[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5010522B2 - Gold fine particle dispersion and immobilization method and material obtained thereby - Google Patents

Gold fine particle dispersion and immobilization method and material obtained thereby Download PDF

Info

Publication number
JP5010522B2
JP5010522B2 JP2008091587A JP2008091587A JP5010522B2 JP 5010522 B2 JP5010522 B2 JP 5010522B2 JP 2008091587 A JP2008091587 A JP 2008091587A JP 2008091587 A JP2008091587 A JP 2008091587A JP 5010522 B2 JP5010522 B2 JP 5010522B2
Authority
JP
Japan
Prior art keywords
gold
carrier
fine particles
catalyst
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008091587A
Other languages
Japanese (ja)
Other versions
JP2009240951A (en
Inventor
弘範 大橋
正毅 春田
孝 武井
玉青 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan University
Original Assignee
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan University filed Critical Tokyo Metropolitan University
Priority to JP2008091587A priority Critical patent/JP5010522B2/en
Publication of JP2009240951A publication Critical patent/JP2009240951A/en
Application granted granted Critical
Publication of JP5010522B2 publication Critical patent/JP5010522B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Description

本発明は、担体表面に金微粒子を分散・固定化する方法、特にアルカリに可溶な酸性担体をも含む担体に金微粒子を分散・固定化する方法およびそれにより得られる材料並びに金微粒子が分散・固定化された触媒に関する。   The present invention relates to a method for dispersing and immobilizing gold fine particles on the surface of a carrier, particularly a method for dispersing and immobilizing gold fine particles on a carrier that also contains an alkali-soluble acidic carrier, a material obtained thereby, and gold fine particles dispersed therein. -Relates to immobilized catalysts.

貴金属は、種々の装飾材料、歯科用材料、電子回路材料、触媒材料、例えば有機物の酸化あるいは還元反応触媒、自動車排気ガスの浄化触媒や、燃料電池用の触媒などとして広く用いられている。触媒として用いる場合、貴金属は高価なことと、その性能を最大限引き出すため、貴金属をナノ粒子として露出表面積を大きくする工夫がなされている。具体的には、比表面積が大きく、熱的、化学的安定性の高いシリカやアルミナ、チタニアなどの金属酸化物、あるいは活性炭、カーボンブラックなどの炭素材料を担体に用い、その表面に貴金属がナノ粒子として分散・固定された状態で用いられている。貴金属粒子を担体上に固定化する方法としては、たとえば、含浸法(例えば、非特許文献1参照)、共沈法(例えば、特許文献1参照)、滴下中和沈澱法、還元剤添加法、pH制御中和沈澱法(これらについては、例えば特許文献2参照)、カルボン酸金属塩添加法(例えば、特許文献3参照)、析出沈澱法(例えば、特許文献4参照)、有機金錯体吸着法(例えば、特許文献5参照)、ウォッシュコート法(例えば、特許文献6参照)、コロイド焼成法(例えば、特許文献7参照)など、種々の方法が知られている。   Precious metals are widely used as various decorative materials, dental materials, electronic circuit materials, catalyst materials, for example, organic matter oxidation or reduction reaction catalysts, automobile exhaust gas purification catalysts, and fuel cell catalysts. When used as a catalyst, noble metals are expensive, and in order to maximize their performance, a technique has been devised to increase the exposed surface area using noble metals as nanoparticles. Specifically, metal oxides such as silica, alumina, and titania with high specific surface area and high thermal and chemical stability, or carbon materials such as activated carbon and carbon black are used as a support, and noble metal is nano-sized on the surface. It is used in a dispersed and fixed state as particles. Examples of the method for immobilizing the noble metal particles on the support include, for example, an impregnation method (for example, refer to Non-patent Document 1), a coprecipitation method (for example, refer to Patent Document 1), a drop neutralization precipitation method, a reducing agent addition method, pH controlled neutralization precipitation method (for example, see Patent Document 2), carboxylic acid metal salt addition method (for example, Patent Document 3), precipitation precipitation method (for example, see Patent Document 4), organic gold complex adsorption method (For example, refer patent document 5), various methods, such as a wash coat method (for example, refer patent document 6) and a colloid baking method (for example, refer patent document 7), are known.

貴金属中、金は他の貴金属に比べれば安価であるものの、触媒活性が極めて乏しいと従来考えられていた。これに対し、本発明者らは、金を好ましくは直径10nm以下の超微粒子として種々の金属酸化物担体上に分散・固定することにより、高い触媒活性が発現されること、さらに金ナノ粒子触媒は、低温CO酸化、プロピレンの気相一段エポキシ化、低温水性ガスシフト反応、酸素と水素からの直接過酸化水素合成、炭化水素類の部分酸化など、多くの反応に対して、他の貴金属より優れた触媒活性を発現することを見出している(例えば、特許文献8および非特許文献1参照)。また、その他にも、金ナノ粒子触媒は、不飽和化合物の水添、アルコールの酸化、NOxの除去、エポキシ化合物の合成、脂肪族アミンのカルボニル化などの触媒活性についても報告されている。さらに、本発明者らは、金の粒子径が2nm以下、原子数で300個以内のクラスターになると、触媒特性がさらに激変する場合があることも見出した。   Among noble metals, gold has been conventionally considered to have very poor catalytic activity, although it is cheaper than other noble metals. On the other hand, the present inventors show that high catalytic activity is expressed by dispersing and fixing gold on various metal oxide supports, preferably as ultrafine particles having a diameter of 10 nm or less, and gold nanoparticle catalyst. Is superior to other precious metals for many reactions such as low temperature CO oxidation, propylene vapor phase one-step epoxidation, low temperature water gas shift reaction, direct hydrogen peroxide synthesis from oxygen and hydrogen, and partial oxidation of hydrocarbons (See, for example, Patent Document 8 and Non-Patent Document 1). In addition, gold nanoparticle catalysts have also been reported for catalytic activities such as hydrogenation of unsaturated compounds, oxidation of alcohols, removal of NOx, synthesis of epoxy compounds, and carbonylation of aliphatic amines. Furthermore, the present inventors have also found that when the gold particle size is 2 nm or less and the number of atoms is within 300 clusters, the catalyst characteristics may further change drastically.

これら金ナノ粒子を担体に分散・固定化する方法としては、従来、含浸法、共沈法、析出沈殿法、コロイド混合法、気相グラフティング法、液相グラフティング法などの方法が採られているが、金属酸化物などの無機担体に金ナノ粒子を担持させる方法としては、析出沈殿法が一般的に採用されている。この方法では、金前駆体をアルカリ水溶液中で加水分解し、金前駆体水溶液中で水酸化金(III)を担体上に析出沈殿させた後、加熱することで金の析出、固定化を行い、金ナノ粒子担持担体を得ている。この方法では、担体の種類によっては水酸化金(III)が析出しないものもあり、このため金ナノ粒子が担持できる担体が限定されていた。特に酸性担体(酸化タングステン、酸化モリブデン、Nafion(登録商標)(パーフルオロスルホン酸/ポリテトラフルオロエチレン共重合体)膜などの上には水酸化金(III)の析出沈殿が全く起きず、金ナノ粒子の担持が困難であった。また、従来の析出沈殿法では、水酸化金(III)を析出させるために、溶液の液性は中性ないしアルカリ性が必須であった。このため、中性ないしアルカリ性において溶解性のある金属の酸化物(例えば、酸化モリブデンや酸化タングステンなど)、水酸化物、炭酸塩、塩基性炭酸塩などには適用できなかった。   As a method for dispersing and fixing these gold nanoparticles on a carrier, methods such as an impregnation method, a coprecipitation method, a precipitation precipitation method, a colloid mixing method, a gas phase grafting method, and a liquid phase grafting method have been conventionally employed. However, as a method for supporting gold nanoparticles on an inorganic carrier such as a metal oxide, a precipitation method is generally employed. In this method, the gold precursor is hydrolyzed in an aqueous alkaline solution, and gold (III) hydroxide is precipitated on the support in the aqueous gold precursor solution, followed by heating to deposit and immobilize the gold. A gold nanoparticle carrying carrier is obtained. In this method, depending on the type of the carrier, some gold (III) hydroxide does not precipitate, so that the carrier on which the gold nanoparticles can be supported is limited. In particular, no precipitation of gold (III) hydroxide occurs on the acidic carrier (tungsten oxide, molybdenum oxide, Nafion (registered trademark) (perfluorosulfonic acid / polytetrafluoroethylene copolymer) film or the like. In addition, in the conventional precipitation method, the liquidity of the solution must be neutral or alkaline in order to precipitate gold hydroxide (III). It was not applicable to metal oxides (for example, molybdenum oxide and tungsten oxide), hydroxides, carbonates, basic carbonates, etc., which are soluble or alkaline.

一方、カルコゲナイド(特にS)と金は、HSAB理論では“SOFT”であるため親和性が高く、このため金担持触媒に対して悪影響を及ぼすと考えられている。また、従来硫化金(I,III)の化学はほとんど研究されていないというのが現状である。金鉱床の生成メカニズムについての研究において、[Au(HS)2-という錯体が金生成過程で存在するのではないかと予想されていることが報告されている例が見受けられるが、これ以外では硫化金に関する報文などはほとんど見出せない。したがって、Au−S相互作用を何かに利用しようという動きはあっても、Au23をAuへ還元させようと考える“土壌”は従来存在しなかった。 On the other hand, chalcogenide (especially S) and gold have high affinity because they are “SOFT” in the HSAB theory, and are therefore considered to have an adverse effect on the gold-supported catalyst. In addition, the current state of chemistry of gold sulfide (I, III) has hardly been studied. In a study of the generation mechanism of gold deposits, [Au (HS) 2] - complex but an example it has been reported that are expected that it would be present in gold generation process is found that, in addition to this There are few reports on gold sulfide. Therefore, even though there is a movement to use the Au—S interaction for something, there has been no “soil” that would reduce Au 2 S 3 to Au.

特開昭60−238148号公報JP 60-238148 A 特開昭63−252908号公報JP 63-252908 A 特開平2−252610号公報JP-A-2-252610 特開平3−97623号公報Japanese Patent Laid-Open No. 3-97623 特開平7−171408号公報JP-A-7-171408 特開平6−182205号公報JP-A-6-182205 特開平11−47611号公報JP 11-47611 A 特公平5−49338号公報Japanese Patent Publication No. 5-49338 エム ハルタ(M.Haruta)、ケミストリー レコード(Chem. Record)第3巻、第2号、第75−87頁、2003年M. Haruta, Chem. Record Vol. 3, No. 2, pp. 75-87, 2003

上記のとおり、析出沈殿法により担体上に金ナノ粒子を固定化するには、一般的には、まず下記反応式のように、アルカリ水溶液中で塩化金酸などの金前駆体を加水分解し、担体上に水酸化金(III)を析出沈殿させることが必要とされる。その理由は、酸性水溶液中で加水分解を行った場合には、配位子置換がうまく行かずに、例えば、[AuCl(OH)3-のような形で塩素配位子が残り、この塩素配位子を有する化合物は溶液中で安定であり、なかなか析出沈殿しないからである。 As described above, in order to immobilize the gold nanoparticles on the support by the precipitation method, generally, a gold precursor such as chloroauric acid is first hydrolyzed in an aqueous alkaline solution as shown in the following reaction formula. It is necessary to deposit and precipitate gold (III) hydroxide on the support. The reason for this is that when hydrolysis is performed in an acidic aqueous solution, the ligand substitution is not successful, and a chlorine ligand remains in the form of, for example, [AuCl (OH) 3 ] This is because a compound having a chlorine ligand is stable in a solution and does not readily precipitate.

しかし、WやMoなどのVI族金属の酸化物、炭酸塩、水酸化物などはアルカリ性側で溶解してしまうことから、アルカリ水溶液を用いる従来の方法では金微粒子を酸性担体に固定化することは極めて困難であった。またV、Nb、TaなどのV族金属についても同様のことがいえる。しかし、このような酸性担体にも析出沈殿法により金微粒子を固定化することができれば、新たな特性を有する金微粒子−担体複合材料を得ることができると考えられる。また、酸性担体を含む幅広い担体に対して同じ手法で金微粒子を分散・固定化することのできる新しい方法の開発も要望されている。   However, since Group VI metal oxides such as W and Mo, carbonates, hydroxides, etc. are dissolved on the alkaline side, the conventional method using an alkaline aqueous solution fixes the gold fine particles on an acidic carrier. Was extremely difficult. The same applies to Group V metals such as V, Nb and Ta. However, it is considered that a gold fine particle-carrier composite material having new characteristics can be obtained if gold fine particles can be immobilized on such an acidic carrier by a precipitation method. There is also a demand for the development of a new method that can disperse and immobilize gold fine particles by the same technique on a wide range of carriers including acidic carriers.

したがって、本発明はこのような従来の課題を解決すべくなされたものであり、酸性担体を含む担体に沈殿析出法により金微粒子を固定化する新規な方法を提供することを目的とするものである。
また、本発明は、このような新規方法で得られた金微粒子を固定化した担体を提供することをも目的とするものである。
さらに、本発明は、上記方法で得られた金微粒子の固定化された担体からなる触媒を提供することをも目的とするものである。
Therefore, the present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a novel method for immobilizing gold fine particles on a carrier containing an acidic carrier by precipitation. is there.
Another object of the present invention is to provide a carrier on which gold fine particles obtained by such a novel method are immobilized.
It is another object of the present invention to provide a catalyst comprising a carrier on which gold fine particles obtained by the above method are immobilized.

本発明者らは、上記課題を解決すべく鋭意検討を行ったところ、担体の分散された金化合物溶液に、硫化ナトリウム、硫化水素などのカルコゲン化物を加え、形成された金−カルコゲ系イオンを担体に吸着させるか、さらに酸を加えて分散液を酸性とすることによりカルコゲン化金の急激な沈殿を促し、これにより担体表面にカルコゲン化金を析出沈殿させ、その後加熱することで金−カルコゲン系イオン、例えば金−カルコゲン系錯体イオン、あるいはカルコゲン化金を析出沈殿させ、これを加熱して金を析出させることにより酸性担体上にも金微粒子を担持させることができること、驚くべきことに、形成された金ナノ粒子はカルコゲン処理が行われたにも関わらず、イオウなどによる特性劣化のない優れた触媒活性を有する触媒が得られることを見出した。本発明は、これらの知見に基づいてなされてものである。なお、本発明において金微粒子という場合、これには金ナノ粒子、金クラスターが包含される。   As a result of diligent studies to solve the above problems, the inventors of the present invention added a chalcogenide such as sodium sulfide or hydrogen sulfide to a gold compound solution in which a carrier was dispersed, and formed gold-chalcogenide ions. Gold-chalcogen can be adsorbed on the carrier or further acidified by adding acid to promote rapid precipitation of chalcogenide, thereby precipitating and precipitating chalcogenide on the surface of the carrier, followed by heating. It is surprising that gold fine particles can be supported on an acidic carrier by precipitating and precipitating a system ion such as gold-chalcogen complex ion or gold chalcogenide, and heating this to precipitate gold. Although the formed gold nanoparticles were subjected to chalcogen treatment, it was possible to obtain a catalyst having excellent catalytic activity without any characteristic deterioration due to sulfur or the like. It found Rukoto. The present invention has been made based on these findings. In the present invention, the term “gold fine particles” includes gold nanoparticles and gold clusters.

本発明は、以下の金微粒子を担体上に分散・固定化する方法、およびこの方法によって得られた金微粒子を表面に分散・固定化した材料、および金微粒子を表面に分散・固定化した担体からなる触媒に関する。   The present invention relates to a method for dispersing and fixing the following gold fine particles on a carrier, a material obtained by dispersing and fixing gold fine particles obtained by this method on the surface, and a carrier in which gold fine particles are dispersed and fixed on the surface. It is related with the catalyst which consists of.

(1)金化合物溶液にカルコゲン化物を添加して形成された金−カルコゲン系イオンを担体と接触させて担体に金−カルコゲン系イオンを吸着させる、あるいはさらに該溶液を酸性とすることにより担体表面に金カルコゲナイドを沈殿析出させ、その後担体を分離後加熱することにより担体表面に金微粒子を析出させることを特徴とする担体上に金微粒子を分散・固定化する方法。 (1) The surface of a carrier is obtained by bringing a gold-chalcogen ion formed by adding a chalcogenide into a gold compound solution into contact with the carrier to adsorb the gold-chalcogen ion to the carrier, or by further acidifying the solution. A method of dispersing and immobilizing gold fine particles on a carrier, comprising precipitating gold chalcogenide and then separating the carrier followed by heating to precipitate gold fine particles on the surface of the carrier.

(2)前記カルコゲン化物が、硫化ナトリウムまたは硫化水素であり、形成される金−カルコゲン系イオンが金−カルコゲン系錯体イオンであることを特徴とする上記(1)に記載の担体上に金微粒子を分散・固定化する方法。 (2) Gold chalcogenide is sodium sulfide or hydrogen sulfide, and the gold-chalcogen ion formed is a gold-chalcogen complex ion. To disperse and fix.

(3)前記溶液が水溶液であり、金化合物水溶液にカルコゲン化物を加えたのち、粒状担体を該水溶液に分散させることを特徴とする上記(1)または(2)に記載の担体上に金微粒子を分散・固定化する方法。 (3) The gold fine particles on the carrier according to the above (1) or (2), wherein the solution is an aqueous solution, a chalcogenide is added to the aqueous gold compound solution, and then the granular carrier is dispersed in the aqueous solution. To disperse and fix.

(4)前記担体がIII族、IV族、V族、VI族またはXIV族金属の酸化物、炭素材料または高分子材料であることを特徴とする上記(1)〜(3)のいずれかに記載の担体上に金微粒子を分散・固定化する方法。 (4) Any one of the above (1) to (3), wherein the carrier is an oxide, carbon material or polymer material of a Group III, Group IV, Group V, Group VI or Group XIV metal A method of dispersing and fixing gold fine particles on the carrier described above.

(5)前記III族、IV族、V族、VI族またはXIV族金属の酸化物がケイ素、チタン、バナジウム、タングステン、モリブデン、ニオブ、タンタル、またはセリウムの酸化物であり、炭素材料が活性炭、カーボンナノチューブ、カーボンナノホーン、またはグラファイトであることを特徴とする上記(4)に記載の担体上に金微粒子を分散・固定化する方法。 (5) The Group III, Group IV, Group V, Group VI or Group XIV metal oxide is an oxide of silicon, titanium, vanadium, tungsten, molybdenum, niobium, tantalum, or cerium, and the carbon material is activated carbon. The method for dispersing and immobilizing gold fine particles on the carrier according to (4) above, which is a carbon nanotube, carbon nanohorn, or graphite.

(6)前記金化合物が、四塩化金酸、四塩化金酸塩、三塩化金、シアン化金、シアン化金カリウム、三塩化ジエチルアミン金酸、エチレンジアミン金錯体、ジメチル金β−ジケトン誘導体金錯体、およびジエチル金β−ジケトン誘導体金錯体から選ばれた少なくとも1種であることを特徴とする上記(1)〜(5)のいずれかに記載の担体上に金微粒子を分散・固定化する方法。 (6) The gold compound is tetrachloroauric acid, tetrachloroaurate, gold trichloride, gold cyanide, potassium gold cyanide, diethylamineauric acid trichloride, ethylenediamine gold complex, dimethylgold β-diketone derivative gold complex And a method for dispersing and immobilizing gold fine particles on a carrier according to any one of (1) to (5) above, wherein the gold fine particles are at least one selected from a gold complex of diethyl gold β-diketone derivatives .

(7)上記処理された担体の加熱が80〜800℃であることを特徴とする上記(1)〜(6)のいずれかに記載の担体上に金微粒子を分散・固定化する方法。 (7) The method for dispersing and immobilizing gold fine particles on the carrier according to any one of (1) to (6) above, wherein the heated carrier is 80 to 800 ° C.

(8)前記金微粒子の平均粒子径が20nm以下であり、金が担体に対し0.01重量%〜50重量%担持されることを特徴とする上記(1)〜(7)のいずれかに記載の固体高分子材料表面に金微粒子を分散・固定する方法。 (8) The average particle diameter of the gold fine particles is 20 nm or less, and gold is supported on the carrier in an amount of 0.01% to 50% by weight, according to any one of the above (1) to (7) A method of dispersing and fixing gold fine particles on the surface of the described solid polymer material.

(9)上記(1)〜(8)のいずれかに記載の方法により得られた、表面に金微粒子が分散・固定された担体。 (9) A carrier obtained by the method according to any one of (1) to (8) above, in which gold fine particles are dispersed and fixed on the surface.

(10)上記(9)に記載の表面に金微粒子が分散・固定された担体からなる触媒。 (10) A catalyst comprising a carrier in which gold fine particles are dispersed and fixed on the surface according to (9).

(11)前記触媒が酸化触媒であることを特徴とする上記(10)に記載の触媒。 (11) The catalyst according to (10) above, wherein the catalyst is an oxidation catalyst.

(12)前記触媒が還元触媒であることを特徴とする上記(10)に記載の触媒。 (12) The catalyst according to (10), wherein the catalyst is a reduction catalyst.

従来の析出沈殿法では、酸性担体上には水酸化金(III)の析出沈殿が全く起きず、金ナノ粒子の担持が困難であった。本発明においては、担体上に、中性あるいは酸性下に金化合物をカルコゲン化物により金−カルコゲン系イオンあるいは金カルコゲナイドとして担体表面に吸着または析出沈澱させるという新規な方法を採用することにより、今まで水酸化金の沈澱析出ができず、このため金微粒子を表面に固定化できなかった酸性担体上にも析出沈澱法により金微粒子を分散・固定化することができる。また担体分散液は中性または酸性とされることから、担体としてアルカリに溶解する材料をも使用することができる。本発明の方法は、従来水酸化金(III)の析出沈澱により金微粒子を分散・固定化することのできる担体にも適用することができる。このように、本発明の方法は、ほぼ全ての種類の担体材料に適用できる。また、カルコゲン化物を使用するにもかかわらず、形成された金微粒子の触媒活性をはじめとする諸特性は、従来の水酸化金(III)を析出沈澱させる方法と同様の優れた特性を有している。   In the conventional precipitation method, gold (III) hydroxide does not precipitate at all on the acidic carrier, making it difficult to support gold nanoparticles. In the present invention, by adopting a novel method in which a gold compound is adsorbed or precipitated on a support surface as a gold-chalcogen-based ion or gold chalcogenide by a chalcogenide under neutral or acidic conditions. Precipitation and precipitation of gold hydroxide cannot be performed. Therefore, the gold fine particles can be dispersed and immobilized on the acidic carrier on which the gold fine particles cannot be immobilized on the surface by the precipitation method. In addition, since the carrier dispersion is neutral or acidic, a material that dissolves in alkali can be used as the carrier. The method of the present invention can also be applied to a carrier that can disperse and immobilize gold fine particles by conventional precipitation of gold (III) hydroxide. Thus, the method of the present invention can be applied to almost all types of support materials. In addition, despite the use of chalcogenides, the various properties including the catalytic activity of the formed gold fine particles have the same excellent characteristics as the conventional method for precipitation and precipitation of gold (III) hydroxide. ing.

本発明の金微粒子を担体表面に分散・固定化する方法においては、先ず担体材料を金前駆体である金化合物の溶液と接触させた状態でカルコゲン化物を加え、金−カルコゲン系イオン、例えば金−カルコゲン系錯体イオンを形成し、これを担体材料に吸着させるか、もしくはこれにさらに酸を添加して金カルコゲナイドとして強制的に表面にカルコゲン化金の沈殿を促し、担体表面にカルコゲン化金を沈殿析出させた後、この担体を分離し、加熱することにより金微粒子を担体表面に析出させ担持させるものである。以下、本発明の方法に使用される金前駆体である金化合物、沈殿剤、金微粒子を担持するために用いられる担体材料、金化合物の溶媒として用いられる溶剤などについて説明し、次いでこれら材料を用いて金微粒子が表面に分散・固定化された担体の製造方法について説明する。   In the method for dispersing and immobilizing the gold fine particles on the surface of the carrier of the present invention, a chalcogenide is first added while the carrier material is in contact with a solution of a gold compound that is a gold precursor, and gold-chalcogen ions such as gold -Chalcogen complex ions are formed and adsorbed on the support material, or an acid is added to the support material to forcibly precipitate gold chalcogenide on the surface as gold chalcogenide, and the chalcogenide is deposited on the support surface. After the precipitation, the carrier is separated and heated to precipitate and carry the gold fine particles on the surface of the carrier. Hereinafter, the gold compound that is a gold precursor used in the method of the present invention, a precipitant, a carrier material used for supporting gold fine particles, a solvent used as a solvent for the gold compound, etc. will be described. A method for producing a carrier in which gold fine particles are dispersed and immobilized on the surface will be described.

本発明において、金微粒子を形成するために用いられる金前駆体である金化合物は、担体と接触した溶液に溶解された状態で用いられることから、これら溶液に溶解するものであって、カルコゲン化物により金−カルコゲン系のイオンまたは金カルコゲナイドを形成するものであればよく、これ以外に特に制限されるものではない。例えば、溶液として水が用いられる場合、金化合物は水溶性のものであればよい。水溶性金化合物としては、金の水酸化物、塩化物、カルボン酸塩、および硝酸塩、塩化金酸およびその塩、金錯体化合物などが挙げられる。これら水溶性金化合物を具体的に例示すると、例えば、四塩化金酸(HAuCl4)、四塩化金酸塩(例えば、NaAuCl4)、三塩化金(AuCl3)、シアン化金(AuCN)、シアン化金カリウム{K〔Au(CN)2〕}、三塩化ジエチルアミン金酸〔(C252NH・AuCl3〕、エチレンジアミン金錯体(例えば、塩化物錯体(Au[C24(NH22]Cl3))、ジメチルまたはジエチル金β−ジケトン誘導体金錯体(例えば、ジメチル金アセチルアセトナート((CH32Au[CH3COCHCOCH3])、(CH32Au(CF3COCHCOCH3)、(CH32Au(CF3COCHCOCF3)、(C252Au(CH3COCHCOCH3)、(CH32Au(C65COCHCOCF3))などを挙げることができる。なお、本発明で用いることができる金化合物がこれら例示されたものに限定されるものでないことは言うまでもないことである。これらの化合物は単独で用いられてもよいし、必要であれば2種以上を併用してもよい。また、上記化合物はエタノールのような非水溶剤にも溶解することから非水性溶剤が用いられる場合にも、上記例示した化合物を適宜使用することができる。 In the present invention, the gold compound, which is a gold precursor used to form the gold fine particles, is used in a state of being dissolved in a solution in contact with the carrier, and therefore is dissolved in these solutions, and is a chalcogenide. As long as it forms gold-chalcogen-based ions or gold chalcogenide, there is no particular limitation. For example, when water is used as the solution, the gold compound may be water-soluble. Examples of the water-soluble gold compound include gold hydroxide, chloride, carboxylate, nitrate, chloroauric acid and its salt, and gold complex compound. Specific examples of these water-soluble gold compounds include tetrachloroauric acid (HAuCl 4 ), tetrachloroaurate (eg, NaAuCl 4 ), gold trichloride (AuCl 3 ), gold cyanide (AuCN), Gold potassium cyanide {K [Au (CN) 2 ]}, diethylamine trichloride gold acid [(C 2 H 5 ) 2 NH · AuCl 3 ], ethylenediamine gold complex (for example, chloride complex (Au [C 2 H 4 (NH 2 ) 2 ] Cl 3 )), dimethyl or diethyl gold β-diketone derivative gold complex (eg, dimethyl gold acetylacetonate ((CH 3 ) 2 Au [CH 3 COCHCOCH 3 ]), (CH 3 ) 2 Au (CF 3 COCHCOCH 3), ( CH 3) 2 Au (CF 3 COCHCOCF 3), (C 2 H 5) 2 Au (CH 3 COCHCOCH 3), (CH 3) 2 Au (C 6 H 5 COCH OCF 3)), and the like. In addition, it cannot be overemphasized that the gold compound which can be used by this invention is not what is limited to these illustrated. These compounds may be used alone or in combination of two or more if necessary. Moreover, since the said compound melt | dissolves also in nonaqueous solvents like ethanol, also when a nonaqueous solvent is used, the compound illustrated above can be used suitably.

一方、金化合物の溶媒として用いられる溶剤は、水でも良いし、水以外の非水溶剤であってもよい。また、水と非水溶剤との混合物、例えば水と水溶性溶剤との混合物であってもよい。溶剤として用いられる水は、水であればどのようなものでもよく特に限定されるものではないが、形成された金微粒子への不純物の混入、付着を防ぐ意味からも、蒸留、イオン交換処理、フィルター処理、各種吸着処理等により有機不純物、金属イオンを除去したものが好ましい。また非水溶剤としては、エタノール、メタノールなど水溶性有機溶剤が挙げられる。これら溶剤の中では、経済上の理由、環境上の理由から水が好ましい。   On the other hand, the solvent used as the solvent for the gold compound may be water or a non-aqueous solvent other than water. Moreover, the mixture of water and a nonaqueous solvent, for example, the mixture of water and a water-soluble solvent, may be sufficient. The water used as the solvent is not particularly limited as long as it is water, but from the viewpoint of preventing contamination and adhesion of impurities to the formed gold fine particles, distillation, ion exchange treatment, Those from which organic impurities and metal ions have been removed by filter treatment, various adsorption treatments and the like are preferred. Examples of the non-aqueous solvent include water-soluble organic solvents such as ethanol and methanol. Of these solvents, water is preferred for economic and environmental reasons.

本発明において沈殿剤として用いられる前記溶剤に溶解可能なカルコゲン化物は、イオウ、セレン、またはテルル化物であり、溶剤に溶解して金化合物が溶解された溶液に加えられる。沈殿剤として好ましい化合物は、例えば硫化水素(H2S)、硫化ナトリウム(Na2S)、硫化カリウム(K2S)、硫化水素ナトリウム(NaHS)、硫化水素カリウム(KHS)、チオアセトアミド(CH3CSNH2)などを挙げることができる。 The chalcogenide soluble in the solvent used as a precipitant in the present invention is sulfur, selenium, or telluride, and is added to the solution in which the gold compound is dissolved by dissolving in the solvent. Preferred compounds as the precipitating agent include, for example, hydrogen sulfide (H 2 S), sodium sulfide (Na 2 S), potassium sulfide (K 2 S), sodium hydrogen sulfide (NaHS), potassium hydrogen sulfide (KHS), thioacetamide (CH 3 CSNH 2 ).

本発明において金微粒子の担体材料として用いられるものは、アルカリ溶液と接した際に溶解する無機化合物、例えばVまたはVI族金属の酸化物が挙げられる。VまたはVI族金属の代表的なものとしては、W、Mo、V、Nb、Taなどが挙げられる。また、中性での金−カルコゲン系イオンの吸着を利用するような場合には、使用する溶剤に対し溶解性が低ければ、酸に溶解するような金属炭酸塩、塩基性炭酸塩または水酸化物なども利用できる。酸化物の代表的なものは、シリカ(SiO2)、二酸化チタン(TiO2)、三酸化モリブデン(MoO3)、三酸化タングステン(WO3)、五酸化二ニオブ(Nb25)、二酸化セリウム(CeO2)、Nafionコーティングシリカなどを挙げることができる。その他の無機材料としては、五酸化二タンタル(Ta25)なども使用することができる。また、金−カルコゲン系のイオンを吸着する担体としては、ナノポーラスカーボン、カーボンナノチューブ、カーボンナノホーン、グラファイトなどの炭素材料が挙げられる。その他、担体材料として、有機高分子材料なども用いることもできる。高分子材料は、高分子材料上に沈着したカルコゲン化金を加熱析出させるための温度に耐えるものであればよく、特に限定されるものではないが、スチレン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、セルロース樹脂、ポリカーボネート樹脂、ジエン系樹脂、アクリル樹脂、ポリアクリロニトリル、塩化ビニル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂など従来知られた種々の樹脂が挙げられる。 Examples of the material used as the carrier material for the gold fine particles in the present invention include inorganic compounds that dissolve when they come into contact with an alkaline solution, such as oxides of group V or VI metals. Typical examples of the V or VI group metal include W, Mo, V, Nb, and Ta. In addition, when using neutral gold-chalcogen ion adsorption, metal carbonates, basic carbonates or hydroxides that dissolve in acids, if the solubility in the solvent used is low. Things can also be used. Typical oxides are silica (SiO 2 ), titanium dioxide (TiO 2 ), molybdenum trioxide (MoO 3 ), tungsten trioxide (WO 3 ), niobium pentoxide (Nb 2 O 5 ), dioxide Examples thereof include cerium (CeO 2 ) and Nafion-coated silica. As other inorganic materials, tantalum pentoxide (Ta 2 O 5 ) or the like can also be used. Examples of the carrier that adsorbs gold-chalcogen ions include carbon materials such as nanoporous carbon, carbon nanotube, carbon nanohorn, and graphite. In addition, an organic polymer material or the like can also be used as a carrier material. The polymer material is not particularly limited as long as it can withstand the temperature for heating and precipitating the chalcogenide deposited on the polymer material, but is not limited to styrene resin, polyester resin, polyamide resin, polyimide resin. Various conventionally known resins such as polyurethane resin, cellulose resin, polycarbonate resin, diene resin, acrylic resin, polyacrylonitrile, vinyl chloride resin, epoxy resin, phenol resin, melamine resin and urea resin can be used.

担体は、膜状でもよいし、粒子状であってもよい。粒子状である場合、その平均粒径は、例えば、2nm〜10mmであることが挙げられ、また膜状である場合、例えば、平均膜厚10nm〜10mmであるものが挙げられる。さらに、粒子は中実体、中空体、多孔体などいずれの形態のものであってもよい。触媒、着色剤などを初めとする種々の用途を考えれば、通常粒子形状が好ましく、その粒子径は目的・用途によって異なるものの、一般的には平均粒子径2nm〜1mm、より好ましくは平均粒子径1mμ〜1mm程度である。本発明においては、平均粒子径は、球状粒子の場合は直径、楕円形粒子の場合は長径であり、例えば微細な粒径を有する場合、走査型電子顕微鏡(SEM)観察あるいは透過型電子顕微鏡(TEM)観察から粒子径分布を作り、平均値を求めたものである。また、ミクロンオーダーの粒子の粒径については、コールターカウンターなどにより測定することもできるし、さらに大きい場合には、篩法によることもできる。   The carrier may be in the form of a film or particles. In the case of a particulate form, the average particle diameter is, for example, 2 nm to 10 mm. In the case of a film form, for example, an average film thickness is 10 nm to 10 mm. Further, the particles may be in any form such as a solid body, a hollow body, and a porous body. In consideration of various uses such as a catalyst and a colorant, the particle shape is usually preferable, and the particle size varies depending on the purpose and use, but generally the average particle size is 2 nm to 1 mm, more preferably the average particle size. It is about 1 mμ to 1 mm. In the present invention, the average particle diameter is a diameter in the case of spherical particles, and a long diameter in the case of elliptical particles. For example, when it has a fine particle diameter, it is observed with a scanning electron microscope (SEM) or a transmission electron microscope ( (TEM) A particle size distribution is created from observation, and an average value is obtained. Further, the particle size of micron order particles can be measured by a Coulter counter or the like.

次に、本発明の金微粒子を分散・固定化する方法について説明する。以下では、金微粒子担体材料が微粒子材料である場合を例に挙げて説明するが、担体材料が薄膜などである場合においては、担体材料が液中に分散されないことを除けば以下に説明する方法と同様の方法でその表面への金微粒子の分散・固定化を行うことができる。また、以下においては、金化合物溶解液が水溶液である場合について説明するが、水溶性有機溶剤などの非水溶剤あるいは水と非水溶剤の混合液である場合にも、水溶液と同様に実施できる。   Next, a method for dispersing and fixing the gold fine particles of the present invention will be described. Hereinafter, the case where the gold fine particle carrier material is a fine particle material will be described as an example. However, in the case where the carrier material is a thin film or the like, the following method will be described except that the carrier material is not dispersed in the liquid. The gold fine particles can be dispersed and immobilized on the surface in the same manner as described above. In the following, the case where the gold compound solution is an aqueous solution will be described. However, even when the gold compound solution is a non-aqueous solvent such as a water-soluble organic solvent or a mixed solution of water and a non-aqueous solvent, it can be implemented in the same manner as the aqueous solution. .

先ず、金化合物を水に溶解し金化合物水溶液を形成し、この水溶液に沈澱剤である硫化ナトリウム、硫化水素などのカルコゲン化物を加える。これにより金−カルコゲン系イオンが形成される。硫化ナトリウム、硫化水素などは水に溶かして滴下されればよく、硫化水素などガス状のものについては、水溶液に吹き込んでもよい。その後、この液に担体を加えて分散させる。なお、水に担体を分散させ、この担体分散液に金化合物および沈澱剤を加えてもよい。この場合、担体分散液に金化合物を直接加えて水溶液中で金化合物を溶解させてもよいし、予め金化合物の濃厚水溶液を作成しておき、これを水溶液に加えてもよい。担体材料が金−カルコゲン系イオンを吸着することができるものであれば、金−カルコゲン系イオンを吸着した担体を分離し、加熱して担体上に金微粒子を析出させ、金微粒子が分散・固定化された担体を形成することができる。また、そうでない場合、あるいは金−カルコゲン系イオンが吸着される担体であっても、カルコゲン化物を滴下した後、さらに酸を加えて酸性とすることにより、強制的に金カルコゲナイド(例えば、Au23、Au2S、AuSeなど)を担体表面に析出沈澱させ、金カルコゲナイドを担持する担体を分離した後、これを加熱して担体上に金微粒子を析出させ、金微粒子が分散・固定化された担体を形成することができる。 First, a gold compound is dissolved in water to form an aqueous gold compound solution, and a chalcogenide such as sodium sulfide or hydrogen sulfide as a precipitant is added to the aqueous solution. As a result, gold-chalcogen ions are formed. Sodium sulfide, hydrogen sulfide, or the like may be dropped in water, and gaseous substances such as hydrogen sulfide may be blown into the aqueous solution. Thereafter, a carrier is added to this liquid and dispersed. A carrier may be dispersed in water, and a gold compound and a precipitant may be added to the carrier dispersion. In this case, the gold compound may be directly added to the carrier dispersion to dissolve the gold compound in the aqueous solution, or a concentrated aqueous solution of the gold compound may be prepared in advance and added to the aqueous solution. If the carrier material is capable of adsorbing gold-chalcogen ions, the carrier adsorbing the gold-chalcogen ions is separated and heated to deposit gold fine particles on the carrier, thereby dispersing and fixing the gold fine particles. A structured carrier can be formed. In other cases, or even a carrier on which gold-chalcogen-based ions are adsorbed, a gold chalcogenide (for example, Au 2) is forcibly added by adding an acid after the chalcogenide is dropped and then making it acidic. S 3 , Au 2 S, AuSe, etc.) are precipitated on the support surface and the support carrying the gold chalcogenide is separated and then heated to precipitate the gold fine particles on the support, and the gold fine particles are dispersed and immobilized. Formed carriers can be formed.

酸性水溶液とするために用いられる酸としては、塩酸が好ましいが、必要であれば他の酸が用いられてもよい。液のpHは7以下とされ、好ましくはpH1〜2程度の強酸性とすることが好ましい。また、金化合物の水溶液中の濃度は、あまりにも希薄すぎると金が担体上に析出できなくなるという問題があり、またあまり高濃度になると液相で金硫化物の生成が起きてしまい、結果的に粗大な金粒子になってしまう。従って微粒子の形成が難しくなるという問題があることから、通常0.005mmol/L〜1mmol/L、より好ましくは0.05mmol/L〜0.5mmol/L、更に好ましくは0.05mmol/L〜0.2mmol/L程度とされる。10nm以下のナノ粒子を形成するためには0.1mmol/L程度であることが通常好ましい。また金化合物の使用量は、一般的には、沈殿剤分子/Au原子=1〜1000程度とされる。   Hydrochloric acid is preferred as the acid used to make the acidic aqueous solution, but other acids may be used if necessary. The pH of the liquid is 7 or less, and it is preferable to make it strongly acidic, preferably about pH 1-2. In addition, if the concentration of the gold compound in the aqueous solution is too dilute, there is a problem that gold cannot be deposited on the support. If the concentration is too high, formation of gold sulfide occurs in the liquid phase. Becomes coarse gold particles. Therefore, since it is difficult to form fine particles, it is usually 0.005 mmol / L to 1 mmol / L, more preferably 0.05 mmol / L to 0.5 mmol / L, still more preferably 0.05 mmol / L to 0. About 2 mmol / L. In order to form nanoparticles of 10 nm or less, it is usually preferably about 0.1 mmol / L. The amount of gold compound used is generally about precipitant molecule / Au atom = 1 to 1000.

さらに、金化合物の担体材料に対する量は、分散・固定化される金微粒子の大きさ、並びに担体材料表面にどの程度の量の金を分散・固定化するかにより異なる。金の担体材料への担持量は水溶液の濃度と量により、例えば0.01重量%〜50重量%までの範囲で調整することができる。したがって、金担持量に応じて、水溶液の金化合物濃度や溶液の使用量を決めればよい。触媒として用いる場合、どのような反応に関与する触媒であるかにより金担持量は異なるが、たとえば、グルコースの酸化触媒として用いられる場合、金の担持量は0.01重量%〜5重量%程度が好ましく、より好ましくは、0.05重量%〜0.5重量%である。   Furthermore, the amount of the gold compound with respect to the carrier material varies depending on the size of the gold fine particles to be dispersed and immobilized, and how much gold is dispersed and immobilized on the surface of the carrier material. The amount of gold supported on the carrier material can be adjusted, for example, in the range of 0.01 wt% to 50 wt% depending on the concentration and amount of the aqueous solution. Therefore, the gold compound concentration in the aqueous solution and the amount of the solution used may be determined according to the gold loading amount. When used as a catalyst, the amount of gold supported varies depending on the type of reaction involved. For example, when used as an oxidation catalyst for glucose, the amount of supported gold is about 0.01% to 5% by weight. Is more preferable, and 0.05% by weight to 0.5% by weight is more preferable.

担体材料として活性炭などの炭素材料を用いる場合には、必要であれば過酸化水素水などでの前処理がされてもよい。また、担体の分散は、攪拌機による攪拌、超音波による分散など何れの方法によってもよい。反応系を構成する担体分散金化合物水溶液の温度は、使用する担体材料の種類およびその量、使用する金化合物の種類および濃度、沈殿剤として添加されるカルコゲン化物の種類と量、液のpHなど種々の条件を勘案して適宜の温度で行えばよく、一般的には10〜80℃程度が好ましい。   When a carbon material such as activated carbon is used as the carrier material, pretreatment with hydrogen peroxide solution or the like may be performed if necessary. Further, the carrier may be dispersed by any method such as stirring by a stirrer or dispersion by ultrasonic waves. The temperature of the carrier-dispersed gold compound aqueous solution constituting the reaction system includes the type and amount of the carrier material to be used, the type and concentration of the gold compound to be used, the type and amount of chalcogenide added as a precipitant, the pH of the liquid, etc. It may be performed at an appropriate temperature in consideration of various conditions, and is generally preferably about 10 to 80 ° C.

沈殿剤であるカルコゲン化物は、通常水溶液として担体が懸濁された金化合物水溶液に加えられるが、懸濁液を攪拌しつつ適宜のスピードで加えられればよく、通常、連続的な短時間での滴下によればよい。また、酸の添加も同様である。酸を添加した後、攪拌を続け、反応を完結させる。攪拌は、通常5分〜24時間程度の時間行われるが、1時間程度がのぞましい。その後、金−カルコゲン系イオンが吸着した、あるいは金カルコゲナイドの沈着した担体を分離する。この分離方法としては従来公知の何れの方法によってもよい。通常、ろ過により分離がなされるが、その際繰り返しデカンテーションを行った後ろ過するなど、担体の洗浄を行うことが好ましい。こうして得られた金−カルコゲン系のイオンまたは金カルコゲナイドが吸着あるいは沈着した担体粒子は、金析出のために加熱される。加熱は金が析出される温度で、担体が耐え得る温度であればよく特に限定されないが、通常80〜800℃とされる。   The chalcogenide, which is a precipitant, is usually added to the gold compound aqueous solution in which the carrier is suspended as an aqueous solution, but it may be added at an appropriate speed while stirring the suspension. It may be by dripping. The same applies to the addition of acid. After the acid is added, stirring is continued to complete the reaction. Stirring is usually performed for about 5 minutes to 24 hours, preferably about 1 hour. Thereafter, the carrier on which gold-chalcogen ions are adsorbed or on which gold chalcogenide is deposited is separated. This separation method may be any conventionally known method. Usually, the separation is performed by filtration, but it is preferable to wash the carrier, such as filtration after repeated decantation. The carrier particles adsorbed or deposited with gold-chalcogen-based ions or gold chalcogenide thus obtained are heated for gold precipitation. The heating is not particularly limited as long as it is a temperature at which gold can be deposited and the carrier can withstand, but it is usually set to 80 to 800 ° C.

高分子材料あるいは炭素材料表面に担持された金微粒子の平均粒子径は、触媒として用いる場合は20nm以下、好ましくは5nm以下であるが、必要であればこれら以外の粒径であってもよい。   The average particle size of the gold fine particles supported on the surface of the polymer material or carbon material is 20 nm or less, preferably 5 nm or less when used as a catalyst, but other particle sizes may be used if necessary.

図1に、本発明の一方法を示す。図1の方法においては、金化合物としてHAuCl4を用い、これの20ppm(金換算)水溶液500mLに1M Na2S水溶液0.3mLを加え、これに担体1.0gを加えて担体を分散させ、懸濁液を作成する。Na2S水溶液の添加により、液の色は薄い黄色から黄土色となる。この懸濁液に濃塩酸5mLを加え液のpHを1程度の強酸性とする。これにより液の色が濃くなった。1時間攪拌を続け、Au23を担体上に析出沈澱させた。担体を分離後十分に乾燥し、300℃で4時間(空気中)あるいは230℃で6時間(真空中)加熱して、表面に金微粒子が分散・固定化された担体が形成される。 FIG. 1 illustrates one method of the present invention. In the method of FIG. 1, HAuCl 4 is used as the gold compound, 0.3 mL of 1M Na 2 S aqueous solution is added to 500 mL of 20 ppm (gold equivalent) aqueous solution, 1.0 g of carrier is added thereto, and the carrier is dispersed. Create a suspension. By adding the Na 2 S aqueous solution, the color of the liquid changes from light yellow to ocher. Concentrated hydrochloric acid (5 mL) is added to this suspension to make the pH of the solution about 1 strongly acidic. As a result, the liquid became darker. Stirring was continued for 1 hour to precipitate Au 2 S 3 on the support. The carrier is sufficiently dried after separation, and heated at 300 ° C. for 4 hours (in air) or at 230 ° C. for 6 hours (in vacuum) to form a carrier in which gold fine particles are dispersed and immobilized on the surface.

本発明により得られた金微粒子を担持する担体材料は、酸化触媒、還元触媒、水添触媒などの触媒として有用である他、担体材料が高分子材料の場合、金の粒子径の違い、担持量、担体となる固体高分子材料の材質の違いにより、ピンク色、赤紫ないし紫色に着色した粒子が得られる。得られた粒子は、耐久性に優れ、また化粧品、各種用途の塗料の着色剤としてすぐれた特性を有している。したがって、本発明において、前記各条件を適宜設定することにより、所望の色をした着色剤を調製することができる。さらに、本発明の金微粒子を担持する材料は、導電性材料、がん治療用マーカー、高感度DNA検出素子、センサーなどとして優れた機能を有することが期待できる。また、還元性官能基の選択により、同一反応での触媒活性や異種反応に対する触媒活性の異なるものを得ることができる。   The carrier material carrying the gold fine particles obtained by the present invention is useful as a catalyst such as an oxidation catalyst, a reduction catalyst, a hydrogenation catalyst, etc. In addition, when the carrier material is a polymer material, the difference in the particle size of the gold, Depending on the amount and the material of the solid polymer material used as the carrier, particles colored pink, magenta or purple can be obtained. The obtained particles are excellent in durability and have excellent characteristics as a colorant for cosmetics and paints for various uses. Therefore, in the present invention, a colorant having a desired color can be prepared by appropriately setting each of the above conditions. Furthermore, the material supporting the gold fine particles of the present invention can be expected to have excellent functions as a conductive material, a cancer treatment marker, a high-sensitivity DNA detection element, a sensor, and the like. Further, by selecting a reducing functional group, it is possible to obtain those having different catalytic activities for the same reaction and different catalytic activities for different reactions.

本発明の金微粒子が分散・固定された担体材料は、グルコースをグルコン酸に酸化する際の酸化触媒として極めて優れた特性を有している。従来グルコースの酸化触媒としてCeO2、TiO2、活性炭(M.Commotti,C.D.Pina,R.Matarrese,M.Rossi,A.Siani,Appl.Catal.A:General 2005,291,204−209参照)などが優れたものとして知られているが、本発明の材料は、これら従来グルコースの酸化触媒として優れているとして知られたものより、更に特性の良好なものを提供することができる。また、本発明の材料は、特性が幾分落ちてくるものの繰り返し使用が可能である。 The carrier material in which the gold fine particles are dispersed and fixed according to the present invention has extremely excellent characteristics as an oxidation catalyst when oxidizing glucose to gluconic acid. CeO 2, TiO 2 as an oxidation catalyst of the conventional glucose, activated carbon (M.Commotti, C.D.Pina, R.Matarrese, M.Rossi , A.Siani, Appl.Catal.A: General 2005,291,204-209 However, the material of the present invention can provide a material having better characteristics than those conventionally known as excellent oxidation catalysts for glucose. In addition, the material of the present invention can be used repeatedly, although the characteristics are somewhat deteriorated.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれによって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited at all by this.

〔金ナノ粒子担持酸化チタンの製造(HCl不使用、吸着)〕
1000ppm Au(5mmol/L(リットル))の四塩化金酸水溶液から10mLとり、500mLに定容して、20ppm Au(0.1mmol/L)の金(III)水溶液を調製した。これに酸化チタン(日本アエロジル(株)製、P25)1gを加え、ここに1mol/Lの硫化ナトリウム水溶液を6滴(0.3mL,0.3mmol相当)加えよく撹拌した。このときの溶液のpHは7であった。1時間後、反応をやめ、デカンテーションを繰り返しながら洗浄し、吸引ろ過によってろ取物を得た。ろ取物は、真空乾燥の後、半分を電気炉で300℃、4時間か焼し、残りを230℃6時間で真空加熱した。一方、分離して得られた液体(ろ液)の金濃度をICP−AESを用いて決定し、元の金溶液との差分から金の担持量を見積もった。金の担持量は、1重量%であった。また、金微粒子の平均粒子径は2.1nmであった(図2参照)。
これら2種の金微粒子担持担体について、一酸化炭素の二酸化炭素への酸化触媒活性を調べたところ、触媒活性の指標値であるT1/2が両方のサンプルとも10℃前後となった。
[Production of gold nanoparticle-supported titanium oxide (non-HCl, adsorption)]
10 mL of a 1000 ppm Au (5 mmol / L (liter)) tetrachloroauric acid aqueous solution was taken up to a volume of 500 mL to prepare a 20 ppm Au (0.1 mmol / L) gold (III) aqueous solution. To this was added 1 g of titanium oxide (P25, manufactured by Nippon Aerosil Co., Ltd.), and 6 drops (corresponding to 0.3 mL, 0.3 mmol) of a 1 mol / L sodium sulfide aqueous solution were added thereto and stirred well. The pH of the solution at this time was 7. After 1 hour, the reaction was stopped, washing was repeated with decantation, and a filtered product was obtained by suction filtration. After vacuum drying, half of the filtered product was calcined in an electric furnace at 300 ° C. for 4 hours, and the rest was heated in vacuo at 230 ° C. for 6 hours. On the other hand, the gold concentration of the liquid (filtrate) obtained by separation was determined using ICP-AES, and the amount of gold supported was estimated from the difference from the original gold solution. The amount of gold supported was 1% by weight. Moreover, the average particle diameter of the gold fine particles was 2.1 nm (see FIG. 2).
When the oxidation catalyst activity of carbon monoxide to carbon dioxide was examined for these two kinds of fine gold particle carriers, T 1/2 as an index value of the catalyst activity was around 10 ° C. in both samples.

〔金ナノ粒子担持シリカ(SiO2)の製造〕
1000ppm Au(5mmol/L)の四塩化金酸水溶液から10mLとり、500mLに定容して、20ppm Au(0.1mmol/L)の金(III)水溶液を調製した。ここに1mol/Lの硫化ナトリウム水溶液を6滴(0.3mL,0.3mmol相当)加えよく撹拌した所、黄橙色の溶液となった。これにシリカ(Aldrich)を1g加え、その後、濃塩酸5mL(およそ60mmol)を加え溶液のpHをおよそ1にしたところ、懸濁溶液の色が薄茶色から茶色になった。1時間後、反応をやめ、吸引ろ過し、その上から100mLの蒸留水を通水して洗浄し、ろ取物を得た。ろ取物は、80℃で一晩乾燥のあと、電気炉で300℃、4時間か焼した。
[Production of gold nanoparticle-supported silica (SiO 2 )]
10 mL of a 1000 ppm Au (5 mmol / L) tetrachloroauric acid aqueous solution was taken up to a volume of 500 mL to prepare a 20 ppm Au (0.1 mmol / L) gold (III) aqueous solution. When 6 drops (0.3 mL, equivalent to 0.3 mmol) of 1 mol / L sodium sulfide aqueous solution was added and stirred well, a yellow-orange solution was obtained. To this was added 1 g of silica (Aldrich), and then 5 mL of concentrated hydrochloric acid (approximately 60 mmol) was added to adjust the pH of the solution to approximately 1. As a result, the color of the suspended solution changed from light brown to brown. After 1 hour, the reaction was stopped, suction filtration was performed, and 100 mL of distilled water was passed from above to be washed to obtain a filtered product. The filtered product was dried at 80 ° C. overnight and then calcined in an electric furnace at 300 ° C. for 4 hours.

〔金ナノ粒子担持三酸化モリブデン(MoO3)の製造〕
1000ppm Au(5mmol/L)の四塩化金酸水溶液から10mLとり、500mLに定容して、20ppm Au(0.1mmol/L)の金(III)水溶液を調製した。ここに1mol/Lの硫化ナトリウム水溶液を6滴(0.3mL,0.3mmol相当)加えよく撹拌した所、黄橙色の溶液となった。これに三酸化モリブデン(関東化学(株)製)1gを加え、その後、濃塩酸5mL(およそ60mmol)を加え溶液のpHをおよそ1にした。1時間後、反応をやめ、デカンテーションを繰り返しながら洗浄し、吸引ろ過によってろ取物を得た。ろ取物は、80℃で一晩乾燥の後、電気炉で300℃、4時間か焼した。一方、分離して得られた液体(ろ液)の金濃度をICP−AESを用いて決定し、元の金溶液との差分から金の担持量を見積もった。金の担持量は、1重量%であった。
[Production of gold nanoparticles supported molybdenum trioxide (MoO 3 )]
10 mL of a 1000 ppm Au (5 mmol / L) tetrachloroauric acid aqueous solution was taken up to a volume of 500 mL to prepare a 20 ppm Au (0.1 mmol / L) gold (III) aqueous solution. When 6 drops (0.3 mL, equivalent to 0.3 mmol) of 1 mol / L sodium sulfide aqueous solution was added and stirred well, a yellow-orange solution was obtained. To this was added 1 g of molybdenum trioxide (manufactured by Kanto Chemical Co., Ltd.), and then 5 mL of concentrated hydrochloric acid (approximately 60 mmol) was added to bring the pH of the solution to approximately 1. After 1 hour, the reaction was stopped, washing was repeated with decantation, and a filtered product was obtained by suction filtration. The filter cake was dried at 80 ° C. overnight and then calcined in an electric furnace at 300 ° C. for 4 hours. On the other hand, the gold concentration of the liquid (filtrate) obtained by separation was determined using ICP-AES, and the amount of gold supported was estimated from the difference from the original gold solution. The amount of gold supported was 1% by weight.

〔金ナノ粒子担持三酸化タングステン(WO3)の製造〕
1000ppm Au(5mmol/L)の四塩化金酸水溶液から10mLとり、500mLに定容して、20ppm Au(0.1mmol/L)の金(III)水溶液を調製した。ここに1mol/Lの硫化ナトリウム水溶液を6滴(0.3mL,0.3mmol相当)加えよく撹拌した所、黄橙色の溶液となった。これに三酸化タングステン(関東化学(株)製)1gを加え、その後、濃塩酸5mL(およそ60mmol)を加え溶液のpHをおよそ1にした。1時間後、反応をやめ、デカンテーションを繰り返しながら洗浄し、吸引ろ過によってろ取物を得た。ろ取物は、80℃で一晩乾燥の後、電気炉で300℃、4時間か焼した。一方、分離して得られた液体(ろ液)の金濃度をICP−AESを用いて決定し、元の金溶液との差分から金の担持量を見積もった。金の担持量は、1重量%であった。得られた金担持三酸化タングステンの透過型電子顕微鏡(TEM)写真を図3に示す。
[Production of gold nanoparticle-supported tungsten trioxide (WO 3 )]
10 mL of a 1000 ppm Au (5 mmol / L) tetrachloroauric acid aqueous solution was taken up to a volume of 500 mL to prepare a 20 ppm Au (0.1 mmol / L) gold (III) aqueous solution. When 6 drops (0.3 mL, equivalent to 0.3 mmol) of 1 mol / L sodium sulfide aqueous solution was added and stirred well, a yellow-orange solution was obtained. To this was added 1 g of tungsten trioxide (manufactured by Kanto Chemical Co., Inc.), and then 5 mL (approximately 60 mmol) of concentrated hydrochloric acid was added to adjust the pH of the solution to approximately 1. After 1 hour, the reaction was stopped, washing was repeated with decantation, and a filtered product was obtained by suction filtration. The filter cake was dried at 80 ° C. overnight and then calcined in an electric furnace at 300 ° C. for 4 hours. On the other hand, the gold concentration of the liquid (filtrate) obtained by separation was determined using ICP-AES, and the amount of gold supported was estimated from the difference from the original gold solution. The amount of gold supported was 1% by weight. A transmission electron microscope (TEM) photograph of the obtained gold-supported tungsten trioxide is shown in FIG.

〔金ナノ粒子担持Nafionコーティングシリカの製造〕
1000ppm Au(5mmol/L)の四塩化金酸水溶液から10mLとり、500mLに定容して、20ppm Au(0.1mmol/L)の金(III)水溶液を調製した。ここに1mol/Lの硫化ナトリウム水溶液を6滴(0.3mL,0.3mmol相当)加えよく撹拌した所、黄橙色の溶液となった。これにNafionコーティングシリカ(Nafion(登録商標) SAC−13、Aldrich)1gを加え、その後、濃塩酸5mL(およそ60mmol)を加え溶液のpHをおよそ1にした。1時間後、反応をやめ、デカンテーションを繰り返しながら洗浄し、吸引ろ過によってろ取物を得た。ろ取物は、真空乾燥の後、240℃で6時間真空加熱した。得られた金担持Nafionコーティングシリカの透過型電子顕微鏡(TEM)写真を図4に示す。
[Production of gold nanoparticle-supported Nafion-coated silica]
10 mL of a 1000 ppm Au (5 mmol / L) tetrachloroauric acid aqueous solution was taken up to a volume of 500 mL to prepare a 20 ppm Au (0.1 mmol / L) gold (III) aqueous solution. When 6 drops (0.3 mL, equivalent to 0.3 mmol) of 1 mol / L sodium sulfide aqueous solution was added and stirred well, a yellow-orange solution was obtained. To this was added 1 g of Nafion-coated silica (Nafion® SAC-13, Aldrich), and then 5 mL of concentrated hydrochloric acid (approximately 60 mmol) was added to bring the pH of the solution to approximately 1. After 1 hour, the reaction was stopped, washing was repeated with decantation, and a filtered product was obtained by suction filtration. The filtered product was vacuum-dried at 240 ° C. for 6 hours after vacuum drying. A transmission electron microscope (TEM) photograph of the obtained gold-supported Nafion-coated silica is shown in FIG.

〔金ナノ粒子担持五酸化二ニオブ(Nb25)の製造〕
1000ppm Au(5mmol/L)の四塩化金酸水溶液から10mLとり、500mLに定容して、20ppm Au(0.1mmol/L)の金(III)水溶液を調製した。ここに1mol/Lの硫化ナトリウム水溶液を6滴(0.3mL,0.3mmol相当)加えよく撹拌した所、黄橙色の溶液となった。これに五酸化二ニオブ(和光純薬工業(株)製)を1g加え、その後、濃塩酸5mL(およそ60mmol)を加え溶液のpHをおよそ1にした。1時間後、反応をやめ、デカンテーションを繰り返しながら洗浄し、吸引ろ過によってろ取物を得た。ろ取物は、80℃で一晩乾燥の後、電気炉で300℃、4時間か焼した。
[Production of gold nanoparticle-supported niobium pentoxide (Nb 2 O 5 )]
10 mL of a 1000 ppm Au (5 mmol / L) tetrachloroauric acid aqueous solution was taken up to a volume of 500 mL to prepare a 20 ppm Au (0.1 mmol / L) gold (III) aqueous solution. When 6 drops (0.3 mL, equivalent to 0.3 mmol) of 1 mol / L sodium sulfide aqueous solution was added and stirred well, a yellow-orange solution was obtained. 1 g of niobium pentoxide (manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto, and then 5 mL (approximately 60 mmol) of concentrated hydrochloric acid was added to adjust the pH of the solution to approximately 1. After 1 hour, the reaction was stopped, washing was repeated with decantation, and a filtered product was obtained by suction filtration. The filter cake was dried at 80 ° C. overnight and then calcined in an electric furnace at 300 ° C. for 4 hours.

〔金ナノ粒子担持二酸化セリウム(CeO2)の製造〕
1000ppm Au(5 mmol/L)の四塩化金酸水溶液から10mLとり、500mLに定容して、20ppm Au(0.1mmol/L)の金(III)水溶液を調製した。ここに1mol/Lの硫化ナトリウム水溶液を6滴(0.3mL,0.3mmol相当)加えよく撹拌した所、黄橙色の溶液となった。これに二酸化セリウム(信越化学工業(株)製)を1g加え、その後、濃塩酸5mL(およそ60mmol)を加え溶液のpHをおよそ1にした。1時間後、反応をやめ、デカンテーションを繰り返しながら洗浄し、吸引ろ過によってろ取物を得た。ろ取物は、80℃で一晩乾燥の後、電気炉で300℃、4時間か焼した。
[Production of gold nanoparticle-supported cerium dioxide (CeO 2 )]
10 mL of a 1000 ppm Au (5 mmol / L) tetrachloroauric acid aqueous solution was taken up to a volume of 500 mL to prepare a 20 ppm Au (0.1 mmol / L) gold (III) aqueous solution. When 6 drops (0.3 mL, equivalent to 0.3 mmol) of 1 mol / L sodium sulfide aqueous solution was added and stirred well, a yellow-orange solution was obtained. To this was added 1 g of cerium dioxide (manufactured by Shin-Etsu Chemical Co., Ltd.), and then 5 mL (approximately 60 mmol) of concentrated hydrochloric acid was added to adjust the pH of the solution to approximately 1. After 1 hour, the reaction was stopped, washing was repeated with decantation, and a filtered product was obtained by suction filtration. The filter cake was dried at 80 ° C. overnight and then calcined in an electric furnace at 300 ° C. for 4 hours.

(金ナノ粒子担持活性炭の製造)
1000ppm Au(5mmol/L)の四塩化金酸水溶液から10mLとり、500mLに定容して、20ppm Au(0.1mmol/L)の金(III)水溶液を調製した。ここに1mol/Lの硫化ナトリウム水溶液を6滴(0.3mL,0.3mmol相当)加えよく撹拌した所、黄橙色の溶液となった。これに活性炭(マックスソーブ(登録商標) 関西熱化学(株)製)を1g加え、その後、濃塩酸5mL(およそ60mmol)を加え溶液のpHをおよそ1にした。1時間後、反応をやめ、デカンテーションを繰り返しながら洗浄し、吸引ろ過によってろ取物を得た。ろ取物は、80℃で一晩乾燥の後、半分を電気炉で300℃、4時間か焼し、残りを230℃6時間で真空加熱した。得られた金担持活性炭の透過型電子顕微鏡(TEM)写真を図5に示す。
(Manufacture of activated carbon supporting gold nanoparticles)
10 mL of a 1000 ppm Au (5 mmol / L) tetrachloroauric acid aqueous solution was taken up to a volume of 500 mL to prepare a 20 ppm Au (0.1 mmol / L) gold (III) aqueous solution. When 6 drops (0.3 mL, equivalent to 0.3 mmol) of 1 mol / L sodium sulfide aqueous solution was added and stirred well, a yellow-orange solution was obtained. 1 g of activated carbon (Maxsorb (registered trademark) manufactured by Kansai Thermal Chemical Co., Ltd.) was added thereto, and then 5 mL (approximately 60 mmol) of concentrated hydrochloric acid was added to adjust the pH of the solution to approximately 1. After 1 hour, the reaction was stopped, washing was repeated with decantation, and a filtered product was obtained by suction filtration. The filter cake was dried at 80 ° C. overnight, half was calcined in an electric furnace at 300 ° C. for 4 hours, and the rest was vacuum heated at 230 ° C. for 6 hours. A transmission electron microscope (TEM) photograph of the obtained gold-supported activated carbon is shown in FIG.

これら2種の金微粒子担持担体についてグルコースのグルコン酸への酸化触媒活性を調べたところ、Turnover Frequency(TOF)の値は、300℃のもので12000h-1、230℃のもので210h-1となった。 Examination of these two oxidation catalytic activity for the gold fine particle-supported carrier to gluconic acid glucose value of Turnover Frequency (TOF) is a thing of 300 ℃ 12000h -1, and 210h -1 in those 230 ° C. became.

本発明の方法により製造された表面に金微粒子が分散・固定された担体材料は、酸化触媒、水添触媒、顔料、着色剤、導電剤、その他各種検出素子材料として有用に利用することができる。   The carrier material produced by the method of the present invention and having fine gold particles dispersed and fixed on its surface can be usefully used as an oxidation catalyst, a hydrogenation catalyst, a pigment, a colorant, a conductive agent, and other various sensing element materials. .

本発明の方法の一例を説明する説明図である。It is explanatory drawing explaining an example of the method of this invention. 図面代用写真であり、本発明の実施例1で得られた金ナノ粒子担持酸化チタンのTEM写真である。It is a drawing substitute photograph, and is a TEM photograph of the gold nanoparticle carrying | support titanium oxide obtained in Example 1 of this invention. 図面代用写真であり、本発明の実施例4で得られた金ナノ粒子担持三酸化タングステンのTEM写真である。It is a drawing substitute photograph, and is a TEM photograph of the gold nanoparticle carrying | support tungsten trioxide obtained in Example 4 of this invention. 図面代用写真であり、本発明の実施例5で得られた金ナノ粒子担持NafionコーティングシリカのTEM写真である。It is a drawing substitute photograph and is a TEM photograph of the gold nanoparticle carrying | support Nafion coating silica obtained in Example 5 of this invention. 図面代用写真であり、本発明の実施例8で得られた金ナノ粒子担持活性炭のTEM写真である。It is a drawing substitute photograph, and is a TEM photograph of the gold nanoparticle carrying | support activated carbon obtained in Example 8 of this invention.

Claims (12)

金化合物溶液にカルコゲン化物を添加して形成された金−カルコゲン系イオンを担体と接触させて担体に金−カルコゲン系イオンを吸着させる、あるいはさらに該溶液を酸性とすることにより担体表面に金カルコゲナイドを沈殿析出させ、その後担体を分離後加熱することにより担体表面に金微粒子を析出させることを特徴とする担体上に金微粒子を分散・固定化する方法。   Gold chalcogenide ions formed by adding a chalcogenide to a gold compound solution are brought into contact with the carrier to adsorb the gold-chalcogen ions to the carrier, or the solution is acidified to form gold chalcogenide on the surface of the carrier. A method of dispersing and immobilizing gold fine particles on a carrier characterized in that gold fine particles are precipitated on the surface of the carrier by precipitating and then separating and heating the carrier. 前記カルコゲン化物が、硫化ナトリウムまたは硫化水素であり、形成される金−カルコゲン系イオンが金−カルコゲン系錯体イオンであることを特徴とする請求項1に記載の担体上に金微粒子を分散・固定化する方法。   The gold chalcogenide is sodium sulfide or hydrogen sulfide, and the formed gold-chalcogen ion is a gold-chalcogen complex ion. The gold fine particles are dispersed and fixed on the carrier according to claim 1. How to turn. 前記溶液が水溶液であり、金化合物水溶液にカルコゲン化物を加えたのち、粒状担体を該水溶液に分散させることを特徴とする請求項1または2に記載の担体上に金微粒子を分散・固定化する方法。   3. The fine gold particles are dispersed and immobilized on the carrier according to claim 1 or 2, wherein the solution is an aqueous solution, and the chalcogenide is added to the aqueous gold compound solution, and then the granular carrier is dispersed in the aqueous solution. Method. 前記担体がIII族、IV族、V族、VI族またはXIV族金属の酸化物、炭素材料または高分子材料であることを特徴とする請求項1〜3のいずれかに記載の担体上に金微粒子を分散・固定化する方法。   4. The support according to claim 1, wherein the support is an oxide of a Group III, Group IV, Group V, Group VI or XIV metal, a carbon material or a polymer material. A method of dispersing and fixing fine particles. 前記III族、IV族、V族、VI族またはXIV族金属の酸化物が、ケイ素、チタン、バナジウム、タングステン、モリブデン、ニオブ、タンタル、またはセリウムの酸化物であり、炭素材料が活性炭、カーボンナノチューブ、カーボンナノホーン、またはグラファイトであることを特徴とする請求項4に記載の担体上に金微粒子を分散・固定化する方法。   The Group III, Group IV, Group V, Group VI, or Group XIV metal oxide is an oxide of silicon, titanium, vanadium, tungsten, molybdenum, niobium, tantalum, or cerium, and the carbon material is activated carbon or carbon nanotube. 5. A method for dispersing and immobilizing gold fine particles on a carrier according to claim 4, wherein the nanoparticle is carbon nanohorn or graphite. 前記金化合物が、四塩化金酸、四塩化金酸塩、三塩化金、シアン化金、シアン化金カリウム、三塩化ジエチルアミン金酸、エチレンジアミン金錯体、ジメチル金β−ジケトン誘導体金錯体、およびジエチル金β−ジケトン誘導体金錯体から選ばれた少なくとも1種であることを特徴とする請求項1〜5のいずれかに記載の担体上に金微粒子を分散・固定化する方法。   The gold compound is tetrachloroauric acid, tetrachloroaurate, gold trichloride, gold cyanide, potassium gold cyanide, diethylamineauric acid trichloride, ethylenediaminegold complex, dimethylgold β-diketone derivative gold complex, and diethyl The method for dispersing and immobilizing gold fine particles on a carrier according to any one of claims 1 to 5, wherein the gold fine particle is at least one selected from gold β-diketone derivative gold complexes. 上記担体の加熱が80〜800℃であることを特徴とする請求項1〜6のいずれかに記載の担体上に金微粒子を分散・固定化する方法。   The method for dispersing and immobilizing gold fine particles on a carrier according to any one of claims 1 to 6, wherein the carrier is heated at 80 to 800 ° C. 前記金微粒子の平均粒子径が20nm以下であり、金が担体に対し0.01重量%〜50重量%担持されることを特徴とする請求項1〜7のいずれかに記載の担体上に金微粒子を分散・固定する方法。   8. The gold on the carrier according to claim 1, wherein the gold fine particles have an average particle diameter of 20 nm or less, and gold is supported by 0.01% by weight to 50% by weight with respect to the carrier. A method of dispersing and fixing fine particles. 請求項1〜8のいずれかに記載の方法により得られた、表面に金微粒子が分散・固定された担体。   A carrier obtained by the method according to claim 1, wherein gold fine particles are dispersed and fixed on the surface. 請求項9に記載の表面に金微粒子が分散・固定された担体からなる触媒。   The catalyst which consists of a support | carrier by which the gold fine particle was disperse | distributed and fixed to the surface of Claim 9. 前記触媒が酸化触媒であることを特徴とする請求項10に記載の触媒。   The catalyst according to claim 10, wherein the catalyst is an oxidation catalyst. 前記触媒が還元触媒であることを特徴とする請求項10に記載の触媒。   The catalyst according to claim 10, wherein the catalyst is a reduction catalyst.
JP2008091587A 2008-03-31 2008-03-31 Gold fine particle dispersion and immobilization method and material obtained thereby Expired - Fee Related JP5010522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091587A JP5010522B2 (en) 2008-03-31 2008-03-31 Gold fine particle dispersion and immobilization method and material obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091587A JP5010522B2 (en) 2008-03-31 2008-03-31 Gold fine particle dispersion and immobilization method and material obtained thereby

Publications (2)

Publication Number Publication Date
JP2009240951A JP2009240951A (en) 2009-10-22
JP5010522B2 true JP5010522B2 (en) 2012-08-29

Family

ID=41303493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091587A Expired - Fee Related JP5010522B2 (en) 2008-03-31 2008-03-31 Gold fine particle dispersion and immobilization method and material obtained thereby

Country Status (1)

Country Link
JP (1) JP5010522B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057992A1 (en) * 2012-10-10 2014-04-17 国立大学法人九州大学 Method for producing multisubstituted biphenyl compound and solid catalyst to be used therein
WO2021055550A1 (en) 2019-09-17 2021-03-25 Blonshine Todd Elliot Gold particles including an oleo-gum resin and/or a derivative thereof and methods of preparing and using the same
CN117645416B (en) * 2024-01-29 2024-04-02 潍坊市环境科学研究设计院有限公司 Preparation method of electrode material based on environmental estrogen for magnetic separation strategy and application of electrode material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231273A (en) * 1996-12-18 1998-09-02 Mitsubishi Chem Corp Production of unsaturated glycol diester
JP4069242B2 (en) * 2001-06-04 2008-04-02 株式会社日本触媒 Metal particle carrier and method for producing carboxylic acid ester
JP4295058B2 (en) * 2003-09-30 2009-07-15 三菱化学株式会社 Method for producing unsaturated glycol diester

Also Published As

Publication number Publication date
JP2009240951A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
Pal et al. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis
US20080206562A1 (en) Methods of generating supported nanocatalysts and compositions thereof
Xu et al. Synthesis of Cu2O octadecahedron/TiO2 quantum dot heterojunctions with high visible light photocatalytic activity and high stability
JP4970120B2 (en) Method for dispersing and fixing gold fine particles on a carrier
EP2558199B1 (en) Process for preparing supported noble metal catalysts via hydrothermal deposition
KR101386937B1 (en) Stable concentrated metal colloids and methods of making same
Han et al. In-situ incorporation of carbon dots into mesoporous nickel boride for regulating photocatalytic activities
Kawasaki Surfactant-free solution-based synthesis of metallic nanoparticles toward efficient use of the nanoparticles’ surfaces and their application in catalysis and chemo-/biosensing
WO2006121553A2 (en) Methods for manufacturing supported nanocatalysts and methods for using supported nanocatalysts
JP5539091B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
CN107855133B (en) Method for preparing supported small-particle gold catalyst
JP5290599B2 (en) Method for dispersing and immobilizing gold fine particles on a carrier
US7396795B2 (en) Low temperature preparation of supported nanoparticle catalysts having increased dispersion
JP5010522B2 (en) Gold fine particle dispersion and immobilization method and material obtained thereby
JP6815893B2 (en) Metal-containing nanoparticle-supported catalyst and carbon dioxide reduction device
JP5826688B2 (en) Metal fine particle dispersed composite and method for producing the same
CN113967477B (en) Monoatomic transition metal catalyst and preparation method and application thereof
Sharma et al. Synthesis of copper sulfide nanoparticles by thermal decomposition approach and morphology dependent peroxidase-like activity
Zhang et al. Improvement of amperometric biosensor performance for H2O2 detection based on bimetallic PtM (M= Ru, Au, and Ir) nanoparticles
KR101617165B1 (en) Hydrogen sensor based on palladium nanocube/graphene hybrid and method of fabricating the same
Manivannan et al. Silicate sol-gel functionalized rGO-Ag sensor-probe for spectral detection of Hg (II) ions
JP2006096651A (en) Method for manufacturing inorganic oxide material, inorganic oxide material, and carbon-metal compound oxide material
JP2019166482A (en) Pd-Ru NANO COMPOSITE PARTICLE CARRIER, CO OXIDATION CATALYST AND METHOD FOR MANUFACTURING Pd-Ru NANO COMPOSITE PARTICLE CARRIER
JP2010037176A (en) Method for producing metallic sulfide supporting gold ultrafine particle
JP4002497B2 (en) Metal oxide sol and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

R150 Certificate of patent or registration of utility model

Ref document number: 5010522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees