[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5147574B2 - ガスレーザ発振器 - Google Patents

ガスレーザ発振器 Download PDF

Info

Publication number
JP5147574B2
JP5147574B2 JP2008178801A JP2008178801A JP5147574B2 JP 5147574 B2 JP5147574 B2 JP 5147574B2 JP 2008178801 A JP2008178801 A JP 2008178801A JP 2008178801 A JP2008178801 A JP 2008178801A JP 5147574 B2 JP5147574 B2 JP 5147574B2
Authority
JP
Japan
Prior art keywords
gas
reflection mirror
total reflection
laser beam
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008178801A
Other languages
English (en)
Other versions
JP2010021236A (ja
Inventor
友博 京藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008178801A priority Critical patent/JP5147574B2/ja
Publication of JP2010021236A publication Critical patent/JP2010021236A/ja
Application granted granted Critical
Publication of JP5147574B2 publication Critical patent/JP5147574B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Description

本発明は、ガスレーザ発振器に係り、特にガスの循環方向と放電方向とレーザビームの出力方向とが三軸に直交する三軸直交型のガスレーザ発振器に関するものである。
レーザ加工システムなどに用いられるガスレーザ発振器の1つとして、ガスの循環方向、放電方向およびレーザビームの出力方向が三軸に直交する三軸直交型ガスレーザ発振器がある。このような三軸直交型ガスレーザ発振器は、1対の放電電極に電力を投入することによって放電電極間に励起放電を起こさせる。そして、部分反射鏡と全反射鏡により構成される光共振器によって光を増幅させ、部分反射鏡と全反射鏡との間でレーザ発振を行なう。このとき、放電電極間(励起放電領域)への投入電力が大きいと、励起されるガス温度が高くなり、励起効率が低下する。このため、三軸直交型ガスレーザ発振器は、送風機によって常に高温ガスを放電幅方向(レーザビームの出力方向および放電方向に垂直な方向)に流し、熱交換器で高温ガスを冷却する構成となっている。このような構成とすることで、光共振する励起放電領域では、励起放電が常に高い発振効率で保たれる。
また、三軸直交型ガスレーザ発振器には、部分反射鏡や全反射鏡の近傍に、ガスの流れを作るためのダクトが設けられている。このダクトは、励起放電領域と非励起領域(部分反射鏡と全反射鏡の間の領域であって励起放電領域以外の領域)との圧力差を利用して、部分反射鏡側から励起放電領域側へのガス流と、全反射鏡側から励起放電領域側へのガス流とを形成している。三軸直交型ガスレーザ発振器は、このようなダクトによって非励起領域に常に冷えたガスを流している。これにより、三軸直交型ガスレーザ発振器は、レーザ発振効率が低下することを防ぎ、安定した高いレーザ出力を得ている。
ところで、励起放電領域などには、金属ダストが発生する。この金属ダストが部分反射鏡や全反射鏡に付着すると、三軸直交型ガスレーザ発振器が出力するレーザビームのビーム品質に悪影響を及ぼす。前述のダクトを有した三軸直交型ガスレーザ発振器の場合、ガス流によって発生する渦状のガスの流れにより、放電電極などを格納する真空容器内に浮遊するホコリなどの微粒子が部分反射鏡や全反射鏡に付着する。このため、光学部品のメンテナンスを頻繁に行なわないと、安定したビーム品質を得られない。特に高出力タイプのレーザ発振器では、光学部品のメンテナンス頻度が高くなる。
金属ダストを部分反射鏡や全反射鏡へ到達させにくくする方法として、部分反射鏡と励起放電領域との間や、全反射鏡と励起放電領域との間に、ガスの流れが生じない空間(静ガス室)を設ける方法がある。また、部分反射鏡と励起放電領域との間(静ガス室の入口)や、全反射鏡と励起放電領域との間に、ダスト反発電極を設ける方法がある。ダスト反発電極は、負電圧印加電源によって負の電圧が印加されており、放電によってマイナスに帯電している金属ダストの静ガス室への進入をクーロン力によって防いでいる(例えば、特許文献1参照)。
特開平5−67823号公報
しかしながら、上記従来の技術では、励起放電領域にプラスに帯電した金属ダストが浮遊している場合、ダスト反発電極に印加されている負の電圧により金属ダストが部分反射鏡や全反射鏡の方向に加速され光学部品に付着する。この結果、光学部品のメンテナンスを頻繁に行わないと、安定したビーム品質を得られないという問題点があった。
本発明は、上記に鑑みてなされたものであって、安定したビーム品質を有したレーザビームを長期間にわたって出力することができる三軸直交型のガスレーザ発振器を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、部分反射鏡と全反射鏡との間に配置された1対の放電電極間で励起放電を起こすとともに部分反射鏡と全反射鏡との間で励起光を増幅させて部分反射鏡側からレーザビームを出力し、かつレーザガスの循環方向と、放電方向と、レーザビームの出力方向と、が互いに直交する三軸直交型のガスレーザ発振器において、前記部分反射鏡と前記全反射鏡との間に挟まれた領域のうち前記放電電極と前記部分反射鏡との間の非励起領域に配置されて前記レーザガスのガス流を制御する出力側ダクトと、第1の平板状部材を用いて形成されるとともに、前記部分反射鏡側に進む前記レーザビームと垂直な方向に前記第1の平板状部材の主面が向くよう前記出力側ダクト内に配置され、かつ前記第1の平板状部材に前記レーザビームを通過させる隙間があけられた出力側仕切り部と、を備え、前記出力側仕切り部は、所定の位置で絶縁されて分断されており、分断されている一方の出力側仕切り部にプラスの電圧が印加されるとともに、分断されている他方の出力側仕切り部にマイナスの電圧が印加されることを特徴とする。
この発明によれば、一方の出力側仕切り部にプラスの電圧を印加し他方の出力側仕切り部にマイナスの電圧を印加しているので、部分反射鏡側へ流れ込む微粒子を減少させることができ、この結果、部分反射鏡に付着する微粒子が減少するので、安定したビーム品質を有したレーザビームを長期間にわたって出力することが可能になるという効果を奏する。
以下に、本発明に係るガスレーザ発振器の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1に係るガスレーザ発振器の概略構成を示す図である。ガスレーザ発振器100は、真空容器10からレーザビームLをパルス発振させる装置であり、真空容器10の横にガス(レーザガス)の流れを補助(制御)するダクト8Aが配置されている。ガスレーザ発振器100は、ガスの循環方向、放電方向、レーザビームLの出力方向が三軸に直交する三軸直交型のレーザ発振器である。なお、以下では、ガスの循環方向をz軸方向、放電方向をy軸方向、レーザビームLの出力方向をx軸方向として説明する。
真空容器10は、主放電するための電極(後述する1対の放電電極1)を格納しており、放電電極1に電圧を印加することによって、レーザビームLを発生させる。真空容器10のうち、レーザビームLの出力方向となる端部側には、レーザビームLの一部を反射するとともに残りの一部を外部に出力する光学部品(後述する部分反射鏡4)が配置されている。
ダクト8Aは、部分反射鏡4と真空容器10との間に配置されており、部分反射鏡4と真空容器10との間の空間のガス流を制御する。ダクト8Aは、例えば柱軸方向をレーザビームLの出力方向とした概略四角柱状をなしている。ダクト8Aの柱軸方向には、レーザビームLを通過させる通過穴Hが設けられている。真空容器10内で発生したレーザビームLは、通過穴Hを通って部分反射鏡4に到達し、レーザビームLの一部がガスレーザ発振器100の外部に出力される。
ガスレーザ発振器100は、ダクト8A内に1対の仕切り板25を有している。各仕切り板25は、yz平面と平行な位置に配置されており、真空容器10から部分反射鏡4側へのガスの進入を防止する。また、2枚の仕切り板25は、y軸方向に所定の距離だけ離されて配置されており、それぞれにプラスの電圧(+V)とマイナスの電圧(−V)が印加されている。真空容器10から部分反射鏡4側へ流れてくる粉塵などの不純物(後述の微粒子12M,12P)は、プラスまたはマイナスに帯電している。したがって、ガスレーザ発振器100は、プラスとマイナスの電圧が印加された1対の仕切り板25によって、プラスやマイナスに帯電している微粒子(荷電粒子)12M,12Pの部分反射鏡4側への進入を抑止する。具体的には、プラスの電圧が印加された仕切り板25によって、マイナスに帯電している微粒子12Pを引きつけ、マイナスの電圧が印加された仕切り板25によって、プラスに帯電している微粒子12Mを引きつける。また、プラスの電圧が印加された仕切り板25によって、プラスに帯電している微粒子12Pを真空容器10へ跳ね返し、マイナスの電圧が印加された仕切り板25によって、マイナスに帯電している微粒子12Mを真空容器10へ跳ね返す。
なお、ここではレーザビームLの部分反射側(出力側)に配置されるダクト8Aについて説明したが、本実施の形態では、レーザビームLの全反射側にもダクト8Aと同様の構成を有したダクト(後述のダクト8B)を配置しておく。また、図1では真空容器10やダクト8A,8Bが四角柱状である場合を図示したが、真空容器10やダクト8A,8Bは、円柱状などの柱状であってもよい。
図2および図3は、実施の形態1に係るガスレーザ発振器の断面構成を示す図である。図2では、z軸方向から見たガスレーザ発振器100の断面図(xy平面で切断した場合)を示している。また、図3では、x軸方向から見たガスレーザ発振器100の断面図(yz平面で切断した場合)を示している。なお、ダクト8Aが特許請求の範囲に記載の出力側ダクトに対応し、ダクト8Bが特許請求の範囲に記載の全反射側ダクトに対応している。
ガスレーザ発振器100は、真空容器10と、ガスの流れを補助するダクト8A,8Bと、部分反射鏡4と、全反射鏡5と、電源30と、を有している。真空容器10は、その内部が真空に保たれた概略四角柱状の筐体であり、レーザビームLを発生させる。真空容器10内には、1対の放電電極1と、ガスを循環させるための送風機6と、ガスを冷却するための熱交換器7と、ダクト8A,8Bの一部と、ダクト9と、が格納されている。
放電電極1は、概略平板状をなしており、それぞれの主面がxz平面と平行になるよう所定の距離だけ離された状態で真空容器10内に固定されている。放電電極1に電力が投入されると放電電極1間に励起放電が起こる。上側の放電電極1と下側の放電電極1とで挟まれた領域が、励起放電領域2となる。
熱交換器7は、放電電極1の下側に配置されており、真空容器10の下部にあるガス(高温ガス)を冷却する。送風機6は、熱交換器7の横に配置されており、熱交換器7によって冷却されたガスをz軸方向(放電幅方向)へ送風する。送風機6から送り出されたガスは、真空容器10の側壁面や底面に衝突して真空容器10の上部に送られ、励起放電領域2などを通過する。励起放電領域2などを通過したガスは、真空容器10の側壁面や上面に衝突して真空容器10の下部に送られる。真空容器10の下部に送られてくるガスは、熱交換器7で冷却されて送風機6によって吸い込まれる。これにより、光共振領域では励起放電領域2の温度を低く保つことができ、高い発振効率を維持することができる。
ダクト8A,8Bは、概略四角柱状の外壁を有しており、レーザビームLの通過穴を有した有底筒状をなしている。ダクト8A,8Bは、その一部が真空容器10内に挿入されるとともに、残りの一部が真空容器10から突出した状態で真空容器10に固定されている。ダクト8A,8Bは、柱軸(x軸方向)が、真空容器10の柱軸(レーザビームLの出力方向)と同じになるよう、真空容器10に接合されている。
本実施の形態のガスレーザ発振器100は、2つのダクト8A,8Bを有している。一方のダクト8Aが、真空容器10のx軸方向の一方の端部(レーザビームLの出力側)に配置され、他方のダクト8Bが真空容器10のx軸方向の他方の端部(レーザビームLの反射側)に配置されている。ダクト8A,8B内には、真空容器10からのレーザビームLを通過させるためのx軸方向の経路(レーザ光の通過穴H)が設けられている。
部分反射鏡4は、ダクト8Aのx軸方向の端部(真空容器10の反対側)に配置されている。部分反射鏡4は、概略平板状をなしており、主面がyz平面と平行になるようダクト8A(通過穴Hの出口)に接合されている。部分反射鏡4は、ダクト8Aの内部を通過してくるレーザビームLの一部をガスレーザ発振器100の外部に通過させるとともに、残りの一部を真空容器10の内部に反射する。
全反射鏡5は、ダクト8Bのx軸方向の端部(真空容器10の反対側)に配置されている。全反射鏡5は、概略平板状をなしており、主面がyz平面と平行になるようダクト8Bに接合されている。全反射鏡5は、ダクト8Bの内部を通過してくるレーザビームLを真空容器10の内部に反射する。
部分反射鏡4と全反射鏡5の間の領域であって励起放電領域2以外の領域が、非励起領域3となる。したがって、ダクト8A内とダクト8B内は、非励起領域3である。ガスレーザ発振器100では、非励起領域3と励起放電領域2との圧力差を利用して、部分反射鏡4側から励起放電領域2側へのガス流を形成するとともに、全反射鏡5側から励起放電領域2側へのガス流を形成している。
ガスレーザ発振器100は、1対の放電電極1に電力を投入することによって放電電極1間に励起放電を起こさせる。そして、部分反射鏡4と全反射鏡5によって構成される光共振機構によって励起光を増幅させ、部分反射鏡4と全反射鏡5との間でレーザ発振を行なわせる。
電源30は、ダクト8A,8B内の上部側に配置される仕切り板25と、ダクト8A,8B内の下部側に配置される仕切り板25とに接続されている。電源30は、ダクト8A,8B内の上部側に配置される仕切り板25にプラスの電圧を印加し、ダクト8A,8B内の下部側に配置される仕切り板25にマイナスの電圧を印加する。ダクト9は、上部側の放電電極1の近傍から真空容器10の外部へと延びる送風管(風道)である。
真空容器10内には、浮遊する微粒子(不純物)12M,12Pが発生する。微粒子12Mは、マイナスに帯電している金属ダストや埃などであり、微粒子12Pは、プラスに帯電している金属ダストやホコリなどである。本実施の形態では、ダクト8A,8Bと電源30によって、真空容器10内の微粒子12M,12Pが部分反射鏡4や全反射鏡5へ付着することを防止する。
つぎに、ダクト8A,8Bの構成と、ダクト8A,8Bによって形成される主なガスの流れ(ガス流)について説明する。なお、ダクト8A内の仕切り板25が特許請求の範囲に記載の出力側仕切り部に対応し、ダクト8B内の仕切り板25が特許請求の範囲に記載の全反射側仕切り板に対応している。ダクト8Aによって形成されるガス流とダクト8Bによって形成されるガス流とは、ほぼ同じであるので、ここではダクト8Aによって形成されるガス流について説明する。
図4は、ダクトの構成を示す図である。図4では、z軸方向から見たダクト8Aの断面図(xy平面で切断した場合)を示している。ダクト8Aは、真空容器10内に挿入される挿入部83と、ガイド板84a,84bと、真空容器10から突出した状態で真空容器10に固定される突出部81,82と、接合部91とによって構成されている。そして、挿入部83と突出部82とが、接合部91によって接合されている。
また、ダクト8Aの内部には、2枚の仕切り板25が配置されている。仕切り板25は、導体で構成され平板状をなしている。一方の仕切り板25は、ダクト8A内の上部側(上面)からレーザビームLの光軸方向へ延設されており、他方の仕切り板25は、ダクト8A内の下部側(底面)からレーザビームLの光軸方向へ延設されている。各仕切り板25は、yz平面と平行な位置に配置されている。一方の仕切り板25と他方の仕切り板25との間には、レーザビームLを通過させる隙間(通過穴H)が空けられている。これにより、ダクト8Aの内部のうち、部分反射鏡4側の空間(突出部内)が仕切り板25によって2つの領域に分けられている。
仕切り板25によって分断されている領域のうち、部分反射鏡4側の領域が、突出部81内の領域(ガスの流れが遮蔽された空間)であり、真空容器10側の領域が突出部82内の領域である。また、挿入部83内の領域は、真空容器10内の領域と繋がっている。また、仕切り板25は、ダクト8Aや真空容器10から絶縁されている。
挿入部83と真空容器10の間には、挿入部83の上面および下面(yz平面)と平行なガイド板(平板)84a,84bが設けられている。ガイド板84a,84bは、微粒子12M,12Pをx軸方向に導くためのガイドとして機能する。ガイド板84aとガイド板84bとは、レーザビームL、ガス、微粒子12M,12Pを通過させるため、y軸方向に所定の距離だけ離されて配置されている。また、上側の接合部91と下側の接合部91とは、レーザビームL、ガス、微粒子12M,12Pを通過させるため、y軸方向に所定の距離だけ離されて配置されている。
ガスレーザ発振器100内では、非励起領域3内の圧力が励起放電領域2内の圧力よりも大きい。このため、ガスレーザ発振器100内では、部分反射鏡4側から真空容器10側へガス流Fが形成される。
挿入部83と突出部82との接合部91には、レーザビームLが通過できる程度の小さな通過穴Hがあけられている。部分反射鏡4側から真空容器10側へのガス流Fは、この通過穴Hを通って真空容器10に進む。換言すると、挿入部83内では、レーザビームLの光軸上をレーザビームLの出力方向と逆の方向にガス流Fが形成される。このため、ガイド板84aと挿入部83の上部側の壁面との間には、レーザビームLの出力方向と同じ方向のガス流f1が形成される。また、ガイド板84bと挿入部83の下部側の壁面との間には、レーザビームLの出力方向と同じ方向のガス流f2が形成される。
これにより、ガイド板84aと挿入部83の上部側の壁面との間の微粒子12M,12Pは、接合部91側へ送られた後、接合部91で跳ね返される。そして、ガス流Fにしたがって真空容器10側へ送られる。また、ガイド板84bと挿入部83の下部側の壁面との間の微粒子12M,12Pは、接合部91側へ送られた後、接合部91で跳ね返される。そして、ガス流Fにしたがって真空容器10側へ送られる。
接合部91は、ガス流f1,f2に沿って送られてくるガスをガス流Fに沿って送り返せるよう、ガス流f1,f2と衝突する部分を所定の角度(例えば45度)だけガス流F側に向けてある。これにより、ガス流f1,f2に沿って接合部91側に送られてくるガスは、所定の角度で接合部91に衝突し、この所定の角度を有した接合部91に沿ってガス流F側へ送られる。
挿入部83内の空間では、ガスが拡散されることによって、挿入部83側から突出部82側への僅かなガス流f3,f4が形成される場合がある。このガス流f3,f4に沿って流れるガスは、仕切り板25によって抵抗を受けて押し戻される。このため、ガス流f3,f4に沿って流れてくるガスは、仕切り板25によって跳ね返されて、突出部82内に送り込まれる。突出部82内に送り込まれたガスは、ガス流Fに沿って、真空容器10側へ排出される。
ガス流Fやガス流f1,f2は、非励起領域3内と励起放電領域2内の圧力差とともに、仕切り板25によって押し返されるガスの流れによっても生じる。したがって、部分反射鏡4側に向かうガスの流れは、ガス流f3,f4が無い場合よりもさらに小さなものとなる。
また、仕切り板25への衝突などによって真空容器10側へ排出されなかった微粒子12M,12Pが、突出部81内に進入した場合であっても、微粒子12M,12Pはガス流Fによって真空容器10側へ押し戻される。
ここで、仕切り板25の構成について説明する。図5は、仕切り板の構成の一例を示す図である。同図に示すように、上側の仕切り板25と下側の仕切り板25には、レーザビームLを通過させるため、レーザビームLの光軸と交わる箇所に穴(レーザビームLの通過穴H)(筒状の内壁面で囲まれる空間)などの隙間が設けられている。上側の仕切り板25に設けられた穴と、下側の仕切り板25に設けられた穴は、それぞれ概略半円状をなしている。また、上側の仕切り板25と下側の仕切り板25とを絶縁して分断するため、上側の仕切り板25と下側の仕切り板25との間は所定の距離だけ離されている。上側の仕切り板25と下側の仕切り板25との間は、例えばレーザビームLを挟むような位置やレーザビームLの通過穴Hを通る位置で絶縁されている。
なお、レーザビームLの通過穴Hの形状は、何れの形状であってもよい。例えば、通過穴Hの形状は、四角形や三角形であってもよい。また、ここでは上側の仕切り板25と下側の仕切り板25との間を所定の距離だけ離すことによって、上側の仕切り板25と下側の仕切り板25とを絶縁する場合について説明したが、他の構成によって上側の仕切り板25と下側の仕切り板25とを絶縁してもよい。
図6は、仕切り板の他の構成例を示す図である。同図に示すように、上側の仕切り板25と下側の仕切り板25とを絶縁するため、上側の仕切り板25と下側の仕切り板25との間には絶縁体で構成される絶縁部26が設けられている。そして、絶縁体、上側および下側の仕切り板25を接合するとともに、絶縁体、上側および下側の仕切り板25のうち、レーザビームLの光軸と交わる箇所にレーザビームLの通過穴Hを設けておく。この通過穴Hは、概略円状をなしている。
また、図5や図6では、上側の仕切り板25と下側の仕切り板25にレーザビームLの通過穴Hを設けた場合について説明したが、上側の仕切り板25と下側の仕切り板25との間にレーザビームLの通過穴Hを設けない構成としてもよい。
図7は、仕切り板の間にレーザビームの通過穴を設けない場合の仕切り板の構成の一例を示す図である。同図に示すように、上側の仕切り板25と下側の仕切り板25の間は、レーザビームLを通過させるため、所定の距離(通過穴Hの直径程度)だけ隙間を設けている。
図8は、仕切り板の間にレーザビームの通過穴を設けない場合の仕切り板の他の構成例を示す図である。同図に示すように、上側の仕切り板25と下側の仕切り板25とを絶縁するため、上側の仕切り板25と下側の仕切り板25との間には絶縁部26が設けておく。そして、絶縁部26の厚さ(上側の仕切り板25と下側の仕切り板25と間の距離)を、通過穴Hの直径程度にしておく。
つぎに、ガスレーザ発振器100の動作について説明する。ガスレーザ発振器100が動作を開始すると、ダクト8A,8Bによって部分反射鏡4や全反射鏡5側から励起放電領域2側にガス流Fとガス流f1,f2が形成される。このとき、接合部91の近傍に存在するガスの拡散によってガス流f3,f4が僅かに発生する。このガス流f3,f4は、仕切り板25によって押し戻されるので、部分反射鏡4側へ流れるガスや微粒子12M,12Pの量が抑制される。
真空容器10内で浮遊している微粒子12M,12Pは、放電電極1間の放電によってプラスやマイナスに帯電している。このため、本実施の形態では、電源30によって仕切り板25に直列の電圧を印加する。例えば、上側の仕切り板25に+Vの電圧を印加し、下側の仕切り板25に−Vの電圧を印加する。上側の仕切り板25と下側の仕切り板25とは、光軸に対して垂直な方向に配置されているので、プラスに帯電した微粒子12Pはクーロン力によって下側の仕切り板25側に引き寄せられて下側の仕切り板25に付着する。また、マイナスに帯電した微粒子12Mは、クーロン力によって上側の仕切り板25に引き寄せられて上側の仕切り板25に付着する。
なお、プラスに帯電した微粒子12Pがガス流f3によって上側の仕切り板25側に流れ込んだ場合であっても、微粒子12Pは上側の仕切り板25によって跳ね返されるだけで、微粒子12Pが部分反射鏡4側へ進入することはない。また、マイナスに帯電した微粒子12Mがクーロン力によって下側の仕切り板25側に流れ込んだ場合であっても、微粒子12Mが下側の仕切り板25に跳ね返されるだけで、微粒子12Mが部分反射鏡4側へ進入することはない。
ここで、クーロン力によって得られる微粒子12M,12Pの変位量について説明する。ここでは、突出部81,82内の空間のx軸方向の長さの合計値が距離lであり、突出部81,82内の空間のy軸方向の長さが幅dである場合について説明する。また、微粒子12M,12Pの質量をm、微粒子12M,12Pの電荷量をq、仕切り板25への印加電圧をV、仕切り板25間に形成される電界をEとする。また、時間tにおける光軸方向、光軸に垂直な方向の変位量をそれぞれ変位量x、変位量yとし、t=0での変位量をそれぞれx0、y0とし、光軸方向へ流れる微粒子12M,12Pの速度をvx0、光軸に垂直な方向の速度をvy0とする。この場合にクーロン力によって得られる微粒子12M,12Pの変位量x、yは、式(1)、式(2)によって示すことができる。
Figure 0005147574
Figure 0005147574
このとき、電源30が仕切り板25に印加する電圧は、ダクト8A内の空間寸法に応じた電圧にする。具体的には、ガスレーザ発振器100では、例えば、光軸上にある微粒子がx軸方向に距離lを進む間に、クーロン力によってy軸方向の電極(仕切り板25)に当たるよう電圧Vを設定しておく。この場合、式(1)と式(2)において、x0=y0=0とし、変移量yが幅d/2よりも大きくなるよう電圧Vを設定すればよい。V=Edであるので、電圧Vは、式(3)によって示すことができる。
Figure 0005147574
式(3)に示すように、光軸方向へ流れる微粒子12M,12Pの速度vx0が大きい場合にクーロン力による効果(部分反射鏡4への進入防止)を得るためには、電圧Vを高くするか、または距離lを長くする必要がある。本実施の形態では、ダクト8A,8Bや仕切り板25の構造により、微粒子12M,12Pの速度vx0は大きく減速されている。ダクト8A,8Bによってガス流f3,f4は、ガスの拡散成分のみとなるのに加えて、仕切り板25によって部分反射鏡4から遠ざかる方向へ向かうガス流が発生するので、結果として光軸方向へ流れる微粒子12M,12Pの速度vx0が小さくなるからである。
したがって、本実施の形態のガスレーザ発振器100は、ダクト8A,8Bの距離lを短く構成した場合であっても、主放電に印加する主電圧(放電電極1への電圧)と比較して低い電圧Vで十分大きな変位量x、変位量yを得ることができる。この結果、部分反射鏡4側へ流れる微粒子12M,12Pの数は一層抑制されることになる。
なお、本実施の形態では、ダクト8A,8B内に各1対の仕切り板25を設置する場合について説明したが、ダクト8A,8B内には、それぞれ複数組の仕切り板25を設置してもよい。
また、本実施の形態では、仕切り板25が平板状である場合について説明したが、仕切り板25は平板以外の形状であってもよい。この場合であっても、仕切り板25には、部分反射鏡4側に進むレーザビームLと垂直な方向の壁面を設けておく。また、上側の仕切り板25と下側の仕切り板25との間の隙間や絶縁部26は、何れの形状であってもよい。
このように実施の形態1によれば、真空容器10の中に浮遊している微粒子12M,12Pが光学部品(部分反射鏡4や全反射鏡5)に付着する量を大幅に抑制できるので、光学部品のメンテナンス周期を延長でき、長期にわたって安定したビーム品質を確保することが可能となる。また、光学部品の寿命が向上する。
また、一方の仕切り板25にはプラスの電圧を印加し、他方の仕切り板25にはマイナスの電圧を印加するのでプラス/マイナスの何れに帯電した微粒子12M,12Pに対しても光学部品への付着を抑制することが可能となる。
また、非励起領域3と励起放電領域2との圧力差や仕切り板25によって光学部品側へ進入するガスを減少させて光学部品側へガスを到達しにくくしているので、低い電圧で光学部品への微粒子12M,12Pの付着量を抑制することが可能となる。また、ダクト8A,8Bによって、微粒子12M,12Pの光学部品への付着を防止するので、コンパクトで簡易な構成のガスレーザ発振器100によって光学部品への微粒子12M,12Pの付着量を抑制することができる。
また、非励起領域3での発熱を抑制することができるので、レーザビームLを高出力で出力でき、さらに光学部品のメンテナンス周期を延長し長期にわたって安定したビーム品質を確保できる。
また、レーザビームLが概略円形の場合、側の仕切り板25と下側の仕切り板25との間にレーザビームLを中心とした通過穴Hのみを設けることにより、光学部品側へのガスの流れを抑制することができる。また、通過穴Hを概略円状または2つの概略半円状とすることにより、光学部品側へのガスの流れを抑制することができる。したがって、光学部品への微粒子12M,12Pの付着量を抑制することが可能となる。
実施の形態2.
つぎに、図9を用いてこの発明の実施の形態2について説明する。実施の形態2では、レーザビームLのビーム品質に大きな影響を与える部分反射鏡4側にのみ、ダクト8Aを配置し、全反射鏡5側にはダクト8Bを配置しない。
図9は、実施の形態2に係るガスレーザ発振器の断面構成を示す図である。図9では、z軸方向から見たガスレーザ発振器100の断面図を示している。図9の各構成要素のうち図2に示す実施の形態1のガスレーザ発振器100と同一機能を達成する構成要素については同一番号を付しており、重複する説明は省略する。なお、実施の形態2に係るガスレーザ発振器100のx軸方向から見た断面構成は、実施の形態1に係るガスレーザ発振器100と同様であるのでその説明を省略する。
ダクト8Aは、図2に示した実施の形態1のダクト8Aと同じである。本実施の形態のガスレーザ発振器100には、全反射鏡5側にダクト8Bの代わりにダクト8Xを配置している。ダクト8Xは、ダクト8Bから突出部81,82を取り除いた構成を有している。換言すると、ダクト8Xは、挿入部83と、ガイド板84a,84bと、接合部91とを有している。そして、接合部91のx軸方向の端部(真空容器10と反対側)で接合部91と部分反射鏡4とが接合されている。
このように実施の形態2によれば、微粒子12M,12Pの光学部品への付着を実施の形態1のガスレーザ発振器100よりも簡易な構成で防止することが可能となる。また、部分反射鏡4は、全反射鏡5よりもメンテナンス周期が1/3〜1/2程度短いので、光学部品のメンテナンス周期を延長し、長期にわたって安定したビーム品質を確保することが可能となる。
以上のように、本発明に係るガスレーザ発振器は、三軸直交型のガスレーザ発振に適している。
実施の形態1に係るガスレーザ発振器の概略構成を示す図である。 実施の形態1に係るガスレーザ発振器をxy平面で切断した場合の断面構成を示す図である。 実施の形態1に係るガスレーザ発振器をyz平面で切断した場合の断面構成を示す図である。 ダクトの構成を示す図である。 仕切り板の構成の一例を示す図である。 仕切り板の他の構成例を示す図である。 仕切り板の間にレーザビームの通過穴を設けない場合の仕切り板の構成の一例を示す図である。 仕切り板の間にレーザビームの通過穴を設けない場合の仕切り板の他の構成例を示す図である。 実施の形態2に係るガスレーザ発振器をxy平面で切断した場合の断面構成を示す図である。
符号の説明
1 放電電極
2 励起放電領域
3 非励起領域
4 部分反射鏡
5 全反射鏡
6 送風機
7 熱交換器
8A,8B ダクト
10 真空容器
12M,12P 微粒子
25 仕切り板
26 絶縁部
30 電源
100 ガスレーザ発振器
F,f1,f2,f3,f4 ガス流
H 通過穴
L レーザビーム

Claims (4)

  1. 部分反射鏡と全反射鏡との間に配置された1対の放電電極間で励起放電を起こすとともに部分反射鏡と全反射鏡との間で励起光を増幅させて部分反射鏡側からレーザビームを出力し、かつレーザガスの循環方向と、放電方向と、レーザビームの出力方向と、が互いに直交する三軸直交型のガスレーザ発振器において、
    前記部分反射鏡と前記全反射鏡との間に挟まれた領域のうち前記放電電極と前記部分反射鏡との間の非励起領域に配置されて前記レーザガスのガス流を制御する出力側ダクトと、
    第1の平板状部材を用いて形成されるとともに、前記部分反射鏡側に進む前記レーザビームと垂直な方向に前記第1の平板状部材の主面が向くよう前記出力側ダクト内に配置され、かつ前記第1の平板状部材に前記レーザビームを通過させる隙間があけられた出力側仕切り部と、
    を備え、
    前記出力側仕切り部は、所定の位置で絶縁されて分断されており、分断されている一方の出力側仕切り部にプラスの電圧が印加されるとともに、分断されている他方の出力側仕切り部にマイナスの電圧が印加されることを特徴とするガスレーザ発振器。
  2. 前記部分反射鏡と前記全反射鏡との間に挟まれた領域のうち前記放電電極と前記全反射鏡との間の非励起領域に配置されて前記レーザガスのガス流を制御する全反射側ダクトと、
    第2の平板状部材を用いて形成されるとともに、前記全反射鏡側に進む前記レーザビームと垂直な方向に前記第2の平板状部材の主面が向くよう前記全反射側ダクト内に配置され、かつ前記第2の平板状部材に前記レーザビームを通過させる隙間があけられた全反射側仕切り部と、
    をさらに備え、
    前記全反射側仕切り部は、所定の位置で絶縁されて分断されており、分断されている一方の全反射側仕切り部にプラスの電圧が印加されるとともに、分断されている他方の全反射仕切り部にマイナスの電圧が印加されることを特徴とする請求項1に記載のガスレーザ発振器。
  3. 前記一方の出力側仕切り部に印加されるプラスの電圧および前記他方の出力側仕切り部に印加されるマイナスの電圧は、前記出力側ダクト内の空間寸法に応じた電圧であることを特徴とする請求項1に記載のガスレーザ発振器。
  4. 前記一方の全反射側仕切り部に印加されるプラスの電圧および前記他方の全反射側仕切り部に印加されるマイナスの電圧は、前記全反射側ダクト内の空間寸法に応じた電圧であることを特徴とする請求項2に記載のガスレーザ発振器。
JP2008178801A 2008-07-09 2008-07-09 ガスレーザ発振器 Expired - Fee Related JP5147574B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008178801A JP5147574B2 (ja) 2008-07-09 2008-07-09 ガスレーザ発振器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008178801A JP5147574B2 (ja) 2008-07-09 2008-07-09 ガスレーザ発振器

Publications (2)

Publication Number Publication Date
JP2010021236A JP2010021236A (ja) 2010-01-28
JP5147574B2 true JP5147574B2 (ja) 2013-02-20

Family

ID=41705867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008178801A Expired - Fee Related JP5147574B2 (ja) 2008-07-09 2008-07-09 ガスレーザ発振器

Country Status (1)

Country Link
JP (1) JP5147574B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017194A (ja) * 2015-07-01 2017-01-19 三菱電機株式会社 炭酸ガスレーザ増幅器、炭酸ガスレーザ発振器および炭酸ガスレーザ発振−増幅システム
JP7262217B2 (ja) * 2018-12-17 2023-04-21 住友重機械工業株式会社 光共振器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639173A (ja) * 1986-06-30 1988-01-14 Komatsu Ltd ガスレーザ装置
JPH03150882A (ja) * 1989-11-08 1991-06-27 Toshiba Corp ガスレーザ装置
JPH0567823A (ja) * 1991-09-05 1993-03-19 Nec Corp 放電励起パルスガスレーザ装置
JP2001274484A (ja) * 2000-03-27 2001-10-05 Nidek Co Ltd ガスレーザ装置
JP2006049422A (ja) * 2004-08-02 2006-02-16 Sumitomo Heavy Ind Ltd ガスレーザ発振装置

Also Published As

Publication number Publication date
JP2010021236A (ja) 2010-01-28

Similar Documents

Publication Publication Date Title
US8586953B2 (en) Extreme ultra violet light source device
US20100078579A1 (en) Extreme ultraviolet light source apparatus
JP5517434B2 (ja) ガスレーザ装置及びレーザ生成方法
US7017351B2 (en) Miniature thermoacoustic cooler
EP0695599B1 (en) Laser oscillator
JP5147574B2 (ja) ガスレーザ発振器
JP2011511615A (ja) 誘電体バリア放電ポンプ装置および方法
EP2050672A2 (en) System, method, and apparatus for pulsed-jet-enhanced heat exchanger
Granados et al. Electrostatic propulsion device for aerodynamics applications
JP2007273749A (ja) 光源装置、及びそれを用いた露光装置、デバイス製造方法
US20130034116A1 (en) Slab amplification device, laser apparatus, and extreme ultraviolet light generation system
JPS5840814B2 (ja) 多段抑制コレクタ
JP5985059B2 (ja) ガスレーザ装置
Hattori et al. A possible route to spontaneous reduction of the heat conductivity by a temperature gradient-driven instability in electron-ion plasmas
JP5049635B2 (ja) バッテリ冷却装置
KR102721696B1 (ko) 광공진기
JP6569704B2 (ja) 電磁波発生装置
JP2011159932A (ja) ガスレーザ増幅装置およびその光軸調整方法
JP2008021854A (ja) ガスレーザ発振装置
US20150333469A1 (en) Gas circulation type laser oscillator
Leonov et al. Mitigation of reflected shock wave by streamwise plasma array
Azarova et al. Near-surface gas discharge effect on a steady bow shock wave position in a supersonic flow past a cylindrically blunted body in the air
JPH1041094A (ja) 高効率プラズマ閉じ込め方法とレーザー発振方法並び にレーザー発振器
JP2003298155A (ja) パルス発振型放電励起レーザ装置
US9307626B2 (en) System for generating electromagnetic waveforms, subatomic paticles, substantially charge-less particles, and/or magnetic waves with substantially no electric field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees