[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4140277B2 - Control valve type lead acid battery - Google Patents

Control valve type lead acid battery Download PDF

Info

Publication number
JP4140277B2
JP4140277B2 JP2002145833A JP2002145833A JP4140277B2 JP 4140277 B2 JP4140277 B2 JP 4140277B2 JP 2002145833 A JP2002145833 A JP 2002145833A JP 2002145833 A JP2002145833 A JP 2002145833A JP 4140277 B2 JP4140277 B2 JP 4140277B2
Authority
JP
Japan
Prior art keywords
active material
surface area
specific surface
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002145833A
Other languages
Japanese (ja)
Other versions
JP2003338312A (en
Inventor
宣行 高見
一宏 杉江
一彦 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002145833A priority Critical patent/JP4140277B2/en
Publication of JP2003338312A publication Critical patent/JP2003338312A/en
Application granted granted Critical
Publication of JP4140277B2 publication Critical patent/JP4140277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は制御弁式鉛蓄電池に関するもので、特に出力特性の改善と寿命改善に関するものである。
【0002】
【従来の技術】
鉛蓄電池は2次電池として安価で比較的信頼性も高く、自動車のエンジン始動用電源や無停電電源、ポータブル機器の電源として広く使用されている。その中でも自動車用鉛蓄電池は、メンテナンスフリー、電池の軽量化、電子負荷の増加やアイドルストップ等により従来に増して深い充放電や中間充電状態で電池が使用されることから、深い充放電サイクルに適した制御弁式鉛蓄電池が用いられてきている。
【0003】
こうしたエンジン始動用電源としての用途では、電池として瞬間的な出力を取り出す特性、すなわち高出力化の要求と、電子負荷の増加やアイドルストップ等での使用による再始動時の出力確保と比較的深い充放電サイクルに対する寿命特性改善の要求がなされている。
【0004】
一方、常に電池を連続充電するトリクル使用における寿命改善を目的に特開2000−30696号公報には正極活物質の比表面積を2m2/g〜9m2/gとすることが記載されている。しかしながらこうした構成では、0.1CA放電程度の比較的低率で深い放電を行う場合には有効であるが、自動車用電池で用いられるような−15℃といった低温領域で数100A放電といった低温高率放電時の電圧特性と深い放電が入る場合の寿命特性、すなわち深放電寿命特性とを両立することが困難であった。
【0005】
【発明が解決しようとする課題】
本発明は前記したような深放電寿命特性と低温急放電時の出力特性を両立することによって、ハイブリッド車両やアイドルストップ車両等に好適な制御弁式鉛蓄電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記した課題を解決するために、本発明の請求項1記載に係る発明は制御弁式鉛蓄電池において、化成後の正極活物質の比表面積を5.0m2 /g〜8.0m2 /g、かつ化成後の負極活物質の比表面積を0.8m2 /g〜1.4m2 /gとして、正極板と負極板間にガラス繊維を主成分とするマットセパレータを介在させた極板群を電槽に収納させた状態で50.0kg/dm2 以上の群圧で加圧していることを特徴とするものである。
【0007】
【発明の実施の形態】
本発明の実施の形態を説明する。
【0008】
鉛合金製の正極集電体を作製する。鉛合金としてはPb−Sn合金、Pb−Sn−Ca合金、実質的にSbを含有しないものを用いることができる。この正極集電体に一酸化鉛を主成分とする鉛粉を水もしくは水と希硫酸で混練した活物質ペーストを充填する。活物質ペーストの充填後、熟成乾燥工程を経て、未化成正極板とする。
【0009】
本発明においては化成後の正極活物質の比表面積を5.0m2/g〜8.0m2/gに設定する。活物質の比表面積は鉛粉量に対する水量あるいは希硫酸量で調整することができる。また、カーボンもしくは酸化錫、硫酸錫等の錫化合物の添加によっても調整することが可能である。
【0010】
負極集電体は正極集電体と同様、Sbを含有しないPb−Ca合金、Pb−Sn合金およびPb−Ca−Sn合金を用いることができる。この負極集電体に一酸化鉛を主成分とする鉛粉を水もしくは水と希硫酸で混練した活物質ペーストを充填する。その後、熟成乾燥工程を経て、未化成負極板とする。
【0011】
本発明においては化成終了後の負極活物質の比表面積を0.80m2/g〜1.4m2/gとする。負極活物質の比表面積は、正極と同様、鉛粉量に対する水もしくは希硫酸量を変化させることにより選択することができる。
【0012】
このようにして得た正極板と負極板との間にガラス繊維を主成分としたガラスマットセパレータを用いて極板群を構成する。この極板群は電槽に収納された状態で50.0kg/dm2以上の群圧を加える。
【0013】
以降は常法により、電槽開口部を蓋で閉塞して電池を組み立てる。その後は注液口より電解液を注入し、化成充電を行うことにより、本発明の制御弁式鉛蓄電池を得ることができる。
【0014】
【実施例】
以下本発明の実施例について、比較例と対照して説明する。
【0015】
正極集電体としてPb−0.06質量%Ca−1.25質量%Snの圧延シートをエキスパンド加工したもの、負極集電体としてPb−0.06質量%Ca−0.25質量%Snの圧延シートをエキスパンド加工したものを用いた。正極集電体および負極集電体のそれぞれに正極活物質ペーストおよび負極活物質ペーストを充填する。ここでこれらのペースト処方を変化させることにより、化成終了後の比表面積を正極で4.0m2/g〜10.0m2/g、負極で0.6m2/g〜1.6m2/gの範囲でそれぞれ変化させた正極板および負極板を得た。これらの正負の極板と平均繊維径0.9μmのガラス繊維の不織布で構成したマットセパレータを用いて公称電圧12V、10時間率定格容量15Ahの制御弁式鉛蓄電池を構成する。なお、極板群圧は30.0kg/dm2〜90.0kg/dm2で種々に変化させた。
【0016】
これらの電池について−15℃、150Aで放電を行い、放電開始5秒目の放電電圧を測定し、放電電流との積を算出することにより、電池出力を確認した。これらの結果を表1〜表3に示す。なお、結果は正極活物質の比表面積を4.0m2/g、負極活物質の比表面積を0.6m2/gとし、極板群圧を30.0kg/dm2とした電池の放電開始5秒目の出力を100とした時の指数で示した。
【0017】
【表1】

Figure 0004140277
【0018】
【表2】
Figure 0004140277
【0019】
【表3】
Figure 0004140277
【0020】
表1〜表3に示した結果から、負極、正極ともに、活物質の比表面積の増加とともに電池出力も増加する傾向にある。また、その傾向は正極活物質の比表面積が5.0m2/g以上で、かつ負極活物質の比表面積が0.8m2/g以上の領域で顕著である。但し、活物質比表面積がそれぞれ負極において1.4m2/g、正極において8.0m2/gを超えて1.6m2/gおよび9.0m2/gとしても電池の出力増加は望めない。
【0021】
また、このような比表面積の増加に伴う出力増加は極板群圧が30.0kg/dm2〜90.0kg/dm2の範囲で認められる。但し、極板群圧が50.0kg/dm2以上の範囲では30.0kg/dm2の場合と比較して出力増加が顕著に現れる。
【0022】
したがって、極板群圧を50.0kg/dm2以上とし、かつ正極活物質の比表面積を5.0m2/g〜8.0m2/g、負極活物質の比表面積を0.8m2/g〜1.4m2/gとすることにより、低温における電池出力を顕著に増加させることができる。
【0023】
次にこれらの電池について比較的深い放電が入る深放電寿命特性を評価した。寿命試験条件としては25℃雰囲気中で0.25CAに相当する3.75Aで10.5Vまで放電することによって完全放電状態とし、この放電に引き続いて電池を14.7V定電圧(最大充電電流6.0A)で8時間充電を行う完全放電−完全充電を1サイクルとし、放電時の放電持続時間が初期の50%まで低下した時点を寿命として寿命サイクル数を求めた。
【0024】
これらの結果を表4〜表6に示す。なお、結果は正極活物質の比表面積を4.0m2/g、負極活物質の比表面積を0.6m2/gとし、極板群圧を30.0kg/dm2とした電池の寿命サイクル数を100とした時の指数で示した。
【0025】
【表4】
Figure 0004140277
【0026】
【表5】
Figure 0004140277
【0027】
【表6】
Figure 0004140277
【0028】
表4〜表6に示した結果から、負極、正極ともに、活物質の比表面積の増加とともに寿命サイクル数が低下する。また、その傾向は極板群圧が30.0kg/dm2の場合に顕著である。極板群圧を50.0kg/dm2以上とすることにより、活物質比表面積の増加に伴う寿命サイクル数低下を抑制することができる。但し、この極板群圧が50.0kg/dm2以上の領域においても正極活物質の比表面積が9.0m2/g、もしくは負極活物質の比表面積が1.6m2/gまで増加させると寿命サイクル数は低下する。
【0029】
寿命試験を終了した電池を分解調査したところ、極板群圧が30.0kg/dm2の領域で正極活物質および負極活物質の比表面積増加とともに、正極活物質の軟化や、正極と負極の硫酸鉛の蓄積が進行する傾向にあった。
【0030】
これらの結果により、制御弁式鉛蓄電池において、極板群圧を50.0kg/dm2以上、かつ活物質の比表面積を正極活物質で5.0m2/g〜8.0m2/g、負極活物質で0.80m2/g〜1.4m2/gとすることにより、低温急放電時の出力特性と深放電寿命特性をともに両立させるということができる。
【0031】
【発明の効果】
以上説明したように本発明の構成によれば、出力特性向上とともに、深い充放電サイクル寿命における、正極活物質軟化脱落や正極活物質および負極活物質における硫酸鉛の蓄積を抑制し、低温出力特性の改善と深放電寿命の両立を図ることができ、その工業的価値は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control valve type lead storage battery, and more particularly to improvement of output characteristics and improvement of life.
[0002]
[Prior art]
Lead storage batteries are inexpensive and relatively reliable as secondary batteries, and are widely used as power sources for starting automobile engines, uninterruptible power supplies, and portable devices. Among them, lead-acid batteries for automobiles are used for deep charge / discharge cycles because they are used in deeper charge / discharge and intermediate charge states than before due to maintenance-free, lighter battery weight, increased electronic load, idle stop, etc. Suitable control valve lead acid batteries have been used.
[0003]
In applications such as the power supply for starting the engine, the characteristics of taking out the instantaneous output as a battery, that is, the demand for higher output, and securing the output at the time of restart due to the increase in the electronic load or use at idle stop, etc. are relatively deep. There is a demand for improving the life characteristics for the charge / discharge cycle.
[0004]
On the other hand, always in JP 2000-30696 for the purpose of life improvement in trickle use in continuous charging the battery has been described that the specific surface area of the positive electrode active material and 2m 2 / g~9m 2 / g. However, in such a configuration, it is effective when a deep discharge is performed at a relatively low rate of about 0.1 CA discharge, but at a low temperature high rate such as a discharge of several hundreds A in a low temperature region such as −15 ° C. used in an automobile battery. It has been difficult to achieve both the voltage characteristics during discharge and the life characteristics when deep discharge occurs, that is, the deep discharge life characteristics.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a control valve type lead-acid battery suitable for a hybrid vehicle, an idle stop vehicle, and the like by satisfying both the above-described deep discharge life characteristics and output characteristics at a low temperature rapid discharge.
[0006]
[Means for Solving the Problems]
To solve the problems described above, in Claim 1 invention a valve-regulated lead-acid battery according to the description of the present invention, the specific surface area of the positive electrode active material after the chemical conversion 5.0m 2 /g~8.0m 2 / g and a specific surface area of the negative electrode active material after the chemical conversion as 0.8m 2 /g~1.4m 2 / g, the electrode plate group obtained by interposing a mat separator mainly composed of glass fiber positive and negative electrode plates Is pressurized with a group pressure of 50.0 kg / dm 2 or more in a state of being housed in a battery case.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described.
[0008]
A positive electrode current collector made of lead alloy is prepared. As the lead alloy, a Pb—Sn alloy, a Pb—Sn—Ca alloy, or an alloy substantially not containing Sb can be used. The positive electrode current collector is filled with an active material paste in which lead powder containing lead monoxide as a main component is mixed with water or water and dilute sulfuric acid. After filling with the active material paste, an aging drying step is performed to obtain an unformed positive electrode plate.
[0009]
In the present invention sets a specific surface area of the positive electrode active material after the chemical conversion to 5.0m 2 /g~8.0m 2 / g. The specific surface area of the active material can be adjusted by the amount of water or dilute sulfuric acid relative to the amount of lead powder. It can also be adjusted by adding carbon or tin compounds such as tin oxide and tin sulfate.
[0010]
Similarly to the positive electrode current collector, a Pb—Ca alloy, a Pb—Sn alloy, and a Pb—Ca—Sn alloy not containing Sb can be used for the negative electrode current collector. This negative electrode current collector is filled with an active material paste in which lead powder containing lead monoxide as a main component is mixed with water or water and dilute sulfuric acid. Then, it is set as an unformed negative electrode plate through an aging drying process.
[0011]
The specific surface area of the negative electrode active material after the chemical conversion completion in the present invention and 0.80m 2 /g~1.4m 2 / g. The specific surface area of the negative electrode active material can be selected by changing the amount of water or dilute sulfuric acid relative to the amount of lead powder as in the case of the positive electrode.
[0012]
The electrode plate group is configured using a glass mat separator mainly composed of glass fibers between the positive electrode plate and the negative electrode plate thus obtained. This electrode plate group is applied with a group pressure of 50.0 kg / dm 2 or more while being housed in a battery case.
[0013]
Thereafter, the battery case is assembled by closing the battery case opening with a lid by a conventional method. Thereafter, the control valve type lead-acid battery of the present invention can be obtained by injecting an electrolytic solution from the injection port and performing chemical charging.
[0014]
【Example】
Examples of the present invention will be described below in comparison with comparative examples.
[0015]
A Pb-0.06 mass% Ca-1.25 mass% Sn rolled sheet as the positive electrode current collector, and a Pb-0.06 mass% Ca-0.25 mass% Sn as the negative electrode current collector. An expanded sheet of a rolled sheet was used. Each of the positive electrode current collector and the negative electrode current collector is filled with a positive electrode active material paste and a negative electrode active material paste. In By varying these pastes formulated here, 4.0 m and specific surface area after chemical conversion completed in the positive electrode 2 /g~10.0m 2 / g, the negative electrode 0.6m 2 /g~1.6m 2 / g A positive electrode plate and a negative electrode plate, which were respectively changed in the range, were obtained. A control valve type lead-acid battery having a nominal voltage of 12 V and a rated capacity of 15 Ah is configured by using a mat separator made of these positive and negative electrode plates and a nonwoven fabric of glass fibers having an average fiber diameter of 0.9 μm. Incidentally, the electrode plate group pressure was varied variously 30.0kg / dm 2 ~90.0kg / dm 2 .
[0016]
These batteries were discharged at −15 ° C. and 150 A, the discharge voltage at 5 seconds from the start of discharge was measured, and the product with the discharge current was calculated to confirm the battery output. These results are shown in Tables 1 to 3. The results indicate that the discharge start of the battery was performed with the positive electrode active material having a specific surface area of 4.0 m 2 / g, the negative electrode active material having a specific surface area of 0.6 m 2 / g, and an electrode plate group pressure of 30.0 kg / dm 2. It is shown as an index when the output at 5 seconds is taken as 100.
[0017]
[Table 1]
Figure 0004140277
[0018]
[Table 2]
Figure 0004140277
[0019]
[Table 3]
Figure 0004140277
[0020]
From the results shown in Tables 1 to 3, both the negative electrode and the positive electrode tend to increase the battery output as the specific surface area of the active material increases. The tendency is remarkable in the region where the specific surface area of the positive electrode active material is 5.0 m 2 / g or more and the specific surface area of the negative electrode active material is 0.8 m 2 / g or more. However, not be expected the increase of the output of the battery even 1.4 m 2 / g, exceed 8.0 m 2 / g in the positive electrode 1.6 m 2 / g and 9.0 m 2 / g active material specific surface area in each of the negative electrode .
[0021]
Further, the output increase with the increase in such a specific surface area electrode plate group pressure is observed in the range of 30.0kg / dm 2 ~90.0kg / dm 2 . However, in the range where the electrode plate group pressure is 50.0 kg / dm 2 or more, an increase in output appears significantly compared to the case of 30.0 kg / dm 2 .
[0022]
Thus, the electrode plate group pressure of 50.0 kg / dm 2 or more and a specific surface area of the cathode active material 5.0m 2 /g~8.0m 2 / g, a specific surface area of the negative electrode active material 0.8 m 2 / By setting g to 1.4 m 2 / g, the battery output at low temperatures can be remarkably increased.
[0023]
Next, these batteries were evaluated for deep discharge life characteristics in which a relatively deep discharge occurs. As a life test condition, the battery was completely discharged by discharging it to 10.5 V at 3.75 A corresponding to 0.25 CA in an atmosphere of 25 ° C. Subsequently to this discharge, the battery was charged with a constant voltage of 14.7 V (maximum charging current 6 0.0A) complete discharge in which charging is performed for 8 hours-full charge was defined as one cycle, and the number of life cycles was determined with the time when the discharge duration during discharge decreased to 50% of the initial stage.
[0024]
These results are shown in Tables 4-6. In addition, the result is a battery life cycle in which the specific surface area of the positive electrode active material is 4.0 m 2 / g, the specific surface area of the negative electrode active material is 0.6 m 2 / g, and the electrode plate group pressure is 30.0 kg / dm 2. It was shown as an index when the number was 100.
[0025]
[Table 4]
Figure 0004140277
[0026]
[Table 5]
Figure 0004140277
[0027]
[Table 6]
Figure 0004140277
[0028]
From the results shown in Tables 4 to 6, in both the negative electrode and the positive electrode, the number of life cycles decreases as the specific surface area of the active material increases. The tendency is remarkable when the electrode plate group pressure is 30.0 kg / dm 2 . By setting the electrode group pressure to 50.0 kg / dm 2 or more, it is possible to suppress a decrease in the number of life cycles accompanying an increase in the active material specific surface area. However, the specific surface area of the positive electrode active material is increased to 9.0 m 2 / g or the specific surface area of the negative electrode active material is increased to 1.6 m 2 / g even in a region where the electrode plate group pressure is 50.0 kg / dm 2 or more. And the number of life cycles decreases.
[0029]
As a result of disassembling the battery for which the life test was completed, in the region where the electrode plate group pressure was 30.0 kg / dm 2 , as the specific surface area of the positive electrode active material and the negative electrode active material increased, softening of the positive electrode active material, The accumulation of lead sulfate tended to progress.
[0030]
These results, in valve-regulated lead-acid battery, the electrode plate group pressure 50.0 kg / dm 2 or more and a specific surface area of the active material in the positive electrode active material 5.0m 2 /g~8.0m 2 / g, with 0.80m 2 /g~1.4m 2 / g in the negative electrode active material, it is possible that both achieving both output characteristics and the deep discharge cycle life characteristics at low temperatures rapid discharge.
[0031]
【The invention's effect】
As described above, according to the configuration of the present invention, the output characteristics are improved, and the positive electrode active material softening and dropping and the accumulation of lead sulfate in the positive electrode active material and the negative electrode active material are suppressed in the deep charge / discharge cycle life, and the low temperature output characteristics The improvement of the process and the deep discharge life can be achieved at the same time, and its industrial value is extremely large.

Claims (1)

制御弁式鉛蓄電池において、化成後の正極活物質の比表面積を5.0m2 /g〜8.0m2 /g、かつ化成後の負極活物質の比表面積を0.80m2 /g〜1.4m2 /gとして、正極板と負極板間にガラス繊維を主成分とするマットセパレータを介在させた極板群を電槽に収納させた状態で50.0kg/dm2 以上の群圧で加圧していることを特徴とする制御弁式鉛蓄電池。Valve regulated in lead-acid batteries, chemical conversion after 5.0 m 2 specific surface area of the positive electrode active material of /g~8.0m 2 / g, and a specific surface area of the negative electrode active material after the chemical conversion 0.80 m 2 / g to 1 .4 m 2 / g at a group pressure of 50.0 kg / dm 2 or more in a state where an electrode plate group in which a mat separator mainly composed of glass fibers is interposed between a positive electrode plate and a negative electrode plate is housed in a battery case. A control valve type lead-acid battery characterized by being pressurized.
JP2002145833A 2002-05-21 2002-05-21 Control valve type lead acid battery Expired - Lifetime JP4140277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145833A JP4140277B2 (en) 2002-05-21 2002-05-21 Control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145833A JP4140277B2 (en) 2002-05-21 2002-05-21 Control valve type lead acid battery

Publications (2)

Publication Number Publication Date
JP2003338312A JP2003338312A (en) 2003-11-28
JP4140277B2 true JP4140277B2 (en) 2008-08-27

Family

ID=29704993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145833A Expired - Lifetime JP4140277B2 (en) 2002-05-21 2002-05-21 Control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP4140277B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904674B2 (en) * 2004-08-27 2012-03-28 パナソニック株式会社 Lead acid battery
TWI333290B (en) * 2004-06-16 2010-11-11 Panasonic Corp Lead-acid battery
JP4771678B2 (en) * 2004-09-29 2011-09-14 古河電池株式会社 Open-type lead-acid battery for automobiles
JP5089176B2 (en) * 2007-01-12 2012-12-05 古河電池株式会社 Control valve type lead storage battery manufacturing method
CN102324498B (en) * 2011-08-25 2014-04-23 汕头猛狮兆成电动车辆技术有限公司 Carbon-lead film power battery
WO2016084858A1 (en) * 2014-11-27 2016-06-02 日立化成株式会社 Lead storage cell
JPWO2016121510A1 (en) * 2015-01-28 2017-08-31 日立化成株式会社 Lead-acid battery and automobile equipped with the same
JP7065126B2 (en) * 2020-01-07 2022-05-11 古河電池株式会社 Liquid lead-acid battery

Also Published As

Publication number Publication date
JP2003338312A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
EP1801902A2 (en) Lead acid battery
JP2011181436A (en) Lead acid battery
JP4140277B2 (en) Control valve type lead acid battery
JP2004281197A (en) Lead acid storage battery
JP5017746B2 (en) Control valve type lead acid battery
US7514179B2 (en) Control valve type lead battery
JP4470381B2 (en) Lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2002008644A (en) Method of manufacturing positive electrode plate for lead-acid battery
JP4566334B2 (en) Charge / discharge control method and charge / discharge control device for lead-acid battery
JP2006107984A (en) Manufacturing method of positive electrode plate for lead-acid battery and lead-acid battery using this positive electrode plate
JP3374462B2 (en) Sealed lead storage battery
JP4742424B2 (en) Control valve type lead acid battery
JP4984786B2 (en) Lead acid battery
JP4433770B2 (en) Current collector for lead acid battery
JP2003317711A (en) Formation method of lead storage battery
JP3216220B2 (en) Lead storage battery
JP2001126771A (en) Charging method for sealed lead-acid batteries
JP4529707B2 (en) Lead acid battery
JP2596273B2 (en) Anode plate for lead-acid battery
JP2001250589A (en) Charging method of sealed lead storage battery
JP2001085046A (en) Sealed lead-acid battery
JP2003100289A (en) Sealed lead acid battery and method of using the same
JP4923399B2 (en) Lead acid battery
JP2001157376A (en) Charging method for sealed lead-acid batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4140277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term