JP5011953B2 - Alloyed hot-dip galvanized steel sheet and method for producing the same - Google Patents
Alloyed hot-dip galvanized steel sheet and method for producing the same Download PDFInfo
- Publication number
- JP5011953B2 JP5011953B2 JP2006291389A JP2006291389A JP5011953B2 JP 5011953 B2 JP5011953 B2 JP 5011953B2 JP 2006291389 A JP2006291389 A JP 2006291389A JP 2006291389 A JP2006291389 A JP 2006291389A JP 5011953 B2 JP5011953 B2 JP 5011953B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- less
- hot
- dip galvanized
- alloyed hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 28
- 239000008397 galvanized steel Substances 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 229910000831 Steel Inorganic materials 0.000 claims description 78
- 239000010959 steel Substances 0.000 claims description 78
- 238000005098 hot rolling Methods 0.000 claims description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 23
- 238000005096 rolling process Methods 0.000 claims description 23
- 238000005275 alloying Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 12
- 238000000137 annealing Methods 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 239000010960 cold rolled steel Substances 0.000 claims description 7
- 238000005246 galvanizing Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000005097 cold rolling Methods 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 238000005554 pickling Methods 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 238000007747 plating Methods 0.000 description 21
- 230000007547 defect Effects 0.000 description 17
- 230000006866 deterioration Effects 0.000 description 17
- 239000002344 surface layer Substances 0.000 description 17
- 239000002244 precipitate Substances 0.000 description 15
- 230000032683 aging Effects 0.000 description 12
- 239000013078 crystal Substances 0.000 description 11
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 9
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 150000004767 nitrides Chemical class 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000005539 carbonized material Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000019086 sulfide ion homeostasis Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、合金化溶融亜鉛めっき鋼板およびその製造方法に関する。特に、本発明は、表面性状と成形性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法に関する。 The present invention relates to an galvannealed steel sheet and a method for producing the same. In particular, the present invention relates to an alloyed hot-dip galvanized steel sheet having excellent surface properties and formability and a method for producing the same.
防錆性の観点より、近年、家電、建材、及び自動車の産業分野においては溶融亜鉛めっき鋼板が大量に使用され、とりわけ、経済性、塗装性、溶接性の観点より、合金化溶融亜鉛めっきが広く適用されている。特に加工性に優れる極低炭素鋼板が開発されてからは、自動車のフェンダやドアなどのパネル類には、極低炭素合金化溶融亜鉛めっき鋼板が広く採用されるに至っている。 In recent years, hot-dip galvanized steel sheets have been used in large quantities in the industrial fields of home appliances, building materials, and automobiles from the viewpoint of rust prevention, and in particular, alloyed hot-dip galvanizing has been used from the viewpoints of economy, paintability, and weldability. Widely applied. In particular, since ultra-low carbon steel sheets with excellent workability have been developed, ultra-low carbon alloyed hot-dip galvanized steel sheets have been widely used for panels such as automobile fenders and doors.
ところで、自動車のパネル類には、その商品性より美麗な外観が要求されるが、極低炭素合金化溶融亜鉛めっき鋼板には、合金化反応の差に起因した表面の凹凸のムラが筋状に発達した筋模様欠陥を呈し、外観を損ねるという問題があった。特に、固溶Cを固定するのにTiを利用したTi含有極低炭素鋼板に合金化溶融亜鉛めっきを適用した場合に、この問題が顕著に見られる。 By the way, automotive panels are required to have a beautiful appearance due to their commercial characteristics, but the extremely low carbon alloyed hot-dip galvanized steel sheet has uneven stripes on the surface due to differences in alloying reaction. There was a problem that the appearance of the streak pattern defect developed and the appearance deteriorated. This problem is particularly noticeable when galvannealed alloy is applied to a Ti-containing ultra-low carbon steel plate that uses Ti to fix solute C.
上記凹凸の形態にはめっき層への鉄の拡散の差が影響することから、集合組織の差に着目した発明が、たとえば特許文献1に開示されている。当該発明によれば熱間圧延の仕上温度を狭い範囲で制御することにより筋模様欠陥が改善すると報告されているが、自動車用パネルのように非常に美麗な外観の要求を満足させるには不十分であった。 For example, Patent Document 1 discloses an invention that pays attention to the difference in texture because the difference in the diffusion of iron into the plating layer affects the shape of the unevenness. According to the invention, it has been reported that the streak defect is improved by controlling the finishing temperature of the hot rolling in a narrow range, but it is not sufficient to satisfy the requirement of a very beautiful appearance like an automotive panel. It was enough.
特許文献2には、表層に未再結晶が発生すると筋模様欠陥が発生するとして、析出物の量や形状を制御する手法が開示されている。しかし、表層まで再結晶を起こさせても、上記と同様、自動車用パネルのように非常に美麗な外観の要求を満足させるものにはならなかった。 Patent Document 2 discloses a technique for controlling the amount and shape of precipitates, assuming that streak defects occur when non-recrystallization occurs in the surface layer. However, recrystallization up to the surface layer did not satisfy the requirement for a very beautiful appearance like an automotive panel, as described above.
ここに、「自動車用パネル」としては、具体的にはドアパネル、サイドパネル、フードなどが例示される。
本発明は、上記問題点を工業的に有利に解決しうる、自動車用パネル類の使用にも耐えうる優れた表面性状と成形性を有する合金化溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。 The present invention provides an alloyed hot-dip galvanized steel sheet having excellent surface properties and formability that can withstand the use of automotive panels, which can advantageously solve the above problems industrially, and a method for producing the same. With the goal.
具体的には、本発明は、Ti含有極低炭素鋼板を母材とし、上述のような表面性状と成形性を改善した合金化溶融亜鉛めっき鋼板とその製造方法を提供することである。 Specifically, the present invention provides an alloyed hot-dip galvanized steel sheet using a Ti-containing ultra-low carbon steel sheet as a base material and improved surface properties and formability as described above, and a method for producing the same.
筋模様欠陥は、溶融亜鉛めっき後に施される合金化処理中にめっき層の合金化反応が不均一に進むことによって生じる。しかし、この合金化反応の不均一性は、特許文献1に記載されているような母板表面の集合組織の相違や、特許文献2に記載されているような母板表面の未再結晶粒の残存によってもたらされるというよりも、めっきの基板である鋼板の表層部における結晶粒径の分布状態によってもたらされるものであることが、本発明者らの詳細な検討により初めて明らかとなった。すなわち、めっきの基板である鋼板の粒界部分の合金化反応性が粒内部分に比して高いため、粒界部分のめっき表面は凸状を、粒内部分のめっき表面は凹状を呈し、この凹凸が激しい部分ではめっき表面が粗く黒っぽい外観を呈し、凹凸が少ない部分では逆に白っぽい外観を呈し、このことによって筋模様欠陥が形成されるのである。 The streak defect is caused by the non-uniform progress of the alloying reaction of the plating layer during the alloying process performed after hot dip galvanization. However, this non-uniformity of the alloying reaction is caused by the difference in texture on the surface of the base plate as described in Patent Document 1 or the non-recrystallized grains on the surface of the base plate as described in Patent Document 2. It has been clarified for the first time by detailed examinations by the present inventors that it is caused by the distribution state of the crystal grain size in the surface layer portion of the steel plate which is the plating substrate, rather than by the remaining of the plating. That is, because the alloying reactivity of the grain boundary part of the steel plate that is the plating substrate is higher than the intragranular part, the plating surface of the grain boundary part has a convex shape, and the plating surface of the intragranular part has a concave shape, The plating surface is rough and has a blackish appearance in the portion where the unevenness is severe, and the whitish appearance is conversely shown in the portion where the unevenness is small, thereby forming a streak defect.
かかる新知見に基づいてさらに検討を重ねたところ、鋼板表層部に微細な析出物が多い部分では凹凸が激しく、めっき表面は黒っぽい外観を呈し、逆に粗大な析出物が生じて微細な析出物が少ない部分では凹凸が少なく、めっき表面は白っぽい外観を呈することが判明した。その理由は必ずしも明らかではないが、微細析出物が多い部分は鋼板表層部の結晶粒が均一微細であるためと考えられる。 Further investigation based on this new knowledge revealed that the surface of the steel sheet has a lot of fine precipitates, and the unevenness is severe, the plating surface has a dark appearance, and on the contrary, coarse precipitates are generated and fine precipitates are formed. It was found that there were few irregularities in the portion where there was a little, and the plating surface had a whitish appearance. The reason for this is not necessarily clear, but it is considered that the portion where there are many fine precipitates is because the crystal grains in the surface layer portion of the steel sheet are uniform and fine.
本発明者らは、さらに検討を重ね、鋼板表層部のTiの析出物が特にその大きさの不均一性を招きやすいことを突き止めたのである。
すなわち、Ti含有極低炭素鋼板の場合、連続鋳造およびその後の冷却過程のスラブ段階でTi窒化物がまず析出する。その後、熱間圧延に供するスラブ加熱段階でTi硫化物が析出し、さらに熱間圧延後の巻取り後に、残存する固溶TiがTi炭化物として析出する。この他、熱間圧延中に、既に析出したTi窒化物やTi硫化物がTi酸化物に変化したり、残存する固溶Tiが新たに酸化物として析出することも起こるため、Tiの析出物は複雑な析出挙動を示す。
The inventors have further studied and found out that Ti precipitates on the surface layer portion of the steel sheet are particularly likely to cause non-uniformity in size.
That is, in the case of a Ti-containing ultra-low carbon steel sheet, Ti nitride is first precipitated in the slab stage of continuous casting and the subsequent cooling process. Then, Ti sulfide precipitates in the slab heating stage used for hot rolling, and the remaining solid solution Ti precipitates as Ti carbide after winding after hot rolling. In addition, during hot rolling, Ti nitrides and Ti sulfides that have already precipitated may change to Ti oxides, or residual solid solution Ti may newly precipitate as oxides. Indicates complex precipitation behavior.
そして、Ti析出物のなかで、Tiの酸化物と窒化物は粗大であるため、鋼板表層部の結晶粒径を微細化する作用は小さく、比較的粗大な硫化物は鋼板表層部の結晶粒径をわずかに微細化するが、微細な炭化物は鋼板表層部の結晶粒径を微細化する作用が強いことが判明した。 Among the Ti precipitates, the oxides and nitrides of Ti are coarse, so the action of refining the crystal grain size of the steel sheet surface layer portion is small, and relatively coarse sulfides are crystal grains of the steel plate surface layer part. Although the diameter is slightly refined, it has been found that fine carbide has a strong effect of refining the crystal grain size of the steel sheet surface layer.
したがって、熱間圧延時にTi酸化物が多く形成された部位は結果的に微細なTi炭化物が減少しており、最終製品におけるめっき表面は白っぽい外観を呈するのに対し、Ti酸化物の形成が少ない部位は結果的に微細なTi炭化物が増加して、最終製品におけるめっき表面は黒っぽい外観を呈する。 Therefore, the portion where a large amount of Ti oxide is formed during hot rolling results in a decrease in fine Ti carbide, and the plated surface in the final product has a whitish appearance, while the formation of Ti oxide is small. As a result, the fine Ti carbide increases as a result, and the plated surface in the final product has a dark appearance.
このTi酸化物の生成量の不均一性は、熱間圧延工程において鋼板表面に形成されるスケールの状態の不均一性(例えばブリスター生成など)により生じ、その後、鋼板に圧延が施されることにより、不均一なスケールが圧延方向に延伸されて筋状となるのである。したがって、熱間圧延工程において鋼板表面に形成されるスケールを均一化することができれば、Ti酸化物の生成が均一になり、筋模様欠陥を抑制することができるが、工業的に実現することは困難である。 This non-uniformity in the amount of Ti oxide produced is caused by non-uniformity in the scale state formed on the surface of the steel sheet in the hot rolling process (for example, blister generation), and then the steel sheet is rolled. As a result, the non-uniform scale is stretched in the rolling direction to form a streak. Therefore, if the scale formed on the surface of the steel sheet in the hot rolling process can be made uniform, the generation of Ti oxide can be made uniform and the streak defect can be suppressed. Have difficulty.
このようにTi酸化物の鋼板表層部での不均一分布が不可避である以上、Ti炭化物の不均一分布を免れることはできない。そこで、本発明者らは、Ti含有量を成形性に悪影響を及ぼさない範囲で減少させて、Ti炭化物自体の生成を極力抑制することにより筋模様欠陥を抑制することを新たに着想した。これが、本発明の第1のポイントである。 As described above, the uneven distribution of Ti carbide cannot be avoided as long as the uneven distribution of Ti oxide on the surface layer of the steel plate is inevitable. Therefore, the present inventors have newly conceived of suppressing the streak pattern defect by reducing the Ti content within a range that does not adversely affect the formability and suppressing the formation of Ti carbide itself as much as possible. This is the first point of the present invention.
これに関して、鋼板中のTi窒化物はTi酸化物に変化しても結晶粒微細化への影響の差はないが、Ti硫化物がTi酸化物に変化すると、結晶粒がわずかに粗大化し当該部分が若干白っぽくなるので、Ti硫化物の生成も抑制することが好ましい。 In this regard, even if the Ti nitride in the steel sheet changes to Ti oxide, there is no difference in the effect of grain refinement, but when Ti sulfide changes to Ti oxide, the crystal grains become slightly coarser and Since the portion becomes slightly whitish, it is preferable to suppress the formation of Ti sulfide.
具体的には、Ti含有量を0.014%以下とするか、あるいはTi≦ (48/14)×N+(48/32)×S、好ましくはTi≦ (48/14)×Nを満たすようにする。ここで、前者はTi含有量の絶対量を低減することによりTi炭化物の生成を抑制するものである。一方、後者は、NおよびSの含有量が多い場合にはその分Ti炭化物の生成が抑制され、Nの含有量が多い場合にはその分Ti炭化物およびTi硫化物の生成が抑制されることから、これらの寄与を考慮したものである。 Specifically, the Ti content is set to 0.014% or less, or Ti ≦ (48/14) × N + (48/32) × S, preferably Ti ≦ (48/14) × N. To. Here, the former suppresses the formation of Ti carbide by reducing the absolute amount of Ti content. On the other hand, in the latter, when the contents of N and S are large, the production of Ti carbide is suppressed correspondingly, and when the content of N is large, the production of Ti carbide and Ti sulfide is suppressed correspondingly. Therefore, these contributions are taken into consideration.
しかし、単にTi含有量を低減したのでは、固溶Cが鋼中に残存してしまい、これに起因する保管中の鋼板の常温時効劣化という新たな問題が生じる。そこで、固溶Cを固定するためにNbを含有させる。Nb炭化物も、Ti炭化物と同様に、鋼板表層部の結晶の微細化を招くため、鋼板表層部におけるNb炭化物の析出状態が不均一である場合には、上述したような機構により筋模様欠陥を生じる。 However, if the Ti content is simply reduced, the solid solution C remains in the steel, which causes a new problem of normal temperature aging deterioration of the steel sheet during storage. Therefore, Nb is contained in order to fix the solute C. Nb carbide, as well as Ti carbide, leads to the refinement of crystals in the steel plate surface layer portion. Therefore, when the precipitation state of Nb carbide in the steel plate surface layer portion is non-uniform, the above-described mechanism causes streak pattern defects. Arise.
本発明者らは、この点について鋭意検討した結果、NbはTiとは異なり、多量に含有させた方が筋模様欠陥を効果的に抑制することができることを新たに知見した。これが本発明の第2のポイントである。 As a result of intensive studies on this point, the present inventors have newly found out that Nb, unlike Ti, can effectively suppress streak pattern defects when contained in a large amount. This is the second point of the present invention.
すなわち、Nbは、窒化物や硫化物として析出しにくいうえ、酸化物の生成能がTiほど高くないため、熱間圧延工程におけるスケールによる影響は小さく、炭化物を形成するNbが鋼板表層部において不均一となることは抑制される。しかし、熱間圧延工程で生成されるNb炭化物は粗大であり、冷間圧延後の焼鈍工程において不均一な結晶粒成長を招くので好ましくない。このため、熱間圧延工程における粗大なNb炭化物の生成は極力抑制する必要があり、巻取り温度は低いほど好ましい。そうなると、Nb炭化物は焼鈍工程において析出させることになるのであるが、Nb炭化物は焼鈍工程の昇温過程において一旦微細に析出したのちに再固溶するので、微細に析出したNb炭化物の絶対量が少ない場合にも不均一な結晶粒成長を招き、Nb炭化物が減少した部分では結晶粒の粗大化が起こり、白っぽい外観となってしまう。これを防止するにはNb炭化物の析出量を十分に確保し、Nb炭化物の焼鈍時の溶け残りを確保する必要があることを新たに知見したのである。具体的には、Nb含有量を0.021%以上とするのである。 That is, Nb hardly precipitates as nitrides and sulfides, and the ability to form oxides is not as high as that of Ti. Therefore, the influence of scale in the hot rolling process is small, and Nb that forms carbides is not present in the steel sheet surface layer. Uniformity is suppressed. However, the Nb carbide produced in the hot rolling process is coarse and unfavorable because it causes non-uniform crystal grain growth in the annealing process after cold rolling. For this reason, it is necessary to suppress the production | generation of the coarse Nb carbide | carbonized_material in a hot rolling process as much as possible, and it is so preferable that coiling temperature is low. In this case, Nb carbide is precipitated in the annealing process, but Nb carbide is once finely precipitated in the temperature rising process of the annealing process and then re-dissolved, so that the absolute amount of finely precipitated Nb carbide is Even when the amount is small, non-uniform crystal grain growth is caused, and in the portion where the Nb carbide is reduced, the crystal grains become coarse, resulting in a whitish appearance. In order to prevent this, the inventors have newly found that it is necessary to secure a sufficient amount of Nb carbide precipitation and to ensure unmelted Nb carbide during annealing. Specifically, the Nb content is set to 0.021% or more.
また、Ti含有量を低減すると、上記固溶Cと同様に、固溶Nも鋼中に残存してしまい、これに起因する鋼板の常温時効劣化という新たな問題が生じる。そこで、通常極低炭素鋼においては脱酸目的でのみ含有させていたAlを多量に含有させて、固溶Nを固定することによりこの問題を解決する。 Further, when the Ti content is reduced, like the solid solution C, the solid solution N also remains in the steel, resulting in a new problem of normal temperature aging deterioration of the steel sheet. Therefore, this problem can be solved by fixing a solid solution N by containing a large amount of Al which is usually contained only for deoxidation in extremely low carbon steel.
さらに、Ti含有量を低減することにより、通常極低炭素鋼においてはTiにより固定されていたSが固定されなくなり、Sによる熱間脆性に起因する材料疵という新たな問題も生じる。そこで、Mn含有量を厳格に規制してSを固定することによりこの問題を解決する。 Further, by reducing the Ti content, S which is usually fixed by Ti in the ultra-low carbon steel is not fixed, and a new problem of material defects due to hot brittleness due to S also arises. Therefore, this problem is solved by strictly regulating the Mn content and fixing S.
本発明に係る鋼板は、めっき基板である鋼板の表層部に微細なNb炭化物が生成しているため、全面的に一様な黒っぽい外観を呈する。黒っぽい外観は、めっき表面の凹凸が多いことに起因し、中心線平均粗さ(Ra)で0.5μm以上を有している。全体についてより均一な表面性状を得るには、0.7μm以上が好ましく、0.9μm以上がさらに好ましい。 The steel sheet according to the present invention has a uniform black appearance on the entire surface because fine Nb carbide is generated in the surface layer portion of the steel sheet as the plating substrate. The black appearance is attributed to the fact that the plating surface has many irregularities, and has a center line average roughness (Ra) of 0.5 μm or more. In order to obtain a more uniform surface property as a whole, it is preferably 0.7 μm or more, more preferably 0.9 μm or more.
上述した新たな知見に基づいてなされた本発明は以下のとおりである。
(1)鋼板の表面に合金化溶融亜鉛めっき層を備える合金化溶融亜鉛めっき鋼板であって、前記鋼板の質量%での化学組成が、
C:0.0038%以下、Si:0.20%以下、Mn:0.03〜0.16%、
P:0.03%以下、S:0.03%以下、Al:0.010〜0.23%、
N:0.0040%以下、Ti:0.003〜0.014%、および
Nb:0.021〜0.035%、
を含有し、残部が鉄および不純物からなるとともに、下記(1)式と(2)式(式中の各元素記号はその元素の質量%での含有量を意味する)のいずれかを満足し、前記合金化溶融亜鉛めっき鋼板のめっき表面の中心線平均粗さ(Ra)が0.5μm以上であることを特徴とする合金化溶融亜鉛めっき鋼板。
The present invention made based on the above-described new findings is as follows.
(1) An alloyed hot-dip galvanized steel sheet provided with an alloyed hot-dip galvanized layer on the surface of the steel sheet, wherein the chemical composition in mass% of the steel sheet is
C: 0.0038% or less, Si: 0.20% or less, Mn: 0.03~ 0.16%,
P: 0.03% or less, S: 0.03% or less, Al: 0.010 to 0.23%,
N: 0.0040% or less, Ti: 0.003~0.014%, and Nb: 0.021~ 0.035%,
Contain, together with the balance being iron and impurities, and satisfying any of the following (1) and (2) (each element symbol in the formula means the content by mass percent of the element) An alloyed hot-dip galvanized steel sheet having a center line average roughness (Ra) of the plated surface of the alloyed hot-dip galvanized steel sheet of 0.5 μm or more .
Mn/{S−(32/48)×Ti*}≧14 ・・・ (1)
S−(32/48)×Ti* ≦0 ・・・ (2)
但し、Ti*=Ti−(48/14)×Nであり、Ti*≦0の場合はTi*=0とする。
Mn / {S- (32/48) × Ti *} ≧ 14 (1)
S- (32/48) × Ti * ≦ 0 (2)
However, Ti * = Ti− (48/14) × N, and when Ti * ≦ 0, Ti * = 0.
(2)鋼板の表面に合金化溶融亜鉛めっき層を備える合金化溶融亜鉛めっき鋼板であって、前記鋼板の質量%での化学組成が、
C:0.0025%以下、Si:0.20%以下、Mn:0.03〜0.16%、
P:0.03%以下、S:0.03%以下、Al:0.010〜0.23%、
N:0.0040%以下、Ti:0.003%以上、および
Nb:0.026〜0.035%
を含有し、残部が鉄および不純物からなるとともに、下記(1)式および(3)式(式中の各元素記号はその元素の質量%での含有量を意味する)を満足し、前記合金化溶融亜鉛めっき鋼板のめっき表面の中心線平均粗さ(Ra)が0.5μm以上であることを特徴とする合金化溶融亜鉛めっき鋼板。
(2) An alloyed hot-dip galvanized steel sheet provided with an alloyed hot-dip galvanized layer on the surface of the steel sheet, wherein the chemical composition in mass% of the steel sheet is
C: 0.0025% or less, Si: 0.20% or less, Mn: 0.03~ 0.16%,
P: 0.03% or less, S: 0.03% or less, Al: 0.010 to 0.23%,
N: 0.0040% or less, Ti: 0.003% or more, and Nb: 0.026 to 0.035 %
And the balance is composed of iron and impurities, and satisfies the following formulas (1) and (3) (each element symbol in the formula means a content in mass% of the element), and the alloy An alloyed hot-dip galvanized steel sheet, characterized in that the center line average roughness (Ra) of the plated surface of the hot-dip galvanized steel sheet is 0.5 μm or more .
Mn/{S−(32/48)×Ti*}≧14 ・・・ (1)
Ti≦ (48/14)×N+(48/32)×S ・・・ (3)
但し、Ti*=Ti−(48/14)×Nであり、Ti*≦0の場合はTi*=0とする。
Mn / {S- (32/48) × Ti *} ≧ 14 (1)
Ti ≦ (48/14) × N + (48/32) × S (3)
However, Ti * = Ti− (48/14) × N, and when Ti * ≦ 0, Ti * = 0.
(3)前記化学組成が下記(4)式を満足する上記(2)に記載の合金化溶融亜鉛めっき鋼板。
Ti≦ (48/14)×N ・・・ (4)
(4)前記化学組成が、鉄の一部に代えて、B:0.0020%以下を含有する上記(1)〜(3)のいずれかに記載の合金化溶融亜鉛めっき鋼板。
(3) The galvannealed steel sheet according to (2), wherein the chemical composition satisfies the following formula (4):
Ti ≦ (48/14) × N (4)
(4) The alloyed hot-dip galvanized steel sheet according to any one of (1) to (3), wherein the chemical composition contains B: 0.000020% or less in place of part of iron.
(5)圧延45°方向のr値が1.6以上で、圧延方向の塗装焼付け硬化量が15MPa以下である上記(1)〜(4)のいずれかに記載の合金化溶融亜鉛めっき鋼板。 (5) The galvannealed steel sheet according to any one of the above (1) to (4), wherein the r value in the rolling 45 ° direction is 1.6 or more and the bake hardening amount in the rolling direction is 15 MPa or less.
(6)下記工程を含むことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法:
(A)請求項1ないし4のいずれかに記載の化学組成を有する鋼塊または鋼片に熱間圧延を施して860〜1000℃で圧延を完了し、640℃以下の温度域で巻き取って熱間圧延鋼板とする熱間圧延工程;
(B)前記熱間圧延鋼板に酸洗を施して酸洗鋼板とする酸洗工程;
(C)前記酸洗鋼板に70%以上の圧下率で冷間圧延を施して冷間圧延鋼板とする冷間圧延工程;
(D)前記冷間圧延鋼板に750〜900℃で焼鈍を施して焼鈍鋼板とする焼鈍工程;および
(E)前記焼鈍鋼板に溶融亜鉛めっきおよび合金化処理を順次施して合金化溶融亜鉛めっき鋼板とする合金化溶融亜鉛めっき工程。
(6) A method for producing an alloyed hot-dip galvanized steel sheet comprising the following steps:
(A) The steel ingot or steel slab having the chemical composition according to any one of claims 1 to 4 is hot-rolled to complete the rolling at 860 to 1000 ° C and wound up in a temperature range of 640 ° C or lower. Hot rolling process for hot rolled steel sheet;
(B) A pickling process in which the hot-rolled steel sheet is pickled to form a pickled steel sheet;
(C) a cold rolling step in which the pickled steel sheet is cold-rolled at a rolling reduction of 70% or more to obtain a cold-rolled steel sheet;
(D) An annealing step in which the cold-rolled steel sheet is annealed at 750 to 900 ° C. to obtain an annealed steel sheet; and (E) the hot-dip galvanized steel and alloying treatment are sequentially applied to the annealed steel sheet. Alloying hot dip galvanizing process.
圧延方向の塗装焼付け硬化量は、本発明においては、実施例に示すように、標準的な塗装条件を模して2%の予ひずみを付与した後に170℃×20分の熱処理を行うことにより求められる値である。 In the present invention, the coating bake hardening amount in the rolling direction is obtained by applying heat treatment at 170 ° C. for 20 minutes after applying 2% pre-strain to simulate standard coating conditions as shown in the examples. This is the required value.
本発明によれば、Ti含有極低炭素鋼板を母材とする合金化溶融亜鉛めっき鋼板において筋模様欠陥の発生が抑制され、外観の美麗な合金化溶融亜鉛めっきの供給が可能となる。しかも、この合金化溶融亜鉛めっき鋼板は、極低炭素鋼板が持つ自動車用パネル用途への適用に有利な加工性を保持している。具体的には、45°方向のr値が高いことで示される優れた加工性を有し、かつ塗装焼付け硬化量が比較的小さいので、常温で保管しても歪み時効劣化の進行が遅い。従って、本発明の合金化溶融亜鉛めっき鋼板は、サイドフレームを始めとする自動車用パネル用途に最適である。 ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of a streak pattern defect is suppressed in the galvannealed steel plate which uses a Ti containing ultra-low carbon steel plate as a base material, and supply of galvannealed with the beautiful appearance is attained. Moreover, this alloyed hot-dip galvanized steel sheet retains workability advantageous for application to automotive panel applications possessed by ultra-low carbon steel sheets. Specifically, it has excellent workability as indicated by a high r value in the 45 ° direction and has a relatively small amount of paint baking and curing, so that the deterioration of strain aging is slow even when stored at room temperature. Therefore, the galvannealed steel sheet of the present invention is optimal for automotive panel applications including side frames.
本発明について以下に詳細に説明する。
以下の説明において、化学組成を規定する「%」は特にことわりがない限り「質量%」である。
The present invention will be described in detail below.
In the following description, “%” defining the chemical composition is “% by mass” unless otherwise specified.
[母材鋼板の化学組成]
C:0.0038%以下
Cは、鋼板のr値を低下させる不純物元素である。本発明では、目的とする加工性を得るために、C含有量を0.0038%以下とする。C含有量は低い方が好ましく、0.0025%以下、さらには0.0020%以下とすることがより好ましい。しかし、C含有量を0.0005%未満とするには大幅なコスト高を招くので、C含有量は0.0005%以上とすることが好ましい。
[Chemical composition of base steel sheet]
C: 0.40038% or less C is an impurity element that lowers the r value of the steel sheet. In the present invention, in order to obtain the target processability, the C content is set to 0.0043% or less. The C content is preferably as low as possible, more preferably 0.0025% or less, and even more preferably 0.000020% or less. However, if the C content is less than 0.0005%, a significant increase in cost is incurred, so the C content is preferably set to 0.0005% or more.
Si:0.20%以下
Siは、めっきの密着性を上げる効果がある一方で、酸化しやすいため、溶融亜鉛めっき工程におけるはじきや合金化不足の原因となる。したがって、Siの含有量は0.20%以下とする。自動車の外板パネルに適用する場合にはSi含有量を0.02%以下とすることが好ましい。
Si: 0.20% or less Si has the effect of increasing the adhesion of the plating, but easily oxidizes, and therefore causes repelling and insufficient alloying in the hot dip galvanizing process. Therefore, the Si content is 0.20% or less. When applied to an outer panel of an automobile, the Si content is preferably 0.02% or less.
Mn:0.03〜0.2%
Mnは、Sと結合してMnSを形成し、Sによる熱間脆性を防止する働きがある。そのためMn含有量を0.03%以上、好ましくは0.05%以上とする。しかし、多量に含有すると鋼板の成形性が劣化してしまう。そのため、Mn含有量を0.2%以下、好ましくは0.16%以下とする。
Mn: 0.03 to 0.2%
Mn combines with S to form MnS and has a function of preventing hot brittleness due to S. Therefore, the Mn content is set to 0.03% or more, preferably 0.05% or more. However, if it is contained in a large amount, the formability of the steel sheet deteriorates. Therefore, the Mn content is 0.2% or less, preferably 0.16% or less.
鋼中のSは、熱間脆性を生じてスケールなどを発生させ、それにより表面性状の悪化や疵を生ずるので、SをTi硫化物やMnSとして固定する必要がある。本発明では、Ti含有量を制限するため、主にMnによりSを固定する必要があり、そのためには下記(1)式を満足する必要がある。 S in steel causes hot brittleness to generate scale and the like, thereby causing deterioration of surface properties and flaws. Therefore, it is necessary to fix S as Ti sulfide or MnS. In the present invention, in order to limit the Ti content, it is necessary to fix S mainly by Mn. For this purpose, it is necessary to satisfy the following formula (1).
Mn/{S−(32/48)×Ti*}≧14 ・・・ (1)
但し、Ti*=Ti−(48/14)×Nであり、Ti*≦0の場合はTi*=0とする。
なお、後述するように、Ti含有量を0.014%以下に制限した場合には、Mn含有量が上記(1)式を満たす必要性は必ずしもない。
Mn / {S- (32/48) × Ti *} ≧ 14 (1)
However, Ti * = Ti− (48/14) × N, and when Ti * ≦ 0, Ti * = 0.
As will be described later, when the Ti content is limited to 0.014% or less, it is not always necessary that the Mn content satisfies the above formula (1).
P:0.03%以下
Pは、合金化速度を低くする働きがあり、多量の含有は適正な合金化度を得るのを困難にする。したがって、Pの含有量を0.03以下%とする。好ましくは0.025%以下である。
P: 0.03% or less P has a function of lowering the alloying rate, and a large amount makes it difficult to obtain an appropriate degree of alloying. Therefore, the P content is set to 0.03% or less. Preferably it is 0.025% or less.
S:0.03%以下
Sは、Ti窒化物を生成した後の余剰TiをTi硫化物として析出させ、筋模様に大きく影響するTi炭化物の析出を抑える働きがある。しかし、Ti硫化物も細かい析出物であるため、微細な析出物であるTi炭化物ほどではないにしても、筋模様への影響は皆無ではない。また余剰にSが存在すると、熱間脆性による疵の原因となる。したがってS含有量は0.03%以下とする。S含有量は好ましくは0.008%以下、さらに好ましくは0.005%以下である。
S: 0.03% or less S has a function of precipitating excess Ti after forming Ti nitride as Ti sulfide, and suppressing precipitation of Ti carbide that greatly affects the streak pattern. However, since Ti sulfide is also a fine precipitate, there is no influence on the streak pattern even if it is not as fine as Ti carbide, which is a fine precipitate. Moreover, when S exists excessively, it will cause the flaw by hot brittleness. Therefore, the S content is 0.03% or less. The S content is preferably 0.008% or less, more preferably 0.005% or less.
N:0.0040%以下
Nは、粗大なTi窒化物を生成し、Tiを無害化する働きがある。しかし、Nを過剰に含有すると常温時効劣化の原因となる、したがって、N含有量を0.0040%以下とする。好ましくは0.0035%以下である。
N: 0.0040% or less N has a function of generating coarse Ti nitride and detoxifying Ti. However, when N is contained excessively, it causes aging deterioration at room temperature. Therefore, the N content is set to 0.0040% or less. Preferably it is 0.0033% or less.
Al:0.010〜0.23%
Alは製鋼時における脱酸のほか、鋼中の窒素をAlNとして固定することにより常温時効劣化を抑えるのに必要な元素である。このため、Al含有量を0.010%以上とする。本発明においては、筋模様に影響を及ぼすTi炭化物やTi硫化物の生成を抑制するため、Ti含有量の上限を厳格に制限する。このため、従来の極低炭素鋼に比してAlによる鋼中窒素の固定が重要となる。そのため、Al含有量は好ましくは0.031%以上、さらに好ましくは0.061%以上とする。一方、Alを多量に含有させても効果が飽和するので、Al含有量は0.23%以下、好ましくは0.10%以下とする。
Al: 0.010 to 0.23%
In addition to deoxidation during steel making, Al is an element necessary for suppressing normal temperature aging deterioration by fixing nitrogen in steel as AlN. For this reason, Al content shall be 0.010% or more. In this invention, in order to suppress the production | generation of Ti carbide | carbonized_material and Ti sulfide which influence a streak pattern, the upper limit of Ti content is restrict | limited strictly. For this reason, fixation of nitrogen in steel with Al is more important than conventional ultra-low carbon steel. Therefore, the Al content is preferably 0.031% or more, more preferably 0.061% or more. On the other hand, even if Al is contained in a large amount, the effect is saturated, so the Al content is 0.23% or less, preferably 0.10% or less.
Ti:0.003%以上
Tiは、鋼中のNを固定することにより、固溶Nによる時効劣化を抑えるとともに、鋼板のr値を向上させる作用を有する。これらの作用による効果を得るためにTi含有量を0.003%以上とする。好ましくは0.005%以上である。
Ti: 0.003% or more Ti has the effect of fixing the N in the steel, thereby suppressing aging deterioration due to the solute N and improving the r value of the steel sheet. In order to obtain the effects of these actions, the Ti content is set to 0.003% or more. Preferably it is 0.005% or more.
しかし、上述した通り、Tiはその析出形態が多様に変化することで、筋模様欠陥の発生に影響する。したがって、Ti含有量の上限については、
(A)0.014%以下としてその絶対量を厳格に制限するか、或いは
(B)NおよびS含有量に応じて、
Ti≦ (48/14)×N+(48/32)×S ・・・ (3)
を満たすようにする。この場合、Ti硫化物の生成を抑制するために、
Ti≦ (48/14)×N ・・・ (4)
を満たすようにすることが好ましい。
However, as described above, Ti affects the generation of streak pattern defects by various changes in the form of precipitation. Therefore, for the upper limit of Ti content,
(A) Strictly limit the absolute amount as 0.014% or less, or
(B) Depending on the N and S content,
Ti ≦ (48/14) × N + (48/32) × S (3)
To satisfy. In this case, in order to suppress the formation of Ti sulfide,
Ti ≦ (48/14) × N (4)
It is preferable to satisfy.
上記(A)のようにTi含有量を0.014%以下に制限する場合には、Mn含有量がTiとSの含有量に対して上記(1)式を必ずしも満たす必要はない。代わりに、Ti含有量がS含有量に応じて、
S−(32/48)×Ti* ≦0 ・・・ (2)
(式中のTi*の意味は上記に同じ)を満たすようにするのでもよい。つまり(32/48)×Ti* の値がS含有量より高くなるように低Sとする場合である。こうすれば、Tiによる筋模様欠陥の発生を抑制すると同時に、余剰のSがTiにより完全に固定され、Sによる表面性状の悪化や疵発生も抑制でき、かつMn含有量はTiおよびS含有量とは関係なく上記範囲内で調整できる。
When the Ti content is limited to 0.014% or less as in (A) above, the Mn content does not necessarily satisfy the above formula (1) with respect to the Ti and S contents. Instead, Ti content depends on S content,
S- (32/48) × Ti * ≦ 0 (2)
(The meaning of Ti * in the formula is the same as above) may be satisfied. In other words, this is a case where the value of (32/48) × Ti * is set to low S so as to be higher than the S content. In this way, the occurrence of streak defects due to Ti is suppressed, and at the same time, the excess S is completely fixed by Ti, the deterioration of surface properties and the generation of wrinkles due to S can be suppressed, and the Mn content is Ti and S content. Regardless of, it can be adjusted within the above range.
Nb:0.021〜0.05%
Nbは、鋼中のCを炭化物として固定して、常温時効劣化を抑える作用を有する。本発明では、Ti含有量の上限を厳格に制限するため、鋼中のCをNbで固定する必要がある。しかし、Nb炭化物を鋼板表層部に均一かつ微細に析出させないと、筋模様欠陥を生じる。Nb炭化物を均一かつ微細に析出させるため、Nb含有量を0.021%以上とする。0.026%以上とするのがさらに好ましい。一方、多量のNbの含有は成形性の低下をもたらすため、Nb含有量は0.05%以下、好ましくは0.035%以下とする。
Nb: 0.021 to 0.05%
Nb has the effect of fixing C in steel as a carbide and suppressing normal temperature aging deterioration. In the present invention, in order to strictly limit the upper limit of the Ti content, it is necessary to fix C in the steel with Nb. However, if the Nb carbide is not uniformly and finely deposited on the surface layer of the steel plate, a streak defect occurs. In order to precipitate Nb carbide uniformly and finely, the Nb content is set to 0.021% or more. More preferably, the content is 0.026% or more. On the other hand, since a large amount of Nb causes a decrease in moldability, the Nb content is 0.05% or less, preferably 0.035% or less.
B:場合により0.0020%以下
Bは、溶接性や耐2次加工脆性を改善する作用があるので、必要に応じて含有させることができる。前記作用による効果を確実に得るには、B含有量を0.0002%以上とすることが好ましい。ただし、Bを多量に含有すると鋼板の成形性が劣化するので、含有させる場合のB含有量は0.0020%以下とする。好ましくは0.0009%以下である。
B: 0.000020% or less in some cases B has an effect of improving weldability and secondary work brittleness resistance, and can be contained as necessary. In order to surely obtain the effect by the above action, the B content is preferably set to 0.0002% or more. However, if a large amount of B is contained, the formability of the steel sheet is deteriorated. Therefore, when B is contained, the B content is set to 0.0010% or less. Preferably it is 0.0009% or less.
上記以外は鉄および不純物である。筋状模様欠陥や表面性状に大きく影響を及ぼさない代表的な不純物として、各々0.5%以下のCr、Mo、Ni、Cu、V、W、各々0.01%以下のCa、Sn、As、Sbなどを例示できる。 Other than the above are iron and impurities. Typical impurities that do not greatly affect the streak pattern defects and surface properties are 0.5% or less of Cr, Mo, Ni, Cu, V, W, 0.01% or less of Ca, Sn, As, respectively. , Sb and the like.
[熱間圧延条件]
熱間圧延は、以下の条件で行うのが好ましい。
連続鋳造により得られた鋼塊または分塊圧延により得られた鋼片に熱間圧延を施して、860〜1000℃で圧延を完了し、640℃以下の温度域で巻き取って熱間圧延鋼板とする。
[Hot rolling conditions]
Hot rolling is preferably performed under the following conditions.
A steel ingot obtained by continuous casting or a steel slab obtained by partial rolling is hot-rolled to complete the rolling at 860 to 1000 ° C. and wound up in a temperature range of 640 ° C. or less to hot-rolled steel plate And
熱間圧延に供する鋼塊または鋼片は、連続鋳造後あるいは分塊圧延後の高温状態にあるものであってもよく、一旦冷却されたものを1300℃以下に加熱あるいは保定を行ったものであってもよい。加熱または保定する場合の温度は、Ti酸化物の生成を抑制する観点から低い方が好ましく、1250℃以下とすることがより好ましい。 The steel ingot or steel piece to be subjected to hot rolling may be in a high temperature state after continuous casting or after partial rolling, and once cooled, it is heated or held at 1300 ° C. or lower. There may be. The temperature for heating or holding is preferably lower from the viewpoint of suppressing the formation of Ti oxide, and more preferably 1250 ° C. or lower.
熱間圧延工程が、粗熱間圧延工程と仕上熱間圧延工程とからなる場合には、粗圧延終了後の粗圧延材を直接仕上熱間圧延に供してもよいし、粗圧延終了後の粗圧延材に加熱あるいは保定を行ってから仕上熱間圧延に供してもよい。 When the hot rolling process consists of a rough hot rolling process and a finishing hot rolling process, the rough rolled material after completion of rough rolling may be directly subjected to finishing hot rolling, or after the completion of rough rolling. The rough rolled material may be subjected to finish hot rolling after heating or holding.
熱間圧延完了温度が860℃未満では、Ar3変態点未満での圧下が多くなって、成形性が劣化する。一方、熱間圧延完了温度が1000℃超になると、スケール疵の問題が発生する。したがって、熱間圧延完了温度は860〜1000℃とし、880〜940℃とすることがより好ましい。 When the hot rolling completion temperature is less than 860 ° C., the reduction below the Ar 3 transformation point increases, and the formability deteriorates. On the other hand, when the hot rolling completion temperature exceeds 1000 ° C., the problem of scale wrinkles occurs. Therefore, the hot rolling completion temperature is 860 to 1000 ° C, and more preferably 880 to 940 ° C.
熱間圧延完了後の巻き取りまでの平均冷却速度は、熱間圧延工程におけるNb炭化物の析出を抑制する観点から5℃/s以上とすることが好ましい。高温域での冷却速度を高めたほうが好ましく、750℃までは平均冷却速度を10℃/s以上で急冷することがより好ましい。 The average cooling rate until winding after completion of hot rolling is preferably 5 ° C./s or more from the viewpoint of suppressing the precipitation of Nb carbide in the hot rolling step. It is preferable to increase the cooling rate in the high temperature region, and it is more preferable to rapidly cool the average cooling rate to 10 ° C./s or higher up to 750 ° C.
巻取温度は、Nb炭化物を均一かつ微細に析出させるために、熱間圧延段階でのその析出を抑えることが好ましいことから、640℃以下とする。580℃以下が好ましく、550℃以下がさらに好ましい。 The coiling temperature is set to 640 ° C. or lower because it is preferable to suppress the precipitation in the hot rolling stage in order to precipitate Nb carbide uniformly and finely. 580 ° C. or lower is preferable, and 550 ° C. or lower is more preferable.
得られた熱間圧延鋼板をその後、酸洗によりスケール除去する。
[冷間圧延条件と焼鈍・溶融亜鉛めっき条件]
熱間圧延鋼板を酸洗後に冷間圧延に供する。冷間圧延工程での圧下率が高いと最終製品のr値が向上するので、圧下率は70%以上、特に80%以上とすることが好ましい。
The obtained hot rolled steel sheet is then scaled by pickling.
[Cold rolling conditions and annealing / galvanizing conditions]
The hot-rolled steel sheet is subjected to cold rolling after pickling. If the rolling reduction in the cold rolling process is high, the r value of the final product is improved. Therefore, the rolling reduction is preferably 70% or more, particularly 80% or more.
冷間圧延鋼板を焼鈍した後、溶融亜鉛めっきを施し、次いでめっきの合金化処理が行われる。本発明では、焼鈍温度を除いて、これらの処理条件は特に制限されず、従来と同様でよい。 After the cold-rolled steel sheet is annealed, hot dip galvanizing is performed, and then alloying treatment of the plating is performed. In the present invention, except for the annealing temperature, these treatment conditions are not particularly limited, and may be the same as the conventional one.
溶融亜鉛めっき前の焼鈍温度は、高い方が、冷間圧延鋼板が軟質化し、成形性が向上するので、750℃以上、好ましくは810℃以上とする。一方、焼鈍温度が900℃を超えると、変態により好ましくない集合組織が発達して鋼板のr値が下がるので、900℃以下にする。 The higher the annealing temperature before hot dip galvanizing, the softer the cold-rolled steel sheet and the better the formability, so 750 ° C. or higher, preferably 810 ° C. or higher. On the other hand, if the annealing temperature exceeds 900 ° C., an unfavorable texture develops due to transformation and the r value of the steel sheet decreases, so the temperature is set to 900 ° C. or less.
合金化処理は、めっき中の鉄濃度が5〜13%になるように行うことが好ましい。鉄濃度が5%未満では、めっきが軟らかく摺動性に劣り、13%を超えると、めっきが脆くなり剥離するようになる。その後、必要に応じて、平坦矯正や表面粗さの調整ためにスキンパスが施される。 The alloying treatment is preferably performed so that the iron concentration during plating is 5 to 13%. If the iron concentration is less than 5%, the plating is soft and inferior in slidability, and if it exceeds 13%, the plating becomes brittle and peels off. Thereafter, as necessary, a skin pass is applied to correct the flatness and adjust the surface roughness.
合金化処理後に、めっき表層に潤滑処理やFeめっき処理などの後処理を施しても何ら問題はない。
[引張試験での特性]
本発明に係る合金化溶融亜鉛めっき鋼板は、主にサイドパネルなどの自動車用パネル用途に供されることを想定したものである。
There is no problem even if the plating surface layer is subjected to post-treatment such as lubrication or Fe plating after the alloying treatment.
[Characteristics of tensile test]
The alloyed hot-dip galvanized steel sheet according to the present invention is assumed to be mainly used for automotive panel applications such as side panels.
そのため、フランジの流入抵抗に耐えうる縦かべ部の強度として、圧延方向の引張り強さが285MPa以上であることが好ましい。しかし、引張り強さが高すぎると弾性回復による形状不良が生じる。したがって、圧延方向の引張り強さは325MPa以下であることが好ましい。 Therefore, the tensile strength in the rolling direction is preferably 285 MPa or more as the strength of the vertical wall portion that can withstand the inflow resistance of the flange. However, if the tensile strength is too high, shape defects due to elastic recovery occur. Accordingly, the tensile strength in the rolling direction is preferably 325 MPa or less.
加工性(深絞り性)に関しては、45°方向のr値が1.6以上であることが好ましい。45°方向のr値が1.6未満であると、プレス時の割れ等が問題になる。また、常温時効劣化が問題にならないように、圧延方向の塗装焼付け硬化量(BH)は15MPa以下であることが好ましい。BHが15MPaを超えると、プレス時にストレッチャストレインが発生しないように、保管期間や場所などに特別な管理が必要になる。より好ましくは、45°方向のr値は1.7以上、BHは9MPa以下である。 Regarding the workability (deep drawability), the r value in the 45 ° direction is preferably 1.6 or more. If the r value in the 45 ° direction is less than 1.6, cracking during pressing becomes a problem. Moreover, it is preferable that the bake hardening amount (BH) in the rolling direction is 15 MPa or less so that normal temperature aging deterioration does not become a problem. When BH exceeds 15 MPa, special management is required for the storage period and location so that stretcher strain does not occur during pressing. More preferably, the r value in the 45 ° direction is 1.7 or more and BH is 9 MPa or less.
なお、塗装焼付け硬化量は、電気亜鉛めっき鋼板についてJIS G 3313に規定されており、本発明ではそれに準拠する。この硬化量(BH量)は固溶C量と相関関係を有し、固溶C量が多いと常温保管時の時効劣化をもたらす。従って、BH量が高いと常温時効劣化が起こりやすくなる。 In addition, the coating bake hardening amount is prescribed | regulated to JISG3313 about an electrogalvanized steel plate, and it is based on it in this invention. This hardening amount (BH amount) has a correlation with the amount of solute C, and if the amount of solute C is large, aging deterioration during storage at room temperature is brought about. Therefore, when the amount of BH is high, aging deterioration at room temperature tends to occur.
本発明で言う「筋模様欠陥」は、現象的には既に述べた通りである。その評価は、本発明では目視による4段階評価で行なっており、特に自動車用パネルとして用いる場合には、筋はほとんど見られないものが求められる。なお、従来品はいずれも、後述する実施例での評価では、目視評価において全長にわたって明瞭な筋が見られる「×」に相当するものであった。 The “striated pattern defect” referred to in the present invention is as described above. In the present invention, the evaluation is performed by visual four-stage evaluation, and particularly when it is used as a panel for an automobile, it is required that the streak is hardly seen. In addition, in the evaluation in the Example mentioned later, all the conventional products corresponded to "x" in which a clear streak is seen over the entire length in the visual evaluation.
表1に示す化学組成の鋼を転炉で溶製し、250mm厚のスラブを製造した。得られたスラブを1220℃に再加熱した後、表2に示す条件で4.4mm厚まで熱間圧延を行った。得られた熱間圧延鋼板を塩酸酸洗によりスケール除去した後、0.7mm厚まで冷間圧延を施した。この冷間圧延鋼板を次いで表2に示す焼鈍温度で焼鈍した後、冷却途中で浴温460℃の溶融亜鉛めっきを施し、めっき後に昇温加熱して合金化処理を行った。めっき付着量は45g/m2であり、合金化処理はめっき中の鉄濃度が9.5質量%となるように行った。その後、0.6%伸び率のスキンパスを行い、得られた合金化溶融亜鉛めっき鋼板の表面を目視観察した。目視観察の評価基準は次の通りであった:
◎:筋がほとんどない、
○:薄い軽度の筋が一部に見られる、
△:全長にわたって軽度の筋がみられる、
×:全長にわたって明瞭に筋が見られる。
Steels having chemical compositions shown in Table 1 were melted in a converter to produce 250 mm thick slabs. After the obtained slab was reheated to 1220 ° C., it was hot-rolled to a thickness of 4.4 mm under the conditions shown in Table 2. The obtained hot-rolled steel sheet was descaled by hydrochloric acid pickling and then cold-rolled to a thickness of 0.7 mm. The cold rolled steel sheet was then annealed at the annealing temperatures shown in Table 2, and then hot dip galvanized with a bath temperature of 460 ° C. was applied during cooling, followed by heating and heating for alloying. The plating adhesion amount was 45 g / m 2 , and the alloying treatment was performed so that the iron concentration during plating was 9.5% by mass. Thereafter, a skin pass of 0.6% elongation was performed, and the surface of the obtained galvannealed steel sheet was visually observed. The evaluation criteria for visual observation were as follows:
◎: There are almost no streaks,
○: Some thin light muscles are seen,
Δ: Mild streaks are seen over the entire length,
X: Streaks are clearly seen over the entire length.
また、この合金化溶融亜鉛めっき鋼板から、1/4の幅位置で圧延方向にJIS5号引っ張り試験片を採取し、引っ張り試験を行って圧延方向の引っ張り強さ(TS)、降伏強さ(YS)、および伸び(EL)を求めた。ただし、r値については、圧延方向に対して0°、45°、90°の3方向に引っ張った場合のr値(それぞれ、r0,r45,r90)を求め、それらの平均値である平均r値も算出した。 Further, from this galvannealed steel sheet, a JIS No. 5 tensile test piece was taken in the rolling direction at a quarter width position, and a tensile test was conducted to determine the tensile strength (TS) and yield strength (YS) in the rolling direction. ) And elongation (EL). However, for the r value, r values (r0, r45, r90, respectively) when pulled in three directions of 0 °, 45 °, and 90 ° with respect to the rolling direction are obtained, and an average r that is an average value thereof is obtained. Values were also calculated.
また、合金化溶融亜鉛めっき鋼板のサンプルについて、塗装時の焼付けを模して2%予ひずみ付与後に170℃×20分の熱処理を行い、塗装焼付け硬化量(BH)を求めた。
表面観察結果と引っ張り試験結果を表3にまとめて示す。
Further, a sample of the alloyed hot-dip galvanized steel sheet was subjected to heat treatment at 170 ° C. for 20 minutes after imposing 2% prestrain, imitating baking at the time of coating, and the coating bake hardening amount (BH) was obtained.
The surface observation results and the tensile test results are summarized in Table 3.
試験No.1〜17では、表面の筋模様の軽減が認められた。しかし、巻き取り温度が高い試験No.3とNo.5、およびTi硫化物の生成が多い試験No.8、No.15およびNo.16は、筋模様改善の程度に差が認められた。試験No.3については、熱間圧延の巻き取り後の内周部に相当する一部分についてのみ筋模様が発生した。当該部分は熱間圧延の巻き取り後の冷却速度が遅い部分に相当することから、当該筋模様はNb炭化物の粗大化に起因するものと考えられる。試験No.7は、0.0014%以下のTi含有量が(1)式を満たさず、(2)式を満たす例であり、軽度の筋模様が見られた。 In the test No.1~17, reduction of muscle pattern of the surface was observed. However, tests No. 3 and No. 5 with a high winding temperature, and tests No. 8, No. 15 and No. 16 with a large amount of Ti sulfide generation showed a difference in the degree of streak pattern improvement. About test No. 3, the streak pattern generate | occur | produced only about the part corresponded to the inner peripheral part after winding of hot rolling. Since the said part is corresponded to the part with the slow cooling rate after winding of hot rolling, the said stripe pattern is considered to originate in the coarsening of Nb carbide | carbonized_material. Test No. 7 is an example in which the Ti content of 0.000014% or less does not satisfy the formula (1) but satisfies the formula (2), and a slight streak pattern was observed.
比較例を見ると、Al含有量の低い試験No.18では、BH量が高かった。Nb含有量が著しく低い試験No.19では、表層の結晶粒の状態を左右するNbの析出物がほとんどないため、表面性状は良好であったが、BH量が高かった。これらでは常温での時効劣化により、伸びの劣化などの成形性の劣化やストレッチャーストレインの発生による表面性状の劣化の懸念がある。 When a comparative example is seen, in test No. 18 with low Al content, the amount of BH was high. In Test No. 19 having a remarkably low Nb content, the surface properties were good because there was almost no precipitate of Nb affecting the state of the crystal grains in the surface layer, but the BH amount was high. In these, there is a concern that due to aging deterioration at room temperature, there may be deterioration of formability such as elongation deterioration and deterioration of surface properties due to the occurrence of stretcher strain.
Ti含有量の高い試験No.20とNo.23は、筋模様が顕著であり、自動車用パネル用途には適さない。BH量が低く、常温時効劣化が問題ない程度にNb量が添加されているが、本発明範囲よりNb含有量の低い試験No.21では、表層の微細析出物の析出状態が不均一になってしまうため、筋模様が顕著であり、自動車用パネル用途には適さない。また、(1)式を満たさなかった試験No.22では、熱間脆性起因と思われる材料疵が発生した。 Tests No. 20 and No. 23 with high Ti content have a striking pattern and are not suitable for automotive panel applications. Nb is added to such an extent that the amount of BH is low and aging deterioration at normal temperature is not a problem. In Test No. 21, where the Nb content is lower than the range of the present invention, the precipitation state of the fine precipitates on the surface layer becomes uneven. Therefore, the streak pattern is remarkable and is not suitable for automotive panel applications. Moreover, in the test No. 22 which did not satisfy | fill (1) Formula, the material flaw considered to be due to hot brittleness occurred.
Claims (6)
C:0.0038%以下、Si:0.20%以下、Mn:0.03〜0.16%、
P:0.03%以下、S:0.03%以下、Al:0.010〜0.23%、
N:0.0040%以下、Ti:0.003〜0.014%、および
Nb:0.021〜0.035%、
を含有し、残部が鉄および不純物からなるとともに、下記(1)式と(2)式(式中の各元素記号はその元素の質量%での含有量を意味する)のいずれかを満足し、前記合金化溶融亜鉛めっき鋼板のめっき表面の中心線平均粗さ(Ra)が0.5μm以上であることを特徴とする合金化溶融亜鉛めっき鋼板。
Mn/{S−(32/48)×Ti*}≧14 ・・・ (1)
S−(32/48)×Ti*≦0 ・・・ (2)
但し、Ti*=Ti−(48/14)×Nであり、Ti*≦0の場合はTi*=0とする。 An alloyed hot-dip galvanized steel sheet provided with an alloyed hot-dip galvanized layer on the surface of the steel sheet, wherein the chemical composition in mass% of the steel sheet,
C: 0.0038% or less, Si: 0.20% or less, Mn: 0.03~ 0.16%,
P: 0.03% or less, S: 0.03% or less, Al: 0.010 to 0.23%,
N: 0.0040% or less, Ti: 0.003~0.014%, and Nb: 0.021~ 0.035%,
Contain, together with the balance being iron and impurities, and satisfying any of the following (1) and (2) (each element symbol in the formula means the content by mass percent of the element) An alloyed hot-dip galvanized steel sheet having a center line average roughness (Ra) of the plated surface of the alloyed hot-dip galvanized steel sheet of 0.5 μm or more .
Mn / {S- (32/48) × Ti *} ≧ 14 (1)
S- (32/48) × Ti * ≦ 0 (2)
However, Ti * = Ti− (48/14) × N, and when Ti * ≦ 0, Ti * = 0.
C:0.0025%以下、Si:0.20%以下、Mn:0.03〜0.16%、
P:0.03%以下、S:0.03%以下、Al:0.010〜0.23%、
N:0.0040%以下、Ti:0.003%以上、および
Nb:0.026〜0.035%
を含有し、残部が鉄および不純物からなるとともに、下記(1)式および(3)式(式中の各元素記号はその元素の質量%での含有量を意味する)を満足し、前記合金化溶融亜鉛めっき鋼板のめっき表面の中心線平均粗さ(Ra)が0.5μm以上であることを特徴とする合金化溶融亜鉛めっき鋼板。
Mn/{S−(32/48)×Ti*}≧14 ・・・ (1)
Ti≦(48/14)×N+(48/32)×S ・・・ (3)
但し、Ti*=Ti−(48/14)×Nであり、Ti*≦0の場合はTi*=0とする。 An alloyed hot-dip galvanized steel sheet provided with an alloyed hot-dip galvanized layer on the surface of the steel sheet, wherein the chemical composition in mass% of the steel sheet,
C: 0.0025% or less, Si: 0.20% or less, Mn: 0.03~ 0.16%,
P: 0.03% or less, S: 0.03% or less, Al: 0.010 to 0.23%,
N: 0.0040% or less, Ti: 0.003% or more, and Nb: 0.026 to 0.035 %
And the balance is composed of iron and impurities, and satisfies the following formulas (1) and (3) (each element symbol in the formula means a content in mass% of the element), and the alloy An alloyed hot-dip galvanized steel sheet, characterized in that the center line average roughness (Ra) of the plated surface of the hot-dip galvanized steel sheet is 0.5 μm or more .
Mn / {S- (32/48) × Ti *} ≧ 14 (1)
Ti ≦ (48/14) × N + (48/32) × S (3)
However, Ti * = Ti− (48/14) × N, and when Ti * ≦ 0, Ti * = 0.
Ti≦(48/14)×N ・・・ (4) The alloyed hot-dip galvanized steel sheet according to claim 2, wherein the chemical composition satisfies the following formula (4).
Ti ≦ (48/14) × N (4)
(A)請求項1ないし4のいずれかに記載の化学組成を有する鋼塊または鋼片に熱間圧延を施して860〜1000℃で圧延を完了し、640℃以下の温度域で巻き取って熱間圧延鋼板とする熱間圧延工程;
(B)前記熱間圧延鋼板に酸洗を施して酸洗鋼板とする酸洗工程;
(C)前記酸洗鋼板に70%以上の圧下率で冷間圧延を施して冷間圧延鋼板とする冷間圧延工程;
(D)前記冷間圧延鋼板に750〜900℃で焼鈍を施して焼鈍鋼板とする焼鈍工程;および
(E)前記焼鈍鋼板に溶融亜鉛めっきおよび合金化処理を順次施して合金化溶融亜鉛めっき鋼板とする合金化溶融亜鉛めっき工程。 A method for producing an galvannealed steel sheet characterized by including the following steps:
(A) The steel ingot or steel slab having the chemical composition according to any one of claims 1 to 4 is hot-rolled to complete the rolling at 860 to 1000 ° C and wound up in a temperature range of 640 ° C or lower. Hot rolling process for hot rolled steel sheet;
(B) A pickling process in which the hot-rolled steel sheet is pickled to form a pickled steel sheet;
(C) a cold rolling step in which the pickled steel sheet is cold-rolled at a rolling reduction of 70% or more to obtain a cold-rolled steel sheet;
(D) An annealing step in which the cold-rolled steel sheet is annealed at 750 to 900 ° C. to obtain an annealed steel sheet; and (E) the hot-dip galvanized steel and alloying treatment are sequentially applied to the annealed steel sheet. Alloying hot dip galvanizing process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006291389A JP5011953B2 (en) | 2006-10-26 | 2006-10-26 | Alloyed hot-dip galvanized steel sheet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006291389A JP5011953B2 (en) | 2006-10-26 | 2006-10-26 | Alloyed hot-dip galvanized steel sheet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008106321A JP2008106321A (en) | 2008-05-08 |
JP5011953B2 true JP5011953B2 (en) | 2012-08-29 |
Family
ID=39439931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006291389A Active JP5011953B2 (en) | 2006-10-26 | 2006-10-26 | Alloyed hot-dip galvanized steel sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5011953B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5093029B2 (en) * | 2008-09-29 | 2012-12-05 | 住友金属工業株式会社 | Cold rolled steel sheet and method for producing the same |
JP4957829B2 (en) * | 2010-05-11 | 2012-06-20 | Jfeスチール株式会社 | Cold rolled steel sheet and method for producing the same |
JP5477198B2 (en) * | 2010-06-29 | 2014-04-23 | 新日鐵住金株式会社 | Cold rolled steel sheet and method for producing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58110659A (en) * | 1981-12-25 | 1983-07-01 | Nippon Kokan Kk <Nkk> | Galvanized steel plate for deep drawing and its manufacture |
JP3382697B2 (en) * | 1994-02-01 | 2003-03-04 | 川崎製鉄株式会社 | Manufacturing method of galvannealed steel sheet |
JP3724298B2 (en) * | 1999-11-25 | 2005-12-07 | Jfeスチール株式会社 | Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof |
JP3620384B2 (en) * | 1999-12-15 | 2005-02-16 | Jfeスチール株式会社 | Cold-rolled steel sheet with excellent surface properties and method for producing the same |
JP4214664B2 (en) * | 2000-06-30 | 2009-01-28 | Jfeスチール株式会社 | Sheet steel for press forming and manufacturing method thereof |
-
2006
- 2006-10-26 JP JP2006291389A patent/JP5011953B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008106321A (en) | 2008-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2751414C (en) | High-strength galvanized steel sheet having excellent formability and method for manufacturing the same | |
JP5042232B2 (en) | High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same | |
JP5413546B2 (en) | High strength thin steel sheet and method for producing the same | |
US20090214892A1 (en) | High strength steel sheet having superior ductility and method for manufacturing the same | |
JP3855678B2 (en) | Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability | |
JP6249140B1 (en) | High yield ratio type high strength galvanized steel sheet and method for producing the same | |
JPH07278770A (en) | Manufacturing method of alloyed hot-dip galvanized high-strength cold-rolled steel sheet for automobiles, which has excellent formability, paint bake hardenability, and little change in paint bake hardenability | |
JP2014005514A (en) | High-strength hot-dip galvanized steel sheet having excellent fatigue characteristic and ductility, and small in-plane anisotropy of ductility, and manufacturing method of the same | |
JP7017634B2 (en) | Steel sheet with excellent seizure curability and corrosion resistance and its manufacturing method | |
JP6007571B2 (en) | High-strength cold-rolled steel sheet and high-strength galvanized steel sheet | |
JP3263143B2 (en) | Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same | |
JP2009235532A (en) | High strength steel sheet having excellent deep drawability, and method for producing the same | |
JP5011953B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP3889767B2 (en) | High strength steel plate for hot dip galvanizing | |
JP4890492B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance | |
JP3882679B2 (en) | Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance | |
JP4969954B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent appearance quality and method for producing the same | |
JP2812770B2 (en) | Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance | |
KR100828926B1 (en) | Surface treated steel sheet for high-strength, high-strength forming automobile and its manufacturing method | |
CN113631736A (en) | Hot-dip Zn-Al-Mg-based steel sheet and method for producing same | |
JP2004043884A (en) | Thin steel sheet for working having excellent low temperature seizure hardenability and aging resistance | |
JP2005023348A (en) | Method for manufacturing hot-dip galvanized steel sheet | |
JPS5848636A (en) | Production of high strength cold rolled steel plate for deep drawing having non-aging characteristic and excellent hardenability by baking of painting by continuous annealing | |
JPH04301060A (en) | Bake-hardenable high-strength alloyed hot-dip galvanized steel sheet with excellent powdering resistance and its manufacturing method | |
JP2009235531A (en) | High strength steel sheet having excellent deep drawability, aging resistance and baking hardenability, and to provide method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110704 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120508 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120521 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150615 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5011953 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150615 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150615 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |