JP5034962B2 - Rolling bearing - Google Patents
Rolling bearing Download PDFInfo
- Publication number
- JP5034962B2 JP5034962B2 JP2008005783A JP2008005783A JP5034962B2 JP 5034962 B2 JP5034962 B2 JP 5034962B2 JP 2008005783 A JP2008005783 A JP 2008005783A JP 2008005783 A JP2008005783 A JP 2008005783A JP 5034962 B2 JP5034962 B2 JP 5034962B2
- Authority
- JP
- Japan
- Prior art keywords
- cage
- bearing
- rolling bearing
- rolling
- ball
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/41—Ball cages comb-shaped
- F16C33/412—Massive or moulded comb cages, e.g. snap ball cages
- F16C33/414—Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages
- F16C33/416—Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages made from plastic, e.g. injection moulded comb cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/3837—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
- F16C33/3843—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
- F16C33/3856—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/49—Cages for rollers or needles comb-shaped
- F16C33/494—Massive or moulded comb cages
- F16C33/495—Massive or moulded comb cages formed as one piece cages, i.e. monoblock comb cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/72—Sealings
- F16C33/76—Sealings of ball or roller bearings
- F16C33/78—Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
- F16C33/784—Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
- F16C33/7843—Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
- F16C33/7846—Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with a gap between the annular disc and the inner race
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/16—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
- F16C19/163—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/54—Systems consisting of a plurality of bearings with rolling friction
- F16C19/541—Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
- F16C19/542—Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
- F16C19/543—Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/54—Systems consisting of a plurality of bearings with rolling friction
- F16C19/56—Systems consisting of a plurality of bearings with rolling friction in which the rolling bodies of one bearing differ in diameter from those of another
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sealing Of Bearings (AREA)
- Rolling Contact Bearings (AREA)
Description
本発明は、例えば、産業機械、ロボツトの関節部や旋回機構部、工作機械の主軸、回転テーブルや主軸旋回機構部、医療機器、半導体/液晶製造装置、光学及びオプトエレクトロニクス装置等の回転支持部に用いられる転がり軸受に関する。 The present invention includes, for example, industrial machinery, robot joints and turning mechanisms, machine tool spindles, rotary tables and spindle turning mechanisms, medical equipment, semiconductor / liquid crystal manufacturing apparatuses, optical and optoelectronic devices, and the like. The present invention relates to a rolling bearing used in the above.
従来の転がり軸受として、円周方向の一ヶ所に切断部を設けた合成樹脂製の冠形保持器が提案されている(例えば、特許文献1及び2参照)。特許文献1に記載の転がり軸受では、切断部を設けることで、内外輪及び玉と保持器との熱膨張係数の違い等により玉とポケットとの間に発生する突っ張り力を緩和して保持器の摩耗等を防止することが記載されている。
As a conventional rolling bearing, a synthetic resin crown-shaped cage provided with a cutting portion at one place in the circumferential direction has been proposed (for example, see
また、特許文献2に記載の転がり軸受では、円周方向の一ヶ所に切断部が設けられるとともに、切断部の円周方向幅を温度変化と吸水率変化による保持器の伸長分とし、軌道輪との案内すきまを確保することが記載されている。
ところで、特許文献1に記載の転がり軸受では、玉案内方式を採用して、玉とポケットとの間の半径方向すきまは小さく設定されているので、軸受の回転による昇温で、軸受各部品(例えば、内輪、外輪及び玉が軸受鋼、保持器がポリアミド樹脂などの合成樹脂で形成されている場合)間の線膨張係数の差により保持器が相対的に膨張する際に、半径方向には膨張しにくく、相対膨張分は円周方向に向かう。
By the way, in the rolling bearing described in
その結果、保持器の切断部の円周方向すきまが小さくなり、使用環境温度も含めて軸受の昇温値が高い場合、保持器の切断部の円周方向の端面同士が突っ張り干渉して、該干渉部での発熱や摩耗、損傷が生じるという問題がある。また、保持器がポリアミド樹脂などの一般的な汎用合成樹脂で形成されている場合は、空気中の水分を吸収して膨張することもあり、吸水による膨張量が加わることも問題である。 As a result, the clearance in the circumferential direction of the cutting part of the cage is reduced, and if the temperature rise value of the bearing is high, including the operating environment temperature, the circumferential end surfaces of the cutting part of the cage are stretched and interfered, There is a problem that heat generation, wear, and damage occur in the interference portion. In addition, when the cage is formed of a general general-purpose synthetic resin such as a polyamide resin, the cage may expand by absorbing moisture in the air, and the amount of expansion due to water absorption is also a problem.
また、特許文献2に記載の転がり軸受では、切断部の円周方向幅を温度変化と吸水率変化による保持器の伸長分(温度膨張+吸水膨張)としているが、切断部の円周方向幅が広くなりすぎてしまい、温度上昇が小さい条件や乾燥した雰囲気条件では、切断部の円周方向幅の変化が小さく、切断部を挟んだ部分での玉間の円周方向の距離が他の玉間の円周方向距離より大きくなり、玉の円周方向の不等配が発生する。
Further, in the rolling bearing described in
玉の円周方向の不等配が生じると、軸受の径方向の剛性が円周位相で不均一(玉の円周方向の不等配部の位相で剛性低下)になるため、軸受回転時に玉の公転周期に対応した振れ回り、いわゆるNRRO値(内輪2回転に約1回の周期)が増加する。特に、回転精度が要求される工作機械の主軸、回転テーブル及び主軸の旋回機構部などの回転支持部に本軸受を使用した場合、回転軸の振れ回りが大きくなり(NRRO値が大)、フライス加工などでは加工面に縞模様が発生したり、旋盤加工などでは加工面の引き目不良や真円度悪化などが発生したりするという問題がある。 If the balls are not evenly distributed in the circumferential direction, the radial rigidity of the bearing will be non-uniform in the circumferential phase (decrease in rigidity due to the phase of the unevenly distributed portion of the ball in the circumferential direction). A swing corresponding to the revolution period of the ball, a so-called NRRO value (a cycle of about once per two rotations of the inner ring) increases. In particular, when this bearing is used in a rotation support part such as a spindle of a machine tool, a rotary table, and a turning mechanism part of the spindle that require rotational accuracy, the rotation of the rotary shaft becomes large (NRRO value is large), and milling There is a problem that a striped pattern is generated on the processed surface in machining, and a stitching defect on the processed surface or a deterioration in roundness occurs in lathe processing.
本発明は、このような不都合を解消するためになされたものであり、その目的は、転動体の円周方向の不等配を抑制して、回転軸の振れ回りを小さく抑えることができる転がり軸受を提供することにある。 The present invention has been made in order to eliminate such inconveniences, and the object of the present invention is to reduce rolling around the rotating shaft by suppressing the uneven distribution of the rolling elements in the circumferential direction. It is to provide a bearing.
本発明の上記目的は、下記の構成により達成される。
(1) 外周面に内輪軌道面を有する内輪と、内周面に外輪軌道面を有する外輪と、前記内輪軌道面と前記外輪軌道面との間に転動自在に設けられた複数の転動体と、円周方向の少なくとも一カ所に切断部が形成され、前記複数の転動体を円周方向に略等間隔で保持する合成樹脂製の保持器と、を備えた転がり軸受において、
前記保持器は、予め所定の平衡含水率まで水分を樹脂内に吸収させて膨張させておき、当該所定の平衡含水率まで水分を吸水し膨張した状態において、前記切断部の円周方向幅が該保持器の所定の温度変化による伸長分と略等しくなるように形成され、これにより前記切断部の幅を小さくして前記転動体の円周方向の不等配を抑制することを特徴とする転がり軸受。
(2) 前記保持器は、冠型保持器であることを特徴とする(1)に記載の転がり軸受。
(3) 前記転動体が、玉であることを特徴とする(1)又は(2)に記載の転がり軸受。
(4) 前記転動体が、円筒ころであることを特徴とする(1)又は(2)に記載の転がり軸受。
(5) 前記内輪と前記外輪との間の軸受空間にはグリースが封入されることを特徴とする(1)〜(4)のいずれかに記載の転がり軸受。
(6) 前記内輪及び前記外輪のうちの固定輪側の軸方向端部に配置される、接触型又は非接触型のシール部材をさらに有することを特徴とする(5)に記載の転がり軸受。
(7) 前記グリースは、前記保持器が前記所定の平衡含水率まで吸水した後に、前記軸受空間に封入されることを特徴とする(5)又は(6)に記載の転がり軸受。
(8) 前記保持器の表面には油膜が形成されることを特徴とする(1)〜(4)のいずれかに記載の転がり軸受。
The above object of the present invention can be achieved by the following constitution.
(1) An inner ring having an inner ring raceway surface on an outer peripheral surface, an outer ring having an outer ring raceway surface on an inner peripheral surface, and a plurality of rolling elements provided in a freely rollable manner between the inner ring raceway surface and the outer ring raceway surface. In a rolling bearing provided with a synthetic resin cage having a cutting portion formed in at least one place in the circumferential direction and holding the plurality of rolling elements at substantially equal intervals in the circumferential direction,
The retainer absorbs moisture in the resin up to a predetermined equilibrium moisture content and expands in advance , and absorbs moisture to the predetermined equilibrium moisture content and expands in a circumferential width of the cutting portion. features There is formed to be substantially equal to the elongation caused by the predetermined temperature change of the cage, thereby that you suppress circumferential unequal distribution of the rolling element width by reducing the cutting portion Rolling bearing.
(2) The rolling bearing according to (1), wherein the cage is a crown type cage.
(3) The rolling bearing according to (1) or (2), wherein the rolling element is a ball.
(4) The rolling bearing according to (1) or (2), wherein the rolling element is a cylindrical roller.
(5) The rolling bearing according to any one of (1) to (4), wherein grease is sealed in a bearing space between the inner ring and the outer ring.
(6) The rolling bearing according to (5), further comprising a contact-type or non-contact-type seal member disposed at an axial end portion on the fixed ring side of the inner ring and the outer ring.
(7) The rolling bearing according to (5) or (6), wherein the grease is enclosed in the bearing space after the cage has absorbed water up to the predetermined equilibrium moisture content.
(8) The rolling bearing according to any one of (1) to (4), wherein an oil film is formed on a surface of the cage.
本発明の転がり軸受によれば、保持器は、所定の平衡含水率まで吸水した状態において、切断部の円周方向幅が保持器の所定の温度変化による伸長分と略等しくなるように形成されるので、転動体の円周方向の不等配を抑制して、回転軸の振れ回りを小さく抑えることができる。 According to the rolling bearing of the present invention, the cage is formed so that the circumferential width of the cutting portion is substantially equal to the extension due to the predetermined temperature change of the cage in a state where water is absorbed to a predetermined equilibrium moisture content. Therefore, the uneven distribution of the rolling elements in the circumferential direction can be suppressed, and the swinging of the rotating shaft can be suppressed to a small value.
以下、本発明の各実施形態に係る転がり軸受について、図面を参照して詳細に説明する。 Hereinafter, rolling bearings according to embodiments of the present invention will be described in detail with reference to the drawings.
(第1の実施形態)
図1に示すように、本実施形態の転がり軸受10(以下、幅狭玉軸受10とも称す)は、アンギュラ玉軸受とされており、2列のアンギュラ玉軸受を背面組合せ(接触角がハの字となる配列)としている。各転がり軸受10は、外周面に内輪軌道面11aを有する内輪11と、内周面に外輪軌道面12aを有する外輪12と、内輪軌道面11aと外輪軌道面12aとの間に転動自在に設けられた複数の玉(転動体)13と、円周方向の一カ所に切断部14(図4参照)が形成され、複数の玉13を円周方向に略等間隔で保持する合成樹脂製の冠形保持器15と、を備える。また、2列の幅狭玉軸受10の各外輪12の軸方向外側の端部内周面には、それぞれ非接触型のシール部材16が装着されている。なお、シール部材16は、接触型タイプでもよく、また、材質、形状は特に限定されない。
(First embodiment)
As shown in FIG. 1, a rolling bearing 10 (hereinafter also referred to as a narrow ball bearing 10) of this embodiment is an angular ball bearing, and two rows of angular ball bearings are combined in the back (contact angle is C). Array). Each rolling
ここで、本実施形態では、軸方向の省スペース化を図るため、転がり軸受10の軸方向断面幅Bと半径方向断面高さH(=(外輪外径D−内輪内径d)/2)との断面寸法比(B/H)をB/H<0.63としている。 In this embodiment, in order to save space in the axial direction, the axial sectional width B and the radial sectional height H of the rolling bearing 10 (= (outer ring outer diameter D−inner ring inner diameter d) / 2) and The cross-sectional dimension ratio (B / H) is set to B / H <0.63.
なお、B/Hは、理論的にはB/H>0であるが、現実的には、使用する玉径や保持器、シール部材の設計、選定等を加味すると、B/H>0.10、好ましくはB/H>0.20、より好ましくはB/H>0.30とする。 B / H is theoretically B / H> 0, but in reality, considering the design, selection, etc. of the ball diameter, cage, and seal member to be used, B / H> 0. 10, preferably B / H> 0.20, more preferably B / H> 0.30.
また、国際標準化機構(ISO)で規定されている標準寸法玉軸受の場合、B/Hが1.0前後のものが多くを占める。したがって、B/H<0.5に設定すれば、標準玉軸受約1列分の幅方向スペースで2列分の幅狭玉軸受10を配設させることができ、省スペース化が図れる。
Further, in the case of standard size ball bearings defined by the International Organization for Standardization (ISO), those with a B / H of around 1.0 account for the majority. Therefore, if B / H <0.5 is set, the
また、アンギュラ玉軸受の場合、1列では一方向の軸方向荷重しか受けられず、また、モーメント荷重を受けることはできないが、2列以上組合わせることで、両方向の軸方向荷重やモーメント荷重の負荷が可能となる。また、予圧を付加することもできるので、省スペース化と共にラジアル剛性やアキシャル剛性及びモーメント剛性なども大きくすることができる。 In the case of angular contact ball bearings, only one axial load can be received in one row and moment load cannot be received. However, by combining two or more rows, the axial load and moment load in both directions can be reduced. Load becomes possible. In addition, since preload can be applied, it is possible to save space and increase radial rigidity, axial rigidity, moment rigidity, and the like.
また、B/H<0.25に設定すれば、さらなる省スペース化と共に、標準玉軸受約1列分の幅方向スペースで4列の幅狭玉軸受を配設させることができ、さらに剛性の向上が可能である。 Moreover, if B / H <0.25, it is possible to arrange four rows of narrow ball bearings in a space in the width direction of about one row of standard ball bearings with further space saving, and further increase rigidity. Improvement is possible.
ここで、図10及び図11は、それぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ38.1mm、軸受外径:φ47.625mm、軸受幅:4.762mm、前記断面寸法比(B/H)=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合、即ち、(B/H)の値を変化させた場合の内外輪リングの半径方向の変形特性(図8参照:内輪を例示)及び半径方向の断面2次モーメントI(図9参照:I=bh3 /12で計算)を比較した結果を示している。 Here, FIG. 10 and FIG. 11 show the ultra-thin ball bearings (bearing inner diameter: φ38.1 mm, bearing outer diameter: φ47.625 mm, bearing width: 4.762 mm, standard sectional ratio ( B / H) = 1) as a reference, the radius of the inner and outer ring rings when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width, that is, when the value of (B / H) is changed. direction of deformation characteristics (see FIG. 8: an inner ring of illustration) and radial cross-sectional secondary moment I: shows the result of comparison (see FIG. 9 calculated by I = bh 3/12).
また、図12及び図13は、それぞれ標準的に使用されている極薄肉玉軸受(軸受内径:φ63.5mm、軸受外径:φ76.2mm、軸受幅:6.35mm、前記断面寸法比=1)を基準とし、軸受外径及び軸受幅を変えずに、軸受内径を変化させた場合、即ち、(B/H)の値を変化させた場合の内外輪リングの半径方向の変形特性及び半径方向の断面2次モーメントIを比較した結果を示している。 FIGS. 12 and 13 show ultra-thin ball bearings that are used as standard (bearing inner diameter: φ63.5 mm, bearing outer diameter: φ76.2 mm, bearing width: 6.35 mm, cross-sectional dimension ratio = 1). ) And the radial deformation characteristics and radius of the inner and outer ring rings when the bearing inner diameter is changed without changing the bearing outer diameter and bearing width, that is, when the value of (B / H) is changed. The result of having compared the cross-sectional secondary moment I of the direction is shown.
いずれの軸受の場合も、(B/H)=0.63未満で、剛性の増加率勾配の変化が顕著に出ている。すなわち、(B/H)=0.63未満で、断面2次モーメントIの増加は顕著になり、半径方向の内外輪リングの変形量の減少は飽和状態となる。これにより、従来の極薄肉玉軸受で問題となる内外輪製作時の旋盤加工や研磨加工時の加工力による軸受変形を防止することができ、真円度や偏肉等の軸受精度を向上させることができる。 In any of the bearings, (B / H) = 0.63 or less, and the change in the rigidity increase rate gradient is noticeable. That is, when (B / H) = 0.63, the increase in the secondary moment I of the cross section becomes significant, and the decrease in the deformation amount of the inner and outer ring in the radial direction becomes saturated. This can prevent bearing deformation due to lathe processing and grinding processing forces when manufacturing inner and outer rings, which is a problem with conventional ultra-thin ball bearings, and improves bearing accuracy such as roundness and uneven thickness. be able to.
また、(B/H)=0.63未満とすることで、軸やハウジングに軸受を組み込んだ場合(特に、軸やハウジングとすきま嵌合で組み込んだ場合)、外輪を端面押え、内輪を軸受ナット等でそれぞれ固定した場合の内外輪の変形(特に真円度の悪化)を抑制することができると共に、変形によって生じるトルク不良や回転精度不良、あるいは、発熱増大、摩耗や焼付き等の不具合を防止することができる。 Also, by setting (B / H) to less than 0.63, when the bearing is incorporated in the shaft or housing (especially when it is assembled by clearance fitting with the shaft or housing), the outer ring is pressed against the end face, and the inner ring is the bearing. It is possible to suppress deformation of the inner and outer rings (especially worsening of roundness) when they are fixed with nuts, etc., as well as torque failure and rotation accuracy caused by deformation, or problems such as increased heat generation, wear and seizure. Can be prevented.
さらに、(B/H)=0.63未満とすることで、軸受の幅寸法が従来の標準単列玉軸受の約半分となるので、玉径も従来の玉軸受の半分程度となるが、逆に1列あたりの玉数が少なくとも2倍以上に増加し、軸受剛性は従来の玉軸受に対して増加する。 Furthermore, by setting (B / H) to less than 0.63, the width of the bearing is about half that of a conventional standard single-row ball bearing, so the ball diameter is also about half that of a conventional ball bearing. Conversely, the number of balls per row increases at least twice, and the bearing stiffness increases compared to conventional ball bearings.
また、国際標準化機構(ISO)で規定されている寸法系列が18(例えば、6820)、19(例えば、6938)、10(例えば、7016A)、02(例えば、7224C)、03(例えば、7350A)などの標準寸法玉軸受では、軸受内径寸法がφ5mm〜φ500mmにおいては、断面寸法比(B/H)はB/H=0.63〜1.17となっているが、本実施形態の幅狭玉軸受10は、軸方向に幅狭としたので、上述の断面寸法比に該当しないものとなる。
The dimension series defined by the International Organization for Standardization (ISO) is 18 (for example, 6820), 19 (for example, 6938), 10 (for example, 7016A), 02 (for example, 7224C), 03 (for example, 7350A). In the case of standard size ball bearings such as the above, when the inner diameter of the bearing is φ5 mm to φ500 mm, the cross-sectional dimension ratio (B / H) is B / H = 0.63 to 1.17. Since the
本実施形態の幅狭玉軸受10では、軸受の負荷容量や剛性を上げるために、円周方向に隣り合う玉13間のピッチは極力小さくし、できる限り玉数を多くしている。通常の玉軸受では、玉数は多くとも30〜40個以下/1列程度であるが、本実施形態では、50個以上、好ましくは60個以上、より好ましくは70個以上/1列としている。
In the
アンギュラ玉軸受の場合、接触角は、大きなモーメント荷重を負荷した際に、内外輪みぞ肩部への玉と内外輪みぞ接触部の乗り上げを抑えるため、概ね60°以下、望ましくは50°以下、さらに望ましくは40°以下がよいが、20°未満の場合は、許容アキシャル荷重やモーメント剛性が低下するので好ましくない。本実施形態における適正な玉径は、シール部材等の装着有無により変化するが、剛性を増加させるため、極端に玉径を小さくすると、玉と内外輪の軌道みぞとの接触部間の面圧が増加し、耐圧痕性が低下するおそれがあるため、概ね、単列の場合、軸受幅(B)の30〜90%、複列の場合、軸受幅(B2)の15〜45%が望ましい。 In the case of an angular contact ball bearing, the contact angle is approximately 60 ° or less, preferably 50 ° or less in order to suppress the ball and the inner / outer ring groove contact portion from riding on the shoulder portion of the inner / outer ring groove when a large moment load is applied. More preferably, it is 40 ° or less, but if it is less than 20 °, the allowable axial load and moment rigidity are lowered, which is not preferable. The appropriate ball diameter in the present embodiment varies depending on whether or not a seal member or the like is mounted. However, in order to increase rigidity, if the ball diameter is extremely reduced, the surface pressure between the contact portions between the balls and the track grooves of the inner and outer rings is reduced. In general, in the case of a single row, 30 to 90% of the bearing width (B), and in the case of a double row, 15 to 45% of the bearing width (B2) is desirable. .
更に、本実施形態では、玉13の軸方向ピッチをできるだけ組合せ側端面の反対側にずらし(図1:X1>X2)、保持器15の円環部17(図2〜図5参照)が軸受組合せ端面側になるように配置しており、円環部17の軸方向肉厚を大きくし、また、モーメント剛性を上げるための作用点間距離を大きくとれるようにしている。
Furthermore, in this embodiment, the axial pitch of the
また、軸受の材質としては、標準の軸受鋼(SUJ2やSUJ3)など、特に限定されないが、必要に応じて、これらの材料で、軸受の寸法安定性や耐摩耗性などの機械的性質を向上させるために、内輪11及び外輪12の少なくとも一方に、サブゼロ処理を施してもよい。
The material of the bearing is not particularly limited, such as standard bearing steel (SUJ2 or SUJ3), but if necessary, these materials can improve mechanical properties such as dimensional stability and wear resistance of the bearing. In order to achieve this, sub-zero processing may be performed on at least one of the
サブゼロ処理の方法としては、例えば、焼入れ直後に、液体窒素を用いて−150°C程度の雰囲気とし、本サブゼロ処理後に焼戻しを行なう。そして、サブゼロ処理と焼戻し処理とを数回繰り返す。冷却溶媒として、液体窒素使用のサブゼロ処理では、繰り返し回数は多くとも3回程度でかまわない。サブゼロ処理によって、組織中の残留オーステナイト(γR)がマルテンサイトに変態する。併せて、結晶粒の安定化も促進されるので、これにより経時寸法変化の防止と耐摩耗性などの機械的性質が向上する。 As a sub-zero treatment method, for example, immediately after quenching, an atmosphere of about −150 ° C. is formed using liquid nitrogen, and tempering is performed after the sub-zero treatment. Then, the sub-zero process and the tempering process are repeated several times. In the sub-zero treatment using liquid nitrogen as the cooling solvent, the number of repetitions may be at most about 3. Residual austenite (γR) in the structure is transformed into martensite by the sub-zero treatment. In addition, since the stabilization of the crystal grains is promoted, this improves the mechanical properties such as prevention of dimensional change with time and wear resistance.
本実施形態の場合、内輪11及び外輪12の軸方向幅が狭いので、そりや真円度不良などの経時寸法変化が発生しやすい傾向がある。したがって、サブゼロ処理により、前記経時寸法変化を抑制することができ、特に、軸受精度が必要な工作機械の回転テーブルや主軸旋回機構部、印刷機械のドラム等の回転機構部などの回転支持部に本実施形態の幅狭玉軸受10を使用する場合、軸受精度劣化による機器の精度不具合を防止でき、長期的に良好な機能を保持することができる。
In the case of the present embodiment, since the axial widths of the
また、例えば真空用途や腐食環境などでは、軸受鋼以外に、耐食材料であるステンレス鋼系材料(例えば、SUS440C等のマルテンサイト系ステンレス鋼材料やSUS304等のオーステナイト系ステンレス鋼材料、SUS630等の析出硬化系ステンレス鋼材料など)、チタン合金やセラミック系材料(例えば、Si3 N4 ,SiC,Al2 O3 ,ZrO2など)を採用してもよい。 For example, in vacuum applications and corrosive environments, in addition to bearing steel, stainless steel materials that are corrosion resistant materials (for example, martensitic stainless steel materials such as SUS440C, austenitic stainless steel materials such as SUS304, precipitation of SUS630, etc.) Hardened stainless steel material), titanium alloy or ceramic material (for example, Si3 N4, SiC, Al2 O3, ZrO2 etc.) may be employed.
潤滑方法も特に限定されず、一般的な使用環境では、鉱油系グリースや合成油系(例えば、リチウム系、ウレア系等)のグリースや油を使用でき、真空用途などでは、フッ素系のグリースまたは油、あるいはフッ素樹脂、MOS2 などの固体潤滑剤を使用することができる。 The lubrication method is not particularly limited, and mineral oil grease or synthetic oil grease (for example, lithium or urea) or oil can be used in a general usage environment. Oil, or a solid lubricant such as fluororesin or MOS2 can be used.
また、本実施形態に使用される冠型保持器15は、図2〜図5に示すように、円環部17と、円環部17の軸方向の一端部に円周方向に等間隔で複数箇所軸方向に突設された柱部18と、を備え、各柱部18間に玉13を円周方向に転動可能に保持する球面ポケット部19を形成する。また、円周方向の一カ所の柱部18の位置には、所定の円周方向幅を有する切断部14(図4参照)が形成されている。また、本実施形態では、ポケット部19の入り口部に玉径より若干小さくして引っかかり代(パチン代)を設けており、これにより、内輪11及び外輪12に保持器15を組み込む際、玉13の脱落を防止して、軸受の組立を容易にしている。
Further, as shown in FIGS. 2 to 5, the crown-shaped
保持器15の材質は、例えば、ポリアミド46、ポリアミド6、ポリアミド66、ポリアミド6Tなどのポリアミド樹脂を採用しているが、ポリアセタールやポリフェニレンサルファイド等の合成樹脂材でもよい。必要に応じて、合成樹脂材にガラス繊維や炭素繊維等の補強材を混入した材料としてもよい。なお、保持器15の形状は、本実施形態に限定されず、適時変更可能である。
For example, a polyamide resin such as polyamide 46,
ここで、本実施形態では、保持器15は、平衡含水率まで吸水させた状態において、保持器15の切断部14の円周方向幅ΔLが、該保持器15の所定の温度変化による伸長分と略等しくなるように形成している。
Here, in the present embodiment, in the state where the
即ち、保持器15を平衡含水率まで含水させた状態における切断部14の円周方向幅ΔLが、軸受が所定の温度まで上昇した際に、軸受部品間(例えば、内輪11、外輪12及び玉13が軸受鋼、保持器15がポリアミド樹脂などの合成樹脂で形成されている場合)の線膨張係数差による保持器15の相対的膨張により、切断部14 の円周方向のすき間が0以下(負)とならないようにしている。
That is, when the circumferential width ΔL of the cutting
このように、本実施形態では、切断部14の円周方向幅に吸水による膨張分をあらかじめ加味しているので、その分、保持器15を平衡含水率まで含水させた後の切断部14の円周方向幅ΔLを小さくすることができる。これにより、温度上昇が小さい条件や乾燥した雰囲気条件でも、玉13の円周方向の不等配を抑制することができ、その結果、回転軸の振れ回りを小さく抑えることができる。
Thus, in this embodiment, since the expansion | swelling part by water absorption is previously added to the circumferential direction width | variety of the cutting |
また、使用環境温度も含めて軸受の昇温値が高い場合でも、所定の温度上昇以内であれば、保持器15の切断部14の円周方向の端面同士が干渉して摩耗を生じることもなく、また、一時的に所定の温度以上まで上昇し、該端面同士の接触干渉に至り、さらに、保持器15の相対的な膨張が半径方向に生じても、この膨張分は、(一時的な最高温度−所定の温度)に相当する量であり、各玉13と保持器15のポケット部19との間の半径方向すきまが負となるまでの量にはならないので、玉13とポケット部19間での突っ張り力は働かず、安定した回転性能を得ることができる。
Further, even when the temperature rise value of the bearing including the use environment temperature is high, the end faces in the circumferential direction of the cutting
さらに詳述すると、例えば、射出成形で製作した樹脂製保持器(例えば、一般的に広く採用されているポリアミド66樹脂(強化材未添加グレード))では、成形直後は絶乾状態であり、含水率はほぼ0%の状態である。ところが、この保持器を空気中で保管しておくと空気中の水分を吸収して徐々に膨張する。 More specifically, for example, a resin cage produced by injection molding (for example, polyamide 66 resin (grade with no reinforcing material added) generally widely used) is in an absolutely dry state immediately after molding, and contains water. The rate is almost 0%. However, when this cage is stored in the air, it absorbs moisture in the air and gradually expands.
図6に示すように、ポリアミド66樹脂(強化材未添加グレード)では、相対湿度が通常50〜70%の空気中では、平衡含水率は3%前後であり、図7より、このときの寸法変化率は0.5〜0.6%にも達する。ただし、一度平衡含水率まで達すると、大気中の一般的な環境条件においては、含水率の変化は発生しにくい。 As shown in FIG. 6, in polyamide 66 resin (grade without addition of reinforcing material), the equilibrium moisture content is around 3% in air with a relative humidity of usually 50 to 70%. The rate of change reaches 0.5 to 0.6%. However, once the equilibrium moisture content is reached, the moisture content hardly changes under the general environmental conditions in the atmosphere.
また、例えば、軸受の回転による温度上昇等で、多少の温度変化や湿度変化が発生しても、短時間では含水率の変化は生じにくい。本実施形態の幅狭玉軸受10の使用用途は、揺動回転や往復動回転、あるいは連続回転であったとしても、軸受のdmn値(dm:玉ピッチ円直径(mm)×n:回転数(min-1))が20〜30万以下程度と、軸受としては比較的回転数が低いので、軸受自身の発熱による温度上昇値は小さく、含水率の変化が生じにくい。加えて、軸受には油やグリースなどの潤滑剤が運転中に供給、あるいは、あらかじめ封入されており、保持器15の表面には常に油膜が形成されているので、水分の蒸発や侵入が生じにくい。特に、グリース潤滑の場合は、軸受の内部空間にグリースが相当量充填されているので、大気中の環境条件の変化(湿度変化など)の影響は極めて受けにくい利点がある。
Further, for example, even if some temperature change or humidity change occurs due to a temperature rise due to rotation of the bearing, the moisture content hardly changes in a short time. Even if the use application of the
本実施形態では、一度平衡含水率に達した状態の保持器15を軸受に組み込んだ場合に、大気中の一般的な環境条件においては、多少の湿度や温度変化が発生しても含水率の変化は発生しにくい性質を利用しており、保持器15を射出成形後、あるいは、切削加工後にあらかじめ、平衡含水率まで水分を樹脂内に吸収させておくことで、(使用中の)寸法変化を最小限に抑えることができる。
In the present embodiment, when the
一方、保持器を絶乾状態のままとして軸受に組み込んだ場合、含水膨張と温度膨張による分の伸長が保持器に発生するため、切断部の断面同士を干渉させないように切断部の円周方向幅を大きく設定しておく必要があり、玉の円周方向の不等配が顕著になってしまう。つまり、平衡含水率に達しない状態の保持器が軸受に組み込まれグリースなどの潤滑剤が封入されてしまうと、逆に水分の吸収が不十分な状態で軸受が使用されることになり、切断部の円周方向幅が大きい状態であるので、NRRO値が大きくなってしまう。 On the other hand, when the cage is incorporated in the bearing while being kept in an absolutely dry state, elongation due to moisture expansion and temperature expansion occurs in the cage, so the circumferential direction of the cut portion does not interfere with the cross sections of the cut portion. It is necessary to set a large width, and uneven distribution in the circumferential direction of the balls becomes prominent. In other words, if a cage that does not reach the equilibrium moisture content is incorporated into the bearing and a lubricant such as grease is enclosed, the bearing will be used with insufficient moisture absorption. Since the circumferential width of the part is large, the NRRO value becomes large.
さらには、含水率が少ないと保持器の靭性値(アイゾット(IZOT)衝撃強度などで規定される値)も低下するため、耐衝撃性も平衡含水処理された保持器に比べて低下する。平衡含水率が大きい、すなわち、吸水による寸法変化が大きい樹脂材料ほど、本発明の効果が発揮される。たとえば、ポリアミド46、ポリアミド6、ポリアミド66、ポリアミド6Tなどのポリアミド樹脂材などでは本発明の効果が大きい。
Furthermore, if the moisture content is low, the toughness value of the cage (value defined by IZOT impact strength, etc.) is also reduced, so that the impact resistance is also lower than that of a cage that has been subjected to equilibrium moisture treatment. The effect of the present invention is exhibited as the resin material has a higher equilibrium moisture content, that is, a larger dimensional change due to water absorption. For example, the effect of the present invention is great for polyamide resin materials such as polyamide 46,
軸受組立後、軸受空間にグリース封入を行なうなどで保持器15の表面に油膜を十分形成させておけば、含水率の変化をさらに防止することができる。平衡含水率まで吸水している状態で軸受空間にグリース封入を行えばさらによい。また、上述したように、2列の幅狭玉軸受10の各外輪12の軸方向外側の端部内周面に、それぞれシール部材16を装着することで、グリースが外部に流出しにくく、また、保持器15の表面の油膜が剥れにくくなり、含水率の変化をさらに抑えることができる。
If a sufficient oil film is formed on the surface of the
なお、モータ内蔵の構造などで、軸受近傍に発熱源がある場合、軸受周辺で一時的に温度上昇が生じるが、この場合、保持器15は温度膨張によって伸長する反面、温度上昇により含水率が若干少なくなるため収縮が生じ、保持器15の寸法変化は相殺される。軸受が停止し、常温状態になると、保持器15の吸水率は再び平衡含水率までもどる。ただし、モータ内蔵の場合、モータのステータ周辺部に冷却油を循環させるなどの冷却構造を採用しているのが常であり、この点で、軸受部の温度はさほど上昇しないのが通常である。
In addition, when there is a heat source near the bearing due to a structure with a built-in motor, etc., the temperature temporarily rises around the bearing. In this case, the
保持器15にあらかじめ吸水させる際の含水率は、保持器15の材質や強化材(ガラス繊維、炭素繊維およびアラミド繊維など)の添加量によって得られる所定の平衡含水率とする。例えば、上述のポリアミド66(強化材無添加グレード)の場合、軸受が保管、あるいは使用される環境の温度を20〜25°C、平均相対湿度を50〜70%として、平衡含水率2.9%とする(図6参照)。保持器15の平衡含水率の許容差は、処理条件に応じて適正な値としてよいが、おおむね±0.5%程度が望ましい。
The moisture content when the
平均相対温度は、各地域によって異なるが、本実施形態の幅狭玉軸受10が使用される製品分野から判断して、屋内の適正な空調の整った環境で使用あるいは保管されるのが常である。したがって、環境温度は、20〜30°C、相対湿度は、50〜70%と考えてよい。従って、保持器の材料として、上記の合成樹脂材料以外を適用する場合も、上記の環境温度条件下での平衡含水率に設定する。
Although the average relative temperature varies depending on each region, it is usually used or stored in an indoor environment with proper air conditioning as judged from the product field in which the
また、本実施形態のような幅狭玉軸受10では、冠型保持器15の円周方向に切断部14が形成されることで、以下のような効果を奏する。
Moreover, in the
即ち、切断部がない円環状の冠型保持器を有する従来の幅狭玉軸受では、軸受が幅狭のため、玉径は幅方向の寸法で限定されて小さくなる。したがって、保持器の円環部の断面肉厚が小さくなり、円環部の剛性は小さい。また、寸法測定時の測定圧による変形が大きく、径方向寸法の測定ができず、保持器が適正な精度か否かを判断できない。玉ピッチ円直径に対してポケット径中心のピッチ円直径がずれていると、玉案内方式なので玉とポケット部とが直径方向で干渉する。 That is, in a conventional narrow ball bearing having an annular crown-shaped cage without a cut portion, the ball diameter is limited by the dimension in the width direction and becomes small because the bearing is narrow. Therefore, the cross-sectional thickness of the annular portion of the cage is reduced, and the rigidity of the annular portion is small. Further, the deformation due to the measurement pressure at the time of measuring the dimension is large, the measurement of the radial dimension cannot be performed, and it cannot be determined whether or not the cage has an appropriate accuracy. If the pitch circle diameter at the center of the pocket diameter is deviated from the ball pitch circle diameter, the ball and the pocket portion interfere in the diameter direction because of the ball guide method.
仮に、保持器の寸法精度が適正であった場合でも、玉径寸法が小さいため、保持器の円環部の断面肉厚が薄くなり、円環部の剛性が小さいため、真円度などの形状精度が悪くなる。また、昇温や吸水による保持器の直径方向の伸長のため、玉とポケットとの間の突っ張りなどが生じ、ポケット面の摩耗や回転中の発熱大、トルクむら、トルク大等の不具合が発生する。 Even if the dimensional accuracy of the cage is appropriate, since the ball diameter is small, the cross-sectional thickness of the annular portion of the cage is thin, and the rigidity of the annular portion is small. The shape accuracy deteriorates. In addition, due to temperature rise and water absorption, the cage expands in the diameter direction, causing tension between the ball and the pocket, causing problems such as wear on the pocket surface, large heat generation during rotation, uneven torque, and large torque. To do.
一方、本実施形態の幅狭玉軸受10では、切断部14を形成することで剛性がさらに小さくなるが、仮にピッチ円直径がずれていても、逆に、弾性変形が容易で、玉ピッチ円直径になじんでくれるので、玉13とポケット部19との間の強い接触圧を伴う干渉が生じにくい。また、保持器15を平衡含水率まで吸水させることで柔軟性が向上し、ピッチ円直径が玉ピッチ円直径にさらになじみやすくなる。
On the other hand, in the
従って、本実施形態の幅狭玉軸受10では、例えば、射出成形によって保持器15を形成する際、切断部14の円周方向幅は、絶乾状態から所定の平衡含水率に達する状態までの保持器15の円周方向の伸長分と、保持器15の所定の温度変化による円周方向の伸長分とを予め考慮した合計分に略等しい寸法となるように設定される。そして、加工後の保持器15を所定の平衡含水率に達するまで含水し、保持器15に水分を吸収させる。
Therefore, in the
その後、所定の平衡含水率まで吸水した保持器15を軸受空間に組み込んで複数の玉13を保持させて、幅狭玉軸受10を組み立て、さらに、軸受空間にグリースや油等の潤滑剤を封入する。これにより、軸受空間内に配置された所定の平衡含水率まで吸水した保持器15は、上述したように含水率の変化を生じにくいので、保持器15の切断部14の円周方向幅ΔLが、保持器15の所定の温度変化による伸長分と略等しい構成となっており、玉13の円周方向の不等配を小さくした状態で組み込むことができる。従って、軸受の使用時において、温度変化が所定範囲内であれば、切断部14の円周方向幅ΔLが負となることはなく、上述した安定した回転性能を得ることができる。
After that, the
(第2実施形態)
図14に示す本発明の第2実施形態に係る転がり軸受は、第1実施形態の2列の背面組合せされた幅狭玉軸受に対して、シール部材16が省略された構成である。この実施形態では、シール部材16が設けられていないので、玉径を大きくできる。また、第1実施形態の同径の玉を使用した場合には、シール部材16を設けない分、軸受の軸方向幅をより薄くすることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Second Embodiment)
The rolling bearing according to the second embodiment of the present invention shown in FIG. 14 has a configuration in which the
Other configurations and operations are the same as those of the first embodiment.
(第3実施形態)
図15に示す本発明の第3実施形態に係る転がり軸受は、第2実施形態のものに対して、玉ピッチ円直径を、玉ピッチ円直径>(D+d)/2としている。この実施形態では、玉ピッチ円直径=(D+d)/2に比べて、軸受1列あたりの玉数を多くすることが可能となり、軸受の負荷容量を上げ、かつ剛性をより向上することができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Third embodiment)
The rolling bearing according to the third embodiment of the present invention shown in FIG. 15 has a ball pitch circle diameter of (ball pitch circle diameter)> (D + d) / 2 with respect to that of the second embodiment. In this embodiment, compared with the ball pitch circle diameter = (D + d) / 2, it is possible to increase the number of balls per row of bearings, increase the load capacity of the bearings, and further improve the rigidity. .
Other configurations and operations are the same as those of the first embodiment.
(第4実施形態)
図16に示す本発明の第4実施形態に係る転がり軸受は、第2実施形態のものに対して、左右の幅狭玉軸受10の玉径、玉ピッチ円直径を変えている。この実施形態では、軸方向荷重が左右の軸受で不均一な場合など、大荷重が負荷する側に玉径大の軸受を配設することで、軸受の損傷防止や寿命向上が図れる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Fourth embodiment)
The rolling bearing according to the fourth embodiment of the present invention shown in FIG. 16 differs from that of the second embodiment in the ball diameter and ball pitch circle diameter of the left and right
Other configurations and operations are the same as those of the first embodiment.
(第5実施形態)
図17に示す本発明の第5実施形態に係る転がり軸受は、第1実施形態のものに対して、シール部材16が対向する内輪11の外周面にシール溝を形成しない構成である。これにより、内輪11の形状を簡素化することができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Fifth embodiment)
The rolling bearing according to the fifth embodiment of the present invention shown in FIG. 17 has a configuration in which no seal groove is formed on the outer peripheral surface of the
Other configurations and operations are the same as those of the first embodiment.
(第6実施形態)
図18に示す本発明の第6実施形態に係る転がり軸受は、幅狭玉軸受10の外輪12の軸方向の両端側内周部にそれぞれ非接触型のシール部材16を装着する。この実施形態では、グリースの軸受外部への流出を防止でき、軸受内への外部からの異物の侵入も起こりにくい。
その他の構成及び作用は、第1実施形態のものと同様である。
(Sixth embodiment)
In the rolling bearing according to the sixth embodiment of the present invention shown in FIG. 18, the non-contact
Other configurations and operations are the same as those of the first embodiment.
(第7実施形態)
図19に示す本発明の第7実施形態に係る転がり軸受は、2列の幅狭玉軸受10を正面組合せとしている。この実施形態では、接触角が逆ハの字であり、背面組合せに対してモーメント剛性が小さくなるので、取り付け時の内輪11及び外輪12の相対傾きが大きくなることが避けられない場合、軸受の内部発生負荷荷重を小さくすることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Seventh embodiment)
The rolling bearing according to the seventh embodiment of the present invention shown in FIG. 19 has two rows of
Other configurations and operations are the same as those of the first embodiment.
(第8実施形態)
図20に示す本発明の第8実施形態に係る転がり軸受は、3列の幅狭玉軸受10を背面組合せとしている。この実施形態では、軸受の剛性及び負荷容量を向上させることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Eighth embodiment)
The rolling bearing according to the eighth embodiment of the present invention shown in FIG. 20 has three rows of
Other configurations and operations are the same as those of the first embodiment.
(第9実施形態)
図21に示す本発明の第9実施形態に係る転がり軸受は、4列の幅狭玉軸受10を背面組合せとしている。この実施形態では、軸受の剛性及び負荷容量をさらに向上させることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(Ninth embodiment)
The rolling bearing according to the ninth embodiment of the present invention shown in FIG. 21 has four rows of
Other configurations and operations are the same as those of the first embodiment.
(第10実施形態)
図22に示す本発明の第10実施形態に係る転がり軸受は、図19に示す第7実施形態のものに対して、2列の内輪11を一体の内輪101とした複列幅狭玉軸受100である。この実施形態では、2列の単列幅狭玉軸受10と置き換えることができ、また、接触角が逆ハの字であるため、背面組合せに対してモーメント剛性が小さくなる。なお、複列幅狭玉軸受100の軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)は、B2/H2<1.2が好ましく、より好ましくは、B 2/H2 <1.0とすることで、標準寸法玉軸受と容易に置き換えることができる。
その他の構成及び作用は、第1実施形態のものと同様である。
(10th Embodiment)
The rolling bearing according to the tenth embodiment of the present invention shown in FIG. 22 is a double-row
Other configurations and operations are the same as those of the first embodiment.
(第11実施形態)
図23に示す本発明の第11実施形態に係る転がり軸受は、図19に示す第7実施形態のものに対して、2列の外輪12を一体の外輪102とするとともに、接触角をハの字とした複列幅狭玉軸受110である。この実施形態では、2列の単列幅狭玉軸受10と置き換えることができ、また、接触角がハの字であるため、正面組合せに対してモーメント剛性が大きくなる。なお、複列幅狭玉軸受110の軸方向断面幅B2と半径方向断面高さH2(=(外輪外径D2−内輪内径d2)/2)との断面寸法比(B2/H2)は、B2/H2<1.2が好ましく、より好ましくは、B 2/H2 <1.0とすることで、標準寸法玉軸受と容易に置き換えることができる。
その他の構成及び作用は、第1実施形態のものと同様である。なお、外輪102の軸方向両端部に接触型又は非接触型のシール部材を装着してもよい。
(Eleventh embodiment)
The rolling bearing according to the eleventh embodiment of the present invention shown in FIG. 23 has two rows of
Other configurations and operations are the same as those of the first embodiment. A contact type or non-contact type seal member may be attached to both ends of the
(第12実施形態)
図24に示す本発明の第12実施形態に係る転がり軸受は、外周面に複列の内輪軌道面121aを有する内輪121と、内周面に複列の外輪軌道面122aを有する外輪122と、内輪軌道面121aと外輪軌道面122aとの間に転動自在に設けられた複数の円筒ころ(転動体)123と、円周方向の少なくとも一カ所の柱部127の位置に切断部124(図25参照)が形成され、複数の円筒ころ123を円周方向に略等間隔で保持する合成樹脂製の冠型保持器125と、を備えた複列円筒ころ軸受120である。保持器125は、図25を参照して、ポケット部126が円筒形状とされ、ポケット部126の内周面と保持器125の内径面との交点、あるいはポケット部126の内周面と保持器126の外径面との交点のいずれかで、円筒ころ123と保持器125とが半径方向で接触するころ案内方式である。切断部124の円周方向幅ΔLの設定方法は、第1実施形態のものと同様である。
(Twelfth embodiment)
A rolling bearing according to a twelfth embodiment of the present invention shown in FIG. 24 includes an
(第13実施形態)
図26に示す本発明の第13実施形態に係る転がり軸受は、図14に示す第2実施形態のものに対して、合成樹脂製の冠形保持器15に代えて合成樹脂製のもみ抜き保持器150を用い、外輪案内方式が適用されている。もみ抜き保持器150の円周方向の少なくとも1ヶ所の柱部(不図示)位置には、切断部(不図示)が設けられている。切断部の円周方向幅ΔLの設定方法は、第1実施形態のものと同様であり、保持器150を上記同様に平衡含水率まで吸水させた状態において、切断部の円周方向幅ΔLを所定(想定した)の温度上昇による円周方向膨張分に相当する量としてもよい。
(13th Embodiment)
The rolling bearing according to the thirteenth embodiment of the present invention shown in FIG. 26 differs from that of the second embodiment shown in FIG. The outer ring guide method is applied using the
ここで、軸方向の両側部に円環部を備える従来のもみ抜きタイプの保持器の場合、比較的強度があるので、適正寸法の維持に対しては有利である。ただし、外輪案内方式の場合には、温度上昇や吸水による膨張で案内すきまがなくなり、最悪かじる可能性がある。かじらないような大きな案内すきまとすると、膨張が伴わない条件では保持器が振れ回り、騒音等の不具合が生じる。しかしながら、本実施形態のような切断部を有するもみ抜きタイプの保持器では、案内すきまの減少を最小限に抑え、案内面での食い付き等の不具合を防止できる。 Here, in the case of the conventional machined type cage having the annular portions on both sides in the axial direction, it is relatively strong, which is advantageous for maintaining appropriate dimensions. However, in the case of the outer ring guide system, there is a possibility that the guide clearance is lost due to the temperature rise or the expansion due to water absorption, and there is a possibility that the outer ring guides the worst. If the guide clearance is large enough to avoid galling, the cage swings under conditions that do not cause expansion, resulting in problems such as noise. However, in the machined type retainer having a cutting portion as in the present embodiment, it is possible to minimize the decrease in the guide clearance and prevent problems such as biting on the guide surface.
(第14実施形態)
図27に示す本発明の第14実施形態に係る転がり軸受は、図14に示す第2実施形態のものに対して、合成樹脂製の冠形保持器15に代えて合成樹脂製のもみ抜き保持器160を用い、内輪案内方式が適用されている。もみ抜き保持器160の円周方向の少なくとも1ヶ所の柱部(不図示)位置には、切断部(不図示)が設けられている。切断部の円周方向幅ΔLの設定方法は、第1実施形態のものと同様である。
(14th Embodiment)
The rolling bearing according to the fourteenth embodiment of the present invention shown in FIG. 27 differs from that of the second embodiment shown in FIG. The inner ring guide method is applied using the
従来の内輪案内方式の切断部のない保持器の場合には、温度上昇や吸水による膨張で案内すきまが大きくなりすぎ、保持器の異常振動による騒音等が発生するが、本実施形態のような切断部を有するもみ抜きタイプの保持器では、案内すきまの増加を最小限に抑え、保持器の異常振動や騒音を防止できる。 In the case of a cage without a cutting portion of the conventional inner ring guide system, the guide clearance becomes too large due to temperature rise or expansion due to water absorption, and noise due to abnormal vibration of the cage is generated. In a machined type cage having a cut portion, an increase in guide clearance can be minimized, and abnormal vibration and noise of the cage can be prevented.
なお、本発明は、上述した実施形態に限定されるものでなく、適宜、変更、改良等が可能である。例えば、本発明の保持器15の切断部14は、円周方向の少なくとも一カ所に形成されればよく、図28に示すように、保持器15に対して円周方向の二カ所に切断部14を形成してもよい。この場合、切断部14の円周方向幅ΔLは、△L=△L1+△L2とする。
In addition, this invention is not limited to embodiment mentioned above, A change, improvement, etc. are possible suitably. For example, the cutting
ここで、図1と同一構造の2列の背面組合せアンギュラ玉軸受に組み込まれる保持器15について、切断部14の円周方向幅ΔLが設定される実施例について説明する。
Here, an embodiment in which the circumferential width ΔL of the cutting
本実施例の軸受仕様は次の通りである。
<軸受仕様>
・軸受寸法:内径φ170mm、外径φ215mm、幅13.5mm(単体幅)、接触角35°、玉径6.35mm、玉数80個、玉ピッチ円径=φ192.5mm、B/H=0.60
・保持器材質:ポリアミド66(強化材混入なし)線膨張係数:80×10-6(K-1)
・内輪、外輪及び玉材質:軸受鋼(SUJ2)線膨張係数:12.5×10-6(K-1)
The bearing specifications of this example are as follows.
<Bearing specifications>
Bearing dimensions: inner diameter φ170 mm, outer diameter φ215 mm, width 13.5 mm (single width),
・ Cage material: Polyamide 66 (no reinforcement material mixed) Linear expansion coefficient: 80 × 10 −6 (K −1 )
-Inner ring, outer ring and ball material: bearing steel (SUJ2) linear expansion coefficient: 12.5 × 10 -6 (K -1 )
また、軸受の使用環境が平均温度:23°C、平均湿度60%とすると、図6より平衡含水率は約2.9%となる。また、軸受の最大想定温度上昇を80°Cとする(たとえば、用途がモータ内蔵型の工作機械回転テーブルやダイレクトモータ回転支持部であるとモータ負荷回転時は、温度上昇が最大80°Cと予想される)。 Further, assuming that the use environment of the bearing is an average temperature: 23 ° C. and an average humidity of 60%, the equilibrium moisture content is about 2.9% from FIG. Also, the maximum expected temperature rise of the bearing is set to 80 ° C. (For example, if the application is a machine tool rotary table with a built-in motor or a direct motor rotation support portion, the temperature rise will be a maximum of 80 ° C. during motor load rotation. is expected).
この場合、切断部14の円周方向幅ΔLは、△L=192.5π×(80−12.5)×10-6×80=3.27mmとなり、平衡含水率での切断部14の円周方向幅△Lを3.27mmとすれば良い。
In this case, the circumferential width ΔL of the
なお、保持器を射出成形にて製作する場合、射出成形直後は絶乾状態(含水率≒0%)となっているので、成形時寸法(含水処理前)は、図7より、平衡含水率2.9%のときの寸法変化率が0.45%(保持器円環部の円周方向は射出成形時の樹脂の流れ方向となるので、図7の実線が該当する)であるから、平衡含水処理による膨張分:192.5π×0.0045=2.72mmを見込み、射出成形時の切断部14の円周方向幅△L=3.27+2.72=5.99≒6mmとすればよい。 When the cage is manufactured by injection molding, it is in an absolutely dry state (moisture content ≈ 0%) immediately after injection molding. Therefore, the dimensions during molding (before water treatment) are shown in FIG. Since the dimensional change rate at 2.9% is 0.45% (the circumferential direction of the cage ring portion is the resin flow direction at the time of injection molding, the solid line in FIG. 7 corresponds). Expansion due to equilibrium water treatment: 192.5π × 0.0045 = 2.72 mm is expected, and the circumferential width ΔL = 3.27 + 2.72 = 5.99≈6 mm at the time of injection molding Good.
10 転がり軸受
11a 内輪軌道面
11 内輪
12a 外輪軌道面
12 外輪
13 転動体
14 切断部
15 保持器
16 シール部材
DESCRIPTION OF
Claims (8)
前記保持器は、予め所定の平衡含水率まで水分を樹脂内に吸収させて膨張させておき、当該所定の平衡含水率まで水分を吸水し膨張した状態において、前記切断部の円周方向幅が該保持器の所定の温度変化による伸長分と略等しくなるように形成され、これにより前記切断部の幅を小さくして前記転動体の円周方向の不等配を抑制することを特徴とする転がり軸受。 An inner ring having an inner ring raceway surface on an outer peripheral surface, an outer ring having an outer ring raceway surface on an inner peripheral surface, a plurality of rolling elements provided rotatably between the inner ring raceway surface and the outer ring raceway surface, In a rolling bearing comprising a cut portion formed in at least one place in the circumferential direction, and a cage made of synthetic resin that holds the plurality of rolling elements at substantially equal intervals in the circumferential direction,
The retainer absorbs moisture in the resin up to a predetermined equilibrium moisture content and expands in advance , and absorbs moisture to the predetermined equilibrium moisture content and expands in a circumferential width of the cutting portion. features There is formed to be substantially equal to the elongation caused by the predetermined temperature change of the cage, thereby that you suppress circumferential unequal distribution of the rolling element width by reducing the cutting portion Rolling bearing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008005783A JP5034962B2 (en) | 2008-01-15 | 2008-01-15 | Rolling bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008005783A JP5034962B2 (en) | 2008-01-15 | 2008-01-15 | Rolling bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009168108A JP2009168108A (en) | 2009-07-30 |
JP5034962B2 true JP5034962B2 (en) | 2012-09-26 |
Family
ID=40969516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008005783A Expired - Fee Related JP5034962B2 (en) | 2008-01-15 | 2008-01-15 | Rolling bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5034962B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5724275B2 (en) * | 2010-09-29 | 2015-05-27 | 日本精工株式会社 | Rolling bearing |
JP5556590B2 (en) * | 2010-10-28 | 2014-07-23 | 日本精工株式会社 | Rolling bearing |
CN103697060A (en) * | 2013-12-12 | 2014-04-02 | 洛阳轴研科技股份有限公司 | High-speed bidirectional thrust angular contact bearing |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09151954A (en) * | 1995-11-30 | 1997-06-10 | Ntn Corp | Constant velocity universal joint |
WO1998028549A1 (en) * | 1996-12-24 | 1998-07-02 | Thk Co., Ltd. | Endless retainer for a guiding device and method for manufacturing the same |
JP3664205B2 (en) * | 1997-08-18 | 2005-06-22 | 日本精工株式会社 | Method of manufacturing cage for rolling bearing |
JP2003336640A (en) * | 2002-05-16 | 2003-11-28 | Nsk Ltd | Multi-point contact ball bearing |
JP2006226496A (en) * | 2005-02-21 | 2006-08-31 | Ntn Corp | Roller bearing and resin-made retainer for roller bearing |
JP2006316935A (en) * | 2005-05-13 | 2006-11-24 | Ntn Corp | Ultra-thin type rolling bearing, and cage for ultra-thin type rolling bearing |
JP4167692B2 (en) * | 2006-03-22 | 2008-10-15 | Ntn株式会社 | Roller bearing for spindle support and spindle support structure of wind power generator |
-
2008
- 2008-01-15 JP JP2008005783A patent/JP5034962B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009168108A (en) | 2009-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3207410U (en) | Rolling bearing | |
US20090131235A1 (en) | Ball Bearing for Spindle Turning Device of Machine Tool and Spindle Turning Device of Machine Tool Using the Same | |
JP5187279B2 (en) | Rolling bearing | |
JP2008240796A (en) | Angular contact ball bearing with seal, and spindle device | |
JP2006329420A (en) | Bearing device for robot arm joint part, and ball bearing | |
JP5034962B2 (en) | Rolling bearing | |
JP5092383B2 (en) | Ball bearing for machine tool main spindle | |
JP2011153683A (en) | Angular ball bearing | |
JP4743176B2 (en) | Combination ball bearings and double row ball bearings | |
JP2007292093A (en) | Deep groove ball bearing | |
JP2006105384A (en) | Double row ball bearing | |
JP5233199B2 (en) | Angular contact ball bearings | |
JP4715961B2 (en) | Rotary table device for machine tools | |
WO2015129064A1 (en) | Angular ball bearing | |
JP2003042160A (en) | Angular contact ball bearing and main bearing | |
JP2014219101A (en) | Angular ball bearing | |
JP2011247358A (en) | Duplex ball bearing and double-row ball bearing | |
JP2006153094A (en) | Ball bearing and rotary table device for machine tool using ball bearing | |
JP2011226614A (en) | Rolling bearing | |
JP5724275B2 (en) | Rolling bearing | |
JP5556590B2 (en) | Rolling bearing | |
JP2006046380A (en) | Ball bearing | |
JP5397508B2 (en) | Ball bearing for machine tool main spindle | |
JP2006097872A (en) | Bearing unit | |
JP3200125U (en) | Angular contact ball bearings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100906 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120605 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120618 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150713 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5034962 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |