[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5091739B2 - 光信号伝送装置 - Google Patents

光信号伝送装置 Download PDF

Info

Publication number
JP5091739B2
JP5091739B2 JP2008074034A JP2008074034A JP5091739B2 JP 5091739 B2 JP5091739 B2 JP 5091739B2 JP 2008074034 A JP2008074034 A JP 2008074034A JP 2008074034 A JP2008074034 A JP 2008074034A JP 5091739 B2 JP5091739 B2 JP 5091739B2
Authority
JP
Japan
Prior art keywords
optical
control mode
unit
control
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008074034A
Other languages
English (en)
Other versions
JP2009232082A5 (ja
JP2009232082A (ja
Inventor
康之 深代
英太 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008074034A priority Critical patent/JP5091739B2/ja
Priority to US12/339,133 priority patent/US8131155B2/en
Publication of JP2009232082A publication Critical patent/JP2009232082A/ja
Publication of JP2009232082A5 publication Critical patent/JP2009232082A5/ja
Application granted granted Critical
Publication of JP5091739B2 publication Critical patent/JP5091739B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/078Monitoring an optical transmission system using a supervisory signal using a separate wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/252Distortion or dispersion compensation after the transmission line, i.e. post-compensation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光信号伝送装置に係わり、特に光ファイバの分散で劣化した波形を補償する分散補償機能を備えた光信号伝送装置に関する。
インターネットに代表されるデータトラフィックの急増により、大容量通信が可能な光通信ネットワークが必要である。大容量化は、波長多重(WDM:Wavelength Division Multiplexing)技術を用いて実現される。波長多重技術は、数十波の波長を1本の光ファイバに波長多重して伝送することが可能である。光増幅器または再生中継器等を用いることで、数百kmを超える長距離伝送が可能である。現在、1波長あたり10Gbit/sの波長多重伝送装置が実用化されている。
波長多重伝送システムを設計する場合、分散補償器(DC:Dispersion Compensator)が必要である。分散補償器は、光ファイバの波長分散に起因する波形劣化を補償する。例えば、1.55μmの通信帯域で、長さ80 km、波長分散+20ps/nm/kmの単一モードファイバ(Single Mode Fiber;SMF)の波長分散を補償するためには、約−1600ps/nmの分散補償量が必要である。具体的な設計では、最適な波形に補正するために、光信号のチャーピングや光ファイバの非線形効果を考慮し、上述の値とは異なる値が選択される場合がある。SMFでは波長分散がゼロとなるゼロ分散波長は1.3μm(マイクロメータ)である。ファイバの種類としては、SMFの他、例えば、ゼロ分散波長が光信号の波長帯である1.55μmにシフトすることによって、光信号波長での分散量が削減された分散シフトファイバ(Dispersion-Shifted Fiber;DSF)等数種類のファイバが使用されている。
これらのファイバに対し、適切な分散補償量を決定するには適用する光ファイバ伝送路の分散値を実測または予測して、適切な分散補償の値を持つ分散補償器を伝送装置に搭載する。現在、一般に用いられている分散補償器は、分散補償ファイバ(Dispersion Compensating Fiber;DCF)など、補償値が固定されている。しかしながら、固定分散補償器では、品種を多数在庫しておく必要があるという課題がある。さらに、40Gbit/s以上の伝送速度では、スペクトル幅が広がるため、DCFによるWDM信号の一括補償と各波長の最適補償値とのずれ(残留分散)や、ファイバの周囲温度変化等に起因するファイバ分散特性の季節変動など、わずかな分散補償値のずれや、偏波モード分散(Polarization Mode Dispersion;PMD)が伝送特性に大きく影響するという課題もある。これらの課題を解決するため、可変分散補償器が検討されている。
波長分散を補償する可変分散補償器として、例えば、特許文献1に記載の、バーチャル・イメージ・フェーズ・アレイ(VIPA)を用いた可変分散補償装置がある。その他、ファイバ型ブラッグ回折格子(Fiber Bragg Grating;FBG)や、エタロンを利用したものがある。
また、偏波モード分散補償器として、例えば、特許文献2記載の技術が知られている。特許文献2では、偏波モード分散補償器は、偏波変換部、群遅延付与部、位相シフタ等で構成され、光領域で偏波モード分散による波形劣化を補正する。
別の例として、特許文献3記載のトランスバーサル型等化回路を利用した技術が知られている。分散補償器の制御方法の一例が、特許文献4に記載されている。制御するための品質モニタ方法の一例として、電子回路を用いてアイ開口をモニタする方法が特許文献5に記載されている。
特許文献6には、受信側で誤り率、アイ開口度、Q値、クロック信号レベルを測定し、その結果に基づいて、波長分散の等化または識別点の調整を行う自動等化システムが記載されている。
特許文献7には、光信号のアイパタンの特徴を抽出して、光信号劣化要因と劣化量を取得して、波長歪み補償装置を制御する光信号の監視方法および光信号監視装置が記載されている。
特表2000−511655号公報 特許第3281162号公報 特開2007−274022号公報 特開2002−208892号公報 特許第3995094号公報 特開平09−326755号公報 特開2004−222240号公報
従来の技術では、可変分散補償器を制御する場合、受信した信号の符号誤り情報が用いられている。しかしながら、受信信号の符号誤りは、分散以外の要因でも発生する場合がある。例えば、波長増設に伴って四波混合(Four Wave Mixing;FWM)により発生する一時的な雑音増加がある。別の例として、装置周辺の装置インストール作業に伴い、意図せずにファイバへの一時的な張力が加わることにより、光増幅器間の損失が増大し、光信号対雑音比(Optical Signal-to-Noise Ratio;OSNR)が劣化することで符号誤りが発生することもある。このような場合に受信した信号の符号誤り情報のみで可変分散補償器を制御してしまうと、最適な分散補償値からずれて、不要な符号誤り増加の原因になる可能性があった。さらに別の例としては、保守作業でファイバを抜去する場合、光信号が断してしまい、制御できなくなり、ファイバを再び挿入した際に、再度最適な分散補償値に収束するまでに不要に長い時間が発生し、サービス再開までに時間がかかってしまうという問題があった。これは、制御するための情報としてアイ開口を用いた場合でも同様の課題である。
上記課題は、可変分散補償器の制御を行う際に、受信した信号の符号誤りだけでなく、符号誤りの原因を判定可能な情報を入力とし、信号品質劣化の原因がファイバ分散以外の要因と考えられる場合には、符号誤りが増加しても、可変分散補償器の補償値を変化させないように可変分散補償器の制御を行う光信号伝送装置とすれば良い。符号誤りの原因を判定可能な情報としては、光雑音情報、受信光パワー情報を利用すれば良い。
また、光信号送信部と、光ファイバの分散による波形劣化を補償する分散補償量を調整する可変分散補償部と、この可変分散補償部の補償分散量を制御する制御部と、この制御部の制御内容を指定する制御モード判定部と、光受信部と、信号品質監視部を備え、制御モード判定部は、光受信部からの受信光パワー情報に基づいて、光信号パワーが適切な範囲内にあるかどうかを判定し、制御部は、制御モード判定部の判定結果と信号品質監視部からの品質情報とに基づいて、可変分散補償部を制御する光信号伝送装置により、達成できる。
さらに、光信号送信部と、光ファイバの分散による波形劣化を補償する分散補償量を調節する可変分散補償部と、この可変分散補償部の補償分散量を制御する制御部と、この制御部の制御内容を指定する制御モード判定部と、光受信部と、信号品質監視部と、不揮発性メモリ部とを備え、制御モード判定部は、光受信部からの受信光パワー情報に基づいて、光信号パワーが適切な範囲にあるか否か判定し、制御モード判定部が、光信号パワーが適切な範囲外と判定したとき、制御部は、不揮発性メモリに格納された補償値で可変分散補償部を制御、または可変分散補償部に設定されている補償値が維持されるように制御し、制御モード判定部が、光信号パワーが適切な範囲内と判定したとき、制御部は、信号品質監視部からの情報に基づいて、可変分散補償部を制御する光信号伝送装置により、達成できる。
本発明の光信号伝送装置によれば、ファイバ分散以外の要因で符号誤りが発生した場合には可変分散補償器の補償値を変化させず、既に設定された最適な補償値に維持できるので、不要な誤り増加を発生させることがない光信号伝送装置を提供できる。さらに本発明の光信号伝送装置によれば、保守のためにファイバを抜去して再挿入した場合や、伝送路故障で主信号が断した場合でも、短い時間で所定の主信号品質に復帰可能な光信号伝送装置を提供できる。
以下、本発明の実施の形態について、実施例を用いて図面を参照しながら説明する。ここで、図1は、網形態を説明するブロック図である。図2は、光伝送装置のブロック図である。図3は、別の光伝送装置のブロック図である。図4は、分散補償器の効果を模式的に示す図である。図5は、光送受信器の構成を説明するブロック図である。図6は、光送受信器の構成をより詳細に説明するブロック図である。図7は、パス開通時の光信号伝送装置の動作を説明するフローチャート図である。図8は、運用中からパスが削除されるまでの光信号伝送装置の動作を説明するフローチャート図である。図9は、制御モード判定部の条件を説明する図である。図10は、光信号伝送装置の状態遷移を説明する図である。
図1を用いて、光信号伝送装置が適用される網形態を説明する。図1(a)は、光ノード103と光ノード104とが端点にあり、光ノード103と光ノード104の間に光ノード105があり、それらが互いに伝送路ファイバ111、112で接続されるリニア型ネットワークである。本構成では、光ノード103または光ノード104で挿入(アド)された信号は、少なくとも一部が光ノード105で分岐(ドロップ)されることが可能であるとともに、光ノード105では別の信号が挿入されることが可能である。ここで、実線矢印は、光ノード103と光ノード104間、光ノード103と光ノード105間、光ノード105と光ノード104間にパスが設定されていることを示す。光ノード105では、必ずしも信号が分岐される必要がなく、光ノード103から光ノード105までのパスがあっても良いことは自明である。光ノード103、光ノード104、光ノード105は、監視制御用網102を経由し、統合監視制御部101と接続されている。統合監視制御部101の役割の一面は、各光ノードの状態を含むネットワークの構成管理、障害管理、帯域管理、性能管理等を行うことである。統合監視制御部101の役割の別の一面は、任意の光ノード間に需要に応じた通信帯域を確保するために、構成管理情報および障害管理情報を参照して、該当する光ノードの利用可能なリソースや障害情報を参照し、該当する光ノードを含む複数の光ノードを制御して通信路またはパスを設定することである。
図1(b)は、リング型ネットワークである。リング型ネットワークでは、光ノード103と光ノード104と光ノード105と光ノード106とが、それぞれ隣り合った局と伝送路ファイバ113、114、115、116で接続される。ネットワークがリングを形成しているので、ファイバが1箇所で障害を起こした場合も、逆回りの伝送でプロテクションすることができる。ここで実線矢印は、光ノード103経由で光ノード104と光ノード105間、光ノード105と光ノード106間、光ノード104と光ノード106間にパスが設定されている状態を示す。
図1(c)のメッシュ型ネットワークは、光ノード103と光ノード104と光ノード105と光ノード106と図示しない他の光ノードとが、網の目状に伝送路ファイバで接続されたネットワークである。ここで実線矢印は、光ノード103と光ノード104間、光ノード105経由で光ノード103と光ノード106間、直接光ノード103と光ノード106間、光ノード104と光ノード106間にパスが設定されている。メッシュ型ネットワークでは、リングと比較して運用管理は難しいが諸条件に応じてパスの経路変更等が可能な自由度の高いネットワークである。
図1(b)、図1(c)でも、統合監視制御部101、監視制御用網102の役割は同様である。各網形態において、統合監視制御部101は、1台あるいは冗長化されたサーバによる集中制御方式で実現することができる。別の方式としては、例えば、後述する図2のノード監視制御部211のような各ノードの監視制御部が、互いに通信してネットワークの状態情報交換や経路計算を行う分散制御方式、もしくは集中制御方式と分散制御方式が連携した方式を採用しても良い。分散制御方式を採用の場合、統合監視制御部101を省略あるいは簡略化することも可能である。連携する場合、ネットワークの状態情報交換や、経路計算、パス設定のための各ノードへの制御などの機能を、統合監視制御部101と、ノード監視制御部211で分担しても良い。分散制御方式の装置間通信制御技術として、インターネットエンジニアリングタスクフォース(The Internet Engineering Task Force;IETF)のRFC3471−3473等で規定されているGMPLS(Generalized Multi-Protocol Label Switching)のプロトコル群を利用することが可能である。
次に図2を用いて、光信号伝送システム200の構成を説明する。光信号伝送システム200は、光送受信器を含む光ノード203、205と、光信号の線形中継を行う光ノード204と、これら光ノード間を接続する伝送路206、207で構成される。光ノード203、205は、ノード監視制御部211、212と、使用する波長数に応じた光送受信器221、222と、各波長を付与された光信号(λ1、λ2、…、λn)を波長領域で合波して波長多重信号に変換し、逆に波長多重信号を各波長の信号分波して元の波長別の光信号に変換する波長合分波部231〜234と、波長多重信号を光領域で増幅する光増幅器241〜244で構成される。
光送受信器221、222は、光信号でクライアント装置と接続されるか、あるいは、電気信号で、光ノード203、205内の、例えば電気スイッチ(記載はされていない)などの別の機能部と接続される。光送受信器に用いる光源としては、ある固定の波長のみが出力される光源でも良いし、送信波長を遠隔制御で変更可能な波長可変光源でも良い。波長は、ITU−T勧告 G694.1やG694.2で規定される波長グリッド上に合うように選択される。波長数は、8波、16波、20波、40波、64波、80波、128波、160波など、伝送条件を工夫することで様々に選ぶことができる。
波長合分波部231〜234は、例えば、AWG(Arrayed Waveguide Grating)と呼ばれる平面光回路(Planar Lightwave Circuit;PLC)型素子を用いることができる。光送受信器の構成については、図5を参照して、後述する。
光ノード204は、ノード監視制御部212と、光増幅器245、246で構成される。光ノード204では、伝送距離を延長するため線形中継の役割を持ち、伝送路206、207による信号損失を補うため、光増幅器245、246により波長多重信号の増幅を行う。光増幅器245、246は、伝送距離やファイバの種類に応じて、所定の主信号品質を保つ様、適切な機能や性能のものが選択される。主信号品質基準の一例としては、ビット誤り率が10^−12以下となるように設定される。光ノード203と光ノード205の間の伝送距離をさらに延長するために、複数の光ノード204が設置されることもある。光増幅器245、246は、エルビウム添加ファイバなどを利用した光ファイバ増幅器が利用される。
光ノード204では、ノード監視制御部213が光パワーや波長や光信号対雑音比などを監視する。ここでは、図面を簡便化するため、省略しているが、主信号に加え、監視制御用の情報を光ノード間で転送する目的で、監視制御専用の波長を用いた監視制御チャネル(Optical Supervisory Channel;OSC)を使うこともできる。
光ノード204では、光増幅器245、246だけでなく、光合波・分波フィルタや光スイッチを用いて、波長多重された複数の光信号のうち、所望の波長の光信号のみを分岐・挿入する構成としても良い。特に光信号を電気信号に変換せずに上述の分岐・挿入を行う装置は、光挿入分岐装置(optical add‐drop multiplexer;OADM)と呼ばれる。OADMは、図1(a)のようなリニア構成あるいは、図1(b)のようなリング構成で使われることが多い。OADMで光領域で分岐・挿入を行う部品としては、PLC型光スイッチ、機械式光スイッチ、マイクロマシン(Micro-Electro-Mechanical Systems;MEMS)型光スイッチ、液晶型光スイッチや、波長合分波機能も集積化された波長選択スイッチ(Wavelength Selective Switch)などが市販されている。
図3に、光ノード間に、線形中継機能に代わり、再生中継機能を配置した構成を示す。光ノード305は、光増幅器345、346、347、348と、波長合分波器335、336、337、338と、使用する波長数に応じた数量の光送受信器323と、ノード監視制御部213で構成され、再生中継機能を持つ。即ち光送受信器323では、伝送路を伝播してきた光信号を一旦電気信号へ変換し、波形整形やディジタル的な品質監視を行い、再び光信号として送信する。品質管理方法としては、具体的にはビットインターリーブトパリティ(Bit Interleaved Parity;BIP)と呼ばれる方法による符号誤り監視等を行う。光ノード303と光ノード304の間に、再生中継機能を持つノードを設置するか、線形中継機能を持つノードを設置するか、あるいは、このような再生中継あるいは線形中継機能を持つノードを何台設置するかは、伝送設計により、所定の主信号品質を実現できるように決められる。
図4を用いて、伝送路による波長分散および分散補償の効果を説明する。なお、この計算はSMFを用いた。図4(a)は、伝送信号の時間軸上の波形である。この図では、波形はガウス分布で、そのピーク強度は1に規格化してある。この波形の半値半幅はおよそ40psである。図4(b)は、波長分散17ps/nm/kmのSMFを80km伝送後の波形である。波長分散がパルスに含まれる波長成分毎の群速度に差を生じせしめるため、強度は0.72、半値半幅はおよそ80psに広がっている。図4(b)の波形に、−1360ps/nm(=−17×80ps/nm)の分散補償を行った後の波形が図4(c)となる。
次に図5を用いて、光送受信器の構成を説明する。光送受信器521は、受信用前置光増幅器551、可変分散補償器552、受信用後置光増幅器553、送信用光増幅器557、伝送路側光送受信モジュール554、フレーム処理部555、クライアント側光送受信モジュール556、制御回路561、通信回路571で構成される。
クライアント側光信号は、例えば、STM−16(2.5Gbit/s)、STM−64(10Gbit/s)、STM−256(40Gbit/s)がある。クライアント信号としては、他にIEEE 802.3zで規定されるGbE(1Gbit/s)、IEEE 802.3aeで規定される10GbE(10.3Gbit/s)や、IEEE 802.3baで議論されている40GbE/100GbEでも良い。
フレーム処理部555は、クライアント信号に対し、ITU−T G.709のOTNで規定されるOTU−1(2.7Gbit/s)、OTU−2(10.7Gbit/s)、OTU−3(42.8Gbit/s)などのオーバーヘッドや誤り訂正符号の付加あるいは終端を行う。さらに、フレーム処理部555は、光信号の変調方式に応じた信号処理機能を持たせても良い。フレーム処理部は、1個のLSIで実現しても良いし、複数のLSIやICで実現しても良い。
伝送路側光送受信モジュール554は、フレーム処理部555からの信号を、ITU−Tで規定された波長を持つ連続光について、伝送に適した変調方式で変調して、光信号を出力する。変調方式としては、NRZ(non return-to-zero)、ODB(optical duo−binary)、DPSK(differential phase shift keying)、DQPSK(differential quadrature phase shift keying)などの変調方式が適用可能である。DQPSKには、RZ−DSPK、NRZ−DPSK、RZ−DQPSK、NRZ−DQPSK、CSRZ(carrier-suppressed return-to-zero)−DQPSKなどの各種変調方式が含まれる。伝送路側光送受信モジュール554は、また受信用後置光増幅器553からの光信号を電気信号に変換し、フレーム処理部555が処理可能な信号速度に変換する。
送信用光増幅器557は、伝送路側光送受信モジュール554からの光信号を、合分波器や波長多重光増幅器を経由して伝送路に送出するのに適したパワーに調整する。伝送路ファイバへ送出する際の光パワーは、波長数、光ノード間伝送路損失、光増幅器の雑音指数による光信号対雑音比(Optical Signal-to-Noise Ratio;OSNR)、ファイバ中の非線形効果や波長分散や偏波分散による波形劣化や雑音増加を考慮して決められる。非線形効果としては、自己位相変調(Self Phase Modulation;SPM)、相互位相変調(CROSS Phase Modulation;XPM)、四波混合といったものが知られている。波形劣化量は、波長数、ファイバの分散、非線形定数、ファイバへの入力パワーや光ファイバ損失等に依存する。ファイバの分散および非線形定数は、ファイバがシングルモード(SMF)か、分散シフトファイバ(DSF)かによっても異なる。
受信用前置増幅器551は可変分散補償器552の損失によるOSNR劣化を軽減する。可変分散補償器552は、ファイバの分散に起因して劣化した光信号の波形を、ファイバ分散とは逆符号の特性をもった分散を光信号に与えて、波形を改善する。受信用後置光増幅器553は、伝送路側光送受信モジュール554への入力光パワーが、伝送路側光送受信モジュール554の受信ダイナミックレンジ範囲内で且つ良好な受信特性が得られる光パワーとなるように出力パワーが調整される。
制御回路561は、受信用前置光増幅器551、可変分散補償器552、受信用後置光増幅器553、送信用光増幅器557、伝送路側光送受信モジュール554、フレーム処理部555、クライアント光送受信モジュール556から各種情報を取得する。制御回路561は、それら情報を用いて、各部位に対して制御を行う。
通信回路571は、図3で示したようなノード監視制御部との通信を行い、光送受信器521の情報を統合監視制御部へ送るとともに、統合監視制御部からの制御情報を制御回路571に伝える役割を持つ。なお、受信用前置光増幅器551、受信用後置光増幅器553は、もし、光伝送設計により所定の主信号品質を達成できるならば、いずれか一方でも良い。
次に図6を用いて、光信号伝送装置で用いる光送受信器のより詳細な構成を説明する。図6では、図2および図3で示した光信号伝送装置や、そこで使われる図5で示した光送受信器の構成のうち、説明に必要な部分のみを示してある。光送受信器621は、光増幅部651、光雑音監視部652、可変分散補償部653、光受信部654、符号誤り監視部655、制御部661、不揮発性メモリ662、制御モード判定部663を含んでいる。光増幅部651および光雑音監視部652は図5の受信用前置光増幅器551あるいは受信用後置光増幅器553に含まれる。同様に、光受信部654は、伝送路側光送受信モジュール554に含まれ、符号誤り監視部655は、フレーム処理部555に含まれ、制御部661、メモリ662および制御モード判定部663は、制御回路561に含まれる。
以下、光送受信器621の動作を説明する。入力された光信号は、光増幅部651で所定の光パワーまで増幅される。光雑音監視部652は、増幅された雑音を含む光パワーの一部あるいは雑音測定用波長を受信して光雑音を監視する。可変分散補償部653は、光信号に対し、伝送路の光ファイバが与えた分散と逆符号の分散を与えることで波形整形を行う。光受信部654では、入力された光信号の光パワーを監視するとともに、入力された光信号を光/電気変換し、クロックを抽出し、抽出したクロックを利用して所定の閾値により識別再生を行う。符号誤り監視部では、オーバーヘッドに含まれるBIP情報から符号誤りを監視する。
可変分散補償部653を制御する際は、分散補償値の制御によって波形劣化改善可能な場合のみ制御することが重要である。符号誤り情報のみに基づく制御を行うと、ファイバ分散に起因しない波形劣化や雑音増加を、ファイバ分散に起因する波形劣化と区別できないため、可変分散補償器に対して誤った制御を行う可能性がある。誤った補償分散値の制御は、補償分散値を最適値からずらすことになり、不要な符号誤り増加の原因となる。制御モード判定部663は、符号誤り監視部655からの符号誤り情報に加え、光増幅部651の起動状態情報、入力光パワー情報、光雑音監視部652からの光雑音パワー情報、光受信部654からの光パワー情報を、外部制御情報656等を入力情報として利用し、制御部661の制御モードを決定する。
制御部661は、制御モード判定部663の判定に基づいて可変分散補償部653の制御を行う。さらに制御部661は、可変分散補償部653に対して設定する分散補償値をメモリ662に格納するとともに、制御モード判定部663の指示があった場合には、メモリ662に格納している設定情報を元に可変分散補償部653を制御する。
図6では、光増幅部651の出力側に光雑音監視部652が配置されている。光雑音監視部652が光増幅器651の入力側に配置されていても良い。本例では、図5で示した受信用後置光増幅器553がない場合で説明したが、受信用後置光増幅器553がある場合でも同様である。
図7と図6を用いて、パス開通前後の光信号伝送装置の動作を説明する。まず、図1で説明したように、統合監視制御部からの命令あるいはGMPLSのシグナリングにより、ノード監視制御部経由で光送受信器にパス開通のための設定がなされ、処理が開始される。次に、制御モード判定部663は、光増幅部651および光受信部654からの光パワー情報に基づき、光パワーが正常か否かを判断する(S702)。次に制御部661あるいはメモリ662に格納してある可変分散補償部653の初期設定状態を確認する(S703)。制御モード判定部663は、光パワーが正常で且つ初期設定がなされていない状態(Init=0)であれば、制御モードAが最適と判定する。制御部661はこれを受けて、制御モードAで動作する(S704)。制御モードAは、初期設定がされていない状態でパス開通時に最適な分散補償値を探索する。ここで初期設定とは、可変分散補償部653と、補償すべき伝送路の組み合わせに対して、制御モードAで調整された最適分散補償値が設定されていることを示す。制御モードAでの探索方法としては、例えば、可変分散補償器653の可変範囲あるいは想定される伝送路の分散値の範囲(ΔDa)、例えば、−500ps/nmに対し、可変分散補償部653の分散値を一通り変更し、補償分散値と符号誤り数の対応を調査した上で、最も符号誤りが少なくなる補償分散値を選ぶ方法が考えられる。この時、可変分散補償部653の補償値を変化させる周期(Ta)としては、可変分散補償部653の応答速度に合わせて、可能な限り速くすることが望ましい。これにより、パス開通指示があった後、主信号品質が所定の符号誤り率以下で安定するまでの時間を短くすることができるので、サービス提供までの時間を短縮できる。ここで、所定の符号誤り率とは、例えば、10^−12以下である。制御モードAの探索方法はこの限りではなく、可変分散補償部653で実現可能な適切な補償値に迅速に調整できれば良い。制御モードAでの制御が終了すると、制御部661は、初期設定状態を初期設定済み状態(Init=1)に変更し(S705)、パス開通時の動作を終了して、制御モードBまたは制御モードCへ移行する。
次に、図8と図6を用いて、パス開通し、可変分散補償部663で最適分散補償値が設定された後の光信号伝送装置の動作を説明する。図7で説明したように、初期設定が完了すると、制御モードの判定処理が開始される。ここで重要なのは、パス開通後は、伝送路に使われるファイバの周囲温度変化等に起因するファイバ分散の季節変動など時定数の大きな分散変化に対応する場合にのみ可変分散補償器の補償値を変化させることである。理由は、これ以外の原因、例えば、OSNRの劣化やPMDによる波形劣化や、FWMによる雑音増による符号誤りの増加は、可変分散補償器653の分散値を変化させても、符号誤りの大幅な改善は望めない場合がある。
そこで本実施例では、制御モード判定部663は、光増幅部651、光雑音監視部652、光受信部654、外部制御情報656から、受信した光パワーが正常か(S802)、外部制御があるか(S803)、光雑音が増加しているか(S804)、符号誤り増加率が高いか(S805)を判断する。制御モード判定部663は、光パワーが正常、外部制御無し、光雑音増加なし、符号誤り増加率が所定値以下、の全ての条件が整った場合、制御モードBが最適と判定する(S806)。いずれか1つの条件が整わない場合、制御モードCに移行する(S807)。ステップ806またはステップ807のあと、制御モード判定部663は、パス削除を判定し(S808、S809)、YESなら終了し、NOならステップ802に戻る。
制御モードCでは、符号誤りに基づく短期的な制御は行わず、制御部661は、メモリ上の最適分散補償値で可変分散補償部653を制御する。最適分散補償値は、例えば、本状態に移行する直前に制御モードAで調整され、メモリに格納された補償値である。可変分散補償部653が次の設定値を指定しない限り、前値を保持する場合は、メモリに格納された補償値を用いる必要はなく、可変分散補償部653が直前に設定された値で動作させることにしても、本実施例の効果は変わらないことは自明である。
これにより、ファイバ分散以外の起因して発生した符号誤りによる、不要な可変分散補償部の補償値の変更を行わないので、安定した分散保証動作が実現できる。さらに、本実施例によれば、光パワー断などの光パワー異常の場合は、メモリ上の最適分散補償値で可変分散補償部を制御できるので、保守等の目的で、一旦、ファイバを抜去し、再挿入した場合は、補償分散値は、元の最適値を維持されたままとなり、ファイバを再挿入した場合に、迅速なサービス再開が可能となる。
制御モードBの最適分散補償値の探索方法としては、符号誤り数の代表値を用いた制御方法が考えられる。代表値としては、例えば、符号誤り数を1分間カウントすることを10回繰返し、平均値を算出しても良い。別の代表値の例としては、符号誤り数を5分間カウントすることを2回繰り返し、誤り数が低い方の値を用いて、最適点を探しても良い。こうすることにより、ファイバ分散以外の要因による瞬時的な符号誤り数の増加に対して、分散補償値を不要に変化させることがなく、安定に制御可能となる。可変分散補償部653の可変範囲(ΔDb)としては、主信号品質に影響しない程度の狭い範囲、例えば10ps/nmとし、可変分散補償部653の補償値を変化させる周期(Tb)としては、ファイバ分散以外に起因する瞬時的な符号誤り数の増加に反応しないように長い期間、例えば、数秒〜数十分を選べばよい。
図9を参照して、制御モード判定部663の判定条件を説明する。制御モード判定部663は、光パワー91、外部制御92、光雑音93、符号誤り増加率94を監視し、判定95に記載された、制御モードを選択する。具体的には、制御モード判定部663は、光パワー異常検出(主信号波長パワーPs≦Pth)、制御モードCへの外部制御コマンド有り、光雑音がしきい値以下(主信号波長パワー(Ps)/雑音波長パワー(Pn)≦信号対雑音比率しきい値Xn、符号誤り増加率しきい値超過(今回符号誤り数−前回符号誤り数≧符号誤り増加率しきい値Xe)のいずれかのOR条件で、制御モードCが最適と判定する。制御モード判定部663は、また、光パワー正常、制御モードCへの外部制御コマンド無し、光雑音がしきい値以下、符号誤り増加率がしきい値以下、のAND条件で制御モードBが最適と判定する。
ここで、光パワーの正常範囲は、0〜−10dBm程度である。光パワー異常には、光入力断検出(loss of signal;LOS)も含まれる。光雑音のしきい値としては、上述のITUグリッド以外の波長の雑音パワーを測定し、Xn=20dB程度(雑音規定フィルタ幅0.1nm)とする。符号誤り増加率しきい値として、例えば、Xe=10である。
制御モードCに移行した場合、符号誤りを軽減する手段として、図6の制御部661から光受信部654に対して、符号誤り監視部からの情報を用いて、識別点調整を行うことも可能である。
以上の説明の中で、光増幅部と光雑音監視部を分け、制御部、メモリ、制御モード判定部を分けて説明しているが、これは機能的な説明である。実際は、光増幅部と光雑音監視部は、1台の光アンプモジュールに内蔵してその中でのエルビウム添加光ファイバ、励起レーザ、制御回路、光カプラ、フォトダイオード、光フィルタなどで構成すれば良い。制御部とメモリと制御モード判定部は、FPGA、LSI、RAMなどの論理回路やCPU内上で動作するソフトウェアを、適切な機能配分で、実現すれば良い。
上述の実施例では、光受信部の出力、即ち電気領域での品質監視手段として、符号誤り監視を行う例を示したが、本実施例の効果はこの限りではない。同じ電気領域での品質監視手段として、例えば、アイ開口モニタを利用することも出来る。
上述の実施例では、受信側に可変分散補償部を設置した場合を示したが、伝送設計と分散補償に必要な制御応答時間に依存して、送信側に可変分散補償部を設置しても良い。その場合、制御モード判定部への入力情報は、前述のOSCなどの監視制御用チャネルや、空きオーバーヘッドを用いて送信側に転送すれば、実施例と同様の効果が得られることは自明である。
さらに、保守運用性を高めるため、パス削除時、パスの両端ノードと使用波長と最適補償値の組み合わせをメモリに格納しても良い。この場合、図8のステップ808またはステップ809でYESのとき、その後で、両端ノード情報と最適補償値の組み合わせをメモリまたはノード監視制御部または統合監視制御部で保存しておくステップを設ける。次に、図7のパス開通時に、光パワー監視工程702と、初期設定確認工程703の間に、初期設定値Initを0にするクリア工程を設け、今回のパス開通の両端ノードと波長の組み合わせが前回と異なる場合に、Init=0にクリアする。こうすることにより、前回と同じノードと波長の組み合わせでパスを開通させる場合に、制御モードAを経由せずに最適分散補償値で可変分散補償部を制御できるので、迅速なパス開通が可能となる。なお、リングネットワークの場合は、両端ノード情報のみでなく、西回りか東回りかの情報も同時に保存する。
図10を用いて、光信号伝送装置の状態遷移を説明する。制御前状態1001は、パス開通前である。この状態では、光パワー異常や制御モードCへの遷移命令の有無を監視している。パス開通命令があると、初期設定状態Init=0で且つ、光パワー正常の場合、制御モードA1002に遷移する(S1011)。
制御モードA1002では、他状態への遷移命令がなく且つ光パワーが正常の場合、制御モードAでの制御を継続する。制御モードA1002での制御中に光パワー異常が検出された場合(図7のステップ702でNO)には、初期状態Initの値を変更することなく、制御前状態1001に遷移し(S1012)、光パワーが正常に戻るまで待機する。制御モードAでの制御が完了すると、初期設定状態Init=1に設定した後、光パワー、光雑音、符号誤り増加率、外部からの遷移命令に応じて(図8)、制御モードB1003または制御モードC1004へ遷移する(S1031、S1041)。
制御モードB1003では、制御モードA1002や制御モードC1004への遷移命令がなく、光パワーが正常で、光雑音増加が所定値以下で、符号誤り増加率も所定値以下の場合は、制御モードBのまま制御を継続する。
制御モードA1002または制御モードB1003では、遷移命令があった場合、制御モードC1004へ遷移する(S1041、S1051)。逆に、制御モードC1004で、解除命令があれば、元の制御モードA1002または制御モードB1003へ戻る(S1042、S1052)。
制御モードB1003は、上述の遷移命令の他、光パワー異常や光雑音増加、符号誤り率の増加があった場合にも制御モードC1004へ遷移する(S1051)。ここで特徴的なのは、制御モードA1002から、制御モードB1003への遷移は、図8、図9で説明したような最適分散補償値に設定されたことを条件に、自動的に行われるが、制御モードB1003から制御モードA1002への遷移は、自動的には行われず、遷移命令があった場合のみである(S1032)。これにより、一旦パスが開通した後に、制御モードAで行うような広範囲の分散補償値の変化にともなう不要な符号誤りの発生を抑圧している。
一方、制御前状態1001で光信号伝送装置がパス開通命令を受けた場合、光パワー正常で且つ初期設定状態Init=1の場合は、制御モードAを経由せずに制御モードBへ遷移(S1021)する。制御モードBで制御中に、解除命令を受けるか、パス削除命令があった場合は、制御前状態1001に遷移する(S1022)。
制御前状態1001から制御モードC1004へは、遷移命令により遷移する(S1062)。逆に制御モードC1004から制御前状態1001は、解除命令またはパス削除命令により遷移する(S1061)。
制御モードCでは、メモリに格納された最適分散補償値により可変分散補償部が制御される。さらに制御の自由度を高めるため、制御モードCでは、遠隔制御により、可変分散補償部の補償値を変更できる機能を設けても良い。
以上説明したように、本実施例の光信号伝送装置によれば、可変分散補償部を制御する場合に、制御方法の異なる複数の制御モードを用意し、光パワー情報や光雑音情報により制御モードを選択することで、可変分散補償部の補償分散値の不要な変化を抑圧し、安定な分散補償制御を行うことができる。さらに、ファイバ抜去や伝送路障害にともなう受信主信号断に対しても、不要な補償値変化を抑圧するので、受信主信号復旧後、速やかに所定の主信号品質に戻すことができる。
網形態を説明するブロック図である。 光伝送装置のブロック図である。 光伝送装置のブロック図である。 分散補償器の効果を模式的に示す図である。 光送受信器の構成を説明するブロック図である。 光送受信器の構成を説明するブロック図である。 光信号伝送装置の動作を説明するフローチャート図である。 光信号伝送装置の動作を説明するフローチャート図である。 制御モード判定部の条件を説明する図である。 光信号伝送装置の状態遷移を説明する図である。
符号の説明
101…統合監視制御部、200…光信号伝送システム、203…光ノード、211…ノード監視制御部、221…光送受信器、231…波長合分波器、241…光増幅器、206…伝送路、551…受信用前置光増幅器、552、653…可変分散補償部、553…受信用後置光増幅器、554…伝送路側光送受信モジュール、555…フレーム処理部、556…クライアント側光送受信モジュール、655…符号誤り監視部、661…制御部、662…メモリ、663…制御モード判定部。

Claims (3)

  1. 光信号送信部と、光ファイバの分散による波形劣化を補償する分散補償量を調整する可変分散補償部と、この可変分散補償部の分散補償量を制御する制御部と、この制御部の制御内容を指令する制御モード判定部と、光受信部と、光雑音監視部と、信号品質監視部とを備える光信号伝送装置であって、
    前記制御部は、第1の制御モード、第2の制御モードおよび第3の制御モードを有し、
    前記制御モード判定部は、前記光受信部からの光パワー情報が正常で且つ初期設定がなされていない状態であれば前記第1制御モードと判定し、その後、光パワーが正常で、前記光雑音監視部からの光雑音情報が増加なし、かつ前記信号品質監視部からの信号品質情報が所定値以下であれば、前記第2の制御モードと判定し、光パワー、光雑音、信号品質のいずれか一つの条件が揃わない場合、前記第3の制御モードと判定し、
    前記制御部は、前記制御モード判定部の判定結果に基づいて、
    前記第1の制御モードと判定された場合は、前記可変分散補償部の分散補償量を、第1の可変範囲及び第1の周期で可変させて適切な分散補償量を探索して適用し、
    前記第2の制御モードと判定された場合は、前記可変分散補償部の分散補償量を、前記第1の可変範囲よりも狭い第2の可変範囲及び前記第1の周期よりも短い第2の周期で可変させて適切な分散補償量を探索して適用し、
    前記第3の制御モードと判定された場合は、前記第1の制御モード或いは前記第2の制御モードで探索した分散補償量を、前記可変分散補償部の分散補償量として適用することを特徴とする光信号伝送装置。
  2. 請求項1に記載の光信号伝送装置であって、
    さらに、不揮発性メモリ部を備え
    前記制御部は、前記第1の制御モードまたは/および前記第2の制御モードで探索した分散補償量を前記不揮発性メモリ部に保存して、前記第3の制御モードでの前記可変分散補償部の分散補償量として使用することを特徴とする光信号伝送装置。
  3. 請求項1または請求項2に記載の光信号伝送装置であって、
    前記受信部は、識別点調整が可能であり、
    前記制御モード判定部は、前記光雑音監視部での光雑音情報に基づいて、光雑音が所定値を超えたと判定したとき、前記第3の制御モードで動作するとともに前記光受信部の識別点調整を行うよう前記制御部を制御することを特徴とする光信号伝送装置。
JP2008074034A 2008-03-21 2008-03-21 光信号伝送装置 Expired - Fee Related JP5091739B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008074034A JP5091739B2 (ja) 2008-03-21 2008-03-21 光信号伝送装置
US12/339,133 US8131155B2 (en) 2008-03-21 2008-12-19 Optical signal transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074034A JP5091739B2 (ja) 2008-03-21 2008-03-21 光信号伝送装置

Publications (3)

Publication Number Publication Date
JP2009232082A JP2009232082A (ja) 2009-10-08
JP2009232082A5 JP2009232082A5 (ja) 2010-08-12
JP5091739B2 true JP5091739B2 (ja) 2012-12-05

Family

ID=41089049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074034A Expired - Fee Related JP5091739B2 (ja) 2008-03-21 2008-03-21 光信号伝送装置

Country Status (2)

Country Link
US (1) US8131155B2 (ja)
JP (1) JP5091739B2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116477A1 (ja) * 2009-03-30 2010-10-14 富士通株式会社 光通信装置及び分散補償方法
WO2012029169A1 (ja) * 2010-09-03 2012-03-08 三菱電機株式会社 光通信システム
JP2012137597A (ja) * 2010-12-27 2012-07-19 Fujitsu Ltd 光デバイス、光送受信ユニットおよび光通信システム
JP5703949B2 (ja) * 2011-05-12 2015-04-22 富士通株式会社 Wdm光伝送システムおよび波長分散補償方法
WO2013068039A1 (en) * 2011-11-09 2013-05-16 Telefonaktiebolaget L M Ericsson (Publ) Optical supervisory channel
JP6049263B2 (ja) * 2012-01-17 2016-12-21 三菱電機株式会社 通信装置
JP5870728B2 (ja) * 2012-02-10 2016-03-01 富士通株式会社 光パス確立方法及び光ノード装置
DE202012004728U1 (de) * 2012-05-10 2013-08-13 Mic Ag Datenkommunikationsvorrichtung
US8873615B2 (en) * 2012-09-19 2014-10-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and controller for equalizing a received serial data stream
EP2808706B1 (en) * 2013-05-28 2023-06-28 Rockwell Automation Switzerland GmbH Transceiver element for an optical unit of a photoelectric barrier and photoelectric light curtain
JP6406818B2 (ja) * 2013-12-13 2018-10-17 三菱電機株式会社 光伝送システム及び光伝送方法
JP6098596B2 (ja) * 2014-09-12 2017-03-22 富士通株式会社 Osnr測定装置および光通信システム
JP6409493B2 (ja) 2014-10-20 2018-10-24 日本電気株式会社 受信信号処理装置及び受信信号処理方法
US20180109317A1 (en) * 2016-10-13 2018-04-19 Finisar Corporation Bi-directional propagation in optical communication
WO2018126451A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种测量光纤色散系数的方法及网络设备
KR20190060183A (ko) * 2017-11-24 2019-06-03 한국전자통신연구원 광 수신기 및 광 수신기의 제어 방법
CN112769473B (zh) * 2020-12-31 2022-04-08 深圳市宸平信息技术有限公司 一种光通信器件自动点测方法及系统
TWI766591B (zh) * 2021-02-24 2022-06-01 友達光電股份有限公司 顯示裝置及其發光二極體模組
CN113691316B (zh) * 2021-09-06 2022-05-17 福建永福电力设计股份有限公司 一种处理otn光放及色散补偿的方法
US11652547B2 (en) 2021-09-24 2023-05-16 Huawei Technologies Co., Ltd. Method and systems to identify types of fibers in an optical network
JPWO2023135651A1 (ja) * 2022-01-11 2023-07-20
CN115955278B (zh) * 2023-03-15 2023-06-23 天津艾洛克通讯设备科技有限公司 一种基于光纤信号分析的数字面板

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3281162B2 (ja) 1994-02-17 2002-05-13 株式会社東芝 光ファイバ偏波モード分散補償装置
US5542078A (en) * 1994-09-29 1996-07-30 Ontos, Inc. Object oriented data store integration environment for integration of object oriented databases and non-object oriented data facilities
JP3464744B2 (ja) 1996-06-03 2003-11-10 日本電信電話株式会社 自動等化システム
JP2930045B2 (ja) 1997-02-28 1999-08-03 日本電気株式会社 半導体集積回路
JP2000031903A (ja) * 1998-07-07 2000-01-28 Hitachi Ltd 偏波分散補償装置および偏波分散補償方法
US6650842B1 (en) * 1998-12-18 2003-11-18 Worldcom, Inc. Optical link with reduced four-wave mixing
JP2002089724A (ja) 2000-09-12 2002-03-27 Kitz Corp シール部材およびそれを用いたバルブ
JP4011290B2 (ja) 2001-01-10 2007-11-21 富士通株式会社 分散補償方法、分散補償装置および光伝送システム
JP3863434B2 (ja) 2002-01-30 2006-12-27 三菱電機株式会社 分散等化装置および分散等化方法
ATE364936T1 (de) * 2002-08-06 2007-07-15 Alcatel Lucent Verfahren zur adaptiven rückkopplungssteuerung der farbzerstreuungskompensation
US7362977B2 (en) * 2002-09-30 2008-04-22 Lucent Technologies Inc. Method for reduction of non-linear intra-channel distortions
JP2004131355A (ja) 2002-10-15 2004-04-30 Sumitomo Chem Co Ltd 金属不純物の低減されたインジウム含有水溶液の製造方法
JP2004222240A (ja) 2002-12-25 2004-08-05 Nec Corp 光信号監視方法、及び光信号監視装置
JP4138557B2 (ja) 2003-03-31 2008-08-27 富士通株式会社 波長分散補償制御システム
JP3995094B2 (ja) 2003-10-08 2007-10-24 日本電信電話株式会社 アイ開口モニタ
JP4713847B2 (ja) * 2004-04-30 2011-06-29 富士通株式会社 分散補償方法,光伝送システムおよび光伝送装置
JP4481266B2 (ja) 2006-03-30 2010-06-16 日本電信電話株式会社 受信回路および伝送システム
JP4893739B2 (ja) 2006-06-06 2012-03-07 富士通株式会社 分散補償制御装置および分散制御量探索方法
JP4669497B2 (ja) * 2007-05-01 2011-04-13 富士通株式会社 波長多重伝送システムにおける信号伝送方法
JP4900481B2 (ja) * 2007-07-02 2012-03-21 富士通株式会社 波長分割多重装置及び光信号の入力断の検出方法

Also Published As

Publication number Publication date
US8131155B2 (en) 2012-03-06
US20090238563A1 (en) 2009-09-24
JP2009232082A (ja) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5091739B2 (ja) 光信号伝送装置
JP5059910B2 (ja) 光受信器および光伝送装置
JP4553556B2 (ja) 波長多重光信号の品質監視方法および装置、並びに、それを用いた光伝送システム
US6661973B1 (en) Optical transmission systems, apparatuses, and methods
US20030170028A1 (en) Optical transmitter, optical repeater, optical receiver and optical transmission method
EP2904724B1 (en) Fault recovery in branched optical networks
US7693425B2 (en) Method and system for compensating for optical dispersion in an optical signal in a hybrid optical network
JP2010004251A (ja) 光伝送装置および光伝送方法
US9391421B2 (en) Optical amplification apparatus, optical transmission apparatus, and optical transmission system
WO2005109698A1 (en) System and method for automatic chromatic dispersion compensation
US10069589B2 (en) Method and apparatus for increasing a transmission performance of a hybrid wavelength division multiplexing system
US7697802B2 (en) Optical bypass method and architecture
JP2004274615A (ja) 波長分散補償システム
US20110103790A1 (en) Method and System for Compensating for Optical Impairment in an Optical Signal
Asif et al. Multi-span digital non-linear compensation for dual-polarization quadrature phase shift keying long-haul communication systems
US6920277B2 (en) Optical bypass method and architecture
Zhu et al. 1.6 Tbit/s (40× 42.7 Gbit/s) WDM transmission over 2400km of fibre with 100km dispersion-managed spans
Joindot et al. Optical fiber transport systems and networks: fundamentals and prospects
EP1883172A1 (en) Dispersion management in WDM optical networks
JP6010000B2 (ja) 光伝送システム及び光伝送方法
JP6426677B2 (ja) 光伝送システム及び光伝送方法
Penninckx et al. Simple engineering rules for a transparent waveband-based optical backbone network
Pataca et al. Transmission of a 20 Gb/s NRZ OOK Signal Throughout a 390 km Fiber Link and a Cascade of 11 x 50 GHz Filters and 9 x EDFAs
Freund et al. Design issues of 40-Gbit/s WDM systems for metro and core network application
JP2018160913A (ja) 光伝送システム及び光伝送方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees