[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5089176B2 - Control valve type lead storage battery manufacturing method - Google Patents

Control valve type lead storage battery manufacturing method Download PDF

Info

Publication number
JP5089176B2
JP5089176B2 JP2007004351A JP2007004351A JP5089176B2 JP 5089176 B2 JP5089176 B2 JP 5089176B2 JP 2007004351 A JP2007004351 A JP 2007004351A JP 2007004351 A JP2007004351 A JP 2007004351A JP 5089176 B2 JP5089176 B2 JP 5089176B2
Authority
JP
Japan
Prior art keywords
electrode plate
active material
positive electrode
respect
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007004351A
Other languages
Japanese (ja)
Other versions
JP2008171709A (en
Inventor
博正 野口
徹 萬ヶ原
英明 吉田
秀仁 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2007004351A priority Critical patent/JP5089176B2/en
Publication of JP2008171709A publication Critical patent/JP2008171709A/en
Application granted granted Critical
Publication of JP5089176B2 publication Critical patent/JP5089176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極板と、カーボンを含む負極板を、セパレータを介して交互に積層してなる極板群を高圧迫状態で電槽内に収納し、電槽化成することにより作製される制御弁式鉛蓄電池の製造方法に関するものである。 The present invention is a control produced by storing a positive electrode plate and a negative electrode plate containing carbon alternately in a battery case in a state of high pressure, and forming a battery case. The present invention relates to a method for manufacturing a valve-type lead-acid battery.

従来から鉛蓄電池は液式鉛蓄電池と制御弁式鉛蓄電池の2つに大別でき、そのうち制御弁式鉛蓄電池は、鉛を主成分とする基板に活物質ペーストを充填してなる正極板と負極板を、未化成で、或いは各々専用の化成槽で化成した後、微細ガラス繊維を主体としたマット状セパレータを介して交互に積層し極板群とした後、同極性同士の極板の耳部を溶接によって接続することにより極板群とし、圧迫状態で電槽内に収納し、この電槽に注液や排気用の開口部を有する蓋を溶着あるいは接着剤で接着し、この開口部から液面高さが極板耳部を除く極板群高さの110%程度となるように電解液を注液し、正・負極板が未化成の場合は電槽化成を行い、注液や排気用の開口部にゴム弁(制御弁)を覆い被せ製造されるものである。このように作製された制御弁式鉛蓄電池は、過充電時に正極で発生する酸素を負極で吸収することにより補水を不要とすると共に密閉化を図った鉛蓄電池であり、メンテナンスフリーとして様々な分野で利用されている。 Conventionally, lead-acid batteries can be broadly classified into two types: liquid-type lead-acid batteries and control-valve-type lead-acid batteries. Of these, the control-valve-type lead-acid batteries include a positive electrode plate in which an active material paste is filled in a lead-based substrate. After forming the negative electrode plate unformed or in a dedicated chemical tank, and alternately laminating them through a mat-like separator mainly composed of fine glass fibers to form a plate group, The ears are connected by welding to form an electrode plate group, which is stored in the battery case in a compressed state, and a lid having an opening for injecting and exhausting is adhered to the battery case with welding or an adhesive. The electrolyte is injected so that the liquid surface height is about 110% of the electrode plate group height excluding the electrode plate ears, and if the positive and negative electrode plates are not formed, a battery case is formed. It is manufactured by covering a rubber valve (control valve) over an opening for liquid or exhaust. The control valve type lead-acid battery produced in this way is a lead-acid battery that eliminates the need for water replenishment by absorbing oxygen generated at the positive electrode at the time of overcharging, and is sealed in various fields. It is used in.

近年、補水、電解液の補充等が不要な制御弁式鉛蓄電池が保守不要の観点から主流となりつつあり、その普及率は急速に拡大しつつある。このため、通信機器のバックアップなどのフロートユース用に対し、電力貯蔵のため深い充放電を繰り返すサイクルユース用に耐えうるよう改良が進められている。このような用途では正極活物質の軟化・泥状化により鉛蓄電池の寿命に至ることが多く、これを抑制すると共に格子と活物質の密着性を向上させるために、極板群を電槽内に40kPa程度の圧迫状態で挿入することが行われている。 In recent years, control valve type lead-acid batteries that do not require replenishment, replenishment of electrolyte, and the like are becoming mainstream from the viewpoint of maintenance-free, and the penetration rate is rapidly expanding. For this reason, improvements are being made to withstand cycle use that repeats deep charge and discharge for power storage, as compared to float use such as backup of communication equipment. In such applications, the life of the lead-acid battery is often extended by softening and mudification of the positive electrode active material. To suppress this and improve the adhesion between the grid and the active material, the electrode plate group is placed in the battery case. It is inserted in a compressed state of about 40 kPa.

また、太陽光や風力などの自然エネルギーを蓄電池に貯蔵する場合は、部分充電状態(PSOC;Parcial State Of Charge)のままでサイクルを繰り返すことも多く、負極活物質のサルフェーションにより鉛蓄電池が寿命に至ることもある。このため、負極の受電受入性を向上させる目的でカーボンなどの導電材を添加する場合もある。 In addition, when storing natural energy such as sunlight or wind power in a storage battery, the cycle is often repeated in a partially charged state (PSOC; Partial State Of Charge), and the life of the lead storage battery is reduced by sulfation of the negative electrode active material. Sometimes. For this reason, a conductive material such as carbon may be added for the purpose of improving the power receiving property of the negative electrode.

鉛蓄電池の負極板にカーボンを含む場合、その添加量にもよるが電槽化成中の充電時の水素ガス発生時に負極板表面、特に表面のクラックからガスと共にカーボンが吐き出され、これに接するセパレータ表面に流出しやすい。特に、正極板の軟化抑制を目的として極板群を圧迫状態すると、正極板と負極板の極間距離が近くなって、セパレータ表面に流出したカーボンがさらにセパレータ内部に浸透し、内部短絡を引き起こす場合があった。 When carbon is contained in the negative electrode plate of a lead storage battery, depending on the amount of addition, carbon is discharged together with the gas from the surface of the negative electrode plate, especially from the surface crack, when hydrogen gas is generated during charging during battery case formation, and a separator in contact with this Easy to flow out to the surface. In particular, when the electrode plate group is pressed for the purpose of suppressing the softening of the positive electrode plate, the distance between the positive electrode plate and the negative electrode plate is reduced, and the carbon that has flowed out to the separator surface further penetrates into the separator and causes an internal short circuit. There was a case.

その対策として、ガラス繊維を主体として構成されるセパレータに、ガラス繊維、シリカ粉末及びシリカゾルとを混抄してなることを特徴とする密閉形鉛蓄電池用セパレータ(特許文献1)や顆粒シリカ式密閉電池において負極活物質量の0.5〜5.0質量%のカーボンを負極活物質中に添加するもの(特許文献2)などが提案されている。 As a countermeasure, a separator for sealed lead-acid batteries (Patent Document 1) or a granular silica-type sealed battery, characterized in that glass fiber, silica powder, and silica sol are mixed into a separator mainly composed of glass fibers. In US Pat. No. 6,053,836, a carbon material having 0.5 to 5.0 mass% of the amount of the negative electrode active material added to the negative electrode active material has been proposed.

特開平7−29560号公報JP-A-7-29560 特開平6−283176号公報JP-A-6-283176

しかしながら、上記特許文献1に記載のセパレータを用いると、ガラス繊維中に多量のシリカが存在するためにセパレータが硬くなって、極板群スタック時にハンドリングが困難になったり、保持される電解液量が少なくなったりするなどの問題点がある。また、セパレータの厚みを厚くすることも考えられるが、限られた体積の電槽内では大幅に厚くすると極板枚数を減らすことになりその結果容量不足となってしまうため、現実的ではない。若干厚くすることができたとしても、効果は不十分である。さらに、耐短絡性に優れる比較的硬いセパレータを用いるとサイクル性能が良くないなどの問題がある。
また、特許文献2に記載の方法は、充電受け入れ性の向上は見られるが、鉛蓄電池を作製する際の化成を電槽化成で行った場合、発生する水素ガスによって、添加されたカーボンは負極板から離れ電解液中に流出し、上方へ浮遊し、その結果、上部に多くのカーボンが集まりこれがセパレータ内に入り込みやがて短絡の原因となってしまう。
However, when the separator described in Patent Document 1 is used, the separator becomes hard due to the presence of a large amount of silica in the glass fiber, which makes it difficult to handle during stacking of electrode plates, or the amount of electrolytic solution retained. There are problems, such as fewer. In addition, it is conceivable to increase the thickness of the separator. However, if the thickness is significantly increased in a limited volume battery case, the number of electrode plates is reduced, resulting in insufficient capacity. Even if it can be made slightly thicker, the effect is insufficient. Furthermore, when a relatively hard separator having excellent short circuit resistance is used, there is a problem that cycle performance is not good.
Moreover, although the method of patent document 2 shows improvement in charge acceptability, when the formation at the time of producing a lead storage battery is performed by battery case formation, the carbon added by the generated hydrogen gas is a negative electrode. It leaves the plate and flows out into the electrolyte solution and floats upward. As a result, a large amount of carbon collects in the upper part and enters the separator and eventually causes a short circuit.

そこで、本発明では、負極にカーボンを含む極板群を高圧迫で積層して電槽化成してもカーボンの流出による短絡なく、化成効率が良好な制御弁式鉛蓄電池を提供することを目的とするものである。 Accordingly, an object of the present invention is to provide a control valve type lead-acid battery having good formation efficiency without short-circuiting due to outflow of carbon even when a negative electrode is formed by laminating electrode plates containing carbon on the negative electrode at high pressure. It is what.

上記した課題を解決するため、本発明は、鉛または鉛合金からなる格子基板にペースト状活物質を充填してなる正極板と、鉛または鉛合金からなる格子基板にカーボンを含むペースト状活物質を充填してなる負極板とを、ガラス繊維を主とするリテーナマットを介して積層してなる極板群を40〜100kPaの群圧で電槽内に収納し、施蓋封口後、希硫酸電解液を注入して電槽化成後、補液、補充電して成る制御弁式鉛蓄電池において、
1)施蓋封口後の希硫酸電解液の注液量を、液面高さが極板耳部を除く極板群高さの95〜105%とし、
2)負極活物質の理論容量に対する充電量が100%に達してから、正極活物質の理論容量に対する充電量が100%に達するまでの間の充電電流を、正極板総表面積に対し4.5mA/cm以下とし、
3)その後充電を行い、
4)補液、補充電した
ことを特徴とする制御弁式鉛蓄電池の製造方法を提供するものである。
In order to solve the above-mentioned problems, the present invention provides a positive electrode plate in which a lattice substrate made of lead or a lead alloy is filled with a paste-like active material, and a paste-like active material containing carbon in a lattice substrate made of lead or a lead alloy. An electrode plate group formed by laminating a negative electrode plate filled with glass via a retainer mat mainly composed of glass fibers is housed in a battery case at a group pressure of 40 to 100 kPa, and after covering the lid, dilute sulfuric acid In the control valve type lead-acid storage battery that is formed by injecting the electrolyte and forming the battery case, and then replenishing and replenishing the battery.
1) The amount of the dilute sulfuric acid electrolyte solution after the lid is sealed is 95 to 105% of the electrode plate group height excluding the electrode plate ears.
2) The charging current from when the charge amount with respect to the theoretical capacity of the negative electrode active material reaches 100% until the charge amount with respect to the theoretical capacity of the positive electrode active material reaches 100% is 4.5 mA with respect to the total surface area of the positive electrode plate. / Cm 2 or less,
3) Then charge it,
4) The present invention provides a control valve type lead-acid battery manufacturing method characterized in that the replacement fluid and the auxiliary charge are performed.

ここで、極板群を電槽内に収納する時の群圧は、40〜100kPaの高圧迫状態であるが好ましい。というのは、極板群を電槽内に収納する時の群圧が40kPa未満であると正極活物質の軟化抑制効果が弱く、逆に100kPaより大きいと電槽への極板群の群挿入が困難になり、また、正・負極板間の極間距離が短くなって短絡し易くなってしまうからである。
なお、本願における高圧迫とは40kPa以上の群圧で極板群を電槽に収納することである。
Here, it is preferable that the group pressure when the electrode plate group is accommodated in the battery case is in a high pressure state of 40 to 100 kPa. This is because if the group pressure when the electrode plate group is stored in the battery case is less than 40 kPa, the effect of suppressing the softening of the positive electrode active material is weak, and conversely if it exceeds 100 kPa, the group of electrode plate groups is inserted into the battery case. This is because the distance between the positive and negative electrode plates becomes short and short-circuiting easily occurs.
In addition, high pressure in this application is accommodating an electrode group in a battery case with the group pressure of 40 kPa or more.

また、1)の初回注液量の適正化について、以下に詳述する。初回注液後の余剰液面の高さが極板群の耳部を除く極板群高さの105%より高いと、電槽化成の終了直前まで極板群全体が液に浸かっているために、充電時に正極より発生した酸素ガスの負極吸収を阻害する。そのため、負極電位が水素発生電位にシフトし、電槽化成中の水素ガス発生区間が長くなり、カーボンが流出しやすくなる恐れがある。一方、液面の高さが95%より低いと、極板上部で未化成の部分が残ってしまい、化成効率が悪くなってしまう。 Further, the optimization of the initial liquid injection amount of 1) will be described in detail below. If the height of the surplus liquid surface after the first injection is higher than 105% of the height of the electrode plate group excluding the ears of the electrode plate group, the entire electrode plate group is immersed in the liquid until immediately before the end of the battery case formation. In addition, the negative electrode absorption of oxygen gas generated from the positive electrode during charging is inhibited. For this reason, the negative electrode potential shifts to the hydrogen generation potential, the hydrogen gas generation section during the formation of the battery case becomes longer, and carbon may easily flow out. On the other hand, if the height of the liquid level is lower than 95%, an unformed part remains at the upper part of the electrode plate, resulting in poor conversion efficiency.

次に、2)の水素ガス発生電位付近での充電電流の低減について、以下に詳述する。電槽化成中、負極活物質の理論容量に対する充電量が90%付近から負極電位が立ち上がり始め、充電量が100%に到達すると、水素ガスを発生し始める(硫酸第二水銀電極を参照極としたとき、水素発生電位は約−1.5V付近である)。予備実験において、負極活物質の理論容量に対する所定の充電量で何箇所か抜き取り、解体調査した所、この充電量が100%から、正極活物質の理論容量に対する充電量が100%に達するまでの間でカーボンの流出が見られたため、この区間における充電電流の適正化を行った結果、正極板総表面積に対し4.5mA/cm以下において、カーボン流出を抑えられることを見出した。この電流より大きいと、カーボンの流出が抑えられなくなり、また、下限の電流としては低いほど良いが、低過ぎるとその分充電時間が長くなって生産効率が悪くなるため、その辺のバランスを考える必要がある。よって、充電電流は2.6〜4.5mA/cmで行うことが好ましい。
なお、本発明における正極板総表面積とは、正極板の耳部、足部および正極板の厚み方向の周側面(上下左右)を除く正極板の表・裏面の表面積×正極板枚数としたものである。
Next, the reduction of the charging current in the vicinity of the hydrogen gas generation potential of 2) will be described in detail below. During the formation of the battery case, the negative electrode potential starts to rise from around 90% of the charge amount relative to the theoretical capacity of the negative electrode active material, and when the charge amount reaches 100%, hydrogen gas starts to be generated (the mercuric sulfate electrode is used as the reference electrode). The hydrogen generation potential is around -1.5V). In a preliminary experiment, several places were extracted at a predetermined charge amount with respect to the theoretical capacity of the negative electrode active material and disassembled, and the charge amount from 100% to the charge amount with respect to the theoretical capacity of the positive electrode active material reached 100%. As a result of the optimization of the charging current in this section, it was found that carbon outflow could be suppressed at 4.5 mA / cm 2 or less with respect to the total surface area of the positive electrode plate. If the current is larger than this current, the outflow of carbon cannot be suppressed, and the lower the current, the better. However, if it is too low, the charging time becomes longer and the production efficiency becomes worse. There is a need. Accordingly, the charging current is preferably 2.6 to 4.5 mA / cm 2 .
The total surface area of the positive electrode plate in the present invention is defined as the surface area of the front and back surfaces of the positive electrode plate excluding the ears and feet of the positive electrode plate and the circumferential side surfaces (upper and lower left and right) of the positive electrode plate x the number of positive electrode plates. It is.

以上のように、本発明において電槽化成の後半、即ち、水素発生電位に達する前に、減液による負極板表面の露出による正極より発生した酸素ガスの負極吸収を促進して水素発生電位より下げることで、水素ガスの発生に伴うカーボン流出を防止し、化成全体を通してカーボンの流出を抑制するものである。 As described above, in the present invention, in the latter half of the battery formation, that is, before reaching the hydrogen generation potential, the negative electrode absorption of the oxygen gas generated from the positive electrode due to the exposure of the negative electrode plate surface due to liquid reduction is promoted, and the hydrogen generation potential is exceeded. By lowering, carbon outflow associated with the generation of hydrogen gas is prevented, and carbon outflow is suppressed throughout the entire chemical conversion.

本発明の制御弁式鉛蓄電池の製造方法は、電槽化成時におけるカーボン流出による内部短絡を防止し、化成効率が良好な制御弁式鉛蓄電池の製造方法を提供することができる。 The manufacturing method of the control valve type lead acid battery of this invention can prevent the internal short circuit by the carbon outflow at the time of battery case formation, and can provide the manufacturing method of the control valve type lead acid battery with favorable formation efficiency.

本発明は、常法により正極板および負極板を作製し、該負極板にカーボンを添加し、正極板と負極板とをガラス繊維を抄造して成るリテーナマットを介して交互に積層して極板群を構成し、所望の群圧で極板群を電槽に組み込み、同極性耳群を常法によりストラップ溶接すると同時に正・負極端子を形成し、電槽と蓋を溶着した後、所定の充電電流で電槽化成を行い、その後、目標液量に対する不足分と、減液による不足分の電解液を補液し、補充電を行い制御弁式鉛蓄電池を作製するものである。
本発明による制御弁式鉛蓄電池の製造方法を用いることで、電槽化成の前半においては、水素発生電位下でも水素ガスの発生速度を弱めることでカーボンの流出を抑制し、電槽化成の後半では減液による負極板表面の露出による正極より発生した酸素ガスの負極吸収を促進して水素発生電位より下げることで、水素ガスの発生に伴うカーボン流出を防止し、化成全体を通してカーボンの流出を抑制することが可能である。
In the present invention, a positive electrode plate and a negative electrode plate are produced by a conventional method, carbon is added to the negative electrode plate, and the positive electrode plate and the negative electrode plate are alternately laminated via a retainer mat formed by making glass fibers. Configure the plate group, incorporate the electrode plate group into the battery case at the desired group pressure, strap weld the same polarity ear group by the usual method and simultaneously form the positive and negative terminals, weld the battery case and the lid, and then Then, the battery is formed with the charging current, and then the shortage with respect to the target liquid amount and the insufficient amount of electrolyte due to the liquid reduction are replenished and supplemented to produce a control valve type lead storage battery.
By using the control valve type lead-acid battery manufacturing method according to the present invention, in the first half of the battery case formation, the outflow of carbon is suppressed by weakening the hydrogen gas generation rate even under the hydrogen generation potential, and the second half of the battery case formation. Then, by absorbing the negative electrode of oxygen gas generated from the positive electrode due to exposure of the negative electrode plate surface due to liquid reduction and lowering it from the hydrogen generation potential, carbon outflow associated with hydrogen gas generation is prevented, and carbon outflow is performed throughout the entire chemical conversion. It is possible to suppress.

本制御弁式鉛蓄電池は、以下のようにして作製した。まず、鉛を主成分とする格子基板に常法により作製した正極活物質ペーストを充填してなる未化成の正極板と、鉛を主成分とする格子基板にカーボンを負極活物質量に対して1質量%添加した未化成の負極板を、熟成、乾燥を経て夫々の正・負極板を作製した。そして、これら正・負極板を主にガラス繊維を抄造して成るリテーナマットを介して交互に積層して、正極板8枚/負極板9枚構成の極板群を構成した後、該極板群を40kPaの高圧迫状態で電槽に組み込んだ。次いで、同極性耳群を常法によりストラップ溶接すると同時に正・負極端子を形成した。次いで、電槽と蓋を溶着した後、液面高さが極板耳部を除く極板群高さの95%になるように所定量の希硫酸電解液を注入し、負極活物質の理論容量に対する充電量が100%に達するまでは充電電流を正極板総表面積に対し5.3mA/cmで通電し、負極活物質の理論容量に対する充電量が100%に達してから正極活物質の理論容量に対する充電量が100%に達するまでの間の正極板総表面積に対し充電電流を4.27mA/cmで通電し、その後、正極活物質の理論容量に対する充電量が200%に達するまで正極板総表面積に対し、5.3mA/cmの電流で通電し、その後、目標液量に対する不足分と、減液による不足分の電解液を補液し、正極活物質の理論容量に対する充電量が1%になるよう補充電を行い、2V−200Ahの制御弁式鉛蓄電池を作製した(実施例1)。
上記と同様の方法で、表1に記載の通り液面高さが極板耳部を除く極板群高さの95〜105%、電流密度が負極活物質の理論容量に対する充電量が100%に達してから正極活物質の理論容量に対する充電量が100%に達するまでの間の負極板面積に対し充電電流を4.5mA/cm以下、極板群を電槽に組み込む際の群圧を40〜100kPaの高圧迫状態となるように種々の2V−200Ahの制御弁式鉛蓄電池を作製した(実施例2〜9)。
This control valve type lead acid battery was produced as follows. First, an unformed positive electrode plate obtained by filling a grid substrate mainly composed of lead with a positive electrode active material paste prepared by a conventional method, and carbon in the lattice substrate mainly composed of lead with respect to the amount of the negative electrode active material An unformed negative electrode plate added with 1% by mass was aged and dried to prepare positive and negative electrode plates, respectively. Then, these positive and negative plates are alternately laminated via a retainer mat formed by mainly making glass fibers to form an electrode plate group of 8 positive plates / 9 negative plates, and then the plate The group was assembled in a battery case under high pressure of 40 kPa. Next, the same polarity ear group was strap-welded by a conventional method, and at the same time, positive and negative electrode terminals were formed. Next, after the battery case and the lid are welded, a predetermined amount of dilute sulfuric acid electrolyte is injected so that the liquid surface height is 95% of the height of the electrode plate group excluding the electrode tab, and the theory of the negative electrode active material The charging current is applied at 5.3 mA / cm 2 with respect to the total surface area of the positive electrode plate until the charge amount with respect to the capacity reaches 100%, and the charge amount with respect to the theoretical capacity of the negative electrode active material reaches 100%. The charging current is applied to the total surface area of the positive electrode plate until the amount of charge with respect to the theoretical capacity reaches 100% at 4.27 mA / cm 2 , and then the amount of charge with respect to the theoretical capacity of the positive electrode active material reaches 200%. Energize with a current of 5.3 mA / cm 2 with respect to the total surface area of the positive electrode plate, and then replenish the shortage with respect to the target liquid amount and the insufficient amount of electrolyte due to liquid reduction, and the charge amount with respect to the theoretical capacity of the positive electrode active material A supplemental charge is made so that becomes 1%, and 2V To prepare a control valve type lead-acid battery 200 Ah (Example 1).
In the same manner as described above, as shown in Table 1, the liquid level is 95 to 105% of the plate group height excluding the electrode tab, and the current density is 100% of the charge amount with respect to the theoretical capacity of the negative electrode active material. The charging current is 4.5 mA / cm 2 or less with respect to the area of the negative electrode plate until the amount of charge with respect to the theoretical capacity of the positive electrode active material reaches 100%, and the group pressure when the electrode plate group is incorporated into the battery case Various 2V-200 Ah control valve type lead-acid batteries were prepared so as to be in a high pressure state of 40 to 100 kPa (Examples 2 to 9).

(比較例1)
表1に記載の通り液面高さが極板耳部を除く極板群高さの90〜110%、電流密度が正極板総表面積に対し4.76mA/cm以下、極板群を電槽に組み込む際の群圧を20〜120kPaとし、液面高さ、負極活物質の理論容量に対する充電量が100%に達してから正極活物質の理論容量に対する充電量が100%に達するまでの間の正極板総表面積に対する電流密度、群圧の少なくとも一項目以上が本発明の規定値外となるように夫々変化させた以外は、実施例1と同様に2V−200Ahの制御弁式鉛蓄電池を作製した(比較例1〜11)。
(Comparative Example 1)
As shown in Table 1, the liquid level is 90 to 110% of the height of the electrode plate group excluding the electrode plate ear, the current density is 4.76 mA / cm 2 or less with respect to the total surface area of the positive electrode plate, and the electrode plate group is electrically charged. The group pressure at the time of incorporating in the tank is 20 to 120 kPa, the liquid level height, the amount of charge with respect to the theoretical capacity of the negative electrode active material reaches 100%, and the amount of charge with respect to the theoretical capacity of the positive electrode active material reaches 100%. 2V-200 Ah control valve type lead-acid battery as in Example 1 except that at least one item of current density and group pressure with respect to the total surface area of the positive electrode is changed outside the specified value of the present invention. (Comparative Examples 1 to 11).

そして、上記作製した種々の制御弁式鉛蓄電池のうち、電解液の液面高さが極板群高さの100%、負極活物質の理論容量に対する充電量が100%に達してから、正極活物質の理論容量に対する充電量が100%に達するまでの間の充電電流を、正極板総表面積に対し4.5mA/cmとした制御弁式鉛蓄電池(実施例7〜9、比較例10〜11)および、電解液の液面高さが極板群高さの100%、負極活物質の理論容量に対する充電量が100%に達してから、正極活物質の理論容量に対する充電量が100%に達するまでの間の充電電流を、正極板総表面積に対し4.27mA/cm(実施例2)、4.76mA/cm(比較例7)とした制御弁式鉛蓄電池については、種々2個ずつ作製し、そのうちの1個を25℃の恒温槽に入れて、放電を放電電流0.25CAで2時間(DOD50%)行った後、充電を0.25CAで90%行い、更に充電を0.15CAで15%、充電量が合計105%からなるサイクル試験を行った。サイクル試験は、100サイクルおきに容量試験を行い、定格容量の70%を切った時点を寿命とした。
なお、容量試験は、25℃の環境下で放電は電流0.1CA、終止電圧1.8V、充電は電流0.1CAで90%、次いで0.05CAで30%(定格容量に対し合計120%充電)行った。
Of the various control valve lead-acid batteries produced above, the electrolyte level reaches 100% of the electrode plate group height, and the charge amount with respect to the theoretical capacity of the negative electrode active material reaches 100%. Control valve-type lead acid batteries (Examples 7 to 9, Comparative Example 10) in which the charging current until the amount of charge with respect to the theoretical capacity of the active material reaches 100% is 4.5 mA / cm 2 with respect to the total surface area of the positive electrode plate. 11) and the amount of charge with respect to the theoretical capacity of the positive electrode active material is 100% after the liquid surface height of the electrolyte reaches 100% of the electrode plate group height and the amount of charge with respect to the theoretical capacity of the negative electrode active material reaches 100%. For the control valve type lead storage battery in which the charging current until reaching% is 4.27 mA / cm 2 (Example 2) and 4.76 mA / cm 2 (Comparative Example 7) with respect to the total surface area of the positive electrode plate, Make two of each, one of which is fixed at 25 ° C. After putting into the tank and discharging for 2 hours at a discharge current of 0.25 CA (DOD 50%), charging is performed 90% at 0.25 CA, further charging is 15% at 0.15 CA, and the charge amount is 105% in total. The following cycle test was conducted. In the cycle test, a capacity test was performed every 100 cycles, and the time when 70% of the rated capacity was cut was regarded as the life.
In the capacity test, discharging was performed at a current of 0.1 CA and a final voltage of 1.8 V in a 25 ° C. environment, and charging was performed at 90% at a current of 0.1 CA and then at 30% at 0.05 CA (120% in total with respect to the rated capacity). Charging).

実施例1〜9および比較例1〜11の評価結果を表1に示す。表1には電解液の液面高さ、電流密度、極板群の挿入時の群圧、カーボン流出の有無、短絡状況、端極板の化成上がり状況、サイクル数および総合判定の結果を併記した。
なお、カーボン流出の有無は化成後のカーボン流出レベルをセパレータの断面観察により5段階評価とし、セパレータの厚さ方向に対して負極から正極へ向かいどの程度までカーボンが流出しているかで判断した。1はカーボン流出がセパレータ厚さの20%未満以内に留まっている場合、2は20%以上40%未満の場合、3は40%以上60%未満の場合、4は60%以上80%未満の場合、5は80%以上のカーボンの移動があるか又は正極板までの貫通による短絡発生があったものである。そして、該カーボンの流出は極板群全体および端板上部を目視によって行った。
なお、表中矢印を記載した欄は矢印の指し示す直上の欄に記載する数字と同一であることを示す。
The evaluation results of Examples 1 to 9 and Comparative Examples 1 to 11 are shown in Table 1. Table 1 shows the electrolyte level, current density, group pressure when inserting the electrode plate group, presence or absence of carbon outflow, short circuit condition, condition of electrode plate formation, number of cycles, and comprehensive judgment results. did.
In addition, the presence or absence of carbon outflow was evaluated on the basis of the carbon outflow level after chemical conversion based on a five-stage evaluation by observing the cross section of the separator, and the extent of carbon outflow from the negative electrode to the positive electrode with respect to the thickness direction of the separator was judged. 1 is carbon outflow stays within 20% or less of the separator thickness, 2 is 20% or more and less than 40%, 3 is 40% or more and less than 60%, 4 is 60% or more and less than 80% In this case, 5 has 80% or more of carbon movement or a short circuit due to penetration to the positive electrode plate. The carbon flowed out by visual observation of the entire electrode plate group and the upper part of the end plate.
In addition, the column which described the arrow in a table | surface shows that it is the same as the number described in the column immediately above which the arrow points.

Figure 0005089176
Figure 0005089176

表1に示されるように、本発明に係る実施例1〜9では、若干のカーボン流出は見受けられるものの、内部短絡するには至らず、また、極板群の両端部に位置する極板の化成上がりも良好であった。
一方、液面高さ、電流密度、群圧の少なくとも一項目以上が本発明の規定値外とした比較例1〜11は、カーボンの流出レベルが3〜5と大きく、その内、カーボンの流出レベル5のものは内部短絡が発生(比較例8、9)したり、カーボンの流出レベルが小さくても極板群の両端板に位置する極板の化成上がりが悪かったり(比較例1、3)する結果であった。
また、液面高さが極板耳部を除く極板群高さの100%、電流密度が4.50mA/cmとし、極板群を電槽に組み込む際の群圧を20〜120kPaと夫々変化させた実施例5、実施例7〜9および比較例10〜11において、群圧を40〜100kPaとした実施例5および実施例7〜9はサイクル寿命に優れているが、群圧を20kPaとした比較例10および群圧を120kPaとした比較例11は実施例5および実施例7〜9に比し低い値であった。前者は、群圧が低いため正極活物質の軟化抑制の効果が低く、後者は正・負極板間の極間距離が短いこと、およびカーボン流出による短絡が夫々早期容量低下の原因であった。
また、液面高さが極板耳部を除く極板群高さの100%、極板群を電槽に組み込む際の群圧を40kPa、電流密度を4.27〜4.76mA/cmと夫々変化させた実施例2、5、比較例7において、電流密度が小さくなるに従いサイクル寿命特性が向上することが確認された。
なお、本実施例において負極板へのカーボンの添加量は1.0質量%としたが、実施例1および比較例1と同様の方法でカーボンの添加量を0.2〜2.0質量%とした場合においても同様の効果が得られた。
As shown in Table 1, in Examples 1 to 9 according to the present invention, although some carbon outflow is observed, internal short-circuiting does not occur, and the electrode plates located at both ends of the electrode plate group The chemical formation was also good.
On the other hand, in Comparative Examples 1 to 11 in which at least one item of the liquid level height, current density, and group pressure is outside the specified values of the present invention, the carbon outflow level is as large as 3 to 5, and of these, the carbon outflow In the case of level 5, internal short circuit occurs (Comparative Examples 8 and 9), or even if the carbon outflow level is small, the formation of the electrode plates positioned at both end plates of the electrode plate group is poor (Comparative Examples 1 and 3). ).
The liquid level is 100% of the plate group height excluding electrode plate ears, the current density is 4.50 mA / cm 2 , and the group pressure when incorporating the plate group into the battery case is 20 to 120 kPa. In Example 5 and Examples 7 to 9 and Comparative Examples 10 to 11 respectively changed, Example 5 and Examples 7 to 9 having a group pressure of 40 to 100 kPa are excellent in cycle life. The comparative example 10 which set 20 kPa and the comparative example 11 which made the group pressure 120 kPa were a low value compared with Example 5 and Examples 7-9. The former has a low group pressure, so the effect of suppressing the softening of the positive electrode active material is low. The latter has a short distance between the positive and negative electrodes, and a short circuit due to carbon outflow causes the early capacity decrease.
Further, the liquid level is 100% of the height of the electrode plate group excluding the electrode plate ear, the group pressure when the electrode plate group is incorporated into the battery case is 40 kPa, and the current density is 4.27 to 4.76 mA / cm 2. In Examples 2 and 5 and Comparative Example 7 respectively changed, it was confirmed that the cycle life characteristics improved as the current density decreased.
In this example, the amount of carbon added to the negative electrode plate was 1.0% by mass, but the amount of carbon added was 0.2 to 2.0% by mass in the same manner as in Example 1 and Comparative Example 1. The same effect was also obtained in the case of.

以上のように、施蓋封口後の希硫酸電解液の注液量を、液面高さが極板耳部を除く極板群高さの95〜105%とし、負極活物質の理論容量に対する充電量が100%に達してから、正極活物質の理論容量に対する充電量が100%に達するまでの間の充電電流を、正極板総表面積に対し4.5mA/cm以下とし、その後充電を行い、補液、補充電することで、水素発生電位に達する前に、減液による負極板表面の露出による正極より発生した酸素ガスの負極吸収を促進して水素発生電位より下げることで、水素ガスの発生に伴うカーボン流出を防止し、化成全体を通してカーボンの流出を抑制することが可能である。 As described above, the amount of the diluted sulfuric acid electrolyte solution after the lid is sealed is 95 to 105% of the plate group height excluding the electrode plate ears, and the liquid surface height is 95 to 105% of the theoretical capacity of the negative electrode active material. The charging current from when the amount of charge reaches 100% until the amount of charge with respect to the theoretical capacity of the positive electrode active material reaches 100% is set to 4.5 mA / cm 2 or less with respect to the total surface area of the positive electrode plate. By performing replenishment and replenishment, before reaching the hydrogen generation potential, hydrogen gas is absorbed by promoting negative electrode absorption of oxygen gas generated from the positive electrode due to exposure of the negative electrode plate surface due to liquid reduction and lowering the hydrogen generation potential. It is possible to prevent the outflow of carbon accompanying the generation of carbon and suppress the outflow of carbon throughout the entire chemical conversion.

Claims (1)

鉛または鉛合金からなる格子基板にペースト状活物質を充填してなる正極板と、鉛または鉛合金からなる格子基板にカーボンを含むペースト状活物質を充填してなる負極板とを、ガラス繊維を主とするリテーナマットを介して積層してなる極板群を40〜100kPaの群圧で電槽内に収納し、施蓋封口後、希硫酸電解液を注入して電槽化成後、補液、補充電して成る制御弁式鉛蓄電池において、
1)施蓋封口後の希硫酸電解液の注液量を、液面高さが極板耳部を除く極板群高さの95〜105%とし、
2)負極活物質の理論容量に対する充電量が100%に達してから、正極活物質の理論容量に対する充電量が100%に達するまでの間の充電電流を、正極板総表面積に対し4.5mA/cm以下とし、
3)その後充電を行い、
4)補液、補充電した
ことを特徴とする制御弁式鉛蓄電池の製造方法。
A positive electrode plate obtained by filling a lattice substrate made of lead or a lead alloy with a paste-like active material, and a negative electrode plate made by filling a lattice substrate made of lead or a lead alloy with a paste-like active material containing carbon. The electrode plate group formed by laminating through the retainer mat mainly is stored in the battery case at a group pressure of 40 to 100 kPa, and after covering the lid, dilute sulfuric acid electrolyte is injected to form the battery case. In the control valve type lead acid battery,
1) The amount of the dilute sulfuric acid electrolyte solution after the lid is sealed is 95 to 105% of the electrode plate group height excluding the electrode plate ears.
2) The charging current from when the charge amount with respect to the theoretical capacity of the negative electrode active material reaches 100% until the charge amount with respect to the theoretical capacity of the positive electrode active material reaches 100% is 4.5 mA with respect to the total surface area of the positive electrode plate. / Cm 2 or less,
3) Then charge it,
4) A method for producing a control valve type lead storage battery, characterized in that the solution is replenished and charged.
JP2007004351A 2007-01-12 2007-01-12 Control valve type lead storage battery manufacturing method Active JP5089176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004351A JP5089176B2 (en) 2007-01-12 2007-01-12 Control valve type lead storage battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004351A JP5089176B2 (en) 2007-01-12 2007-01-12 Control valve type lead storage battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2008171709A JP2008171709A (en) 2008-07-24
JP5089176B2 true JP5089176B2 (en) 2012-12-05

Family

ID=39699600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004351A Active JP5089176B2 (en) 2007-01-12 2007-01-12 Control valve type lead storage battery manufacturing method

Country Status (1)

Country Link
JP (1) JP5089176B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5591141B2 (en) * 2011-02-10 2014-09-17 古河電池株式会社 Control valve type lead storage battery manufacturing method
US9688223B2 (en) 2011-03-08 2017-06-27 Gs Yuasa International Ltd. Liquid lead storage battery and battery system
JP6472668B2 (en) * 2015-01-26 2019-02-20 古河電池株式会社 Lead acid battery
CN111668470A (en) * 2020-06-19 2020-09-15 北京物科清能科技有限公司 Positive electrode lithium supplement material and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321748A (en) * 1986-07-15 1988-01-29 Shin Kobe Electric Mach Co Ltd In-container formation method for lead-acid battery
JP4601834B2 (en) * 2001-01-17 2010-12-22 古河電池株式会社 Battery case formation method for lead acid battery
JP2003317711A (en) * 2001-10-19 2003-11-07 Shin Kobe Electric Mach Co Ltd Formation method of lead-acid battery
JP4140277B2 (en) * 2002-05-21 2008-08-27 松下電器産業株式会社 Control valve type lead acid battery
JP2006120573A (en) * 2004-10-25 2006-05-11 Furukawa Battery Co Ltd:The Negative electrode plate for control valve type lead-acid battery, and control valve type lead-acid battery using the above negative electrode plate

Also Published As

Publication number Publication date
JP2008171709A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
US9570779B2 (en) Flooded lead-acid battery
JP5138391B2 (en) Control valve type lead acid battery
WO2014162674A1 (en) Lead acid storage battery
JP5182467B2 (en) Control valve type lead storage battery manufacturing method
JP6045329B2 (en) Lead acid battery
JP6043734B2 (en) Lead acid battery
JP5089176B2 (en) Control valve type lead storage battery manufacturing method
JP5241264B2 (en) Control valve type lead storage battery manufacturing method
JPWO2016038786A1 (en) Lead acid battery
JPWO2017159299A1 (en) Lead acid battery
JP5591141B2 (en) Control valve type lead storage battery manufacturing method
WO2012153464A1 (en) Lead-acid battery anode and lead-acid battery
JP2009104914A (en) Lead-acid battery
JP6628070B2 (en) Manufacturing method of positive electrode plate for control valve type lead-acid battery
CN107112598B (en) lead-acid battery
JP4507483B2 (en) Control valve type lead acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP5396216B2 (en) Lead acid battery
CN111279541A (en) Lead-acid battery
JP6921037B2 (en) Lead-acid battery
JP5283429B2 (en) Sealed lead acid battery
JP2005294142A (en) Lead storage battery
JP2017069023A (en) Lead storage battery
JP2013093312A (en) Lead acid battery
JP2008103180A (en) Control valve type lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150