[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5071714B2 - 蛍光体、その製造方法およびそれを用いた発光器具 - Google Patents

蛍光体、その製造方法およびそれを用いた発光器具 Download PDF

Info

Publication number
JP5071714B2
JP5071714B2 JP2007282957A JP2007282957A JP5071714B2 JP 5071714 B2 JP5071714 B2 JP 5071714B2 JP 2007282957 A JP2007282957 A JP 2007282957A JP 2007282957 A JP2007282957 A JP 2007282957A JP 5071714 B2 JP5071714 B2 JP 5071714B2
Authority
JP
Japan
Prior art keywords
phosphor
crystal
aalsion
excitation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007282957A
Other languages
English (en)
Other versions
JP2009108223A (ja
Inventor
尚登 広崎
遠強 李
栄軍 解
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007282957A priority Critical patent/JP5071714B2/ja
Publication of JP2009108223A publication Critical patent/JP2009108223A/ja
Application granted granted Critical
Publication of JP5071714B2 publication Critical patent/JP5071714B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Luminescent Compositions (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Led Device Packages (AREA)

Description

本発明は、AAlSiON結晶(ただし、Aは、Li、NaおよびKからなる群から少なくとも1つ選択される元素ある)、または、その固溶体結晶を母体結晶とする蛍光体、その製造方法およびその用途に関する。さらに詳細には、該用途は該蛍光体の有する性質、すなわち400nm以上700nm以下の波長にピークを持つ光を発する特性を利用した照明器具および画像表示装置の発光器具に関する。
蛍光体は、蛍光表示管(VFD(Vacuum−Fluorescent Display))、フィールドエミッションディスプレイ(FED(Field Emission Display)またはSED(Surface−Conduction Electron−Emitter Display))、プラズマディスプレイパネル(PDP(Plasma Display Panel))、陰極線管(CRT(Cathode−Ray Tube))、白色発光ダイオード(LED(Light−Emitting Diode))などに用いられている。これらのいずれの用途においても、蛍光体を発光させるためには、蛍光体を励起するためのエネルギーを蛍光体に供給する必要があり、蛍光体は真空紫外線、紫外線、電子線、青色光などの高いエネルギーを有した励起源により励起されて、可視光線を発する。しかしながら、蛍光体は前記のような励起源に曝される結果、蛍光体の輝度が低下し易く、輝度低下のない蛍光体が求められている。そのため、従来のケイ酸塩蛍光体、リン酸塩蛍光体、アルミン酸塩蛍光体、硫化物蛍光体などの蛍光体に代わり、輝度低下の少ない蛍光体として、サイアロン蛍光体、酸窒化物蛍光体、窒化物蛍光体などの、結晶構造に窒素を含有する無機結晶を母体とする蛍光体が提案されている。
サイアロン蛍光体の一例は、概略以下に述べるような製造プロセスによって製造される。まず、窒化ケイ素(Si)、窒化アルミニウム(AlN)、酸化ユーロピウム(Eu)を所定のモル比に混合し、1気圧(0.1MPa)の窒素中において1700℃の温度で1時間保持してホットプレス法により焼成して製造される(例えば、特許文献1参照)。このプロセスで得られるEu2+イオンを付活したαサイアロンは、450から500nmの青色光で励起されて550から600nmの黄色の光を発する蛍光体となることが報告されている。また、β型サイアロンに希土類元素を添加した蛍光体(特許文献2参照)が知られており、Tb、Yb、Agを付活したものは525nmから545nmの緑色を発光する蛍光体となることが示されている。さらに、β型サイアロンにEu2+を付活した緑色の蛍光体(特許文献3参照)が知られている。
酸窒化物蛍光体の一例は、JEM相(LaAl(Si6−zAl)N10−z)を母体結晶としてCeを付活させた青色蛍光体(特許文献4参照)、LaSi11を母体結晶としてCeを付活させた青色蛍光体(特許文献5参照)が知られている。
窒化物蛍光体の一例は、CaAlSiNを母体結晶としてEu2+を付活させた赤色蛍光体(特許文献6参照)が知られている。また、AlNを母体とする蛍光体として、非特許文献1には、3価のEuイオンを添加した蛍光体(即ちAlN:Eu3+)を室温でマグネトロンスパッタリング法により非晶質セラミックス薄膜を合成し、580nm〜640nmにEu3+イオンからの発光ピークを有するオレンジ色あるいは赤色蛍光体が得られたと報告されている。非特許文献2には、非晶質AlN薄膜にTb3+を付活した蛍光体が電子線励起で543nmにピークを持つ緑色に発光すると報告されている。非特許文献3にはAlN薄膜にGd3+を付活した蛍光体が報告されている。しかし、これらのAlN基の蛍光体はいずれも照明や画像表示装置用途に向かない非晶質の薄膜である。
電子線を励起源とする画像表示装置(VFD、FED、SED、CRT)用途の青色蛍光体としては、YSiOを母体結晶としてCeを固溶させた蛍光体(特許文献7)やZnSにAgなどの発光イオンを固溶させた蛍光体(特許文献8)が報告されている。
特許第3668770号明細書 特開昭60−206889号公報 特開2005−255895号公報 国際公開第2005/019376号パンフレット 特開2005−112922号公報 国際公開第2005/052087号パンフレット 特開2003−55657号公報 特開2004−285363号公報 Meghan L. Caldwell、他、「Visible Luminescent Activation of Amorphous AlN:Eu Thin−Film Phosphors with Osygen」、MRS Internet Journal Nitride Semiconductor Research、6巻、13号、1〜8ページ、2001年。 H.H.Richardson、他、「Thin−film electroluminescent devices grown on plastic substrates using an amorphous AlN:Tb3+ phosphor」、Applied Physics Letters、80巻、12号、2207〜2209ページ、2002年。 U.Vetter,他、「Intense ultraviolet cathodoluminescence at 318 nm from Gd3+−doped AlN」、Physics Letters、83巻、11号、2145〜2147ページ、2003年。
紫外LEDや青色LEDを励起源とする白色LEDの用途には、耐久性に優れ高い輝度を有する蛍光体が必要とされている。さらに、照明としての色の再現性(演色性)を向上させるために、紫色、青色、緑色、黄色、橙色、赤色などの様々な色の蛍光体が求められている。さらに、従来の酸窒化物をホスト(母体結晶)とする蛍光体は絶縁物質であり、電子線を照射しても、発光強度は低く、FEDなどの電子線励起の画像表示装置の用途には電子線で高輝度に発光する蛍光体が求められている。また、従来のサイアロン蛍光体、酸窒化物蛍光体に加えて、種々の材料からなる蛍光体があれば、用途に応じて適宜選択できるので、設計上好ましい。
電子線励起で用いられる特許文献7に開示される酸化物の蛍光体は、使用中に劣化して発光強度が低下するおそれがあり、画像表示装置で色バランスが変化するおそれがあった。特許文献8に開示される硫化物の蛍光体は、使用中に分解が起こり、硫黄が飛散してデバイスを汚染するおそれがあった。
本発明の目的は、このような要望に応えようとするものであり、従来の希土類付活サイアロン蛍光体、酸化物蛍光体とは異なる材料からなる蛍光体を提供することであり、中でも青色、青緑色、緑色および黄色の蛍光体粉体を提供しようというものである。さらに、電子線で効率よく発光する蛍光体粉体を提供しようというものである。
本発明者においては、かかる状況の下で、AAlSiON結晶(Aは、Li、NaおよびKからなる群から少なくとも1つ選択される元素)に着目し、AAlSiON結晶、または、AAlSiON固溶体結晶に、少なくとも金属イオンM(ただし、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、TmおよびYbからなる群から少なくとも1つ選択される元素)を固溶させた酸窒化物について鋭意研究を重ねた結果、特定の組成範囲、特定の固溶状態および特定の結晶相を有するものは、400nm以上700nm以下の範囲の波長に発光ピークを持つ蛍光体となることを見いだした。なかでも、M元素としてCeが固溶した特定の組成範囲のものは、紫外線や電子線励起で高い輝度の青色から青緑色の発光を有し、照明用途や、電子線で励起される画像表示装置に適することを見いだした。さらに、M元素としてEuが固溶した特定の組成範囲のものは、紫外線や電子線励起で高い輝度の緑色から黄色の発光を有し、照明用途や、電子線で励起される画像表示装置に適することを見いだした。
特許文献1から8および非特許文献1から3によれば、窒化物や酸窒化物セラミックスを母体結晶としてEuやCeイオンなどの光学活性なイオンを添加すると蛍光体となることは報告されているが、励起可能な波長や発光波長は母体結晶の種類と添加する光学活性イオンにより異なることが知られており、用途が異なる。
AAlSiON結晶、特に、LiAlSiON結晶は本発明者において初めて見いだされた結晶であり、光学活性なイオンを固溶させたAAlSiON結晶または固溶体結晶が紫外線および可視光や電子線またはX線で励起され高い輝度の発光を有する蛍光体として使用し得るという重要な発見は、本発明者において初めて見出されたものである。
この知見を基礎にしてさらに鋭意研究を重ねた結果、特定波長領域で高い輝度の発光現象を示す蛍光体とその蛍光体の製造方法、および優れた特性を有する照明器具、画像表示装置を提供することに成功した。以下に、それぞれより具体的に述べる。
(発明1)励起源からの励起エネルギーにより蛍光を発するAAlSiON結晶(ただし、Aは、Li、NaおよびKからなる群から少なくとも1つ選択される元素である)あるいはAAlSiONの固溶体結晶からなる蛍光体であって、前記AAlSiON結晶またはAAlSiONの固溶体結晶に、少なくともM元素(ただし、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、TmおよびYbからなる群から少なくとも1つ選択される元素である)を含有することを特徴とする。
(発明2)発明1に記載の蛍光体であって、前記AAlSiON結晶あるいはAAlSiONの固溶体結晶の結晶構造は、LiAlSiON結晶の結晶構造と同一の結晶構造を有することを特徴とする。
(発明3)発明1に記載の蛍光体であって、前記A元素はLiであることを特徴とする。
(発明4)発明1に記載の蛍光体であって、前記A元素として少なくともLiを含み、前記M元素として少なくともCeを含み、前記励起エネルギーにより、440nm以上520nm以下の範囲の波長にピークを持つ蛍光を発光することを特徴とする。
(発明5)発明1に記載の蛍光体であって、前記A元素として少なくともLiを含み、前記M元素として少なくともEuを含み、前記励起エネルギーにより、500nm以上570nm以下の範囲の波長にピークを持つ蛍光を発光することを特徴とする。
(発明6)発明1に記載の蛍光体であって、前記蛍光体は、組成式MAlSi(ただし、式中a+b+c+d+e+f=1とする)で示され、パラメータa、b、c、d、e、fは、
0.00001≦ a ≦0.1・・・・・・・・(i)
0.12≦ b ≦0.24・・・・・・・・・・(ii)
0.12≦ c ≦0.24・・・・・・・・・・(iii)
0.12≦ d ≦0.24・・・・・・・・・・(iv)
0.12≦ e ≦0.24・・・・・・・・・・(v)
0.24≦ f ≦0.40・・・・・・・・・・(vi)
以上の条件を満たすことを特徴とする。
(発明7)Mの金属、酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、Mを含む化合物またはそれらの組合せと、Aの金属、酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、Aを含む化合物またはそれらの組合せと、Alの金属、酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、Alを含む化合物またはそれらの組合せと、Siの金属、酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、Siを含む化合物またはそれらの組合せとを少なくとも含む原料混合物を、相対嵩密度40%以下の充填率に保持した状態で容器に充填した後に、0.1MPa以上100MPa以下の窒素雰囲気中において、1200℃以上2200℃以下の温度範囲で焼成することを特徴とする発明1に記載の蛍光体の製造方法。
(発明8)励起源と、それからの励起光により蛍光を発する蛍光体とからなる照明器具であって、前記励起源が330〜420nmの波長の励起光を発するものであり、前記蛍光体の少なくとも一部は、発明1〜6のいずれかに記載の蛍光体である照明器具。
(発明9)励起源と、それからの励起エネルギーにより蛍光を発する蛍光体とからなる画像表示装置であって、前記蛍光体の少なくとも一部は、発明1〜6のいずれかに記載の蛍光体である画像表示装置。
(発明10)発明9に記載の画像表示装置であって、前記画像表示装置は、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FEDまたはSED)または陰極線管(CRT)のいずれかであり、前記励起源は加速電圧10V以上30kV以下の電子線であることを特徴とする。
本発明の蛍光体は、発光中心となる金属イオンが固溶したAAlSi結晶またはその固溶体結晶を主成分として含有していることにより、400nm〜700nmでの発光強度が高く、白色LEDの用途の青色、青緑色、緑色および黄色蛍光体として優れている。励起源に曝された場合でも、この蛍光体は、輝度が低下し難い。さらに、電子線で効率よく発光するため、VFD、FED、SED、CRTなどに好適に使用され得る有用な蛍光体である。
以下、本発明の実施例について詳しく説明する。
本発明の蛍光体は、母体結晶としてAAlSiON結晶(ただし、A元素は、Li、NaおよびKからなる群から少なくとも1つ選択される元素である)、あるいは、AAlSiONの固溶体結晶を主成分として含む。
AAlSiON結晶またはAAlSiON固溶体結晶は、X線回折や中性子線回折により同定することができる。結晶構造の詳細は、後述する格子定数、空間群、原子位置のデータから結晶構造やX線回折パターンは一義的に決定される。また、純粋なAAlSiON結晶の他に、構成元素が他の元素と置き換わることにより格子定数が変化したものも本発明の一部として含まれる。
AAlSiON結晶またはAAlSiON固溶体結晶は、LiAlSiON結晶またはその固溶体結晶に属し、LiAlSiON結晶の結晶構造と同一の結晶構造を有する。具体的には、本発明者によるLiAlSiON結晶の結晶構造解析によれば、本結晶はCmc2(International Tables for Crystallographyの36番の空間群)に属し、後述する表2に示す原子座標位置を占める。なお、本明細書において、「同一の結晶構造を有する」とは、後述するように、表2から算出される化学結合の長さと測定によって算出される化学結合の長さとの差異が±15%以内の場合を意図する。
ここで、LiAlSiON結晶およびその固溶体結晶について詳述する。LiAlSiON結晶は、SiO結晶(鉱物名sinoite)やCaAlSiN結晶と類似の骨格を持つ。すなわち、CaAlSiN結晶のCaの位置をLiが占め、Nの位置の一部をOが占める結晶であり、元素が異なることに伴い原子座標が変化した構造である。LiAlSiON固溶体結晶とは、結晶の構成元素が他の元素と置き換わること、または、他の元素が結晶格子中に侵入することにより格子定数が変化した結晶を指す。
「構成元素が他の元素で置き換わる」とは、LiAlSiON結晶において、Siの位置が元素D(ただし、Dは4価の金属元素からなる群、好ましくはGe、Sn、Ti、ZrおよびHfからなる群から少なくとも1つ選択される元素)で置き換わる、Alの位置が元素E(ただしEは、3価の金属元素からなる群、好ましくはB、Ga、In、Sc、Y、La、GdおよびLuからなる群から少なくとも1つ選択される元素)で置き換わる、および/または、Nの位置あるいはOの位置が元素X(ただし、XはO、NおよびFからなる群から少なくとも1つ選択される元素)で置き変わることを意図する。
また、「他の元素が結晶格子中に侵入する」とは、Sc、Y、La、Lu、B、Ga、C、Ge、P、S、F、Clなどの元素が結晶格子内に位置することを意図する。この場合、固溶によりLiAlSiON結晶の固溶体結晶は、LiAlSiON結晶の構造を保ったまま、Al、Si、O、Nの一部またはすべてが他の元素で置換される、あるいは、他の元素が結晶中に侵入する。以降では、LiAlSiON結晶またはその固溶体結晶に属する結晶を簡単のためLiAlSiON属結晶と呼ぶ。
LiAlSiON属結晶は、その構成成分とするLi、Si、Al、OまたはNが他の元素で置き換わったり、Scなどの金属元素が固溶することによって格子定数は変化したりするが、結晶構造と原子が占めるサイトとその座標によって与えられる原子位置は骨格原子間の化学結合が切れるほどには大きく変わることはない。本発明では、X線回折や中性子線回折の結果をCmc2の空間群でリートベルト解析して求めた格子定数および原子座標から計算されたAl−NおよびSi−Nの化学結合の長さ(近接原子間距離)が、実施例中の表2に示すLiAlSiONの格子定数と原子座標から計算された化学結合の長さと比べて±15%以内の場合は同一の結晶構造と定義してLiAlSiON属結晶かどうかの判定を行う。この判定基準は、化学結合の長さが±15%を越えて変化すると化学結合が切れて別の結晶となるためである。
さらに、固溶量が小さい場合は、LiAlSiON属結晶の簡便な判定方法として次の方法がある。新たな物質について測定したX線回折結果から計算した格子定数と面指数を用いて計算した主要ピークの位置(2θ)が、実験値と計算値について一致したときに当該結晶構造が同じものと特定することができる。主要ピークとしては、回折強度の強い10本程度で判定すると良い。その意味で表2はLiAlSiON属結晶を特定する上において基準となるもので重要である。また、LiAlSiON属結晶の結晶構造を単斜晶系や六方晶系などの他の晶系を用いても近似的な構造を定義することができ、その場合異なった空間群と格子定数および面指数を用いた表現となるが、X線回折結果に変わりはなく、それを用いた同定方法や同定結果も同一の物となる。このため、本発明では、斜方晶系としてX線回折の解析を行うものとする。
次に、本発明の母体結晶であるAAlSiON結晶(ただし、A元素は、Li、NaおよびKからなる群から少なくとも1つ選択される元素である)について詳述する。本発明によるAAlSiON結晶は、LiAlSiON属結晶であり、X線回折や中性子線回折により同定することができ、上述のLiAlSiON結晶のX線回折結果と同一の回折を示す物質である。また、結晶の構成元素が他の元素と置き換わること、または、他の元素が結晶格子中に侵入することにより格子定数が変化した結晶をAAlSiON固溶体結晶と呼び、AAlSiON結晶に加えて、AAlSiON固溶体結晶もまた本発明の蛍光体を構成する母体結晶である。このようなAAlSiON固溶体結晶もまた、LiAlSiON属結晶であり、上述のLiAlSiON結晶のX線回折結果と同一の回折を示す物質である
「構成元素が他の元素で置き換わる」とは、AAlSiON結晶において、上述のSiの位置が元素Dで置き換わること、Alの位置が元素Eで置き換わること、および/または、Nの位置あるいはOの位置が元素Xで置き換わることに加えて、AAlSiON結晶において、Aの位置が、Li、NaおよびKからなる群から少なくとも1つ選択される元素で置き換わることを意図する。また、「他の元素が結晶格子中に侵入する」とは、上述したように、Sc、Y、La、Lu、B、Ga、C、Ge、P、S、F、Clなどの元素が結晶格子内に位置することを意図する。
本発明では、上述のAAlSiON結晶またはAAlSiON固溶体結晶を母体結晶として、これに光学活性な金属元素M(ただし、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、TmおよびYbからなる群から少なくとも1つ選択される元素)が固溶されることにより、優れた光学特性を持つ蛍光体となる。AAlSiON結晶またはその固溶体結晶の中でも、AがLi、すなわちLiAlSiON結晶またはその固溶体結晶を母体とする蛍光体は高輝度の蛍光体となる。
光学活性な金属元素Mのなかでも、Ce、EuまたはTbが固溶した蛍光体は高輝度の蛍光体となる。
A元素として少なくともLi、および、金属元素Mとして少なくともCeを含有する蛍光体は、励起源を照射することにより、440nm以上520nm以下の範囲の波長にピークを持つ青色あるいは緑色の蛍光を発する。励起源としては、紫外線、可視光、電子線、X線などで効率よく励起される。紫外線または可視光で励起する場合は、特に230nmから400nmの範囲の波長で効率よく励起される。本蛍光体は、真空紫外線や水銀原子が発する253.7nmの波長で発光するため、プラズマディスプレイ、蛍光灯、水銀ランプの用途に適している。また、紫外LED、紫LEDで効率よく発光するため、これらのLEDを励起源とする白色LEDの用途に適している。
A元素として少なくともLi、および、金属元素Mとして少なくともEuを含有する蛍光体は、励起源を照射することにより500nm以上570nm以下の範囲の波長にピークを持つ緑色あるいは黄色の蛍光を発する。励起源としては、紫外線、電子線、X線などで効率よく励起される。紫外線または可視光で励起する場合は、特に250nmから450nmの範囲の波長で効率よく励起される。本蛍光体は、真空紫外線や水銀原子が発する253.7nmの波長で発光するため、プラズマディスプレイ、蛍光灯、水銀ランプの用途に適している。また、紫外LEDおよび紫LEDが放つ光で効率よく発光するため、これらのLEDを励起源とする白色LEDの用途に適している。
3価あるいは2価のイオンを添加する場合は金属イオンの価数を考慮して電荷を補償することができる。Ce3+やEu2+イオンはAAlSiON結晶のAと置換すると考えられるので、AAlSiON結晶中においてSiをAlに置換する、または、OをNに置換することにより、電気的中性が保たれて結晶構造が安定化する。また、Aイオン2個を1個の2価イオン(例えばEu2+イオン)で置換する方法、Aイオン3個を1個の3価イオン(例えばCe3+イオン)で置換する方法によれば、電気的中性が保たれて結晶構造が安定化する。
本発明においては、SiとAlとの量、および、OとNとの量は、広い組成範囲をとることができる。特に、AAl1+zSi1−z1+z2−zとなる組成(ただし、0<z<0.5)は電気的中性が保たれるため安定な固溶体結晶であり、化学的安定性が高い。
本発明の蛍光体の組成は特に規定しないが、組成式MAlSi(ただし、式中a+b+c+d+e+f=1とする)で示され、パラメータa、b、c、d、e、fは、以下の条件を全て全て満たす値から選ばれる組成範囲は、発光強度が高いので好ましい。
0.00001≦ a ≦0.1
0.12≦ b ≦0.24
0.12≦ c ≦0.24
0.12≦ d ≦0.24
0.12≦ e ≦0.24
0.24≦ f ≦0.40
ここで、aは発光中心となる金属イオンMの添加量を表し、原子比で0.00001以上0.1以下となるようにするのがよい。ここで、Mとして2種以上の金属イオンを用いる場合は、a値はそれぞれの金属イオンの添加量の合計を表す。a値が0.00001より小さいと発光中心となるイオンの数が少ないため発光輝度が低下するおそれがある。0.1より大きいとイオン間の干渉により濃度消光を起こして輝度が低下するおそれがある。bはA元素の量であり、原子比で0.12以上0.24以下となるようにするのがよい。b値がこの範囲をはずれると結晶中の結合が不安定になりAAlSiON結晶または固溶体結晶以外の結晶相の生成割合が増え、発光強度が低下するおそれがある。A元素は、上述したようにLi、NaおよびKからなる群から選択される。cはAl元素の量であり、原子比で0.12以上0.24以下となるようにするのがよい。c値がこの範囲をはずれるとAAlSiON結晶または固溶体結晶以外の結晶相の生成割合が増え、発光強度が低下するおそれがある。dはSi元素の量であり、原子比で0.12以上0.24以下となるようにするのがよい。d値がこの範囲をはずれるとAAlSiON結晶または固溶体結晶以外の結晶相の生成割合が増え、発光強度が低下するおそれがある。eは酸素の量であり、0.12以上0.24以下となるようにするのがよい。e値がこの範囲をはずれるとAAlSiON結晶または固溶体結晶以外の結晶相の生成割合が増え、発光強度が低下するおそれがある。fは窒素の量であり、0.24以上0.40以下となるようにするのがよい。e値がこの範囲をはずれるとAAlSiON結晶または固溶体結晶以外の結晶相の生成割合が増え、発光強度が低下するおそれがある。さらに、AAlSiON結晶または固溶体結晶の結晶構造を崩さない範囲で、非金属イオンとしてフッ素や塩素などを含むことができる。
本発明の蛍光体を粉体として用いる場合は、樹脂への分散性や粉体の流動性などの点から平均粒径は、0.1μm以上20μm以下が好ましい。また、粉体をこの範囲の単結晶粒子とすることにより、より発光輝度が向上する。
本発明の蛍光体は、100nm以上450nm以下の波長を持つ紫外線または可視光で励起すると効率よく発光するので、白色LED用途に好ましい。さらに、本発明の蛍光体は、電子線またはX線によっても励起することができる。特に、電子線励起では、他の窒化物蛍光体より効率よく発光するため、電子線励起の画像表示装置の用途に好ましい。
本発明では、蛍光発光の点からは、その構成成分たるAAlSiON結晶または固溶体結晶は、高純度で極力多く含むこと、できれば単相から構成されていることが望ましいが、特性が低下しない範囲で他の結晶相あるいはアモルファス相との混合物から構成することもできる。この場合、AAlSiON結晶または固溶体結晶の含有量が10質量%以上、より好ましくは50質量%以上であることが高い輝度を得るために望ましい。本発明において主成分とする範囲は、AAlSiON結晶または固溶体結晶の含有量が少なくとも10質量%以上である。含有量の割合はX線回折測定を行い、AAlSiON結晶または固溶体結晶とそれ以外の結晶相についてリートベルト解析をすることにより求めることができる。簡易的には、AAlSiON結晶または固溶体結晶とそれ以外の結晶相について、それぞれの相の最強ピークの強さの比から求めることができる。
他の結晶相あるいはアモルファス相との混合物から構成される蛍光体において、導電性を持つ無機物質との混合物とすることができる。VFDやFEDなどにおいて、本発明の蛍光体を電子線で励起する場合には、蛍光体上に電子が溜まることなく外部に逃がすために、ある程度の導電性を持つことが好ましい。導電性物質としては、Zn、Ga、In、Snから選ばれる1種または2種以上の元素を含む酸化物、酸窒化物、または窒化物、あるいはこれらの混合物を挙げることができる。なかでも、酸化インジウムとインジウム−スズ酸化物(ITO)は、蛍光強度の低下が少なく、導電性が高いため好ましい。
本発明の蛍光体は組成により青、緑色、黄色の何れかに発色するが、他の色との混合が必要な場合は、必要に応じてこれらの色を発色する無機蛍光体を混合することができる。他の無機蛍光体としては、酸化物、硫化物、酸硫化物、酸窒化物、窒化物結晶を母体結晶とするものなどを使用することができるが、混合した蛍光体の耐久性が要求される場合は、酸窒化物や窒化物結晶をホストとするものがよい。酸窒化物や窒化物結晶をホストとする蛍光体としては、α−サイアロン:Euの黄色蛍光体、α−サイアロン:Ceの青色蛍光体、CaAlSiN:Euや(Ca、Sr)AlSiN:Euの赤色蛍光体(CaAlSiN結晶のCaの一部をSrで置換したもの)、JEM相をホストした青色蛍光体(LaAl(Si6−zAl)N10−z):Ce)、LaSi11:Ceの青色蛍光体、AlN:Euの青色蛍光体などを挙げることができる。
本発明の蛍光体は、組成により励起スペクトルと蛍光スペクトルとが異なり、これを適宜選択組み合わせることによって、さまざまな発光スペクトルを有してなるものに設定することができる。その態様は、用途に基づいて必要とされるスペクトルに設定すればよい。
本発明の蛍光体の製造方法は、特に限定されないが、一例として次の方法を挙げることができる。
金属元素M(Mは、Mn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、TmおよびYbからなる群から少なくとも1つ選択される元素である)の出発原料と、金属元素A(Aは、Li、NaおよびKからなる群から少なくとも1つ選択される元素である)の出発原料と、Alの出発原料と、Siの出発原料とを少なくとも含む原料混合物を、相対嵩密度40%(2/5)以下の充填率に保持した状態で容器に充填した後に、1×10−1MPa以上1×10MPa以下の窒素雰囲気中において、12×10℃以上22×10℃以下の温度範囲で焼成する。このようにすることより、AAlSiON結晶または固溶体結晶に、少なくとも、Mが固溶してなる本発明の蛍光体を製造することができる。最適焼成温度は組成により異なる場合もあり、適宜最適化することができる。一般的には、14×10℃以上20×10℃以下の温度範囲で焼成することが好ましい。このようにして高輝度の蛍光体が得られる。焼成温度が14×10℃より低いと、AAlSiON結晶または固溶体結晶の生成速度が低いことがある。また、焼成温度が22×10℃を超えると特殊な装置が必要となり工業的に好ましくない。
金属元素Mの出発原料は、Mの金属、酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、Mを含む化合物またはそれらの組合せである。例えば、MがMnの場合、炭酸マンガンまたは酸化マンガンを、MがCeの場合、酸化セリウムを、MがEuの場合、酸化ユーロピウムを用いるのが好ましい。Mを含む化合物とは、例えば、Mを含む有機物前駆体等の有機材料である。
金属元素Aの出発原料は、Aの金属、酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、Aを含む化合物またはそれらの組合せである。例えば、AがCaの場合、炭酸カルシウムまたは酸化カルシウムを用いるのが好ましい。Aを含む化合物とは、例えば、Aを含む有機物前駆体等の有機材料である。
Siの出発原料は、Siの金属、酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、Siを含む化合物またはそれらの組合せである。具体的には、金属ケイ素、酸化ケイ素、窒化ケイ素、ケイ素を含む有機物前駆体、シリコンジイミド、シリコンジイミドを加熱処理して得られたアモルファス体などを用いることができるが、一般的には窒化ケイ素と必要に応じて酸化ケイ素と窒化ケイ素の混合物を用いることができる。これらは、反応性に富み、高純度な合成物を得ることができることに加えて、工業原料として生産されており入手しやすい利点がある。窒化ケイ素としては、α型、β型、アモルファス体、およびこれらの混合物を用いることができる。
Alの出発原料は、Alの金属、酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、Alを含む化合物またはそれらの組合せである。具体的には、金属アルミニウム、酸化アルミニウム、窒化アルミニウム、アルミニウムを含む有機物前駆体などを用いることができるが、通常は窒化アルミニウムと必要に応じて窒化アルミニウムと酸化アルミニウムの混合物を用いるのがよい。これらは、反応性に富み、高純度な合成物を得ることができることに加えて、工業原料として生産されており入手しやすい利点がある。
焼成時の反応性を向上させるために、必要に応じて出発原料の混合物に、焼成温度以下の温度で液相を生成する無機化合物を添加することができる。無機化合物としては、反応温度で安定な液相を生成するものが好ましく、Li、Na、K、Mg、Ca、Sr、Ba、Alの元素のフッ化物、塩化物、ヨウ化物、臭化物、あるいはリン酸塩が適している。さらに、これらの無機化合物は、単体で添加するほか2種以上を混合してもよい。なかでも、フッ化カルシウムおよびフッ化アルミニウムは合成の反応性を向上させる能力が高いため好ましい。ただし、蛍光体の構成元素となっている無機化合物を添加する場合は、組成の変動に注意する必要がある。無機化合物の添加量は特に限定されないが、出発原料である金属化合物の混合物100重量部に対して、0.1重量部以上10重量部以下で、特に効果が大きい。0.1重量部より少ないと反応性の向上が少なく、10重量部を越えると蛍光体の輝度が低下するおそれがある。これらの無機化合物を添加して焼成すると、反応性が向上して、比較的短い時間で粒成長が促進されて粒径の大きな単結晶が成長し、蛍光体の輝度が向上する。
窒素雰囲気は1×10−1MPa以上1×10MPa以下の圧力範囲のガス雰囲気がよい。より好ましくは、5×10−1MPa以上1×10MPa以下がよい。窒化ケイ素を原料として用いる場合、1×10−1MPaより低い窒素ガス雰囲気中で182×10℃以上の温度に加熱すると、原料が熱分解し易くなるのであまり好ましくない。10MPaあれば十分であり、1×10MPaを超えると特殊な装置が必要となり、工業生産に向かない。
粒径数μmの微粉末を出発原料とする場合、混合工程を終えた金属化合物の混合物は、粒径数μmの微粉末が数百μmから数mmの大きさに凝集した形態をなす(以下「粉体凝集体」と呼ぶ)。本発明では、粉体凝集体を嵩密度40%(2/5)以下の充填率に保持した状態で焼成する。さらに好ましくは嵩密度20%(1/5)以下がよい。ここで、相対嵩密度とは、容器に充填された粉体の質量を容器の容積で割った値(嵩密度)と粉体の物質の真密度との比である。通常のサイアロンの製造では、加圧しながら加熱するホットプレス法や金型成形(圧粉)後に焼成を行なう製造方法が用いられるが、このときの焼成は粉体の充填率が高い状態で行われる。しかし、本発明では、粉体に機械的な力を加えることなく、また予め金型などを用いて成形することなく、混合物の粉体凝集体の粒度をそろえたものを、そのままの状態で容器などに嵩密度40%(2/5)以下の充填率で充填する。必要に応じて、該粉体凝集体を、ふるいや風力分級などを用いて、平均粒径5×10μm以下に造粒して粒度制御することができる。また、スプレードライヤなどを用いて直接的に5×10μm以下の形状に造粒してもよい。また、容器は窒化ホウ素製を用いると蛍光体との反応が少ない利点がある。窒化ホウ素製の容器を用いると製品にホウ素成分が混入する場合があるが、ホウ素の混入量は蛍光体の発光特性を悪化させない範囲となるようするのが良い。また、ホウ素の添加により発光波長や励起波長を変えることができるので、用途によりホウ素を原料に添加してもよい。
嵩密度を40%(2/5)以下の状態に保持したまま焼成するのは、原料粉末の周りに自由な空間がある状態で焼成するためである。最適な嵩密度は、顆粒粒子の形態や表面状態によって異なるが、好ましくは20%(1/5)以下がよい。このようにすると、反応生成物が自由な空間に結晶成長するので結晶同士の接触が少なくなり、表面欠陥が少ない結晶を合成することが出来ると考えられる。これにより、輝度が高い蛍光体が得られる。嵩密度が40%(2/5)を超えると焼成中に部分的に緻密化が起こって、緻密な焼結体となってしまい結晶成長の妨げとなり蛍光体の輝度が低下するおそれがある。また微細な粉体が得られ難い。また、粉体凝集体の大きさは5×10μm以下が、焼成後の粉砕性に優れるため特に好ましい。
次に、充填率40%(2/5)以下の粉体凝集体を前記条件で焼成する。焼成に用いる炉は、焼成温度が高温であり焼成雰囲気が窒素であることから、金属抵抗加熱方式または黒鉛抵抗加熱方式であってよい。炉の高温部の材料として炭素を用いた電気炉が好ましい。焼成は、常圧焼結法やガス圧焼結法などの外部から機械的な加圧を施さない焼成方法によるのが、所定の範囲の嵩密度を保ったまま焼成するために好ましい。
焼成して得られた粉体凝集体が固く凝集している場合は、例えばボールミル、ジェットミル等の工業的に通常用いられる粉砕機により粉砕する。なかでも、ボールミル粉砕は粒径の制御が容易である。このとき使用するボールおよびポットは、窒化ケイ素焼結体またはサイアロン焼結体製等が好ましい。粉砕は平均粒径20μm以下となるまで施す。特に好ましくは平均粒径20nm以上10μm以下である。平均粒径が20μmを超えると粉体の流動性と樹脂への分散性が悪くなり、発光素子と組み合わせて発光装置を形成する際に部位により発光強度が不均一になる。20nm未満となると、粉体を取り扱う操作性が悪くなる。粉砕だけで目的の粒径が得られない場合は、分級を組み合わせることができる。分級の手法としては、篩い分け、風力分級、液体中での沈殿法などを用いることができる。
さらに、焼成後に無機化合物を溶解する溶剤で洗浄することにより、焼成により得られた反応生成物に含まれるガラス相、第二相、または不純物相などの蛍光体以外の無機化合物の含有量を低減すると、蛍光体の輝度が向上する。このような溶剤としては、水および酸の水溶液を使用することができる。酸の水溶液としては、硫酸、塩酸、硝酸、フッ化水素酸、有機酸とフッ化水素酸の混合物などを使用することができる。なかでも、硫酸とフッ化水素酸の混合物は効果が大きい。この処理は、焼成温度以下の温度で液相を生成する無機化合物を添加して高温で焼成した反応生成物に対しては、特にその効果が大きい。
以上の工程で微細な蛍光体粉末が得られるが、輝度をさらに向上させるには熱処理が効果的である。この場合は、焼成後の粉末、あるいは粉砕や分級により粒度調整された後の粉末を、10×10℃以上で焼成温度未満の温度で熱処理することができる。10×10℃より低い温度では、表面の欠陥除去の効果が少ない。焼成温度を超えると粉砕した粉体どうしが再度固着するため好ましくない。熱処理に適した雰囲気は、蛍光体の組成により異なるが、窒素、空気、アンモニア、水素から選ばれる1種又は2種以上の混合雰囲気中を使用することができ、特に窒素雰囲気が欠陥除去効果に優れるため好ましい。
以上のようにして得られる本発明の蛍光体は、通常の酸化物蛍光体や既存のサイアロン蛍光体に匹敵する、高輝度の可視光発光を持つことが特徴である。なかでも特定の組成では、青色、青緑色、緑色、黄色の発光をすることが特徴であり、照明器具、画像表示装置に好適である。これに加えて、高温にさらしても劣化しないことから耐熱性に優れており、酸化雰囲気および水分環境下での長期間の安定性にも優れている。
本発明の照明器具は、少なくとも発光光源と本発明の蛍光体とを用いて構成される。照明器具としては、LED照明器具、蛍光ランプなどがある。LED照明器具では、本発明の蛍光体を用いて、特開平5−152609号公報、特開平7−99345号公報、特許公報第2927279号などに記載されているような公知の方法により製造することができる。この場合、発光光源は330〜480nmの波長の紫外光、紫色光、または青色光を発するものまたはが望ましく、中でも380〜420nmの紫色や440nm〜470nmの青色LED発光素子またはLD発光素子が好ましい。
これらの発光素子としては、GaNやInGaNなどの窒化物半導体からなるものがあり、組成を調整することにより所定の波長の光を発する発光光源となり得る。
照明器具において本発明の蛍光体を単独で使用する方法の他に、他の発光特性を持つ蛍光体と併用することによって、所望の色を発する照明器具を構成することができる。この一例として、330〜420nmの紫外LEDまたはLD発光素子と、この波長で励起されて550nm以上600nm以下の波長に発光ピークを持つ黄色蛍光体と、本発明の青色蛍光体の組み合わせがある。このような黄色蛍光体としては特開2002−363554号公報に記載のα−サイアロン:Eu2+や特開平9−218149号公報に記載の(Y、Gd)(Al、Ga)12:Ceを挙げることができる。この構成では、LEDまたはLDが発する紫外線が蛍光体に照射されると、青、黄の2色の光が発せられ、これの混合により白色の照明器具となる。
別の一例として、330〜420nmの紫外LEDまたはLD発光素子と、この波長で励起され520nm以上550nm以下の波長に発光ピークを持つ本発明の緑色蛍光体と、590nm以上700nm以下の波長に発光ピークを持つ赤色蛍光体と、本発明の青色蛍光体の組み合わせがある。このような赤色蛍光体としては、国際公開第2005/052087号パンフレットに記載のCaSiAlN:Euを挙げることができる。この構成では、LEDまたはLDが発する紫外線が蛍光体に照射されると、赤、緑、青の3色の光が発せられ、これの混合により白色の照明器具となる。
本発明の画像表示装置は少なくも励起源と本発明の蛍光体で構成され、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FEDまたはSED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)などがある。本発明の蛍光体は、100〜190nmの真空紫外線、190〜380nmの紫外線、電子線などの励起で発光することが確認されており、これらの励起源と本発明の蛍光体との組み合わせで、上記のような画像表示装置を構成することができる。
本発明の蛍光体は、電子線の励起効率が優れるため、加速電圧10V以上30kV以下で用いる、VFD、FED、SED、CRT用途に適している。
FEDは、電界放射陰極から放出された電子を加速して陽極に塗布した蛍光体に衝突させて発光する画像表示装置であり、5kV以下の低い加速電圧で光ることが求められており、本発明の蛍光体を組み合わせることにより、表示装置の発光性能が向上する。
次に本発明を以下に示す実施例によってさらに詳しく説明するが、これはあくまでも本発明を容易に理解するための一助として開示したものであって、本発明は、これらの実施例に限定されるものではない。
なお、実施例1〜実施例4において、原料粉末として、比表面積3.3m/g、酸素含有量0.79%の窒化アルミニウム粉末(トクヤマ製Fグレード)、平均粒径0.5μm、酸素含有量0.93重量%、α型含有量92%の窒化ケイ素粉末、純度99.99%の二酸化ケイ素粉末(高純度化学製試薬級)、純度99.9%の炭酸リチウム粉末(高純度化学製試薬級)、および、必要に応じて、純度99.9%の酸化ユーロピウム粉末、酸化セリウム粉末および酸化テルビウム粉末(信越化学製)を用いた。
<実施例1>
先ず、理論組成のLiAlSiONを合成すべく、LiCO、AlN、Si、SiOをモル比でLiCO:AlN:Si:SiOが、2:4:1:1の組成となるように秤量し、窒化ケイ素製の乳鉢と乳棒を用いて混合した後に、直径20mm高さ20mmの大きさの窒化ホウ素製るつぼに投入し、黒鉛抵抗加熱方式の電気炉にセットした。焼成操作は、まず、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.9995体積%の窒素を導入してガス圧力を0.5MPaとし、毎時500℃で1700℃まで昇温し、1700℃で4時間保持した。得られた焼成粉末を窒化ケイ素製の乳鉢と乳棒を用いて粉砕し、CuのKα線を用いた粉末X線回折測定(XRD)を行った。その結果、図1に示すように、ほぼ単相のLiAlSiONの生成が確認された。
X線回折測定のデータを解析したところ、この結晶は斜方晶系で指数付けすることができた。指数付けの結果を表1に示す。斜方晶で指数付けした格子定数は、a=0.91375nm、b=0.53974nm、c=0.48896であった。X線回折および電子線回折の結果から、本結晶は、Cmc21(International Tables for Crystallographyの36番の空間群)である。さらに、この空間群を用いてリートベルト解析により決定した各元素の原子座標位置は表2に示す通りである。X線回折の測定強度と原子座標からリートベルト法で計算した計算強度は図2に示すようによい一致を示す。
表1は、LiAlSiON結晶の指数付けの結果を示す。
表2は、LiAlSiON結晶の格子定数および原子座標位置を示す。
リートベルト法により求めた結晶構造の模式図を図3に示す。この結晶は、SiO結晶(鉱物名sinoite)やCaAlSiN結晶と類似の骨格を持つ。すなわち、CaAlSiN結晶のCaの位置をLiが占め、Nの位置の一部をOが占める結晶であり、元素が異なることに伴い原子座標が変化した構造である。この結晶にMイオンを添加するとLiイオンと置換して、Mイオンが結晶中に取り込まれると考えられる。
表1の空間群、格子定数、原子座標のデータを基にVASP(Vienna Ab−initio Simulation Package)コードを用いて、第一原理計算手法により結晶の安定構造の計算を行ったところ、リートベルトの結果に近い値を得た。これにより、リートベルト解析および図3の結晶構造の妥当性が裏付けられた。
<実施例2>
金属元素Euを含む蛍光体を合成した。表3に示す設計組成式Eu0.005Li0.99AlSi(Eu0.000834Li0.165Al0.167Si0.1670.1670.333)で示される化合物を得るべく、表4に示す質量比で原料粉末を秤量し、窒化ケイ素焼結体製の乳鉢と乳棒を用いて混合した後に、目開き125μmのふるいを通すことにより流動性に優れる粉体凝集体を得た。ここで、Liを置換するEuの量は、価数を考慮してLiの1%をEuの0.5%で置換した。この粉体凝集体を直径20mm高さ20mmの大きさの窒化ホウ素製るつぼに自然落下させて入れたところ、嵩密度は15〜30体積%であった。嵩密度は、投入した粉体凝集体の重量とるつぼの内容積と粉体の真密度から計算した。つぎに、るつぼを黒鉛抵抗加熱方式の電気炉にセットした。焼成操作は、まず、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.9995体積%の窒素を導入してガス圧力を0.5MPaとし、毎時500℃で1700℃まで昇温し、1700℃で4時間保持した。合成した試料を窒化ケイ素製の乳鉢と乳棒を用いて粉砕し、CuのKα線を用いた粉末X線回折測定(XRD)を行ったところ、図1と同じパターンであり、LiAlSiON結晶あるいはその固溶体の生成が確認された。
表3は、実施例2〜実施例4の設計組成式を示す。
表4は、実施例2〜実施例4の原料粉末の混合組成を示す。
この様にして得られた粉末に、波長365nmの光を発するランプで照射した結果、青緑色に発光することを確認した。この粉末の発光スペクトルおよび励起スペクトルを、日立ハイテクノロジーズ製蛍光分光光度計F4500型を用いて測定した。図4に、励起スペクトルと発光スペクトルを示す。合成粉末は250〜420nmの範囲の波長に励起帯があり、530nmに発光スペクトルのピークを持つ光を発する蛍光体であることが分かった。励起スペクトルの測定は530nmの発光をモニターして行った。発光スペクトルは、310nmの励起光で測定した。なお、励起スペクトルおよび発光スペクトルの発光強度(カウント値)は測定装置や条件によって変化するため単位は任意単位である。すなわち、同一条件で測定した本実施例内でしか比較できない。
電子線を当てたときの発光特性(カソードルミネッセンス、CL)を、CL検知器を備えたSEMで観察し、CL像を評価した。この装置は、電子線を照射して発生する可視光を検出して二次元情報である写真の画像として得ることにより、どの場所でどの波長の光が発光しているかを明らかにするものである。発光スペクトル観察により、この蛍光体は電子線で励起されて青緑色発光を示すことが確認された。なお、本測定による発光強度は測定装置や測定条件によって変化するため単位は任意単位である。
<実施例3>
金属元素Ceを含む蛍光体を合成した。表3に示す設計組成式Ce0.005Li0.985AlSi(Ce0.000835Li0.164Al0.167Si0.1670.1670.334)で示される化合物を得るべく、表4に示す質量比で原料粉末を秤量し、窒化ケイ素焼結体製の乳鉢と乳棒を用いて混合した後に、目開き125μmのふるいを通すことにより流動性に優れる粉体凝集体を得た。ここで、Liを置換するCeの量は、価数を考慮してLiの1.5%をCeの0.5%で置換した。この粉体凝集体を直径20mm高さ20mmの大きさの窒化ホウ素製るつぼに自然落下させて入れたところ、嵩密度は15〜30体積%であった。嵩密度は、投入した粉体凝集体の重量とるつぼの内容積と粉体の真密度から計算した。つぎに、るつぼを黒鉛抵抗加熱方式の電気炉にセットした。焼成操作は、まず、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.9995体積%の窒素を導入してガス圧力を0.5MPaとし、毎時500℃で1700℃まで昇温し、1700℃で4時間保持した。合成した試料を窒化ケイ素製の乳鉢と乳棒を用いて粉砕し、CuのKα線を用いた粉末X線回折測定(XRD)を行ったところ、図1と同じパターンであり、LiAlSiON結晶あるいはその固溶体の生成が確認された。
この様にして得られた粉末に、波長365nmの光を発するランプで照射した結果、青緑色に発光することを確認した。この粉末の発光スペクトルおよび励起スペクトルを、日立ハイテクノロジーズ製蛍光分光光度計F4500型を用いて測定した。図5に、励起スペクトルと発光スペクトルを示す。合成粉末は250〜420nmの範囲の波長に励起帯があり、475nmに発光スペクトルのピークを持つ光を発する蛍光体であることが分かった。励起スペクトルの測定は475nmの発光をモニターして行った。発光スペクトルは、315nmと350nmの2種類の励起光で測定した。なお、励起スペクトルおよび発光スペクトルの発光強度(カウント値)は測定装置や条件によって変化するため単位は任意単位である。すなわち、同一条件で測定した本実施例内でしか比較できない。
<実施例4>
金属元素Tbを含む蛍光体を合成した。表3に示す設計組成式Tb0.005Li0.985AlSi(Tb0.000835Li0.164Al0.167Si0.1670.1670.334)で示される化合物を得るべく、表4に示す質量比で原料粉末を秤量し、窒化ケイ素焼結体製の乳鉢と乳棒を用いて混合した後に、目開き125μmのふるいを通すことにより流動性に優れる粉体凝集体を得た。ここで、Liを置換するTbの量は、価数を考慮してLiの1.5%をTbの0.5%で置換した。この粉体凝集体を直径20mm高さ20mmの大きさの窒化ホウ素製るつぼに自然落下させて入れたところ、嵩密度は15〜30体積%であった。嵩密度は、投入した粉体凝集体の重量とるつぼの内容積と粉体の真密度から計算した。つぎに、るつぼを黒鉛抵抗加熱方式の電気炉にセットした。焼成操作は、まず、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.9995体積%の窒素を導入してガス圧力を0.5MPaとし、毎時500℃で1700℃まで昇温し、1700℃で4時間保持した。合成した試料を窒化ケイ素製の乳鉢と乳棒を用いて粉砕し、CuのKα線を用いた粉末X線回折測定(XRD)を行ったところ、図1と同じパターンであり、LiAlSiON結晶あるいはその固溶体の生成が確認された。
この様にして得られた粉末に、波長254nmの光を発するランプで照射した結果、緑色に発光することを確認した。この粉末の発光スペクトルおよび励起スペクトルを、日立ハイテクノロジーズ製蛍光分光光度計F4500型を用いて測定した。図6に、励起スペクトルと発光スペクトルを示す。合成粉末は200〜380nmの範囲の波長に励起帯があり、542mに発光スペクトルのピークを持つ光を発する蛍光体であることが分かった。励起スペクトルの測定は542nmの発光をモニターして行った。発光スペクトルは、235nmと303nmの2種類の励起光で測定した。なお、励起スペクトルおよび発光スペクトルの発光強度(カウント値)は測定装置や条件によって変化するため単位は任意単位である。すなわち、同一条件で測定した本実施例内でしか比較できない。
<実施例5>
次に、本発明の窒化物からなる蛍光体を用いた照明器具について説明する。図7に、照明器具としての白色LEDの概略構造図を示す。本発明の窒化物からなる蛍光体及びその他の蛍光体を含む混合物蛍光体1と、発光素子として405nmの紫LEDチップ2を用いる。本発明の実施例2の青緑色蛍光体と、Ca0.75Eu0.25Si8.625A13.3751.12514.875の組成を持つCa−α−サイアロン:Euの黄色蛍光体と、CaAlSiN:Euの赤色蛍光体とを樹脂層に分散させた混合物蛍光体1をLEDチップ2上にかぶせた構造とし、容器7の中に配置する。導電性端子3、4に電流を流すと、ワイヤーボンド5を介して電流がLEDチップ2に供給され、440nmの光を発し、この光で緑色蛍光体、黄色蛍光体、および赤色蛍光体の混合物蛍光体1が励起されてそれぞれ緑色、黄色、および赤色の光を発し、これらとLEDチップ2からの青色光が混合されて白色の光を発する照明装置として機能する。
<実施例6>
次に、本発明の窒化物蛍光体を用いた画像表示装置の設計例について説明する。図8は、画像表示装置としてのプラズマディスプレイパネルの原理的概略図である。赤色蛍光体(Y(PV)O:Eu)8と本発明の実施例4の緑色蛍光体9と青色蛍光体(BaMgAl1017:Eu)10とがそれぞれのセル11、12、13の内面に塗布されている。電極14、15、16、17に通電するとセル中でXe放電により真空紫外線が発生し、これにより蛍光体が励起されて、赤、緑、青の可視光を発し、この光が保護層20、誘電体層19、ガラス基板22を介して外側から観察され、画像表示として機能する。
<実施例7>
図9は、画像表示装置としてのフィールドエミッションディスプレイパネルの原理的概略図である。本発明の実施例4の緑色蛍光体が陽極53の内面に塗布されている。陰極52とゲート54の間に電圧をかけることにより、エミッタ55から電子57が放出される。電子は陽極53と陰極の電圧により加速されて、蛍光体56に衝突して蛍光体が発光する。全体はガラス51で保護されている。図は、1つのエミッタと1つの蛍光体からなる1つの発光セルを示したが、実際には緑色の他に、青色、赤色のセルが多数配置されて多彩な色を発色するディスプレイが構成される。青色や赤色のセルに用いられる蛍光体に関しては特に指定しないが、低速の電子線で高い輝度を発するものを用いるとよい。
本発明の蛍光体は、従来のサイアロン蛍光体および酸窒化物蛍光体とは異なる母体結晶を用いることにより、従来の蛍光体に匹敵する強度の蛍光を発する。特に、特定の組成を有する蛍光体は、青色、青緑色、緑色および黄色の発光をする。従来とは異なる母体結晶からなる蛍光体であるため、用途に応じた選択を可能にする。さらに励起源に曝された場合の蛍光体の輝度の低下が少ないので、VFD、FED、PDP、CRT、白色LEDなどに好適に使用される蛍光体である。今後、電子線励起の各種表示装置において大いに活用され、産業の発展に寄与することが期待できる。
純粋なLiAlSiONのX線回折チャート。 図1の測定値とリートベルト解析との比較。 LiAlSiONの結晶構造の模式図。 実施例2の蛍光測定による励起スペクトルと発光スペクトル。 実施例3の蛍光測定による励起スペクトルと発光スペクトル。 実施例4の蛍光測定による励起スペクトルと発光スペクトル。 本発明による照明器具(LED照明器具)の概略図。 本発明による画像表示装置(プラズマディスプレイパネル)の概略図。 本発明による画像表示装置(フィールドエミッションディスプレイ)の概略図。
符号の説明
1 本発明の青緑色蛍光体(実施例2)と黄色蛍光体と赤色蛍光体との混合物
2 LEDチップ
3、4 導電性端子
5 ワイヤーボンド
6 樹脂層
7 容器
8 赤色蛍光体
9 緑色蛍光体
10 青色蛍光体
11、12、13 紫外線発光セル
14、15、16、17 電極
18、19 誘電体層
20 保護層
21、22 ガラス基板
51 ガラス
52 陰極
53 陽極
54 ゲート
55 エミッタ
56 蛍光体
57 電子

Claims (10)

  1. 励起源からの励起エネルギーにより蛍光を発するAAlSiON結晶(ただし、Aは、Li、NaおよびKからなる群から少なくとも1つ選択される元素である)あるいはAAlSiONの固溶体結晶からなる蛍光体であって、前記AAlSiON結晶またはAAlSiONの固溶体結晶に、少なくともM元素(ただし、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、TmおよびYbからなる群から少なくとも1つ選択される元素である)を含有することを特徴とする蛍光体。
  2. 請求項1に記載の蛍光体であって、前記AAlSiON結晶あるいはAAlSiONの固溶体結晶の結晶構造は、LiAlSiON結晶の結晶構造と同一の結晶構造を有することを特徴とする。
  3. 請求項1に記載の蛍光体であって、前記A元素はLiであることを特徴とする。
  4. 請求項1に記載の蛍光体であって、前記A元素として少なくともLiを含み、前記M元素として少なくともCeを含み、前記励起エネルギーにより、440nm以上520nm以下の範囲の波長にピークを持つ蛍光を発光することを特徴とする。
  5. 請求項1に記載の蛍光体であって、前記A元素として少なくともLiを含み、前記M元素として少なくともEuを含み、前記励起エネルギーにより、500nm以上570nm以下の範囲の波長にピークを持つ蛍光を発光することを特徴とする。
  6. 請求項1に記載の蛍光体であって、前記蛍光体は、組成式MAlSi(ただし、式中a+b+c+d+e+f=1とする)で示され、パラメータa、b、c、d、e、fは、
    0.00001≦ a ≦0.1・・・・・・・・(i)
    0.12≦ b ≦0.24・・・・・・・・・・(ii)
    0.12≦ c ≦0.24・・・・・・・・・・(iii)
    0.12≦ d ≦0.24・・・・・・・・・・(iv)
    0.12≦ e ≦0.24・・・・・・・・・・(v)
    0.24≦ f ≦0.40・・・・・・・・・・(vi)
    以上の条件を満たすことを特徴とする。
  7. Mの金属、酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、Mを含む化合物またはそれらの組合せと、Aの金属、酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、Aを含む化合物またはそれらの組合せと、Alの金属、酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、Alを含む化合物またはそれらの組合せと、Siの金属、酸化物、炭酸塩、窒化物、フッ化物、塩化物、酸窒化物、Siを含む化合物またはそれらの組合せとを少なくとも含む原料混合物を、相対嵩密度40%以下の充填率に保持した状態で容器に充填した後に、0.1MPa以上100MPa以下の窒素雰囲気中において、1200℃以上2200℃以下の温度範囲で焼成することを特徴とする請求項1に記載の蛍光体の製造方法。
  8. 励起源と、それからの励起光により蛍光を発する蛍光体とからなる照明器具であって、前記励起源が330〜420nmの波長の励起光を発するものであり、前記蛍光体の少なくとも一部は、請求項1〜6のいずれかに記載の蛍光体である照明器具。
  9. 励起源と、それからの励起エネルギーにより蛍光を発する蛍光体とからなる画像表示装置であって、前記蛍光体の少なくとも一部は、請求項1〜6のいずれかに記載の蛍光体である画像表示装置。
  10. 請求項9に記載の画像表示装置であって、前記画像表示装置は、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FEDまたはSED)または陰極線管(CRT)のいずれかであり、前記励起源は加速電圧10V以上30kV以下の電子線であることを特徴とする。
JP2007282957A 2007-10-31 2007-10-31 蛍光体、その製造方法およびそれを用いた発光器具 Active JP5071714B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282957A JP5071714B2 (ja) 2007-10-31 2007-10-31 蛍光体、その製造方法およびそれを用いた発光器具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282957A JP5071714B2 (ja) 2007-10-31 2007-10-31 蛍光体、その製造方法およびそれを用いた発光器具

Publications (2)

Publication Number Publication Date
JP2009108223A JP2009108223A (ja) 2009-05-21
JP5071714B2 true JP5071714B2 (ja) 2012-11-14

Family

ID=40777062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282957A Active JP5071714B2 (ja) 2007-10-31 2007-10-31 蛍光体、その製造方法およびそれを用いた発光器具

Country Status (1)

Country Link
JP (1) JP5071714B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110457A1 (ja) * 2009-03-26 2010-09-30 独立行政法人物質・材料研究機構 蛍光体、その製造方法、発光器具および画像表示装置
EP2521160B1 (en) * 2009-12-29 2014-06-11 Ocean's King Lighting Science&Technology Co., Ltd. Field emission device for emitting white light
WO2015044106A1 (en) * 2013-09-26 2015-04-02 Koninklijke Philips N.V. New nitridoalumosilicate phosphor for solid state lighting
CN105514227B (zh) * 2016-01-25 2018-08-24 深圳市聚飞光电股份有限公司 一种使用红光荧光粉的高色域白光led实现方法
CN105514251B (zh) * 2016-01-25 2018-08-31 深圳市聚飞光电股份有限公司 一种使用红光荧光粉的高色域白光led实现方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207489B2 (ja) * 2002-08-06 2009-01-14 株式会社豊田中央研究所 α−サイアロン蛍光体
JP4165318B2 (ja) * 2003-07-16 2008-10-15 宇部興産株式会社 サイアロン系蛍光体およびその製造方法
JP4822203B2 (ja) * 2005-04-28 2011-11-24 独立行政法人物質・材料研究機構 リチウム含有サイアロン蛍光体およびその製造法
JP5145534B2 (ja) * 2005-07-01 2013-02-20 独立行政法人物質・材料研究機構 蛍光体とその製造方法および照明器具

Also Published As

Publication number Publication date
JP2009108223A (ja) 2009-05-21

Similar Documents

Publication Publication Date Title
JP5234781B2 (ja) 蛍光体とその製造方法および発光器具
JP5229878B2 (ja) 蛍光体を用いた発光器具
JP5322053B2 (ja) 蛍光体、その製造方法および発光器具
JP5294245B2 (ja) 蛍光体とその製造方法および発光器具
JP5224439B2 (ja) 蛍光体、およびそれを用いた発光器具
JP5013374B2 (ja) 蛍光体とその製造方法および発光器具
WO2016186057A1 (ja) 蛍光体、その製造方法、照明器具および画像表示装置
KR20070021140A (ko) 형광체와 그 제조방법, 조명기구, 및 화상표시장치
JP2007262417A (ja) 蛍光体
JP3975451B2 (ja) 蛍光体を用いた照明器具および画像表示装置
JP2016216711A (ja) 蛍光体、その製造方法、照明器具および画像表示装置
JP5071714B2 (ja) 蛍光体、その製造方法およびそれを用いた発光器具
JP5187817B2 (ja) 蛍光体と発光器具
JP5071709B2 (ja) 蛍光体と発光器具
JP5881176B2 (ja) 蛍光体、照明器具および画像表示装置
JP5170640B2 (ja) 蛍光体とその製造方法および発光器具
JP5187814B2 (ja) 蛍光体と発光器具

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5071714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250