[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5150216B2 - 導波路型光検出装置およびその製造方法 - Google Patents

導波路型光検出装置およびその製造方法 Download PDF

Info

Publication number
JP5150216B2
JP5150216B2 JP2007290957A JP2007290957A JP5150216B2 JP 5150216 B2 JP5150216 B2 JP 5150216B2 JP 2007290957 A JP2007290957 A JP 2007290957A JP 2007290957 A JP2007290957 A JP 2007290957A JP 5150216 B2 JP5150216 B2 JP 5150216B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
light absorption
waveguide
absorption region
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007290957A
Other languages
English (en)
Other versions
JP2009117708A (ja
Inventor
和哉 大平
瑞仙 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007290957A priority Critical patent/JP5150216B2/ja
Publication of JP2009117708A publication Critical patent/JP2009117708A/ja
Application granted granted Critical
Publication of JP5150216B2 publication Critical patent/JP5150216B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Description

本発明は、導波路型光検出装置およびその製造方法に関するものである。
近年のLSIの高集積化に伴い、LSI内部の回路の微細化が進んでいる。この微細化により、配線断面積は減少し、隣接する配線間の距離が狭くなる。従って、LSI内部の配線抵抗が増大し、配線間の容量が増大する。その結果、配線抵抗と配線容量で決定される配線遅延時間が増大し、更なるLSIの高速化が困難となってくる。
このようなLSIの高集積化に伴う配線遅延の問題を解決する技術として、光配線技術が注目されている。光配線技術は、光導波路を用いて光信号を伝送する方式であり、上記のような微細化に伴う配線抵抗や配線間容量の増大が発生せず、更なる動作速度の高速化が期待できる。このような光配線を用いて信号伝送を行うLSIとして、光電気混載LSIが提案されている。
光電気混載LSIとは、各機能ブロックによる信号処理は電気で行われ、これらの機能ブロック間は光信号で伝送する方式を用いたLSIである。このような光電気混載LSIにおいては、伝送する光信号を電気信号に変換する素子および、信号処理が行われた電気信号を光信号に変換する素子が必要である。
電気信号を光信号に変換する素子としては、端面発光レーザや面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)が用いられており、GHz帯での動作の報告例もある。
これに対して、光信号を電気信号に変換する素子として用いられる光検出装置も多数の報告例がある。この装置は、光吸収領域のバンドギャップエネルギーより大きいエネルギーを持つ光が光吸収領域に入射された場合、電子−正孔対が生成され、これらは内部電界および外部から印加された電界により各電極へとドリフトし、光電流として検出されるものである。
このような光検出装置には、受光素子外部に光導波路が配置される面型光検出装置及び、受光素子と光導波路が一体で構成される導波路型光検出装置がある。しかし現在は、高速性を維持しつつ高い受光感度を達成すための設計及び作成の容易さから、導波路型光検出装置の開発が主流である。
現在知られている導波路型光検出装置は、基本的には下記の2通りの構造に分類される。すなわち、光導波路の上部または下部に光吸収領域を配置し、このうち少なくとも光吸収領域の上下にそれぞれp型半導体層またはn型半導体層を介して電極が配置される構成(以下、縦型構造と呼ぶ)と、半導体基板上に形成された光導波路の周囲を光吸収領域で囲い、光吸収領域の両側面にそれぞれp型半導体層またはn型半導体層を介して電極が配置される構成(以下、横型構造と呼ぶ)に分類される。
縦型構造の光検出装置においては、光吸収領域および光導波路の上下に電極を配置する構成(特許文献1)及び、光導波路上に配置される光吸収領域の上下に電極を配置する構成(特許文献2)が知られている。しかし、特許文献1に記載された縦型構造の光検出装置を動作させるためには、光導波路層にも電界を生じさせる必要がある。このため光導波路に不純物をドーピングし、光導波路を導電帯にする必要がある。しかし、このような不純物は光を散乱させる要因となり、光検出装置内部の光導波路で光の損失が起こるため、変換効率が低下するという問題がある。一方、特許文献2に記載された縦型構造の光検出装置を動作させるときには、光導波路に電界を生じさせる必要がないため上記の問題は解決されるが、光導波路上にn型半導体層またはp型半導体層を介して光吸収領域が配置されるため、光導波路から光吸収領域へ光エネルギーが移動するまでにある程度の導波路長が必要であり、装置が大型化するという問題がある。さらに、光導波路から光吸収領域に光エネルギーが移動するときにn型半導体層またはp型半導体層を通過するため、この部分でも光の損失が生じ、変換効率が低下するという問題もある。
また、横型構造の光検出装置においては、光導波路の周囲を覆うように光吸収領域が形成され、その両側面に電極を配置するため、両電極間の距離が長くなり、さらには内部の電界が導波路を避けるように発生するという問題がある。このため、以下に示すように、いくつかの問題が生じることになる。第1に、光吸収領域で発生する電子と正孔がそれぞれ各電極に到達するまでにかかる時間が長くなるため、高速動作が制限される。第2に、電子と正孔が各電極にドリフトする途中で多数キャリアと再結合する確率が高くなり、変換効率が低下する。第3に、この光検出装置を動作させるために必要な電圧が大きくなってしまい、消費電力が増大する。第4に、この光検出装置の動作速度を最適化するためには、光吸収領域の両側部に形成されるp型半導体層とn型半導体層の配置精度が重要であるが、この精度は素子作成時のパターン作成精度に制限されるため、高精度なアライメントが必要である。(特許文献3)
特開2006−171157号公報 特開平9−139520号公報 特表2006−522465号公報
本発明の課題は、低消費電力で高速動作が可能な光検出装置を提供することにある。
本発明による光検出装置は、半導体基板上に形成された、ノンドープ層からなる光導波路と、これを囲むように形成された光吸収領域と、この光吸収領域の上部に形成された第1の電極と、前記光吸収領域の下部または両側部に形成された第2の電極と、を備えたことを特徴とするものである。
また、本発明による光検出装置においては、前記光吸収領域の上部において、前記第1の電極に接触形成された第1導電型半導体層と、前記光吸収領域の下部または両側部において、前記第2の電極に接触形成された第2導電型半導体層と、をさらに備えることを特徴とするものである。
さらに、本発明による光検出装置においては、前記光吸収領域の下部に形成された第2の電極は、前記光吸収領域の外部でかつ、光の伝搬方向に対して前方または後方の位置の前記半導体基板上に形成されることを特徴とするものである。
さらに、本発明による光検出装置においては、前記光吸収領域は、真性半導体領域であるか、または、第1導電型半導体層およびこれに接合する第2導電型半導体層を含んでいることを特徴とするものである。
さらに、本発明による光検出装置においては、前記第1導電型半導体層の導電型がp型のとき前記第2導電型半導体層の導電型はn型であり、または、前記第1導電型半導体層の導電型がn型のとき前記第2導電型半導体層の導電型はp型であることを特徴とするものである。
さらに、本発明による光検出装置においては、前記光導波路の底部の両側に光導波路層が延長形成され、この光導波路層の膜厚は30nm以下であることを特徴とするものである。
さらに、本発明による光検出装置においては、前記光吸収領域を形成する半導体は、Ge、Si、SiGe、InGaAs、InGaAsP,GaSb、InGaSb,GaAsSb、InGaAsSbのいずれかであり、前記光導波路および前記光導波路層の材料は、Si、SiN、SiON, SiOC, SiCNのいずれかであることを特徴とするものである。
さらに、本発明による光検出装置においては、前記第1の電極と前記第2の電極との間に、外部から逆方向に電界をかけることを特徴とするものである。
また、本発明による光検出装置の製造方法においては、半導体基板上に、ノンドープ層からなる光導波路を形成する工程と、これを囲むように光吸収領域を形成する工程と、この光吸収領域の上部に第1導電型半導体層を形成する工程と、この第1導電型半導体層に第1の電極を形成する工程と、前記光吸収領域の両側部または下部に第2導電型半導体層を形成する工程と、この第2導電型半導体層に第2の電極を形成する工程と、を具備することを特徴とするものである。
さらに、本発明による光検出装置の製造方法においては、前記光導波路を形成する工程は、前記光導波路の底部の両側に30nm以下の厚さの光導波路層を延長形成するようにエッチングする工程を含むことを特徴とするものである。
本発明によれば、光吸収領域の上部と下部もしくは、上部と両側部に電極を配置するため、内部の電界を光導波路を回避するように最短距離で発生させることができる。このため、低消費電力で高速動作が可能な光検出装置が得られる。
以下に、本発明の実施の形態を図1〜図5を用いて詳細に説明する。
(実施形態1)
図1は本発明の実施形態を示す図であり、同図(a)は上面図であり、(b)は同図(a)に示す破線A−A’に沿った断面図である。
図1に示すように、本実施形態1の光検出装置は、半導体基板11上にクラッド層12が形成され、このクラッド層12上に光導波路14が形成される。この光導波路14の底部の両側には光導波路層13が形成され、これら光導波路層13および光導波路14の上部には、光導波路14の両側および上面を覆い囲むように真性半導体で光吸収領域15が形成される。この光吸収領域15の上部にはn型半導体層16が形成され、両側部にはp型半導体層17が形成される。すなわち、光吸収領域15とn型半導体層16、p型半導体層17によって、pin構造が形成される。これらn型半導体層16およびp型半導体層17の上部にはそれぞれ電極18、19が接触形成される。また、p型半導体層17の上部のうち、電極19が接触形成されない部分はSiO絶縁体マスク20で覆われ、さらにこのSiO絶縁体マスク20および光吸収領域15の上部のうち電極18が接触形成される部分以外は、絶縁膜21で覆われている。
光信号がこの装置の紙面に対して垂直な方向から光導波路14を伝搬すると、光導波路14を覆い囲むように形成された光吸収領域15で光吸収が起こる。光信号が光吸収領域15に吸収されると、この内部で正孔−電子対が発生する。ここで、電極18が正、電極19が負になるように電圧を印加すると、これら正孔と電子は、光導波路14の左側で発生した場合は左側のp型半導体層17とn型半導体層16の間に発生する電界によりドリフトし、電流として検出される。また、光導波路14の右側で発生した場合は右側のp型半導体層17とn型半導体層16の間に発生する電界によりドリフトし、電流として検出される。ここで、光の伝搬方向に対する垂直面において斜め方向にpin構造が形成されるため、従来の縦型構造および横型構造の両欠点が回避された光検出が可能となる。すなわち、縦型構造の光検出装置と比べて、光導波路14内に電界を生じさせる必要がないため光導波路14に不純物をドーピングする必要がなく、光信号の損失を小さくできる。さらに、光導波路14と光吸収領域15が接合されているため、光信号を吸収するために必要な導波路長を短くでき、装置の小型化・低消費電力化が実現できる。また、横型構造の光検出装置と比べて、両電極18、19間の距離が短くでき、さらに光導波路14を避けるように電界をかけることができるので、高速化、低消費電力化が実現でき、光吸収領域15で生成された正孔−電子対と多数キャリアとの再結合確率を低くできるため、変換効率が向上できる。さらには、p型半導体層17とn型半導体層16は横型構造と同様の配置ではないため、アライメントの精度が緩和される。
つぎに、本発明の実施形態である図1に示す導波路型光検出装置の製造工程を、図2A〜図2Dの(a)〜(l)を用いて説明する。なお図2A〜図2D の各図は、図1(a)に示す導波路型光検出装置の破線A−A’に沿った断面図である。
本実施例では、図2A(a)に示すように、半導体基板11としてSi基板、クラッド層12として埋め込み酸化膜層、光導波路層13としてSi層が積層構造となるSOI基板を用いた場合における作製プロセスを示す。
まず図2A(b)に示すように、光導波路層13上部に導電性領域形成用マスク22を形成する。
次に図2A(c)に示すように、イオン注入や熱拡散などを用いてp型半導体層17を形成する。
次に図2B(d)に示すように、導電性領域形成用マスク22を除去した後、光導波路14を形成するためにSiO絶縁体マスク20を形成する。
次に図2B(e)に示すように、ドライエッチングを用いて光導波路層13をエッチングし、光導波路14を形成する。このとき、図2C(g)に示す工程においてエッチングされた部分を領域選択結晶成長の基部とするために、クラッド層12と光導波路層13の境界の上部に30nm以下の光導波路層13を残すようエッチングする。
次に図2B(f)に示すように、光導波路14の上部に形成されたSiO絶縁体マスク20のみを除去する。
次に図2C(g)に示すように、結晶成長により光導波路14の周囲に光吸収領域15を形成する。このとき、SiO絶縁体マスク20の上には結晶は成長されず、薄く残した光導波路層13を基部として、光吸収領域15が形成される。この光吸収領域15は、入射される光のエネルギー以下のバンドギャップエネルギーを持つ真性半導体で形成され、例えば、Ge、Si、SiGe、InGaAs、InGaAsP、GaSb、InGaSb、GaAsSb、InGaAsSbのいずれかで形成される。
次に図2C(h)に示すように、素子全面に絶縁膜21を堆積させる。
次に図2C(i)に示すように、推積された絶縁膜21のうち、光吸収領域15の上部の一部をエッチングにより除去し、電極18を形成するための窓構造23を形成する。
次に図2D(j)に示すように、絶縁膜21をマスクに用いて、n型半導体層16を形成する。
次に図2D(k)に示すように、図2C(i)で形成した窓構造23に電極金属を蒸着してn側の電極18を形成する。
次に図2D(l)に示すように、p型半導体層17の上部に堆積している絶縁膜21およびSiO絶縁体マスク20の一部を除去し、電極19を形成するための窓構造24を形成する。
最後に、図2D(l)で形成した窓構造24に電極金属を蒸着してp側の電極19を形成し、図1に示す導波路型光検出装置が完成する。
(実施形態2)
図3は本発明の他の実施形態を示す図であり、同図(a)は上面図であり、(b)は同図(a)に示す破線A−A’に沿った断面図である。
図3に示すように、本実施形態2の光検出装置は、p型半導体層17をクラッド層12上かつ光導波路14の左右に形成したことを特徴とする。このような構造であっても、実施形態1に示す構造と同様に、従来の縦型構造および横型構造の欠点を回避することができる。また、図3に示す構造は、生成キャリアの走行距離を光吸収領域15の厚さで決定することができ、この膜厚を薄くすることで、より高速動作が可能な導波路型光検出装置を実現することができる。
なお、実施形態2に示す導波路型光検出装置の製造工程は、図2A〜図2Dに示した製造工程の一部を適時変更することで実現可能である。
(実施形態3)
図4は本発明の他の実施形態を示す図であり、同図(a)は上面図であり、(b)は同図(a)に示す破線A−A’に沿った断面図である。
図4に示すように、本実施形態3の光検出装置は、光吸収領域15の上部の一部にn型半導体層16を含み、さらに光吸収領域15の両側部の一部にp型半導体層17を含むことを特徴とする。この構造は、選択成長で形成した光吸収領域15において、p型半導体層17とn型半導体層16を選択的にドーピングして形成するため、これらの層間に存在する生成キャリアが走行するノンドープ領域の距離を選択成長直後の構造より短縮することができるため、さらに高速な応答が可能な導波路型光検出装置を実現することができる。
なお、実施形態3に示す導波路型光検出装置の製造工程の技術的特徴は図2A〜図2Dに示した製造工程と同様であり、この製造工程の一部を適時変更することで、本実施形態に示す導波路型光検出装置が実現可能である。
(実施形態4)
図5は本発明の他の実施形態を示す図であり、同図(a)は上面図であり、(b)は同図(a)に示す破線A−A’に沿った断面図であり、(c)は同図(a)に示す破線B−B’に沿った断面図である。
図5に示すように、本実施形態4の光検出装置は、p型半導体層17に接触形成された電極19を、前記光吸収領域15の外部かつ、光の進行方向に対して前方または後方に形成したことを特徴とする。
この構造においても図3同様に、生成キャリアの走行距離を光吸収領域15の厚さで決定することができ、膜厚を薄くすることで、高速動作が可能な光検出装置が実現可能となる。また、光吸収領域15を光導波路14の周囲に選択的に結晶成長させて形成する工程において、光吸収領域15の下部はドーピングしたp型半導体層17を結晶成長させ、この上に光吸収領域15を結晶成長させることで形成するため、不純物半導体層と光吸収領域15を別の工程で形成する必要がなく、製造工程の簡易化が可能である。その他の製造工程においては、図2A〜図2Dに示した製造工程の一部を適時変更することで、本実施形態に示す導波路型光検出装置が実現可能である。
以上に本発明の実施の形態を説明したが、本発明の実施の形態は、これらに限るものではない。
例えば、上述した各実施形態において、n型半導体層16およびp型半導体層17はそれぞれ、これらより不純物濃度が高いn+型半導体層およびp+型半導体層としてもよくまた、それぞれ不純物濃度が異なり同じ導電型の半導体層が接合された導電型の半導体層であってもよく、p型半導体層17およびn型半導体層16が存在しない場合であってもよい。さらに、これらの半導体層16、17および、これらより不純物濃度が高い半導体層の配置は図示したものと逆としても同様の効果が得られる。
また、上述した各実施形態におけるp型半導体層17とn型半導体層16の形成方法および、これらより不純物濃度が高い不純物半導体層の形成方法は、光吸収領域15を選択的にドーピングしても、光導波路層13を選択的にドーピングしても、ドーピングした層を光吸収領域15に隣接した位置に選択成長させても、これらの組み合わせを用いても、どのような形成方法を用いた場合であっても同様の効果を得ることができる。
また、上述した各実施形態において、絶縁膜21は必ずしも必要ではなく、絶縁膜21がなくても、光吸収領域15の上部を選択的にドーピングする工程やこれよって形成された構造、および選択的にドーピングした領域に電極を接触形成することのできる構造、さらに電極が他の領域と電気的に絶縁されている構造を適用すれば、同様の効果が得られる。
また、実施形態4に示したp型半導体層17に接触形成された電極19の配置は、上記のどの実施形態に対しても適用可能である。
このように、本発明の実施の形態は、趣旨を逸脱しない範囲内において種々に変形して実施することが可能である。
本発明の実施形態1を示す構造図であり、同図(a)は上面図であり、(b)は同図(a)に示す破線A−A’に沿った断面図である。 本発明の実施形態1の製造工程を示す断面図である。 本発明の実施形態1の製造工程を示す断面図である。 本発明の実施形態1の製造工程を示す断面図である。 本発明の実施形態1の製造工程を示す断面図である。 本発明の実施形態2を示す構造図であり、同図(a)は上面図であり、(b)は同図(a)に示す破線A−A’に沿った断面図である。 本発明の実施形態3を示す構造図であり、同図(a)は上面図であり、(b)は同図(a)に示す破線A−A’に沿った断面図である。 本発明の実施形態4を示す構造図であり、同図(a)は上面図であり、(b)は同図(a)に示す破線A−A’に沿った断面図であり、(c)は同図(a)に示す破線B−B’に沿った断面図である。
符号の説明
11:半導体基板
12:クラッド層
13:光導波路層
14:光導波路
15:光吸収領域
16:n型半導体層
17:p型半導体層
18,19:電極
20:SiO絶縁体マスク
21:絶縁膜
22:導電性領域形成用マスク
23,24:窓構造

Claims (12)

  1. 半導体基板上に形成された、ノンドープ層からなる光導波路と、これを囲むように形成された光吸収領域と、この光吸収領域の上部に形成された第1の電極と、前記光吸収領域の下部または両側部に形成された第2の電極と、を備えることを特徴とする導波路型光検出装置。
  2. 前記光吸収領域の上部において、前記第1の電極に接触形成された第1導電型半導体層と、前記光吸収領域の下部または両側部において、前記第2の電極に接触形成された第2導電型半導体層と、をさらに備えることを特徴とする請求項1に記載の導波路型光検出装置。
  3. 前記光吸収領域の下部に形成された第2の電極は、前記光吸収領域の外部でかつ、光の伝搬方向に対して前方または後方の位置の前記半導体基板上に形成されていることを特徴とする請求項2に記載の導波路型光検出装置。
  4. 前記光吸収領域は、真性半導体領域であることを特徴とする請求項2に記載の導波路型光検出装置。
  5. 前記光吸収領域は、第1導電型半導体層およびこれに接合する第2導電型半導体層を含んでいることを特徴とする請求項1または2に記載の導波路型光検出装置。
  6. 前記第1導電型半導体層の導電型がp型のとき前記第2導電型半導体層の導電型はn型であり、または、前記第1導電型半導体層の導電型がn型のとき前記第2導電型半導体層の導電型はp型であることを特徴とする請求項2乃至5のいずれかに記載の導波路型光検出装置。
  7. 前記光導波路の底部の両側に光導波路層が延長形成され、この光導波路層の膜厚は30nm以下であることを特徴とする請求項1乃至6のいずれかに記載の導波路型光検出装置。
  8. 前記光吸収領域を形成する半導体は、Ge、Si、SiGe、InGaAs、InGaAsP,GaSb、InGaSb,GaAsSb、InGaAsSbのいずれかであることを特徴とする請求項1乃至7のいずれかに記載の導波路型光検出装置。
  9. 前記光導波路および前記光導波路層の材料は、Si、SiN、SiON, SiOC, SiCNのいずれかであることを特徴とする請求項1乃至8のいずれかに記載の導波路型光検出装置。
  10. 前記第1の電極と前記第2の電極との間に、外部から逆方向に電界をかけることを特徴とする請求項1乃至9のいずれかに記載の導波路型光検出装置。
  11. 半導体基板上に、ノンドープ層からなる光導波路を形成する工程と、これを囲むように光吸収領域を形成する工程と、この光吸収領域の上部に第1導電型半導体層を形成する工程と、この第1導電型半導体層に第1の電極を形成する工程と、前記光吸収領域の両側部または下部に第2導電型半導体層を形成する工程と、この第2導電型半導体層に第2の電極を形成する工程と、を具備することを特徴とする導波路型光検出装置の製造方法。
  12. 前記光導波路を形成する工程は、前記光導波路の底部の両側に30nm以下の厚さの光導波路層を延長形成するようにエッチングする工程を含むことを特徴とする請求項11に記載の導波路型光検出装置の製造方法。
JP2007290957A 2007-11-08 2007-11-08 導波路型光検出装置およびその製造方法 Expired - Fee Related JP5150216B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007290957A JP5150216B2 (ja) 2007-11-08 2007-11-08 導波路型光検出装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007290957A JP5150216B2 (ja) 2007-11-08 2007-11-08 導波路型光検出装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2009117708A JP2009117708A (ja) 2009-05-28
JP5150216B2 true JP5150216B2 (ja) 2013-02-20

Family

ID=40784474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007290957A Expired - Fee Related JP5150216B2 (ja) 2007-11-08 2007-11-08 導波路型光検出装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP5150216B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101272783B1 (ko) 2009-08-31 2013-06-11 한국전자통신연구원 도파로 광 검출기
JP7062276B2 (ja) * 2018-04-04 2022-05-06 国立研究開発法人産業技術総合研究所 光導波路型受光素子構造
JP7275843B2 (ja) * 2019-05-17 2023-05-18 富士通オプティカルコンポーネンツ株式会社 光半導体素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593274A (en) * 1979-01-05 1980-07-15 Nec Corp Photo-detector for optical integrated circuit
JPH01140678A (ja) * 1987-11-26 1989-06-01 Matsushita Electric Ind Co Ltd 受光素子
JPH04286168A (ja) * 1991-03-14 1992-10-12 Fujitsu Ltd アバランシェ・フォト・ダイオード
JPH06302847A (ja) * 1993-04-12 1994-10-28 Nippon Telegr & Teleph Corp <Ntt> 半導体受光素子
JPH0779009A (ja) * 1993-09-08 1995-03-20 Mitsubishi Electric Corp 半導体受光素子
JP4043555B2 (ja) * 1997-09-04 2008-02-06 古河電気工業株式会社 導波路型光検出器
US6897498B2 (en) * 2003-03-31 2005-05-24 Sioptical, Inc. Polycrystalline germanium-based waveguide detector integrated on a thin silicon-on-insulator (SOI) platform

Also Published As

Publication number Publication date
JP2009117708A (ja) 2009-05-28

Similar Documents

Publication Publication Date Title
US7800193B2 (en) Photodiode, method for manufacturing such photodiode, optical communication device and optical interconnection module
JP4835837B2 (ja) フォトダイオードとその製造方法
JP5232981B2 (ja) SiGeフォトダイオード
US10446707B2 (en) Optical waveguide detector and optical module
US9219184B2 (en) Avalanche photodiodes with defect-assisted silicon absorption regions
JP4284634B2 (ja) 半導体受光装置
WO2011083657A1 (ja) アバランシェフォトダイオード及びそれを用いた受信機
JP2008153547A (ja) 埋込導波路型受光素子
JP2017076651A (ja) 半導体受光装置
CN104681634A (zh) 一种波导耦合型吸收倍增分离雪崩二极管
US7020375B2 (en) Waveguide light detecting element
JP6115566B2 (ja) 導波路結合msm型フォトダイオード
US8639065B2 (en) System having avalanche effect light sensor with enhanced sensitivity
JP5150216B2 (ja) 導波路型光検出装置およびその製造方法
CN114256375A (zh) 雪崩光电探测器及其制备方法
JP2007013065A (ja) 近赤外光検出素子
JPH06268196A (ja) 光集積装置
JP2000164916A (ja) 積層型受光素子
US11271023B2 (en) Quantum waveguide infrared photodetector
JPH0272679A (ja) 光導波路付き半導体受光素子
JP4786440B2 (ja) 面入射型受光素子および光受信モジュール
US11307480B2 (en) Optical semiconductor device
US20230085007A1 (en) Photodetector and photonic integrated device
JP4284781B2 (ja) Msm型フォトダイオード
JP2726204B2 (ja) 半導体導波路型素子の製造法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees