制御されるものであり、各通路を開閉できる開度範囲は0%〜100%の範囲で調整自在となっている。制御装置は、流量調整弁12または流量調整弁13の開度を調整することによって、気液分離器5の気相冷媒部からの気相冷媒または蒸発器7からの気相冷媒をノズル410内に取り入れる量を調整し、ノズル410内で発生させる気泡の量を制御することができる。
次に、エジェクタ方式の減圧装置の一例として、軸方向を水平方向に一致させて設置するエジェクタ装置4を図2および図3を用いて詳細に説明する。図2はエジェクタ装置4の内部構成を示した模式的な断面図である。図2に示すように、エジェクタ装置4は、大きく分けて、吸引部41、混合部42、ディフューザ部43(昇圧部)を備えている。吸引部41は、流入した冷媒を減圧膨張するノズル410と、ボディ40に形成されノズル410の噴出口415から噴出される液冷媒による吸引力によって蒸発器7からの気相冷媒が吸引される吸引口416と、を備え、エジェクタ装置4のボディ40一方の入口側に配置される部分である。
混合部42は、ボディ40の軸方向の中央部に配置される部分であり、ノズル410の噴出口415の下流側に設けられる通路であって、ノズル410から噴出される気泡を含む液冷媒と吸引口416から吸引される気相冷媒とを混合させる通路を構成している。混合部42は、吸引口416の下流側に設けられた流路でもあり、ノズル410からの高速度の冷媒流と吸引口416から吸引された冷媒とが混合され、さらに下流側でディフューザ部43と接続されている。
ディフューザ部43は、ボディ40の他方の出口側に配置される部分であり、通路断面積が徐々に大きくなる形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する機能を有する。また、混合部42とディフューザ部43とを総称して昇圧部と呼ぶこともできる。ディフューザ部43下流側の流出口431は、冷媒流れ方向下流側に配置された気液分離器5の気相冷媒部に冷媒管を介して接続されている。
吸引部41の吸引口416は、蒸発器7からの低圧の気相冷媒の導入方向をノズル410の軸心に対してずらして配置され、ノズル410の軸心方向に対して略直交する方向(略直交する方向は直交方向も含む)に冷媒が流入するようにボディ40に設けられている。ボディ40の吸引口416には、蒸発器7を流出した気相冷媒を取り入れるための冷媒通路9を形成する低圧側の冷媒管が接続されている。蒸発器7の低圧の気相冷媒は、ノズル410の噴出口415から噴出された冷媒によって吸引口416に吸引されて、ノズル410の外周面との間に形成された通路417に流入し、ボディ40の内周面に沿うようにノズル410の周辺に導入される。低圧の気相冷媒は、ボディ40の内周面に沿って円弧を描くようにノズル410の周囲を旋回しながら混合部42の軸心に近づくように流下していく。
ノズル410は、第1通路としての狭まり通路412と、第2通路としての小径通路413(以下、喉部413ともいう)と、第3通路としての拡がり通路414と、を備えている。狭まり通路412は、ノズル410の上流側の通路であり、その通路断面積が上流側に向けて徐々に狭まっている。換言すれば、狭まり通路412は、下流に向けて先細りである円錐形状空間を形成する通路である。小径通路413は、狭まり通路412の下流端部に接続され、一定の通路断面積を形成する通路である。拡がり通路414は、小径通路413の下流端部に接続され、下流に向けて徐々に通路断面積が大きくなるように形成された通路である。換言すれば、拡がり通路414は、下流に向けて末広がりである逆円錐形状の空間を形成する通路である。
第1通路である狭まり通路412には、その内周壁面に開口し、内周壁面の周方向に沿うように、放熱器3からの液相冷媒(高圧の液体)が流入する第1流入口411が設けられている。さらに狭まり通路412には、狭まり通路412の上流側の軸方向端部に位置する内壁面に開口し、第1流入口411から狭まり通路412に流入する液相冷媒よりも低圧である気相冷媒(低圧の気体)が狭まり通路412の軸方向に流入する第2流入口418が設けられている。
第1流入口411には、放熱器3を流出した高圧の液相冷媒を取り入れるための冷媒通路8を形成する高圧側の冷媒管が接続されている。第2流入口418は、気液分離器5の気相冷媒部を流出した低圧の気相冷媒を取り入れるための第1気相冷媒通路10を形成する冷媒管と、蒸発器7を流出した低圧の気相冷媒を取り入れるための第2気相冷媒通路11を形成する冷媒管と、につながっている。拡がり通路414の出口は、ノズル410の最下流端部であり、ノズル410の噴出口415である。
冷媒通路8を通って第1流入口411に流入した高圧の液相冷媒は、狭まり通路412を旋回しながらノズル410の軸方向に進む。気液分離器5および蒸発器7の少なくとも一方からの低圧の気相冷媒は、液相冷媒の旋回流が形成する通路中心軸付近の負圧部分に第2流入口418から引き込まれ、気泡を発生しながら旋回流とともにノズル410の軸方向に進む。そして、気泡を含む冷媒は、狭まり通路412、小径通路413、拡がり通路414を順に流れ、等エントロピー的に減圧膨張される。
このように冷媒は、エジェクタ装置4内において、ノズル410の入口の圧力がノズル410内で急激に減圧膨張され、ノズル410の出口の圧力が最低となる。ノズル410の噴出口415から噴射された冷媒は、混合部42で吸引口416から吸引される気相冷媒と混合されることにより、圧力はなだらかに上昇し、さらにディフューザ部43での減速によって上昇するようになる。
ノズル410内で発生する気泡について説明する。ノズル410内の狭まり通路412では、接線方向に延びる冷媒通路8から液相冷媒が導入され、遠心力により内周壁面に沿って流下する螺旋状の流れ(旋回流)が形成される。この旋回流によって、狭まり通路412の軸心上に負圧部分が形成される。この負圧部分によって、円錐形状の空間の底部に設けられた第2流入口418から気相冷媒が吸引される。液相冷媒の旋回速度と軸方向速度は、狭まり通路412の下流端部に向かうほど増加し、この旋回に伴って、液体と気体の比重差から、液相冷媒には遠心力が働き気相冷媒には向心力が働くため、旋回する気体部分と旋回する液体部分との分離が行われ、旋回する気体部分が狭まり通路412の下流端部まで糸状に形成されるようになる。
旋回する気体部分は、狭まり通路412から噴出して小径通路413に入ると、糸状部分が細かく切断されて、多数の微細な気泡を生成する。この多数の微細な気泡の発生により、気泡を起因として液相冷媒の分裂を促進することができる。液相冷媒の分裂が促進されると、微細化した液滴が生成され、これが混合部42における液相冷媒と低圧の気相冷媒との混合を活発にし、液体と気体の均一な混合が図れ、エジェクタの効率が向上する。
狭まり通路412(第1通路)で形成された旋回流は、小径通路413(第2通路)でもその旋回の半径が小さくなるものの継続する。この第2通路における旋回流によって、慣性力の特性から、通路の内周壁付近では比重の大きい液体部分が旋回し、通路の中心軸付近では多数の気泡が存在するようになる。このように冷媒の液体部分と気体部分とが分離されるので、第2通路で両者の混合が活発にならない。これは、下流側の第3通路でも同様の現象を引き起こし、さらに下流の混合部42で、吸引口416から吸引された気相冷媒との均一な混合の妨げとなる。したがって、混合部42で液冷媒と気相冷媒とが均一に混合されず、エジェクタの効率が十分に確保できない。
そこで、エジェクタ装置4は、旋回流が流通するときに抵抗を与えて、旋回流の形成を乱す旋回流抑制手段を小径通路413に備えている。図2および図3に示すように、旋回流抑制手段は、第2通路である小径通路413の軸方向長さの少なくとも一部を占めるように抵抗体44として設けられている。図3はエジェクタ装置4が備える抵抗体44(旋回流抑制手段)の一例を示した正面図であり、図2のIII−III切断面を矢印方向に見た図である。なお、図3では、抵抗体44を見易くするため、拡がり通路414は図示せず、小径通路413のみ図示している。
抵抗体44は、小径通路413を流通する旋回流の流れを妨げ、旋回流の継続を停止する抑制旋回流抑制手段であり、軸方向に所定の長さ設けられており、小径通路413の内壁面に形成される溝部441を備えている。この溝部441は、小径通路413を下流側に進む旋回流の回転方向とは逆向きの回転方向に回転しながら下流側に向けて進むように設けられている。換言すれば、抵抗体44は、小径通路413を形成する内周壁部において、通路中心軸側の内方に突出する山部442と、軸方向に山部442に隣接する谷部443と、から構成されている。山部442は、軸方向について所定のピッチで形成され、旋回流の回転方向とは逆向きの回転方向に回転しながら軸方向に螺旋状に前進するように設けられている。谷部443は、半径方向外方に凹む部分であり、軸方向断面について所定のピッチで形成され、山部442に隣接し山部442と同様の回転方向に回転しながら軸方向に螺旋状に前進するように設けられている。
すなわち、狭まり通路412で形成されて小径通路413に流入する旋回流は、その回転方向とは逆向きの回転方向の螺旋を形成する山部442および谷部443に衝突するようになり、その周方向の運動が制限される。抵抗体44はこのようにして旋回流に対して抵抗を与える。例えば、下流側に向かって、旋回流の回転方向が右ねじ方向であれば、溝部441の回転方向を左ねじの方向になるように設定し、逆に旋回流の回転方向が左ねじ方向であれば、溝部441の回転方向を左ねじの方向になるように設定するものとする。
例えば、このような抵抗体44は、抵抗体44の軸方向長さに対応した所定の軸方向長さの管材を用意し、この管材の内周壁部に対して切削等により溝部441を加工することで製作される。この溝部441が形成された管材を2つの部材に分割されたノズルの間にセットして軸方向両側から分割されたノズルで挟み、これら3つの部材をろう付け接合、溶接(TIG溶接、アーク溶接、スポット溶接等)等により一体に接合する。このようにして、抵抗体44が小径通路413に配置されたノズル410は製作される。また、抵抗体44、ノズル410、ボディ40等は、同一の材質で形成され、例えば、SUS304,SUS316,SUS310等のステンレス鋼材で形成される。
次に、上記構成における蒸気圧縮式冷凍サイクル1の作動について説明する。図示しない制御装置が、圧縮機2の電磁クラッチに通電すると、電磁クラッチが接続状態となり、例えば車両走行用エンジンから回転駆動力が圧縮機2に伝達される。圧縮機2が起動すると、気液分離器5の気相冷媒部から気相冷媒が圧縮機2に吸入され、圧縮された冷媒が放熱器3に向けて吐出される。圧縮機2から吐出された高圧の冷媒は放熱器3に流入し、ここで室外空気と熱交換して放熱して冷却される。冷却された冷媒は、ノズル410の第1流入口411からエジェクタ装置4内に流入する。
第1流入口411からノズル410内に流入した液相冷媒は、狭まり通路412(第1通路)で旋回流を形成し、通路中心軸付近に負圧部分を形成して流下する。この負圧部分には、気液分離器5からの気相冷媒および蒸発器7からの気相冷媒の少なくとも一方が第2流入口418を通じて吸引される。第2流入口418から流入した気相冷媒は、旋回流を形成しながら負圧部分を流下し、液相冷媒の旋回流とともに喉部413(第2通路)に流入し、両者の旋回流は狭い喉部413でぶつかり合うようになり、気相冷媒の旋回流が細かくちぎれ、微細な気泡が発生する。
喉部413では、引き続き旋回流が残存して冷媒が流下していくため、多数の気泡と液相冷媒とが遠心力の影響を受けて分離する傾向になる。そこで、喉部413を流下する旋回流は、抵抗体44を通過するときに溝部441が内周壁の障害物として機能することにより、周方向の運動が妨げられ、流下するにつれて回転する流れは減衰される。このように旋回流が減衰すると、遠心力が小さくなって多数の気泡と液相冷媒とが分離しなくなり、両者が十分に拡散して混合するようになる。このため、拡がり通路414(第3通路)では、液滴は旋回せず、減圧膨張によって多数の気泡の成長が活発になり、拡散し易い微細な液滴がノズル410の噴出口415から混合部42に放出される。
このようにノズル410内に流入した液相冷媒と気相冷媒は、ノズル410で冷媒の圧力エネルギーが速度エネルギーに変換され、ノズル410で等エントロピー的に減圧されて膨張し、噴出口415から液冷媒は高速度となって噴出する。このとき、高速度で噴出する冷媒流の吸引作用により、蒸発器7から気相冷媒(低圧の冷媒)を吸引口416に吸引する。以上より、蒸発器7から吸引された低圧の気相冷媒と、多数の気泡の成長によって発生した微細な液滴とが、混合部42以降で均一に混合されるため、エジェクタの効率を向上することができる。
混合部42で混合された気相冷媒と液相冷媒は、ディフューザ部43に流入し、ディフューザ部43の通路面積の拡大によって、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。そして、ディフューザ部43の流出口431から流出した冷媒は、気液分離器5内に流入する。気液分離器5内で分離された気相冷媒は、圧縮機2に吸入されて再圧縮される。気液分離器5で分離された液相冷媒は、絞り部6で減圧された後、蒸発器7に流入し、室内空気と熱交換して蒸発し室内空気を冷却して冷房能力を提供する経路と、流量調整弁12によって流量が調整されて第2流入口418に向けて流れ、気泡の発生に貢献する経路とのいずれか、または両方を流下する。
次に、ノズル410内での気泡の発生量を調整する動作について説明する。第1の動作では、圧縮機2を起動させ、さらに制御装置によって流量調整弁12を開状態にし、流量調整弁13を閉状態に制御する。これにより、気液分離器5で分離された気相冷媒は、圧縮機2に吸入されて再圧縮されるものと、第1気相冷媒通路10を流下して第2流入口418からノズル410内に吸入されるものと、に分かれる。第2流入口418からノズル410内に吸入された気相冷媒は、狭まり通路412の負圧部分を旋回しながら流下し、喉部413で微細化された気泡になり、エジェクタの効率向上に貢献する。また、蒸発器7で蒸発した気相冷媒は、吸引口416からエジェクタ装置4内に吸引され、微細な気泡の発生によって微細化された液滴と混合部42で均一に混合される。つまり、第1の動作では、第2流入口418に流入した気液分離器5の気相冷媒の量だけ気泡の量が増加し、蒸発器7で蒸発した気相冷媒は、すべて、混合部42で液滴と混合される気相冷媒に使用される。このように、気液分離器5の気相冷媒を第2流入口418に吸入するのは、この気相冷媒の方が蒸発器7で蒸発した気相冷媒よりも高圧であり、狭まり通路412の負圧部分との差圧が取り易いため、ノズル410内に吸入させやすく吸入の効率が良いからである。
次に第2の動作では、圧縮機2を起動させ、さらに制御装置によって流量調整弁12および流量調整弁13を開状態に制御する。これにより、ノズル410内には、第1の動作に対してさらに蒸発器7で蒸発した気相冷媒が第2気相冷媒通路11を流下して第2流入口418を通じて流入する。つまり、蒸発器7で蒸発した気相冷媒は、吸引口416からエジェクタ装置4内に吸引されるものと、第2気相冷媒通路11を流下して第2流入口418からノズル410内に吸入されるものと、に分かれる。気液分離器5の気相冷媒と蒸発器7で蒸発した気相冷媒の一部とは、第2流入口418からノズル410内に吸入され、狭まり通路412の負圧部分を旋回しながら流下し、喉部413で微細化された気泡になり、エジェクタの効率向上に貢献する。また、蒸発器7で蒸発した残余の気相冷媒は、吸引口416からエジェクタ装置4内に吸引され、微細な気泡の発生によって微細化された液滴と混合部42で均一に混合される。つまり、第2の動作では、第2流入口418に流入した気液分離器5の気相冷媒と蒸発器7で蒸発した気相冷媒の一部との合計量分、気泡の量が、第1の動作に比べて大幅に増加する。このように、第2の動作は、気泡の量を増加させたい場合に選択される制御である。
また、上記の第1の動作および第2の動作に加え第3の動作を行うようにしてもよい。第3の動作では、圧縮機2を起動させ、さらに制御装置によって流量調整弁12を閉状態にし、流量調整弁13を開状態に制御する。これにより、気液分離器5で分離された気相冷媒は、すべて圧縮機2に吸入されて再圧縮されるようになる。また、蒸発器7で蒸発した気相冷媒は、吸引口416からエジェクタ装置4内に吸引されるものと、第2気相冷媒通路11を流下して第2流入口418からノズル410内に吸入されるものと、に分かれる。つまり、蒸発器7で蒸発した気相冷媒の一部だけが、第2流入口418からノズル410内に吸入され、狭まり通路412の負圧部分を旋回しながら流下し、喉部413で微細化された気泡になり、エジェクタの効率向上に貢献する。また、蒸発器7で蒸発した残余の気相冷媒は、吸引口416からエジェクタ装置4内に吸引され、微細な気泡の発生によって微細化された液滴と混合部42で均一に混合される。このように、第3の動作では、蒸発器7で蒸発した気相冷媒の一部分だけ、気泡の量が増加し、圧縮機2に吸入される気相冷媒の量を多くできる制御である。
さらに、流量調整弁12および流量調整弁13の開度は、冷凍サイクルの運転状態に対応させて自在に調整される。これは、上記の第1の動作、第2の動作および第3の動作それぞれについて適用されるものであり、すべての動作において適正な気相冷媒の量が調整されうる。
本実施形態のエジェクタ装置4がもたらす作用効果について述べる。エジェクタ装置4は、流入する液相冷媒(液体)を減圧膨張するノズル410と、この液相冷媒よりも低圧である気相冷媒(気体)がノズルの噴出口415から噴出される流体による吸引力によって吸引される吸引口416と、ノズルの噴出口415の下流側に設けられる通路であって、噴出口415から噴出される冷媒(流体)と吸引口416から吸引される気相冷媒(気体)とを混合させる通路を構成する混合部42と、混合部42の下流側に設けられる通路であって、混合部42から流出した冷媒(流体)を減速して圧力を上昇させるディフューザ部43と、を備える。
ノズル410は、通路断面積が下流に向けて狭まる狭まり通路412(第1通路)と、狭まり通路412の下流端部に接続される小径通路413(第2通路)と、小径通路413の下流端部に接続され、通路断面積が下流に向けて大きくなる拡がり通路414(第3通路)と、を含んでいる。狭まり通路412には、その内周壁面に開口し、内周壁面に沿うように液相冷媒が流入する第1流入口411と、狭まり通路412上流側の軸方向端部に位置する内壁面に開口し、第1流入口411から流入する液相冷媒よりも低圧である気相冷媒(気体)が狭まり通路412の軸方向に流入する第2流入口418と、が設けられている。小径通路413には、狭まり通路412で形成された旋回流が小径通路413を流通するときに抵抗を与え、旋回流を乱す抵抗体44(旋回流抑制手段)が設けられている。
以上のエジェクタ装置4の構成によれば、小径通路413に設けられた抵抗体44により、小径通路413を流れる旋回流の流れを妨げることができる。これにより、下流の拡がり414および混合部42では旋回流が形成されないようになるため、旋回流の遠心力の作用による気相流体と液滴の分離が発生しない。したがって、多数の気泡の発生とともに、ノズル410内での旋回流を抑制する作用により、ノズル410内で発生させた微細な気泡および液滴と、吸引口416から吸引された蒸発器7からの気相流体とを互いに十分に拡散させ混合させる流れを形成でき、エジェクタ装置の効率向上が図れる。
旋回流抑制手段は、小径通路413の内壁面に形成される溝部441を備える抵抗体44である。溝部441は、小径通路413を下流側に進む旋回流の回転方向とは逆向きの回転方向に回転しながら下流側に向けて進む螺旋状である。
この構成によれば、溝部441が旋回流の回転方向に対して逆方向に回転しながら下流側に前進するように設けられることにより、小径通路413を流れる旋回流は内壁面付近の周方向の運動が溝部441によって抵抗を受ける。このため、周方向の速度ベクトルが減衰し、拡がり通路414や混合部42では旋回流が消去されるようになる。また、溝部441は、管の内壁面に形成することができる溝部であるため、小径通路413を流通する流体に対して余分な抵抗を与えないで旋回流を抑制するために必要な抵抗を容易に与えることができる点で有用である。また、溝部441は、小径通路413を形成する内壁面に雌ねじを製作することによっても実施できるため、製作上好ましく、生産性に優れた旋回流抑制手段を提供できる。
また、抵抗体44は溝部441を有することにより、小径通路413の通路中心軸付近には障害物とならない通路を形成し、内壁面付近を流れる流体にだけ抵抗を与えるものである。このため、通路中心軸寄りを流れる気泡は抵抗を受けることなく通路をスムーズに流れ、旋回流が崩壊した流れを呈する液滴と混ざり合いながら流下するようになる。換言すれば、小径通路413における流動損失を低減することができる。このため、冷媒に与える抵抗を低減でき、エネルギー損失を抑えた流れを提供できる。
(第2実施形態)
第2実施形態では、第1実施形態の旋回流抑制手段の他の形態について図4および図5にしたがって説明する。図4は本実施形態の旋回流抑制手段の第1例を示した正面図である。図5は本実施形態の旋回流抑制手段の第2例を示した正面図である。図4および図5はともに、図2のIII−III切断面を矢印方向に見た図である。図4および図5において前述の第1実施形態の図面中と同一符号を付した構成部品は、同様の構成部品であり、同様の作用効果を奏するものである。なお、図4および図5では、抵抗体を見易くするため、拡がり通路414は図示せず、小径通路413のみ図示している。
図4に示すように、本実施形態の第1例である抵抗体44Aは、小径通路413を流通する旋回流の流れを妨げ、旋回流の継続を停止する抑制旋回流抑制手段であり、小径通路413よりも小さい通路断面積を形成する開口部441Aを備えている。開口部441Aは細長いスリット状であり、軸方向に所定の長さ分設けられて直方体状の通路空間を形成している。開口部441Aを形成するスリットの長辺の長さは、小径通路413の内径に等しくなっている。開口部441Aの開口周縁部は、小径通路413の内壁面から内方に向けて突出する壁部の端部である。小径通路413に流入する旋回流は、この壁部に衝突してその周方向の運動が制限される。壁部に衝突した液滴(液相冷媒)は、微細な気泡とともに通路断面中央部を横断する開口部441Aを通過して下流側に流れる。このときには、周方向の速度成分は消滅しているため、ほぼ軸方向の速度成分のみをもって拡がり通路414に流入し、液滴と気泡の分離化は解消されている。
例えば、このような抵抗体44Aは、抵抗体44Aの軸方向長さに対応した所定の軸方向長さの管材を用意し、開口部441Aを形成する壁部を管材内部の所定の位置に配置し、これを内壁面に接合することで製作される。この開口部441Aが形成された管材を2つの部材に分割されたノズルの間にセットして軸方向両側から分割されたノズルで挟み、これら3つの部材をろう付け接合、溶接(TIG溶接、アーク溶接、スポット溶接等)等により一体に接合する。このようにして、抵抗体44Aが小径通路413に配置されたノズル410が製作される。
また、本実施形態の第2例である抵抗体44Bは、図5に示すように、断面形状が十字状のスリットである開口部441Bを備えるものである。開口部441Bは、小径通路413よりも小さい通路断面積を形成する。開口部441Bは、断面形状がスリット状の開口部が放射状に複数個交差する通路空間を形成している。このような開口部441Bは、軸方向に所定の長さ分設けられ、複数の直方体状空間が交差する通路空間を形成している。開口部441Bの開口周縁部は、小径通路413の内壁面から内方に向けて突出する壁部の端部である。小径通路413に流入する旋回流は、この壁部に衝突してその周方向の運動が制限される。壁部に衝突した液滴(液相冷媒)は、微細な気泡とともに通路断面中央部を放射状に横断する開口部441Bを通過して下流側に流れる。このときには、周方向の速度成分は消滅しているため、ほぼ軸方向の速度成分のみをもって拡がり通路414に流入し、液滴と気泡の分離化は解消されている。この抵抗体44Bも、前述の抵抗体44Aと同様の方法で製作される。
本実施形態の旋回流抑制手段は、小径通路413よりも小さい通路断面積を形成する開口部441A,441Bを備えた抵抗体44A,44Bであることにより、旋回流は開口部441A,441Bを通過するときに、その周囲の壁部に衝突する。このため、周方向の速度ベクトルが減衰し、拡がり通路414や混合部42では旋回流が消去されるようになる。また、本実施形態の旋回流抑制手段は、開口部を絞るという製作上、簡単な構成によって抵抗体を実現することができる。
また、開口部441A,441Bはスリット状であることにより、旋回流を細長い間隙周囲の壁部に衝突させるため、旋回流の周方向の速度ベクトルを減衰する効果が大きい。
(第3実施形態)
第3実施形態では、第1実施形態の旋回流抑制手段の他の形態について図6および図7にしたがって説明する。図6は本実施形態の旋回流抑制手段の第1例を示した正面図である。図7は本実施形態の旋回流抑制手段の第2例を示した正面図である。図6および図7はともに、図2のIII−III切断面を矢印方向に見た図である。図6および図7において前述の第1実施形態の図面中と同一符号を付した構成部品は、同様の構成部品であり、同様の作用効果を奏するものである。なお、図6および図7では、抵抗体を見易くするため、拡がり通路414は図示せず、小径通路413のみ図示している。
図6に示すように、本実施形態の第1例である抵抗体44Cは、小径通路413を流通する旋回流の流れを妨げ、旋回流の継続を停止する機能を有する抑制旋回流抑制手段である。抵抗体44Cが備える開口部441Cは、円形状の中央部と、この中央部から放射状に延びるスリット状部とによって構成されている。円形状の部分とこの円形状の部分から放射状に延びるスリット状部とを合わせた長さは、小径通路413の内径に等しくなっている。開口部441Cは、小径通路413よりも小さい通路断面積を形成する。開口部441Cは、軸方向に所定の長さ分設けられ、中央の円柱状空間とこの円柱状空間から外方に延びる2個の直方体状空間とが組み合わされた通路空間を形成している。開口部441Cの開口周縁部は、小径通路413の内壁面から内方に向けて突出する壁部の端部である。小径通路413に流入する旋回流は、この壁部に衝突してその周方向の運動が制限される。壁部に衝突した液滴(液相冷媒)は、微細な気泡とともに通路断面中央部を横断する開口部441Cを通過して下流側に流れる。このときには、周方向の速度成分は消滅しているため、ほぼ軸方向の速度成分のみをもって拡がり通路414に流入し、液滴と気泡の分離化は解消されている。この抵抗体44Cも、前述の抵抗体44Aと同様の方法で製作される。
また、本実施形態の第2例である抵抗体44Dは、図7に示すように、抵抗体44Cの開口部441Cに対してさらに、放射状に延びるスリット状部をもう一組有する開口部441Dを備えている。開口部441Dは、小径通路413よりも小さい通路断面積を形成する。開口部441Dは、軸方向に所定の長さ分設けられ、中央の円柱状空間とこの円柱状空間から外方に延びる4個の直方体状空間とが組み合わされた通路空間を形成している。開口部441Dの開口周縁部は、小径通路413の内壁面から内方に向けて突出する壁部の端部である。小径通路413に流入する旋回流は、この壁部に衝突してその周方向の運動が制限される。壁部に衝突した液滴(液相冷媒)は、微細な気泡とともに通路断面中央部を放射状に横断する開口部441Dを通過して下流側に流れる。このときには、周方向の速度成分は消滅しているため、ほぼ軸方向の速度成分のみをもって拡がり通路414に流入し、液滴と気泡の分離化は解消されている。この抵抗体44Dも、前述の抵抗体44Aと同様の方法で製作される。
本実施形態の抵抗体44C,44Dが備える開口部441C,441Dは、円形状の中央部と、中央部から放射状に延びるスリット状部とによって構成されている。この構成によれば、冷媒を流通させる開口部441C,441Dを円形状の開口と放射状に伸びる細長い間隙とによって形成することにより、旋回流を開口部周囲の抵抗体44C,44Dを構成する壁部に衝突させて旋回流の周方向の速度ベクトルを減衰させることができる。
さらに、小径通路413の通路中心軸付近には障害物とならない円形状の開口が形成されているため、内壁面付近を流れる流体にだけ抵抗を与えることができる。このため、通路中心軸寄りを流れる気泡は抵抗を受けることなく通路をスムーズに流れ、旋回流が崩壊した流れを呈する液滴と混ざり合いながら流下するようになる。換言すれば、小径通路413における流動損失を低減することができる。このため、冷媒に与える抵抗が低減され、エネルギー損失を抑えた流れを提供できる。
(第4実施形態)
第4実施形態では、第1実施形態の旋回流抑制手段の他の形態について図8にしたがって説明する。図8は本実施形態の旋回流抑制手段を示した正面図であり、図2のIII−III切断面を矢印方向に見た図である。図8において前述の第1実施形態の図面中と同一符号を付した構成部品は、同様の構成部品であり、同様の作用効果を奏するものである。なお、図8では、抵抗体を見易くするため、拡がり通路414は図示せず、小径通路413のみ図示している。
図8に示すように、本実施形態の抵抗体44Eは、小径通路413を流通する旋回流の流れを妨げ、旋回流の継続を停止する機能を有する抑制旋回流抑制手段である。抵抗体44Eが備える開口部441Eは、その開口周縁部が連続する凹凸部で形成されている開口である。凹凸部は、小径通路413の内周壁部において、それぞれ周方向に所定のピッチで配置された山部および谷部で構成されている。換言すれば、抵抗体44Eは、小径通路413を形成する内周壁部において、通路中心軸側の内方に突出する山部と、軸方向に山部に隣接する谷部と、から構成されている。通路中心に対して点対称の位置のある2つの谷部の距離は、小径通路413の内径に等しくなっている。開口部441Eは、小径通路413よりも小さい通路断面積を形成する。開口部441Eは、小径通路413を横断する切断面において星型状の開口である。隣接し合う複数の山部および谷部は、軸方向について所定の長さ分延設されている。
小径通路413に流入する旋回流は、周方向に連続し、且つ軸方向に延設される山部および谷部に衝突するようになり、その周方向の運動が制限される。抵抗体44Eはこのようにして旋回流に対して抵抗を与える。開口部441Eの開口周縁部である山部および谷部に衝突した液滴(液相冷媒)は、微細な気泡とともに通路断面中央部を横断する開口部441Eを通過して下流側に流れる。このときには、周方向の速度成分は消滅しているため、大部分が軸方向の速度成分のみをもって拡がり通路414に流入し、液滴と気泡の分離化は解消されている。この抵抗体44Eも、前述の抵抗体44Aと同様の方法で製作される。
本実施形態の抵抗体44Eが備える開口部441Eは、その開口周縁部が周方向に連続する凹凸部で形成されている。この構成によれば、旋回流は連続する凹凸部で囲まれた開口部を通るため、小径通路413の内周面部付近では凹凸部に衝突することになり、旋回流の周方向の速度ベクトルを減衰させることができる。
さらに、抵抗体44Eは、凹凸部よりも通路内方には障害物とならない開口が形成されているため、内壁面付近を流れる流体にだけ抵抗を与えることができる。このため、通路中心軸寄りを流れる気泡は抵抗を受けることなく通路をスムーズに流れ、旋回流が崩壊した流れを呈する液滴と混ざり合いながら流下するようになる。換言すれば、小径通路413における流動損失を低減することができる。このため、冷媒に与える抵抗が低減され、エネルギー損失を抑えた流れを提供できる。換言すれば、抵抗体44Eは、通路抵抗と、旋回流抑制の効果とのバランスに優れ、両者のバランスの調整に寄与する旋回流抑制手段である。
(第5実施形態)
第5実施形態では、第1実施形態の旋回流抑制手段の他の形態について図9にしたがって説明する。図9は本実施形態の旋回流抑制手段を示した正面図であり、図2のIII−III切断面を矢印方向に見た図である。図9において前述の第1実施形態の図面中と同一符号を付した構成部品は、同様の構成部品であり、同様の作用効果を奏するものである。なお、図9では、抵抗体を見易くするため、拡がり通路414は図示せず、小径通路413のみ図示している。
図9に示すように、本実施形態の抵抗体44Fは、小径通路413を流通する旋回流の流れを妨げ、旋回流の継続を停止する機能を有する抑制旋回流抑制手段である。抵抗体44Fは、通路の中央に向かって突出する壁部を備えている。開口部441Fは、小径通路413の内周壁面と壁部とで形作られる開口である。換言すれば、断面円形状の通路には、小径通路413の内周壁面から内方に突出する壁部が存在している。開口部441Fは、小径通路413よりも小さい通路断面積を形成する。壁部は軸方向に所定の長さ分設けられ、同じ長さ分の開口部441Fが設けられる。軸方向に延びる開口部441Fは、円柱状空間から壁部が占める直方体状空間を差し引いた通路空間である。
小径通路413に流入する旋回流は、軸方向に延びる直方体状の壁部に衝突するようになり、その周方向の運動が制限される。抵抗体44Fはこのようにして旋回流に対して抵抗を与える。壁部に衝突した液滴(液相冷媒)は、微細な気泡とともに壁部をよけて開口部441Fを通過して下流側に流れる。このときには、周方向の速度成分は消滅しているため、大部分が軸方向の速度成分のみをもって拡がり通路414に流入し、液滴と気泡の分離化は解消されている。この抵抗体44Fも、前述の抵抗体44Aと同様の方法で製作される。
本実施形態の抵抗体44Fは、通路の中央に向かって突出する壁部を備えた構成である。これによれば、通路に突出する壁部に旋回流を衝突させて旋回流の周方向の速度ベクトルを減衰させることができる。また、壁部の突出長さや数量を調整することにより、内壁面付近を流れる流体にだけ抵抗を与えることができ、小径通路413における流動損失を低減することができる。これにより、通路中心軸寄りを流れる気泡を小さな抵抗でスムーズに流し、液滴と混ざり合いながら流下させることができる。
(他の実施形態)
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において種々変形して実施することが可能である。
ノズル410の喉部413に設けた旋回流抑制手段は、上記実施形態で開示した構成に限定されるものではない。換言すれば、旋回流抑制手段は、ノズル410内を流れる旋回流の周方向運動を制限し、気体と液体とが分離する流れを消去する程度に周方向速度成分を減衰させる抵抗体であればよく、その形状等は上記実施形態で説明した構成に限定されるものではない。
上記実施形態の蒸気圧縮式冷凍サイクル1では、流量調整手段として流量調整弁12および流量調整弁13を備えているが、いずれかの流量調整弁のみを備える構成であってもよい。
上記実施形態の蒸気圧縮式冷凍サイクル1では、流量調整弁12および流量調整弁13を備えているが、これらの流量調整弁は、固定式の絞り部に置き換えてもよい。
上記実施形態におけるエジェクタ装置4は、車両用空調装置や、給湯機用または室内空調用のヒートポンプサイクルに適用することができる。また、エジェクタ装置4の固定場所は、車両のような移動体でもよいし、定位置に置かれた固定物体であってもよい。
また、上記実施形態においては、エジェクタ方式の減圧装置に流入する流体は、二酸化炭素の冷媒としているが、このような冷媒に限定されるものではない。また、エジェクタ装置4が適用される冷凍サイクルは、フロン系冷媒、HC系冷媒、二酸化炭素等の蒸気圧縮式の超臨界サイクルおよび亜臨界サイクルのいずれであってもよい。
2…圧縮機
3…放熱器
4…エジェクタ装置(エジェクタ方式の減圧装置)
5…気液分離器
6…絞り部(減圧装置)
7…蒸発器
10…第1気相冷媒通路
11…第2気相冷媒通路
12,13…流量調整弁(流量調整手段)
42…混合部
43…ディフューザ部
44,44A,44B,44C,44D,44E,44F…抵抗体(旋回流抑制手段)
410…ノズル
411…第1流通口
412…狭まり通路(第1通路)
413…小径通路,喉部(第2通路)
414…拡がり通路(第3通路)
415…噴出口
416…吸引口
418…第2流入口
441…溝部
441A,441B,441C,441D,441E,441F…開口部

Claims (9)

  1. 流入する液相流体を減圧膨張するノズル(410)と、
    前記流入する液相流体よりも低圧である気相流体が、前記ノズルの噴出口(415)から噴出される流体による吸引力によって吸引される吸引口(416)と、
    前記ノズルの前記噴出口の下流側に設けられる通路であって、前記ノズルから噴出される前記流体と前記吸引口から吸引される前記気相流体とを混合させる通路を構成する混合部(42)と、
    前記混合部の下流側に設けられる通路であって、前記混合部から流出した流体を減速して圧力を上昇させるディフューザ部(43)と、
    を備え、
    前記ノズルは、上流側の通路であって通路断面積が下流に向けて狭まる第1通路(412)と、前記第1通路の下流端部に接続される第2通路(413)と、前記第2通路の下流端部に接続され、通路断面積が下流に向けて大きくなる第3通路(414)と、を含んでおり、
    前記第1通路には、
    前記第1通路の内周壁面に開口し、前記内周壁面の周方向に沿うように前記液相流体が流入する第1流入口(411)と、前記第1通路上流側の軸方向端部に位置する内壁面に開口し、前記第1流入口から前記第1通路に流入する前記液相流体よりも低圧である気相流体が前記第1通路の軸方向に流入する第2流入口(418)と、が設けられており、
    前記第2通路には、
    前記内周壁面に沿う前記液相流体の流入によって前記第1通路で形成された旋回流が前記第2通路を流通するときに抵抗を与えて前記旋回流を乱す旋回流抑制手段(44)が設けられていることを特徴とするエジェクタ方式の減圧装置。
  2. 前記旋回流抑制手段は前記第2通路の内壁面に形成される溝部(441)を備える抵抗体(44)であり、
    前記溝部は、前記第2通路を下流側に進む前記旋回流の回転方向とは逆向きの回転方向に回転しながら下流側に向けて進むように設けられていることを特徴とする請求項1に記載のエジェクタ方式の減圧装置。
  3. 前記旋回流抑制手段は、前記第2通路よりも小さい通路断面積を形成する開口部(441A)を備えた抵抗体(44A)であることを特徴とする請求項1に記載のエジェクタ方式の減圧装置。
  4. 前記抵抗体(44A,44B)が備える開口部(441A,441B)はスリット状であることを特徴とする請求項3に記載のエジェクタ方式の減圧装置。
  5. 前記抵抗体(44C,44D)が備える開口部(441C,441D)は、円形状の中央部と、前記中央部から放射状に延びるスリット状部とによって構成されていることを特徴とする請求項3に記載のエジェクタ方式の減圧装置。
  6. 前記抵抗体(44E)が備える開口部(441E)は、その開口周縁部が周方向に連続する凹凸部で形成されていることを特徴とする請求項3に記載のエジェクタ方式の減圧装置。
  7. 前記抵抗体(44F)は、通路の中央に向かって突出する壁部を備えることを特徴とする請求項3に記載のエジェクタ方式の減圧装置。
  8. 気相冷媒を吸入して圧縮する圧縮機(2)と、
    前記圧縮機から吐出された冷媒を放熱して冷却する放熱器(3)と、
    前記放熱器で冷却された冷媒とこの冷媒よりも低圧である気相冷媒とを混合して気液混合冷媒を流出し、前記放熱器からの前記冷媒を減圧膨張させる請求項1から請求項7のいずれか一項に記載のエジェクタ方式の減圧装置(4)と、
    前記エジェクタ方式の減圧装置からの前記気液混合冷媒を気相冷媒と液相冷媒とに分離する気液分離器(5)と、
    前記気液分離器で分離された液相冷媒を減圧する減圧装置(6)と、
    前記減圧装置で減圧された前記液相冷媒を空気と熱交換して蒸発させる蒸発器(7)と、を備え、
    前記エジェクタ方式の減圧装置において、
    前記第1流入口には、前記放熱器で冷却された冷媒が流入し、
    前記第2流入口には、前記気液分離器で分離された前記気相冷媒および前記蒸発器で蒸発された気相冷媒の少なくとも一方が流入することを特徴とする冷凍サイクル。
  9. 前記気液分離器の前記気相冷媒が収容されている気相冷媒部と前記第2流入口とを連通させる第1気相冷媒通路(10)、および前記蒸発器と前記第2流入口とを連通させる第2気相冷媒通路(11)のそれぞれに、流通する冷媒流量を調節する流量調整手段(12,13)を備えることを特徴とする請求項8に記載の冷凍サイクル。
JP2009054054A 2009-03-06 2009-03-06 エジェクタ方式の減圧装置およびこれを備えた冷凍サイクル Expired - Fee Related JP5182159B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054054A JP5182159B2 (ja) 2009-03-06 2009-03-06 エジェクタ方式の減圧装置およびこれを備えた冷凍サイクル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054054A JP5182159B2 (ja) 2009-03-06 2009-03-06 エジェクタ方式の減圧装置およびこれを備えた冷凍サイクル

Publications (2)

Publication Number Publication Date
JP2010210111A JP2010210111A (ja) 2010-09-24
JP5182159B2 true JP5182159B2 (ja) 2013-04-10

Family

ID=42970484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054054A Expired - Fee Related JP5182159B2 (ja) 2009-03-06 2009-03-06 エジェクタ方式の減圧装置およびこれを備えた冷凍サイクル

Country Status (1)

Country Link
JP (1) JP5182159B2 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5413393B2 (ja) 2011-03-28 2014-02-12 株式会社デンソー 冷媒分配器および冷凍サイクル
JP5640857B2 (ja) 2011-03-28 2014-12-17 株式会社デンソー 減圧装置および冷凍サイクル
EP2718644B1 (en) * 2011-06-10 2020-09-09 Carrier Corporation Ejector with motive flow swirl
JP5920110B2 (ja) 2012-02-02 2016-05-18 株式会社デンソー エジェクタ
JP5821709B2 (ja) 2012-03-07 2015-11-24 株式会社デンソー エジェクタ
JP5861574B2 (ja) * 2012-06-22 2016-02-16 株式会社デンソー 減圧装置および冷凍サイクル装置
JP6079552B2 (ja) * 2012-11-20 2017-02-15 株式会社デンソー エジェクタ
JP6090104B2 (ja) 2012-12-13 2017-03-08 株式会社デンソー エジェクタ
JP6119566B2 (ja) 2012-12-27 2017-04-26 株式会社デンソー エジェクタ
JP5999071B2 (ja) 2012-12-27 2016-09-28 株式会社デンソー エジェクタ
JP6064862B2 (ja) * 2013-01-11 2017-01-25 株式会社デンソー エジェクタ
JP6056596B2 (ja) 2013-03-27 2017-01-11 株式会社デンソー エジェクタ
JP2014224626A (ja) * 2013-05-15 2014-12-04 株式会社デンソー エジェクタ
JP6119489B2 (ja) 2013-07-30 2017-04-26 株式会社デンソー エジェクタ
JP6011484B2 (ja) * 2013-07-31 2016-10-19 株式会社デンソー エジェクタ
JP6070465B2 (ja) * 2013-07-31 2017-02-01 株式会社デンソー エジェクタ
JP6003844B2 (ja) * 2013-08-09 2016-10-05 株式会社デンソー エジェクタ
JP6299495B2 (ja) * 2013-08-29 2018-03-28 株式会社デンソー エジェクタ式冷凍サイクル
JP6176127B2 (ja) * 2014-01-21 2017-08-09 株式会社デンソー エジェクタ
JP6350108B2 (ja) * 2014-08-21 2018-07-04 株式会社デンソー エジェクタ、およびエジェクタ式冷凍サイクル
US10760838B2 (en) 2017-12-20 2020-09-01 Lennox Industries Inc. Method and apparatus for refrigerant detector calibration confirmation
JP7270464B2 (ja) * 2019-05-30 2023-05-10 株式会社ツインバード スチームノズル
KR102436034B1 (ko) * 2020-12-07 2022-08-24 목포대학교산학협력단 흡입 성능 개선을 위한 제트펌프

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069071A (ja) * 2005-09-05 2007-03-22 Sharp Corp 微細気泡発生装置およびそれが組み込まれた微細気泡循環システム
JP4867335B2 (ja) * 2005-12-27 2012-02-01 アイシン精機株式会社 空気調和装置
JP3836497B1 (ja) * 2006-01-27 2006-10-25 一三 栗木 イオン気泡発生装置
JP2008139003A (ja) * 2006-11-08 2008-06-19 Denso Corp エジェクタ方式の減圧装置
JP4802154B2 (ja) * 2007-08-06 2011-10-26 株式会社Reo研究所 超微細気泡生成装置
JP2008111662A (ja) * 2007-12-11 2008-05-15 Denso Corp エジェクタサイクル

Also Published As

Publication number Publication date
JP2010210111A (ja) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5182159B2 (ja) エジェクタ方式の減圧装置およびこれを備えた冷凍サイクル
JP5482767B2 (ja) エジェクタ式冷凍サイクル
CN103477160B (zh) 减压装置和制冷循环装置
JP4760843B2 (ja) エジェクタ装置およびエジェクタ装置を用いた蒸気圧縮式冷凍サイクル
JP5493769B2 (ja) 蒸発器ユニット
KR101045759B1 (ko) 냉매 분류 구조를 구비한 팽창 밸브 및 이를 이용한 냉동 장치
CN105431640B (zh) 喷射器
CN104081064A (zh) 喷射器
DE112013006288B4 (de) Ejektor
WO2015015752A1 (ja) エジェクタ
WO2011040286A1 (ja) ガス冷媒分離器、ガス冷媒分離兼冷媒分流器、膨張弁及び冷凍装置
JP6056596B2 (ja) エジェクタ
US20170102010A1 (en) Ejector Using Swirl Flow
DE112014003680B4 (de) Ejektor
JP5962571B2 (ja) エジェクタ
WO2016021141A1 (ja) 蒸発器
WO2014185069A1 (ja) エジェクタ
JP2014055765A (ja) 蒸発器ユニット
WO2014080596A1 (ja) エジェクタ
JP5360095B2 (ja) ガス冷媒分離兼冷媒分流器
JP2010196919A (ja) エジェクタ方式の減圧装置
JP4529954B2 (ja) 蒸気圧縮式冷凍サイクル
JPH11148733A (ja) 冷凍サイクル用エジェクタ
JP6036592B2 (ja) エジェクタ
JPH1137577A (ja) ノズル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R151 Written notification of patent or utility model registration

Ref document number: 5182159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees