JP5082526B2 - Detector and water quality measuring device - Google Patents
Detector and water quality measuring device Download PDFInfo
- Publication number
- JP5082526B2 JP5082526B2 JP2007072056A JP2007072056A JP5082526B2 JP 5082526 B2 JP5082526 B2 JP 5082526B2 JP 2007072056 A JP2007072056 A JP 2007072056A JP 2007072056 A JP2007072056 A JP 2007072056A JP 5082526 B2 JP5082526 B2 JP 5082526B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- region
- sample water
- cell
- light receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 78
- 238000005259 measurement Methods 0.000 claims description 56
- 230000003287 optical effect Effects 0.000 claims description 31
- 238000001514 detection method Methods 0.000 claims description 17
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Landscapes
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
本発明は、配管を介して供給される飲料用の水の水質測定に用いる検出器及び水質測定装置に関するものである。 The present invention relates to a detector and a water quality measuring device used for measuring the quality of drinking water supplied via a pipe.
浄水源から各末端にいたる給水ラインの水質の管理は、特に都市部において、給水パイプが複雑に入り組んでいる場合に、パイプの材質の経年劣化の監視なども含めて、よりきめ細かい管理が必要になってきている。この場合、pH、導電率、濁度、色度及び残留塩素などの水質基準に係わる省令上の基本的な測定項目を測定する測定器を、複数の測定ポイントに配備することになる。これら基本的な測定項目のうち、pH、導電率及び残留塩素などは、被測定液体に電気化学的な電極を挿入することで測定が可能である。 Water quality management of the water supply line from the water purification source to each end requires more detailed management, including monitoring of aging of pipe materials, especially in urban areas where water supply pipes are complicated and complicated. It has become to. In this case, measuring instruments that measure basic measurement items in terms of ministerial ordinances related to water quality standards such as pH, conductivity, turbidity, chromaticity, and residual chlorine are provided at a plurality of measurement points. Among these basic measurement items, pH, conductivity, residual chlorine, and the like can be measured by inserting an electrochemical electrode into the liquid to be measured.
また、濁度及び色度は、光源からの光ビームを被測定液体に照射し、その透過光等を測定することで検出することが可能である。なお、濁度と色度は測定方式が互いに同じであることから、濁度と色度を同時に測定・補正する測定器がある。 Turbidity and chromaticity can be detected by irradiating a liquid to be measured with a light beam from a light source and measuring the transmitted light. Note that since turbidity and chromaticity are measured in the same manner, there is a measuring instrument that measures and corrects turbidity and chromaticity simultaneously.
ここで、測定水を貯留する測定水槽と、前記測定水槽に測定光路を形成する投光器と、前記投光器で生成された測定光路の光線を受光する受光器と、を備えた濁度計において気泡等の誤差要因を少なくするための技術が従来から提案されている(例えば、特許文献1参照)。
この特許文献1には、測定光路を形成する位置よりも上部位置から所定の入口通路を通じ緩衝手段を介して供給する測定水入口手段と、測定光路よりも下部位置から出口通路を通じて排水する測定水出口手段と、を有する構成が開示されている。この緩衝手段は、測定水の流量流速により開閉するフロートを入口通路の上部に設け、フロートで測定水の注ぎ具合を緩衝するように構成されている。そして、測定水槽の測定光路よりも上部位置から測定水をゆっくり流し込み、気泡を測定水槽内で拡散させないようにし、かつゆっくり流すことで上昇しやすい気泡との分離がしやすくなり測定水に溶け込んでいる気泡を測定光路を通過しないように迂回させて排出している。
Here, in a turbidimeter equipped with a measurement water tank for storing measurement water, a light projector for forming a measurement light path in the measurement water tank, and a light receiver for receiving a light beam of the measurement light path generated by the light projector, bubbles, etc. Conventionally, a technique for reducing the error factor has been proposed (see, for example, Patent Document 1).
This Patent Document 1 discloses measurement water inlet means for supplying via a buffer means through a predetermined inlet passage from a position higher than a position where a measurement optical path is formed, and measurement water drained from a lower position than the measurement optical path through an outlet passage. An arrangement having outlet means is disclosed. The buffer means is configured to provide a float that opens and closes depending on the flow rate of the measurement water at the upper portion of the inlet passage, and buffers the measurement water pouring state with the float. Then, slowly inject the measurement water from the position above the measurement optical path of the measurement water tank so that the bubbles do not diffuse in the measurement water tank, and it is easy to separate from the bubbles that tend to rise by flowing slowly, so that it dissolves in the measurement water. The air bubbles are detoured so that they do not pass through the measurement optical path.
上述したように、給水ラインの水質を管理するために測定器を複数の測定ポイントに配備することになるため、測定器について低コスト化及び小型化が要求されている。すなわち、最終的に需要家が飲用する配水管末端水の水質を測定してその値が適切であるかどうかを監視し、適切になるように管理するのが理想的な水質管理である。このため、需要家である家庭や集合住宅に設置するには、予算の制約によって測定器の単価や設置工事費用等を抑制する必要があり、また、設置場所等の制約によって測定器を小型化する必要がある。 As described above, since measuring instruments are arranged at a plurality of measurement points in order to manage the water quality of the water supply line, the measuring instruments are required to be reduced in cost and size. That is, the ideal water quality management is to measure the quality of the water at the end of the distribution pipe that is finally consumed by the customer, monitor whether the value is appropriate, and manage it appropriately. For this reason, to install in homes and collective houses that are consumers, it is necessary to control the unit price and installation cost of the measuring instrument due to budget constraints, and the measuring instrument is downsized due to restrictions such as installation location There is a need to.
もっとも、pH、導電率及び残留塩素などを測定する構成については、電気化学的な電極そのものを小さくすることで小型化が可能であり、また、各電極を集積化することによって更に小型・廉価化が可能になる。 However, the configuration for measuring pH, conductivity, residual chlorine, etc. can be reduced in size by reducing the size of the electrochemical electrode itself, and further reduced in size and cost by integrating each electrode. Is possible.
しかしながら、濁度及び色度を測定する構成については、光学的な原理に基づくものとなり、光学系が複雑になることから、小型・廉価化については困難である。更には、気泡等の誤差要因を少なくするための構成を低コストかつ小型で実現する構成については、従来から提案されている技術では対応することができない。すなわち、従来の構造では、低コスト化、小型化及び高精度化を図ることが困難である。 However, the configuration for measuring turbidity and chromaticity is based on the optical principle, and the optical system becomes complicated, so it is difficult to reduce the size and cost. Furthermore, a conventionally proposed technique cannot cope with a configuration that realizes a configuration for reducing an error factor such as bubbles at a low cost and a small size. That is, with the conventional structure, it is difficult to achieve cost reduction, downsizing, and high accuracy.
本発明は、以上のような技術的課題を解決するためになされたものであり、その目的とするところは、濁度及び色度を測定する構成について低コスト化及び小型化と共に精度の向上を可能にする検出器及び水質測定装置を提供することにある。 The present invention has been made to solve the technical problems as described above, and the object of the present invention is to reduce the cost and reduce the size and improve the accuracy of the configuration for measuring turbidity and chromaticity. It is an object of the present invention to provide a detector and a water quality measuring device that make it possible.
かかる目的のもと、本発明が適用される検出器は、床面、天井面及び壁部を含む複数の面で画成される領域を有し、試料水が当該領域に流入する流入部を当該床面に有し、試料水が当該領域から流出する流出部を当該天井面に有するセルと、前記セルの前記領域に試料水測定用の光を前記セルの壁部から発する発光部と、前記発光部により発せられる光を受ける受光部と、前記発光部および前記受光部と対向して配設される反射部と、を含み、前記発光部、前記受光部および前記反射部は、当該発光部から当該受光部に至る測定光路が1回反射のV字状になり、かつ、当該測定光路の上端と前記天井面との間に、前記領域内に流入した試料水に含まれる気泡が当該天井面に沿って前記流出部に向かって移動する際に前記測定光路内に入り込むことがないよう、所定の隙間が形成されるように配設され、前記発光部および前記受光部が配設されている側と前記反射部が配設されている側のいずれか一方の壁部の近傍に前記流入部は位置し、他方の壁部の近傍に前記流出部が位置し、前記流入部は、平面視で前記測定光路の外に位置することを特徴とするものである。 For this purpose, a detector to which the present invention is applied has a region defined by a plurality of surfaces including a floor surface, a ceiling surface, and a wall portion, and an inflow portion through which sample water flows into the region. A cell having an outflow part on the ceiling surface on which the sample water flows out from the area, and a light emitting part that emits light for measuring the sample water from the wall of the cell to the area of the cell, A light-receiving unit that receives light emitted from the light-emitting unit, and a light-emitting unit and a reflective unit that is disposed to face the light-receiving unit, wherein the light-emitting unit, the light-receiving unit, and the reflective unit measuring optical path to the light receiving portion is Ri Do the V-shaped reflection once from parts, and between the upper end and the ceiling surface of the measurement path, air bubbles contained in the sample water flowing into the inside area Enters into the measurement optical path when moving toward the outflow portion along the ceiling surface DOO as not, is disposed so that a predetermined gap is formed, the light emitting portion and the one wall on the side where the reflective portion and the side where the light receiving portion is disposed is arranged The inflow portion is located near the other wall portion, the outflow portion is located near the other wall portion, and the inflow portion is located outside the measurement optical path in plan view .
他の観点から捉えると、本発明が適用される水質測定装置は、濁度及び/又は色度を含む複数の項目を測定する水質測定装置であって、床面、天井面及び壁部を含む複数の面で画成される領域を有し、試料水が当該領域に流入する流入部を当該床面に有し、試料水が当該領域から流出する流出部を当該天井面に有するセルと、前記セルの前記領域に前記壁部から試料水測定用の光を発してその透過量と散乱量の少なくとも一方を検出する検出部と、前記検出結果を用いて試料水の濁度及び/又は色度を演算する演算部と、を含み、前記検出部は、前記セルの前記領域に試料水測定用の光を前記セルの壁部から発する発光部と、前記発光部により発せられる光を受ける受光部と、前記発光部および前記受光部と対向して配設される反射部と、を備え、前記発光部、前記受光部および前記反射部は、当該発光部から当該受光部に至る測定光路が1回反射のV字状になり、かつ、当該測定光路の上端と前記天井面との間に、前記領域内に流入した試料水に含まれる気泡が当該天井面に沿って前記流出部に向かって移動する際に当該測定光路内に入り込むことがないよう、所定の隙間が形成されるように配設され、前記発光部および前記受光部が配設されている側と前記反射部が配設されている側のいずれか一方の壁部の近傍に前記流入部は位置し、他方の壁部の近傍に前記流出部が位置し、前記流入部は、平面視で前記測定光路の外に位置することを特徴とするものである。 From another viewpoint, the water quality measuring device to which the present invention is applied is a water quality measuring device that measures a plurality of items including turbidity and / or chromaticity, and includes a floor surface, a ceiling surface, and a wall portion. A cell having an area defined by a plurality of surfaces, having an inflow portion on the floor surface where sample water flows into the region, and an outflow portion on the ceiling surface where sample water flows out from the region; A detection unit that emits light for measuring sample water from the wall to the region of the cell and detects at least one of a transmission amount and a scattering amount; and turbidity and / or color of the sample water using the detection result A detector that calculates the degree of light, and the detector is configured to emit light for measuring sample water from the wall of the cell to the region of the cell, and to receive light emitted by the light emitter. And a reflecting portion disposed to face the light emitting portion and the light receiving portion. For example, the light emitting portion, the light receiving portion and the reflecting portion, the measurement optical path from the light-emitting unit to the light receiving portion is Ri Do the V-shaped reflection once, and the upper end of the measurement path wherein the ceiling surface A predetermined gap is formed so that air bubbles contained in the sample water flowing into the region do not enter the measurement optical path when moving toward the outflow portion along the ceiling surface. The inflow portion is located in the vicinity of one of the wall portion on the side where the light emitting portion and the light receiving portion are disposed and the side where the reflecting portion is disposed, The outflow portion is located in the vicinity of the wall portion, and the inflow portion is located outside the measurement optical path in plan view.
本発明によれば、濁度及び色度を測定する構成について低コスト化及び小型化と共に精度の向上が可能になる。 According to the present invention, it is possible to improve the accuracy of the configuration for measuring turbidity and chromaticity as well as reducing the cost and size.
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
図1は、本実施の形態に係る検出器1を示す概略正面図であり、図2は、本実施の形態に係る検出器1を示す概略平面図である。
図1及び図2に示す検出器1は、試料水が流れる配管P1,P2に接続されるセル(測定槽、測定セル)2と、セル2内に光(試料水測定用の光)を照射する光源(発光部)3と、光源3からの光を受ける受光部4と、光源3及び受光部4の配置された壁部と対向する壁部に配置される反射ミラー5と、入射光強度を測定するための比較用受光部31と、を備えている。この検出器1は、透過光法を用いて試料水の濁度と色度の測定を行うものである。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a schematic front view showing a detector 1 according to the present embodiment, and FIG. 2 is a schematic plan view showing the detector 1 according to the present embodiment.
A detector 1 shown in FIGS. 1 and 2 irradiates a cell (measurement tank, measurement cell) 2 connected to pipes P1, P2 through which sample water flows, and light (light for measuring sample water) in the cell 2. A light source (light emitting unit) 3, a light receiving unit 4 that receives light from the light source 3, a
更に説明すると、検出器1は、セル2内に光を当ててその透過光を測定するものである。すなわち、測定した透過光の減衰の度合いが試料水中の懸濁物質の濃度に関連することを利用して濁度等を検出するものである。別の言い方をすると、試料水を透過する光が、試料水中の懸濁物や色度成分による吸収を受けて減衰するという性質を使用して濁度や色度を測定するものである。付言すると、光源3の比較用受光部31は、吸収がないときの光の強度(入射光強度)を測定するためのものである。
この検出器1には、いわゆるフローセルによる連続測定方式が採用されている。
More specifically, the detector 1 applies light to the cell 2 and measures the transmitted light. That is, turbidity and the like are detected by utilizing the fact that the measured degree of attenuation of transmitted light is related to the concentration of suspended substances in the sample water. In other words, turbidity and chromaticity are measured using the property that light transmitted through the sample water is attenuated by being absorbed by suspensions and chromaticity components in the sample water. In addition, the comparative
The detector 1 employs a so-called continuous measurement method using a flow cell.
光源3と受光部4とは互いに隣接して配設され、反射ミラー5は、光源3及び受光部4と離間して配設されている。このように、測定光路Oが1回反射のV字状となるように、光源3、受光部4及び反射ミラー5を配置している。したがって、検出器1の小型化を実現しつつ測定光路Oの長さを十分に確保することが可能になり、高精度な計測を可能にしている。
The light source 3 and the light receiving unit 4 are disposed adjacent to each other, and the
セル2は、床部(床面)23、天井部(天井面)24及び壁部(壁面)25を含む複数の面で画成される領域Aと、上流側の配管P1の上端に接続され、試料水を領域Aに供給する供給部(流入部)21と、下流側の配管P2の下端に接続され、領域Aから試料水を排出する排出部(流出部)22と、を備えている。すなわち、上流側の配管P1から供給部21を介して供給された試料水は、領域Aを通って排出部22から排出される。
なお、領域Aは、セル2の内部において水平方向(横方向)Hに延びて形成されている。
The cell 2 is connected to a region A defined by a plurality of surfaces including a floor portion (floor surface) 23, a ceiling portion (ceiling surface) 24, and a wall portion (wall surface) 25, and an upper end of the upstream pipe P1. And a supply part (inflow part) 21 for supplying the sample water to the area A and a discharge part (outflow part) 22 connected to the lower end of the downstream pipe P2 and for discharging the sample water from the area A. . That is, the sample water supplied from the upstream pipe P1 through the supply unit 21 is discharged from the discharge unit 22 through the region A.
The region A is formed so as to extend in the horizontal direction (lateral direction) H inside the cell 2.
ここで、図1に示すように、セル2の供給部21は、セル2の床部23に配設され、また、排出部22は、セル2の天井部24に配設されている。すなわち、試料水は、下から上に通水しており、そして、セル2の領域Aには、試料水が下方から供給され、セル2の領域Aの試料水は、上方に排出される。 Here, as shown in FIG. 1, the supply unit 21 of the cell 2 is disposed on the floor 23 of the cell 2, and the discharge unit 22 is disposed on the ceiling 24 of the cell 2. That is, the sample water flows from the bottom to the top, and the sample water is supplied to the region A of the cell 2 from below, and the sample water in the region A of the cell 2 is discharged upward.
また、セル2の領域A内において、セル2の天井部24と測定光路Oの上端との間には隙間寸法δの隙間が形成されている。この隙間寸法δは、後述するように、セル2の領域A内に試料水と共に流入した気泡が測定光路Oに入らないような寸法である。 Further, in the area A of the cell 2, a gap having a gap dimension δ is formed between the ceiling portion 24 of the cell 2 and the upper end of the measurement optical path O. As will be described later, the gap dimension δ is a dimension such that bubbles that have flowed into the region A of the cell 2 together with the sample water do not enter the measurement optical path O.
図2に示すように、供給部21と排出部22との平面視における位置は、互いに異なる。すなわち、供給部21は、光源3及び受光部4が配設されている側に位置し、また、排出部22は、反射ミラー5が配設されている側に位置している。このため、供給部21からセル2の領域Aに供給された試料水が滞留することなく排出部22から排出され、試料水の入れ替えが円滑に行われる。
As shown in FIG. 2, the positions of the supply unit 21 and the discharge unit 22 in plan view are different from each other. That is, the supply unit 21 is located on the side where the light source 3 and the light receiving unit 4 are disposed, and the discharge unit 22 is located on the side where the
更に説明すると、供給部21は、平面視において、光源3から反射ミラー5を経て受光部4に至る測定光路Oから外れる位置(測定光路Oの外)に配設され、また、排出部22は、測定光路Oに重なる位置に配設されている。付言すると、供給部21は、光源3と受光部4との間に位置するように配設され、また、排出部22は、反射ミラー5に隣接して配設されている。
More specifically, the supply unit 21 is disposed at a position deviating from the measurement optical path O from the light source 3 through the
次に、検出器1の作用について説明する。
図1に示すように、試料水が供給部21からセル2の領域Aに供給される際に試料水と共に供給部21から流入した気泡等は、その浮力により供給部21から垂直方向Vの上側(上方)に浮上していく。このとき、気泡等は、測定光路Oを横切ることなく供給部21から上方に進み(図2参照)、やがて天井部24ないしは天井部24付近に到達する。
Next, the operation of the detector 1 will be described.
As shown in FIG. 1, when sample water is supplied from the supply unit 21 to the region A of the cell 2, bubbles and the like that have flowed from the supply unit 21 together with the sample water are upward from the supply unit 21 in the vertical direction V due to the buoyancy. Ascend (upward). At this time, bubbles or the like proceed upward from the supply unit 21 without crossing the measurement optical path O (see FIG. 2), and eventually reach the ceiling 24 or the vicinity of the ceiling 24.
セル2の領域A内では、試料水は排出部22に向けて流れる。このため、天井部24に到達した気泡等は、この試料水の流れに従って排出部22へ進み、そして、試料水と共に排出部22から配管P2に排出される。その際に、気泡等は、測定光路Oよりも上方を通り、測定光路Oに入り込まない。 In the area A of the cell 2, the sample water flows toward the discharge unit 22. For this reason, bubbles or the like that have reached the ceiling portion 24 proceed to the discharge portion 22 according to the flow of the sample water, and are discharged together with the sample water from the discharge portion 22 to the pipe P2. At that time, bubbles or the like pass above the measurement optical path O and do not enter the measurement optical path O.
このように、供給部21から試料水と共に流入した気泡等は、図1に気泡の流れとして破線で示すように、測定光路Oにかからないように、その浮力で上昇し、かつ、試料水の流れに乗って排出部22から排出される。このため、気泡等が光学的な測定に影響を及ぼさない。 As described above, the bubbles and the like that flowed together with the sample water from the supply unit 21 rise as a result of the buoyancy so as not to enter the measurement optical path O as shown by the broken line in FIG. And is discharged from the discharge unit 22. For this reason, bubbles and the like do not affect the optical measurement.
更に説明すると、セル2の供給部21から試料水を供給する前に気泡等を積極的に除去しなくても済み、また、セル2の供給部21から気泡等と共に試料水が供給された後に気泡等の動きを積極的に制御する装置を用いなくても済むので、簡易な構成で気泡等の影響を排除することができる。すなわち、測定に際し気泡等の影響を受けない検出器1を小型かつ低コストで実現することが可能になる。 More specifically, it is not necessary to positively remove bubbles or the like before supplying sample water from the supply unit 21 of the cell 2, and after sample water is supplied from the supply unit 21 of the cell 2 together with bubbles or the like. Since it is not necessary to use a device that actively controls the movement of bubbles and the like, the influence of bubbles and the like can be eliminated with a simple configuration. That is, the detector 1 that is not affected by bubbles or the like during measurement can be realized in a small size and at low cost.
なお、本実施の形態では、セル2の天井部24を水平方向Hに延びるように形成されているが、より円滑に排出部22に向かう気泡等の流れを形成するために、排出部22の位置が上側に位置するようにセル2の天井部24を傾斜させることも考えられる。 In the present embodiment, the ceiling portion 24 of the cell 2 is formed so as to extend in the horizontal direction H. However, in order to form a flow of bubbles or the like toward the discharge portion 22 more smoothly, It is also conceivable to incline the ceiling portion 24 of the cell 2 so that the position is located on the upper side.
ここで、図3は、変形例に係る検出器1を示す概略平面図である。なお、図3に示す検出器1の基本的な構成は、図1及び図2に示す検出器1と共通するため、その説明を省略する。
図3に示す検出器1のセル2M1は、平面視で略台形形状であり、セル2M1の領域Aを必要最小限にすることが可能になる。このため、図2に示す矩形形状のセル2に比べて、供給部21からセル2M1の領域Aに供給された試料水の滞留を防止することができ、また、外形をコンパクトに構成することが可能になる。
また、セル2M1は、平面視で供給部21の位置から排出部22の方向に進むに従って天井部24の幅方向寸法が狭くなる所謂くさび形状に形成されている。このため、供給部21から上方に進んで天井部24に到達した気泡等は、円滑に排出部22から排出される。
Here, FIG. 3 is a schematic plan view showing the detector 1 according to a modification. The basic configuration of the detector 1 shown in FIG. 3 is the same as that of the detector 1 shown in FIGS.
The cell 2M1 of the detector 1 shown in FIG. 3 has a substantially trapezoidal shape in plan view, and the area A of the cell 2M1 can be minimized. For this reason, compared with the rectangular cell 2 shown in FIG. 2, the retention of the sample water supplied from the supply unit 21 to the region A of the cell 2M1 can be prevented, and the outer shape can be made compact. It becomes possible.
Further, the cell 2M1 is formed in a so-called wedge shape in which the dimension in the width direction of the ceiling portion 24 becomes narrower as it proceeds from the position of the supply portion 21 toward the discharge portion 22 in plan view. For this reason, bubbles or the like that have traveled upward from the supply unit 21 and reached the ceiling 24 are smoothly discharged from the discharge unit 22.
また、図4は、別の変形例に係る検出器1を示す概略平面図である。なお、図4に示す検出器1の基本的な構成は、図1及び図2に示す検出器1と共通するため、その説明を省略する。
図4に示す検出器1のセル2M2は、平面視で略円形形状である。このため、設置するスペースが円形状であれば、図4に示す検出器1を用いることで、スペース的に有利である。また、矩形形状の場合に比べてセル2M2の製造が容易になり、製造コストを低減することが可能になる。
FIG. 4 is a schematic plan view showing a detector 1 according to another modification. The basic configuration of the detector 1 shown in FIG. 4 is the same as that of the detector 1 shown in FIGS.
The cell 2M2 of the detector 1 shown in FIG. 4 has a substantially circular shape in plan view. For this reason, if the installation space is circular, using the detector 1 shown in FIG. 4 is advantageous in terms of space. Further, the cell 2M2 can be easily manufactured as compared with the rectangular shape, and the manufacturing cost can be reduced.
図5は、検出器1が適用される水質測定装置100の構成を説明するためのブロック図である。上述した検出器1は、濁度及び色度を含む多項目の水質測定を行う水質測定装置に適用することができる。なお、図5では、検出器1が検出部101の一部を構成するものとして図示している。
図5に示す水質測定装置100は、濁度及び色度を含む多項目を検出する検出部101と、検出部101にユーザが動作指示を与えるための指示部102と、検出部101の検出結果に基づいて演算を行うと共に各部の制御を行う演算制御部103と、演算制御部103による演算結果を表示する表示部104と、検出部101の検出結果を記憶すると共に演算制御部103が用いる各種のデータを記憶する記憶部105と、を含むものである。
FIG. 5 is a block diagram for explaining the configuration of the water quality measuring apparatus 100 to which the detector 1 is applied. The above-described detector 1 can be applied to a water quality measuring device that performs multi-item water quality measurement including turbidity and chromaticity. In FIG. 5, the detector 1 is illustrated as constituting a part of the
A water quality measurement apparatus 100 shown in FIG. 5 includes a
ここで、検出部101の検出結果としては、比較用受光部31の検出結果及び受光部4の検出結果が含まれる。すなわち、濁度及び色度の測定について簡単に説明すると、光源3(図2参照)から出射された光を試料水中に透過させて受光部4がその光を受光する。
そして、演算制御部103は、比較用受光部31の検出結果としての電気信号及び受光部4の検出結果としての電気信号に基づいて光の減衰の度合いを求め、記憶部105に予め記憶されている所定の演算式を用いて濁度及び色度を演算する。
Here, the detection result of the
Then, the
なお、演算制御部103は、例えばCPU等で構成することができる。また、表示部104は、例えばデジタル表示器等で構成することができ、記憶部105は、例えば不揮発性メモリ等で構成することができる。
Note that the
1…検出器、2,2M1,2M2…セル、21…供給部、22…排出部、23…床部、24…天井部、25…壁部、3…光源、31…比較用受光部、4…受光部、5…反射ミラー、100…水質測定装置、101…検出部、102…指示部、103…演算制御部、104…表示部、105…記憶部、A…領域、H…水平方向、O…測定光路、P1,P2…配管、V…垂直方向、δ…隙間寸法 DESCRIPTION OF SYMBOLS 1 ... Detector, 2, 2M1, 2M2 ... Cell, 21 ... Supply part, 22 ... Discharge part, 23 ... Floor part, 24 ... Ceiling part, 25 ... Wall part, 3 ... Light source, 31 ... Light receiving part for comparison, 4 DESCRIPTION OF SYMBOLS ... Light-receiving part, 5 ... Reflection mirror, 100 ... Water quality measuring device, 101 ... Detection part, 102 ... Instruction part, 103 ... Calculation control part, 104 ... Display part, 105 ... Memory | storage part, A ... Area | region, H ... Horizontal direction, O ... Measurement optical path, P1, P2 ... Piping, V ... Vertical direction, δ ... Gap size
Claims (2)
前記セルの前記領域に試料水測定用の光を前記セルの壁部から発する発光部と、
前記発光部により発せられる光を受ける受光部と、
前記発光部および前記受光部と対向して配設される反射部と、
を含み、
前記発光部、前記受光部および前記反射部は、当該発光部から当該受光部に至る測定光路が1回反射のV字状になり、かつ、当該測定光路の上端と前記天井面との間に、前記領域内に流入した試料水に含まれる気泡が当該天井面に沿って前記流出部に向かって移動する際に当該測定光路内に入り込むことがないよう、所定の隙間が形成されるように配設され、
前記発光部および前記受光部が配設されている側と前記反射部が配設されている側のいずれか一方の壁部の近傍に前記流入部は位置し、他方の壁部の近傍に前記流出部が位置し、
前記流入部は、平面視で前記測定光路の外に位置することを特徴とする検出器。 It has a region defined by a plurality of surfaces including a floor surface, a ceiling surface, and a wall portion, and has an inflow portion on the floor surface through which sample water flows into the region, and an outflow from which sample water flows out from the region. A cell having a portion on the ceiling surface;
A light emitting unit that emits light for measuring sample water from the wall of the cell to the region of the cell;
A light receiving portion for receiving light emitted by the light emitting portion;
A reflecting portion disposed to face the light emitting portion and the light receiving portion;
Including
The light emitting portion, the light receiving portion and the reflecting portion, the measurement optical path from the light-emitting unit to the light receiving portion is Ri Do the V-shaped reflection once, and, between the upper end and the ceiling surface of the measurement path in, so as not to enter into the measurement optical path when the air bubbles contained in the sample water flowing into the region to move toward the outlet portion along the ceiling surface, so that a predetermined gap is formed Arranged in
The inflow portion is located in the vicinity of one of the walls on the side where the light emitting portion and the light receiving portion are disposed and the side on which the reflecting portion is disposed, and near the other wall portion. The outflow is located,
The detector is characterized in that the inflow portion is located outside the measurement optical path in plan view.
床面、天井面及び壁部を含む複数の面で画成される領域を有し、試料水が当該領域に流入する流入部を当該床面に有し、試料水が当該領域から流出する流出部を当該天井面に有するセルと、
前記セルの前記領域に前記壁部から試料水測定用の光を発してその透過量と散乱量の少なくとも一方を検出する検出部と、
前記検出結果を用いて試料水の濁度及び/又は色度を演算する演算部と、
を含み、
前記検出部は、
前記セルの前記領域に試料水測定用の光を前記セルの壁部から発する発光部と、
前記発光部により発せられる光を受ける受光部と、
前記発光部および前記受光部と対向して配設される反射部と、
を備え、
前記発光部、前記受光部および前記反射部は、当該発光部から当該受光部に至る測定光路が1回反射のV字状になり、かつ、当該測定光路の上端と前記天井面との間に、前記領域内に流入した試料水に含まれる気泡が当該天井面に沿って前記流出部に向かって移動する際に当該測定光路内に入り込むことがないよう、所定の隙間が形成されるように配設され、
前記発光部および前記受光部が配設されている側と前記反射部が配設されている側のいずれか一方の壁部の近傍に前記流入部は位置し、他方の壁部の近傍に前記流出部が位置し、
前記流入部は、平面視で前記測定光路の外に位置することを特徴とする水質測定装置。 A water quality measuring device for measuring a plurality of items including turbidity and / or chromaticity,
It has a region defined by a plurality of surfaces including a floor surface, a ceiling surface, and a wall portion, and has an inflow portion on the floor surface through which sample water flows into the region, and an outflow from which sample water flows out from the region. A cell having a portion on the ceiling surface;
A detector that emits light for measuring sample water from the wall to the region of the cell and detects at least one of the transmitted amount and the scattered amount;
A calculation unit for calculating the turbidity and / or chromaticity of the sample water using the detection result;
Including
The detector is
A light emitting unit that emits light for measuring sample water from the wall of the cell to the region of the cell;
A light receiving portion for receiving light emitted by the light emitting portion;
A reflecting portion disposed to face the light emitting portion and the light receiving portion;
With
The light emitting portion, the light receiving portion and the reflecting portion, the measurement optical path from the light-emitting unit to the light receiving portion is Ri Do the V-shaped reflection once, and, between the upper end and the ceiling surface of the measurement path in, so as not to enter into the measurement optical path when the air bubbles contained in the sample water flowing into the region to move toward the outlet portion along the ceiling surface, so that a predetermined gap is formed Arranged in
The inflow portion is located in the vicinity of one of the walls on the side where the light emitting portion and the light receiving portion are disposed and the side on which the reflecting portion is disposed, and near the other wall portion. The outflow is located,
The water quality measuring device, wherein the inflow portion is located outside the measurement optical path in plan view.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007072056A JP5082526B2 (en) | 2007-03-20 | 2007-03-20 | Detector and water quality measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007072056A JP5082526B2 (en) | 2007-03-20 | 2007-03-20 | Detector and water quality measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008232790A JP2008232790A (en) | 2008-10-02 |
JP5082526B2 true JP5082526B2 (en) | 2012-11-28 |
Family
ID=39905769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007072056A Active JP5082526B2 (en) | 2007-03-20 | 2007-03-20 | Detector and water quality measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5082526B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013088302A (en) * | 2011-10-19 | 2013-05-13 | Dkk Toa Corp | Detector and water quality measuring instrument |
JP2013186096A (en) * | 2012-03-11 | 2013-09-19 | Hideki Tsujimura | Transparency measuring instrument |
CN107340237B (en) * | 2017-09-08 | 2021-01-29 | 中清盈创(深圳)科技有限公司 | Water quality on-line monitoring device based on light emitting diode |
CN115552220A (en) * | 2020-05-15 | 2022-12-30 | 株式会社堀场先进技术 | Optical measurement device and water quality analysis system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5198085A (en) * | 1975-02-25 | 1976-08-28 | Kidannodono kenshitsukan | |
JPS6325530A (en) * | 1986-07-17 | 1988-02-03 | Kanebo Ltd | Turbidity measuring apparatus |
JPH09113440A (en) * | 1995-10-24 | 1997-05-02 | Meidensha Corp | Optical concentration measuring apparatus |
JP3676894B2 (en) * | 1996-07-29 | 2005-07-27 | 株式会社アプリクス | Optical analysis cell |
US20060068490A1 (en) * | 2004-03-05 | 2006-03-30 | Cha-Mei Tang | Flow-through chemical and biological sensor |
-
2007
- 2007-03-20 JP JP2007072056A patent/JP5082526B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008232790A (en) | 2008-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5082526B2 (en) | Detector and water quality measuring device | |
EP1949081A1 (en) | Photometric method and apparatus for measuring a liquid's turbidity, fluorescence, phosphorescence and/or absorption coefficient | |
SE455134B (en) | SET AND DEVICE FOR OPTICAL ANALYSIS IN FLOW CUVET | |
JP2016033503A (en) | Liquid detection sensor | |
JP6069999B2 (en) | Water quality measuring device | |
US20090320552A1 (en) | Parallel flow meter device for measuring flow rate in pipes | |
JP4232361B2 (en) | Water quality measuring instrument | |
JP6225522B2 (en) | Water quality measuring device | |
JP2008191119A (en) | Flow cell for fluid sample | |
JP4284077B2 (en) | Water quality meter | |
JP2011237191A (en) | Turbidity detector | |
JP7559061B2 (en) | Optical measuring device and water quality analysis system | |
US20060050279A1 (en) | Particle size distribution measurement device | |
JP7071620B2 (en) | Optical measuring device and sensitivity calibration method for optical measuring device | |
JP2013120064A (en) | Turbidity chromaticity meter | |
JP2008070245A (en) | Flow cell for fluid sample | |
JP3211196B2 (en) | Pipe turbidity evaluation device | |
JP2013088302A (en) | Detector and water quality measuring instrument | |
JP2006234606A (en) | Turbidimeter | |
JP2006208022A (en) | Turbidimeter | |
JP2009250767A (en) | Oil film detector and method of detecting oil film | |
JP2007285855A (en) | Liquid level detector and refrigerator | |
JP2006234388A (en) | Fluid leakage sensor | |
JP2006200959A (en) | Turbimeter | |
JP4963911B2 (en) | Appropriate water level measuring device for free surface of circulating water tank using laser light and proper water level measuring method using this device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120216 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120612 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120619 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120807 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120820 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5082526 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150914 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150914 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |