JP5070582B2 - Polyolefin component with improved adhesion by coating with DLC film - Google Patents
Polyolefin component with improved adhesion by coating with DLC film Download PDFInfo
- Publication number
- JP5070582B2 JP5070582B2 JP2007273854A JP2007273854A JP5070582B2 JP 5070582 B2 JP5070582 B2 JP 5070582B2 JP 2007273854 A JP2007273854 A JP 2007273854A JP 2007273854 A JP2007273854 A JP 2007273854A JP 5070582 B2 JP5070582 B2 JP 5070582B2
- Authority
- JP
- Japan
- Prior art keywords
- polyolefin
- thin film
- dlc
- adhesion
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、接着性の極めて悪いポリオレフィン部材の表面にダイヤモンド様炭素(Diamond Like Carbon)(以下、「DLC」という)の薄膜を形成することによるポリオレフィン部材の接着方法の改善及びその製品に関する。 The present invention relates to an improvement in a method for bonding a polyolefin member by forming a diamond like carbon (hereinafter referred to as “DLC”) thin film on the surface of a polyolefin member having extremely poor adhesion, and a product thereof.
従来、プラスチック等の適宜の部材の表面にDLC薄膜を形成せしめる技術は、数多くの文献があり、とりわけボトルのような成形品でポリエチレンテレフタレート製品の表面にDLC薄膜を設けてガスバリア性などの物性改善をはかる技術は多い(特許文献1、特許文献2)。DLC薄膜を設ける対象は、ポリエチレンテレフタレートだけでなく、ポリメチレンテレフタレート(特許文献3)、ポリアクリレート、ポリカーボネート、ポリアリルカーボネートやポリウレタン基板(特許文献4)などがあり、その物性改善の目的も多岐にわたっている。
従来のDLC薄膜は、薄層で、高い硬度と耐摩耗性を有するが、DLC薄膜内にSP2(グラファイト構造)に対してSP3結合(ダイヤモンド構造)が多く含まれると、薄膜内での凝集力が強いため応力を受けた場合に基材との界面で破壊する、いわゆる、界面破壊によりDLC薄膜が剥離する傾向がある。そのためDLC薄膜は、その接する基材との間に両者に親和性のある中間層を設ける等種々の方策が講じられているのが現状である。
例えば、基材の表面にDLC薄膜を形成せしめるのに、プラスチック基材の表面をメタン−アルゴン混合ガスを用いるCVDプラズマ処理で炭素中間層膜を形成した後、炭化水素含有ガスを用いてDLプラズマ処理することによりポリカーボネート、シリコンゴム、フッ素ゴム、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリイミド、ポリアミド、ポリ塩化ビニル、ポリフェニレンサルファイト等の基材にダイヤモンド様カーボン膜を形成する方法も知られている(特許文献5)。
しかし、用途面から極めて薄い薄膜が求められている中で、種々の原材料を用いた多層構造を設けることは、実用的に難しく、かつ、それを達成するには高コストになりやすい。
Conventionally, there are many literatures on the technology for forming DLC thin films on the surface of appropriate materials such as plastics. Especially, the DLC thin film is provided on the surface of polyethylene terephthalate products, such as bottles, to improve physical properties such as gas barrier properties. There are many techniques for measuring (Patent Document 1, Patent Document 2). The target for providing the DLC thin film is not only polyethylene terephthalate, but also polymethylene terephthalate (Patent Document 3), polyacrylate, polycarbonate, polyallyl carbonate, polyurethane substrate (Patent Document 4), etc. Yes.
The conventional DLC thin film is thin and has high hardness and wear resistance. However, if the DLC thin film contains more SP3 bonds (diamond structure) than SP2 (graphite structure), the cohesive force in the thin film Therefore, the DLC thin film tends to peel off due to so-called interfacial fracture that breaks at the interface with the substrate when stress is applied. For this reason, the DLC thin film is currently under various measures such as providing an intermediate layer having an affinity for the substrate between the DLC thin film.
For example, in order to form a DLC thin film on the surface of a substrate, a carbon intermediate layer film is formed on the surface of a plastic substrate by a CVD plasma process using a methane-argon mixed gas, and then a DL plasma is generated using a hydrocarbon-containing gas. Also known is a method of forming a diamond-like carbon film on a substrate such as polycarbonate, silicon rubber, fluororubber, polyethylene terephthalate, polyethylene, polypropylene, polyimide, polyamide, polyvinyl chloride, polyphenylene sulfite by the treatment (patent) Reference 5).
However, while extremely thin thin films are required from the viewpoint of application, it is practically difficult to provide a multilayer structure using various raw materials, and it is likely to be expensive to achieve this.
一方、薄膜形成されたDLC薄膜は、血液や筋肉、血管等の人体組織に対しての耐溶着性があり、それを更に改善するための医療用機器への適用について研究例が多い。例えば、耐溶着性の向上を図るために医療用機器の表面にフッ素を含有するDLC薄膜を被覆するのに、表面の少なくとも一部を、フッ素(F)、炭素(C)及び水素(H)とした場合の原子比(F/F+C+H)が60%以上であるフッ素含有DLC薄膜で被覆したことを特徴とする体内埋め込み医療器(特許文献6)に開示され、さらに同じ医療機器で、耐付着性や耐擬着性の外に基材への強固な密着性及び耐摩耗性を改善するために、DLC薄膜に厚み方向に傾斜的にフッ素を含有率の差を設けて付着せしめた技術(特許文献7)も知られている。
しかしながら、上記従来技術にはポリオレフィンの接着性を改善するためにフッ素を含有したDLC薄膜を設けることは開示されていなかった。
On the other hand, the DLC thin film formed into a thin film has welding resistance to human tissues such as blood, muscles, blood vessels and the like, and there are many research examples on application to medical equipment for further improving it. For example, in order to improve the welding resistance, the surface of a medical device is coated with a DLC thin film containing fluorine. At least a part of the surface is coated with fluorine (F), carbon (C), and hydrogen (H). Is disclosed in an implantable medical device (Patent Document 6) characterized by being coated with a fluorine-containing DLC thin film having an atomic ratio (F / F + C + H) of 60% or more. In order to improve the strong adhesion and wear resistance to the base material in addition to the property and the anti-fouling property, a technique in which a DLC thin film is attached with a difference in fluorine content in the thickness direction in an inclined manner ( Patent document 7) is also known.
However, the above prior art does not disclose providing a DLC thin film containing fluorine in order to improve the adhesion of polyolefin.
汎用樹脂であるポリエチレンやポリプロピレン等のポリオレフィンは、石油由来の熱可塑性合成樹脂の中でも軟化点が低く成型が容易であり、人体に対する安全性に優れることから食品関連材料、医療関連材料にも使用実績を有しており、かつまた、価格も安価であるため非常に多くの分野に用いられて高分子化学産業上欠かすことのできない材料であることは広く知られることである。
しかしながら、これらポリオレフィンは、構造組成として炭素及び水素からなり分子内での疎水性としての凝集力が大きく、ポリオレフィンを被接着体としたときに接着に有効な接着剤は皆無に近く、ポリオレフィンを成形してなるポリオレフィン部材の接着剤による接着は不可能であるという問題点があった。特に、ポリエチレンを対象として、接着剤を用いて接着するときはお手上げ状態であった。
このように経済的に有利な汎用樹脂であるポリオレフィン、特にポリエチレンの接着剤による接着力の問題を解決することができるなら、ポリオレフィンを原料とする製品の応用分野がぐっと広がるという期待感がでてくる。
なお、本発明でポリオレフィンとは、特に断りのない限り、エチレン、プロピレン、ブテン−1、ペンテン−1、ヘキセン−1、3−メチルブテン−1、4−メチルペンテン−1、5−メチルヘキセン−1のホモポリマー又はコポリマーを意味する。
Polyolefins such as polyethylene and polypropylene, which are general-purpose resins, have a low softening point among petroleum-derived thermoplastic synthetic resins, are easy to mold, and are excellent in safety for the human body, so they are used in food-related materials and medical-related materials. In addition, it is widely known that it is a material that is used in many fields and indispensable for the polymer chemical industry because of its low price.
However, these polyolefins are composed of carbon and hydrogen as a structural composition, and have high cohesion as hydrophobicity in the molecule. When polyolefin is used as an adherend, there is almost no adhesive effective for bonding, and molding polyolefins. There is a problem that the polyolefin member thus formed cannot be bonded with an adhesive. In particular, when polyethylene was used as an object for bonding using an adhesive, it was in a raised state.
If we can solve the problem of adhesive strength due to the adhesive of polyolefin, especially polyethylene, which is an economically advantageous general-purpose resin, there is a sense of expectation that the application field of products made from polyolefin will be greatly expanded. come.
In the present invention, the polyolefin is ethylene, propylene, butene-1, pentene-1, hexene-1, 3-methylbutene-1, 4-methylpentene-1, 5-methylhexene-1 unless otherwise specified. The homopolymer or copolymer of
ポリオレフィンを原料とする部材としては、経済性の原料として利用性が高く、熱可塑性であって、比較的低温での成形が可能であり、しかも食品や医療部品等へ用いたときの安全性が確保されており、フィルムやシート等の板状製品、射出成形等による容器等々に多用されてはいるが、これらポリオレフィン部材の接着性に難があり、ポリオレフィン部材の簡易な処理によりポリオレフィン部材の表面を改質できれば、ポリオレフィン部材の優れた特徴を維持したまま、この接着性が向上することによってその用途はさらに拡大することが期待できる。 As a material using polyolefin as a raw material, it is highly usable as an economical raw material, is thermoplastic, can be molded at a relatively low temperature, and has safety when used for food, medical parts, etc. Although it is widely used for plate-like products such as films and sheets, containers for injection molding, etc., the adhesion of these polyolefin members is difficult, and the surface of the polyolefin member can be obtained by simple treatment of the polyolefin member. Can be expected to further expand its application by improving the adhesiveness while maintaining the excellent characteristics of the polyolefin member.
上述の問題点を解決するために、ポリオレフィン部材の表面にフッ素を含有するDLC薄膜を施すことによりポリオレフィン部材に接着剤を用いることによってポリオレフィン部材同士、又はポリオレフィンと他の素材との強力な接着力を有する製品を得ることが可能となった。
すなわち、本発明では、プラズマCVD装置を用いてポリオレフィン部材の表面にフッ素を含有するDLC薄膜を形成することにより接着剤との親和性を高め、ポリオレフィン部材の接着力を大幅に改善したポリオレフィン製品を得るものである。
In order to solve the above-mentioned problems, by applying an adhesive to the polyolefin member by applying a DLC thin film containing fluorine on the surface of the polyolefin member, strong adhesion between the polyolefin members or between the polyolefin and other materials It became possible to obtain a product having
That is, in the present invention, by using a plasma CVD apparatus to form a DLC thin film containing fluorine on the surface of the polyolefin member, the affinity with the adhesive is increased, and the polyolefin product in which the adhesive force of the polyolefin member is greatly improved is obtained. To get.
すなわち、本願の第1の発明は、フッ素濃度が0〜100容積%のDLC薄膜をポリオレフィン部材の表面に設けることによってポリオレフィン部材の接着性を改善する方法にある。
なお、フッ素濃度が0〜100容積%とは、DLC薄膜を形成時の原料ガス中のフロン(C2F6)のガス分圧を示すものであって、実際的に形成された膜中のフッ素の容積率は0〜50容積%に相当する。
また、本願の第2の発明は、フッ素濃度が0〜100容積%で膜厚方向に連続的に異なるように形成することによってポリオレフィン部材の接着性を改善する方法にある。
さらに、本願の第3の発明は、上述するような方法によって接着性の改善されたポリオレフィン部材にある。
さらにまた、本願の第4の発明は、ポリオレフィン部材が、シート状、フィルム状、ボトル状、リング状、シリンダー状、パイプ状、レンズ状、棒状、球状の製品であるポリオレフィン製品にある。
That is, the first invention of the present application resides in a method for improving the adhesion of a polyolefin member by providing a DLC thin film having a fluorine concentration of 0 to 100% by volume on the surface of the polyolefin member.
The fluorine concentration of 0 to 100% by volume indicates the gas partial pressure of chlorofluorocarbon (C2F6) in the raw material gas when the DLC thin film is formed, and the volume of fluorine in the actually formed film. The rate corresponds to 0-50% by volume.
Moreover, 2nd invention of this application exists in the method of improving the adhesiveness of a polyolefin member by forming so that a fluorine concentration may differ continuously in a film thickness direction at 0-100 volume%.
Furthermore, a third invention of the present application is a polyolefin member whose adhesion is improved by the method described above.
Furthermore, a fourth invention of the present application resides in a polyolefin product in which the polyolefin member is a sheet, film, bottle, ring, cylinder, pipe, lens, rod or sphere product.
ポリオレフィン部材の表面にプラズマCVDによりフッ素濃度が0〜100容積%のDLC薄膜を被覆することによりポリオレフィン部材同士、及びポリオレフィン部材と他の材質の部材との接着性が著しく改善されたポリオレフィン部材が得られた。また、該DLC薄膜におけるフッ素濃度が膜中で異なっても、0〜100容積%であれば、接着性の改善に問題の無いことが明らかになった。 By coating the surface of the polyolefin member with a DLC thin film having a fluorine concentration of 0 to 100% by volume by plasma CVD, a polyolefin member in which the adhesion between the polyolefin members and between the polyolefin member and other materials is significantly improved is obtained. It was. Moreover, even if the fluorine concentration in the DLC thin film was different in the film, it became clear that there was no problem in improving the adhesiveness if it was 0 to 100% by volume.
ポリエチレンやポリプロピレンに代表されるポリオレフィンからなる部材は、炭化水素のみからなるため疎水性に起因する分子内における凝集性が大きく、したがってポリオレフィン部材の接着に適用できる接着剤に乏しく、ポリオレフィン接着面の改質が大きな問題となっている。
本発明でポリオレフィン表面の改質に用いられるDLC薄膜は、薄膜形成が比較的簡単であり、カミソリの刃では傷つかない程度の硬さを持ち、電気的絶縁性、紫外部の光の吸収の特性をもち、金属等の無機物質や有機物質への薄膜形成も可能であるため材料の表面を処理してDLC薄膜を形成して適宜の材料の表面を改質するものであるが、用途が広い。
ここで、DLCとは、ダイヤモンド様炭素の略語であり、炭素原子を主体として微量の水素原子を含んで構成される物質である。炭素原子から構成されるダイヤモンドは、ダイヤモンド構造(SP3)により構成され、同じく炭素原子で構成される物質であるグラファイトはグラファイト構造(SP2)により構成されるのに対し、DLCはSP3とSP2との両方を含んで、また一部水素との結合を含んで構成されるアモルファス構造を有する。
本発明では、ポリオレフィン部材の表面を0〜100容積%のフッ素を含有するDLC膜を形成して接着力の改善を図るものである。
A member made of polyolefin typified by polyethylene or polypropylene has a high cohesiveness in the molecule due to hydrophobicity because it consists of only hydrocarbons. Therefore, there are few adhesives applicable to the adhesion of polyolefin members, and the polyolefin adhesive surface is improved. Quality is a big issue.
The DLC thin film used for the modification of the polyolefin surface in the present invention is relatively easy to form, has a hardness that does not damage the razor blade, has electrical insulation properties, and absorbs light in the ultraviolet region. In addition, it is possible to form a thin film on an inorganic or organic substance such as a metal, so that the surface of the material is processed to form a DLC thin film to modify the surface of the appropriate material. .
Here, DLC is an abbreviation for diamond-like carbon, and is a substance composed mainly of carbon atoms and containing a small amount of hydrogen atoms. Diamond composed of carbon atoms is composed of a diamond structure (SP3), and graphite, which is also a material composed of carbon atoms, is composed of a graphite structure (SP2), whereas DLC is composed of SP3 and SP2. It has an amorphous structure including both and partly including a bond with hydrogen.
In the present invention, a DLC film containing 0 to 100% by volume of fluorine is formed on the surface of the polyolefin member to improve the adhesion.
ダイヤモンド様炭素の薄膜は、上述するようにSP2結合とSP3結合を有し、かつ、薄膜と部材の界面から0.1ミクロン以内にSP2/SP3比が薄膜表面より高い領域、すなわちSP2/SP3比のうちのSP2結合(グラファイト構造)の割合を高めることによって、基材であるポリオレフィン部材との密着性を高めることが可能となる。
これは、炭素原子がグラファイト結合(SP2結合)の炭素環が層状に位置して弱いファンデルワールス力で層間を維持しているため、この層状構造により生じた応力を吸収して密着性を向上させているが、DLC薄膜の膜厚が厚くなって層状構造の破壊、すなわち、凝集破壊が顕著になると、界面破壊は起こらなくても薄膜の剥離が進む。このため0.2ミクロン程度以下の膜厚に制御することによってDLC薄膜の部材への密着性を損なわないようにすることが好ましい。
The diamond-like carbon thin film has SP2 bonds and SP3 bonds as described above, and the SP2 / SP3 ratio is higher than the thin film surface within 0.1 micron from the interface between the thin film and the member, that is, the SP2 / SP3 ratio. By increasing the proportion of SP2 bonds (graphite structure), it is possible to improve the adhesion to the polyolefin member as the base material.
This is because carbon atoms are graphite bonds (SP2 bonds) and the carbon rings are located in layers, and the layers are maintained by weak van der Waals forces. Therefore, the stress generated by this layer structure is absorbed to improve adhesion. However, when the thickness of the DLC thin film becomes thick and the destruction of the layered structure, that is, the cohesive failure becomes remarkable, the peeling of the thin film proceeds even if the interface failure does not occur. For this reason, it is preferable not to impair the adhesion of the DLC thin film to the member by controlling the film thickness to about 0.2 microns or less.
このようにDLC薄膜は薄層で高い硬度と耐摩耗性を有するが、その薄膜内のDLCにおけるSP2/SP3比を調整する、例えばSP2の割合が高くなると、密着性は高くなるが、層状構造の破壊が起こりやすくなり、逆にSP2に対してSP3結合が多く含まれると、薄膜内での凝集力が強いため応力を受けた場合に基材との界面で破壊して、DLC薄膜が剥離し易くなる。 As described above, the DLC thin film is a thin layer and has high hardness and wear resistance, but the SP2 / SP3 ratio in the DLC in the thin film is adjusted. For example, when the proportion of SP2 is increased, the adhesion is increased, but the layered structure On the other hand, if there are many SP3 bonds to SP2, the cohesive force in the thin film is strong, so when stress is applied, it breaks at the interface with the substrate and the DLC thin film peels off It becomes easy to do.
本発明におけるポリオレフィン部材では、上述するようにDLC薄膜にフッ素を含有せしめたDLC薄膜を被覆するときに、DLC中に含まれるフッ素濃度が0〜100容積%程度のものが、ポリオレフィンの被接着体に対する接着性の改善のために適当であり、好ましくは、40〜100容積%である。
本発明のポリオレフィン部材においては、薄膜表面からの深さが0.1ミクロンより深い領域においては、フッ素濃度の低い方が機械的な耐摩耗性や基材との密着性が優れるが、0〜100容積%であれば、接着性が優れ、耐摩耗性や基材との密着性にも影響しない。
In the polyolefin member according to the present invention, when the DLC thin film in which fluorine is contained in the DLC thin film is coated as described above, the DLC thin film having a fluorine concentration of about 0 to 100% by volume is a polyolefin adherend. It is suitable for the improvement of the adhesiveness with respect to, Preferably, it is 40-100 volume%.
In the polyolefin member of the present invention, in a region where the depth from the surface of the thin film is deeper than 0.1 micron, the lower the fluorine concentration, the better the mechanical wear resistance and the adhesion to the substrate. If it is 100 volume%, adhesiveness is excellent and it does not affect abrasion resistance and adhesiveness with a base material.
したがって、フッ素を含有するDLC薄膜が層構造を示す場合には、いずれの層構造においてもフッ素濃度が0〜100容積%でフッ素含有濃度の異なる多層構造であればよく、フッ素を含有するDLC薄膜のフッ素濃度が0〜100容積%で膜厚方向に連続的に異なる場合には、最大のフッ素濃度が100容積%を超えないDLC薄膜を被覆したポリオレフィン部材であればよい。 Therefore, when the DLC thin film containing fluorine exhibits a layer structure, any layer structure may be a multilayer structure having a fluorine concentration of 0 to 100% by volume and different fluorine-containing concentrations. In the case where the fluorine concentration is 0 to 100% by volume and continuously varies in the film thickness direction, it may be a polyolefin member coated with a DLC thin film whose maximum fluorine concentration does not exceed 100% by volume.
また、被接着体としてのポリオレフィン部材のための接着剤としては、シアノアクリレート系、エポキシ樹脂系、アミノ樹脂系、フェノール樹脂系、ポリエステル樹脂系、シリコーン系、アクリル系、ゴム系等の各種接着剤を用いることが可能であるが、中でもエポキシ樹脂系の接着剤が接着において強固な接着力が得られて好ましい。
これらポリオレフィン部材へのDLC薄膜の被覆は、物理蒸着法や化学蒸着法によって実現できるが、複雑形状に均一に被覆出来ることや、フッ素の含有量の調整が容易であるという観点からはプラズマCVD法が好ましい。
In addition, as adhesives for polyolefin members as adherends, various adhesives such as cyanoacrylate, epoxy resin, amino resin, phenol resin, polyester resin, silicone, acrylic, rubber, etc. Among them, an epoxy resin-based adhesive is preferable because a strong adhesive force can be obtained in bonding.
The coating of the DLC thin film on these polyolefin members can be realized by physical vapor deposition or chemical vapor deposition, but from the viewpoint of being able to uniformly coat complex shapes and easily adjusting the fluorine content, plasma CVD is used. Is preferred.
本発明によるDLC薄膜は、基材となるポリオレフィン部材を真空装置内に挿入し、水素等のキャリアガスと炭素源となるメタン、エタン、プロパン、ブタン等のパラフィン系の他、エチレン、アセチレン、ベンゼン等を導入したガスをイオン化させることによって、部材の表面にDLC薄膜を形成するが、DLC被覆の雰囲気中におけるフッ素の部分添加は、フッ素を含むガス、例えば六フッ化炭素(CF6)、四フッ化エチレン(C2F4)等を前記キャリアガス及び炭素源ガスを同時に装置内に導入することによってフッ素を含有する領域を有するDLC薄膜が得られる。
薄膜内のフッ素濃度は、導入するフッ素含有ガスの分圧、装置内真空度によって制御し、付加領域は、フッ素含有ガスを導入するタイミングにより制御する。
本発明では、フッ素濃度を0〜100容積%に制御することで、所望の接着力改善の効果が得られることが明らかになった。これらの原子の濃度測定は、X線光電子分光法(XPS)により行うことができる。
In the DLC thin film according to the present invention, a polyolefin member as a base material is inserted into a vacuum apparatus, and a carrier gas such as hydrogen and a paraffin such as methane, ethane, propane and butane as a carbon source, as well as ethylene, acetylene and benzene. A DLC thin film is formed on the surface of the member by ionizing the gas into which the gas is introduced. However, partial addition of fluorine in the atmosphere of the DLC coating is performed by adding a fluorine-containing gas such as carbon hexafluoride (CF6), tetrafluorocarbon. A DLC thin film having a fluorine-containing region can be obtained by simultaneously introducing ethylene fluoride (C2F4) or the like into the apparatus with the carrier gas and the carbon source gas.
The fluorine concentration in the thin film is controlled by the partial pressure of the fluorine-containing gas to be introduced and the degree of vacuum in the apparatus, and the additional region is controlled by the timing at which the fluorine-containing gas is introduced.
In the present invention, it has been clarified that the desired adhesive force improving effect can be obtained by controlling the fluorine concentration to 0 to 100% by volume. The concentration of these atoms can be measured by X-ray photoelectron spectroscopy (XPS).
ダイヤモンド様炭素の薄膜のとり得る結晶構造としては種々あるが、SP3結合とSP2結合を含み、ポリオレフィン部材とダイヤモンド様炭素の界面付近のSP2量を多くすることによって、DLC薄膜の密着性を向上させることができる。
本発明では、DLC薄膜を施したポリオレフィン部材における炭素膜と基材との密着性は、薄膜と部材の界面から0.1ミクロン以内においてSP2/SP3比が薄膜表面より高い領域を有することによって向上する。
これは、SP3結合は、最も強固な結合であるため、機械的な特性は優れる一方、SP2/SP3比が1以上、すなわちSP2結合がSP3結合より多い場合は耐摩耗性が低下するものの、SP2のグラファイト結合が六角形の環を形成している炭素原子が連なって層状構造をとり、原子の層間には弱いファンデルワールス力が作用している構造をしているので応力を分散する効果が発揮されるため、部材との相間密着性が向上するものである。
There are various crystal structures that the diamond-like carbon thin film can take, including SP3 bonds and SP2 bonds, and by increasing the amount of SP2 near the interface between the polyolefin member and diamond-like carbon, the adhesion of the DLC thin film is improved. be able to.
In the present invention, the adhesion between the carbon film and the substrate in the polyolefin member subjected to the DLC thin film is improved by having a region where the SP2 / SP3 ratio is higher than the surface of the thin film within 0.1 micron from the interface between the thin film and the member. To do.
This is because the SP3 bond is the strongest bond, and thus the mechanical properties are excellent. On the other hand, the SP2 / SP3 ratio is 1 or more, that is, when the SP2 bond is more than the SP3 bond, the wear resistance is reduced. Since the graphite bonds of the carbon atoms forming a hexagonal ring have a layered structure and a weak van der Waals force acting between the layers of the atoms, the effect of dispersing the stress is Since it is exhibited, interphase adhesion with the member is improved.
(実施例)
以下に実施例に基づき、本発明の実施の態様を説明するが、本発明はこれらに限定されるものではない。
(Example)
Embodiments of the present invention will be described below based on examples, but the present invention is not limited thereto.
(DLC膜の作製)
ポリオレフィン部材である2軸延伸フィルムを平行平板型高周波プラズマCVD装置に装入し、成膜真空度0.1 Torr(13.3 Pa)、高周波出力 200 Wで、プロセスガスにアセチレンとテトラフルオロエタンの混合ガスを用いて、膜厚 50 nm DLC膜をポリオレフィンフィルム表面に形成させた。
(Production of DLC film)
A biaxially stretched film, which is a polyolefin member, is inserted into a parallel plate type high-frequency plasma CVD apparatus, and a mixed gas of acetylene and tetrafluoroethane is used as a process gas with a film forming vacuum of 0.1 Torr (13.3 Pa) and a high-frequency output of 200 W. In use, a DLC film with a thickness of 50 nm was formed on the surface of the polyolefin film.
(接着強度の測定)
2枚のDLC膜を被覆したポリオレフィン部材であるフィルムの一方のDLC被覆面にエポキシ系接着剤Devcon S-31(Illinois Tool Works Inc.)を塗布し、他方のポリオレフィン部材のDLC被覆面を対面させる。接着剤を挟んだ2つのDLC被覆面にプレス機で5 MPa の圧力を5分間掛ける。しかる後、100 ℃のオーブンに入れ、12時間以上静置して接着剤の反応を加熱促進する。得られた試料をT型剥離試験(T-peel test)機で剥離試験を行う。
図1にポリオレフィンフィルムに接着剤を塗布して2枚のポリオレフィンフィルムで挟んだ状態を示す。
(Measurement of adhesive strength)
An epoxy adhesive Devcon S-31 (Illinois Tool Works Inc.) is applied to one DLC coated surface of a polyolefin member film coated with two DLC films, and the DLC coated surface of the other polyolefin member is faced. . A pressure of 5 MPa is applied to the two DLC coated surfaces sandwiching the adhesive with a press machine for 5 minutes. After that, it is placed in an oven at 100 ° C. and left to stand for 12 hours or more to accelerate the reaction of the adhesive. The obtained sample is subjected to a peel test using a T-peel test machine.
FIG. 1 shows a state in which an adhesive is applied to a polyolefin film and sandwiched between two polyolefin films.
試験用の基板として、高密度ポリエチレン板(厚さ:0.5 mm)の成膜する表面をエチルアルコールで予め洗浄して用いた。基板は、平行平板型高周波プラズマCVD装置内に装入し、成膜真空度 0.003Torr(0.4 Pa)まで真空状態とした。その後、原料ガスであるアセチレンとテトラフルオロエタンの混合ガスをチャンバー内に流入し、0.1 Torr(13.3 Pa) で安定するように流量計で調整した。この際、チャンバー内の圧力計を基に、アセチレンとテトラフルオロエタンを別々に流し、それぞれの圧力を以下に示す表1のように調整した。それぞれの原料ガスの値が安定した後、同時にチャンバー内に流入させ、0.1 Torrに安定させた後に成膜を行った。 As a test substrate, the surface on which a high-density polyethylene plate (thickness: 0.5 mm) was formed was previously washed with ethyl alcohol. The substrate was placed in a parallel plate type high-frequency plasma CVD apparatus, and was brought into a vacuum state up to a film formation vacuum of 0.003 Torr (0.4 Pa). Thereafter, a mixed gas of acetylene and tetrafluoroethane as a raw material gas was introduced into the chamber and adjusted with a flow meter so as to be stabilized at 0.1 Torr (13.3 Pa). At this time, acetylene and tetrafluoroethane were separately flowed based on the pressure gauge in the chamber, and the respective pressures were adjusted as shown in Table 1 below. After the value of each source gas was stabilized, the film was flown into the chamber at the same time and stabilized at 0.1 Torr, and then the film was formed.
F20〜100は、DLC中のフッ素濃度を示す。
この状態で、装置内にプラズマを発生させるために13.56MHz、電力200Wの高周波電力を投入し、膜厚50 nm に成膜した。
F20-100 shows the fluorine concentration in DLC.
In this state, in order to generate plasma in the apparatus, high frequency power of 13.56 MHz and power of 200 W was applied to form a film with a thickness of 50 nm.
実施例1で得られた接着剤で接着した2枚のポリオレフィンフィルムの剥離試験結果を比較例と対比して表2に示す。 Table 2 shows the peel test results of the two polyolefin films bonded with the adhesive obtained in Example 1 in comparison with the comparative example.
DLCやFフッ素添加DLC薄膜(F20〜100)の形成のないHDPEのみの薄膜での剥離試験では接着力は全くなく、簡単に剥離した。それに対しDLC薄膜層を付与した結果2〜10(N/25mm)の接着力が生じ、さらにFを添加することにより接着力は増加した。F60のときに最大接着力60(N/25mm)がみられた。 In a peel test with a thin film of HDPE only without formation of DLC or F fluorine-added DLC thin film (F20 to 100), there was no adhesive force and the film was easily peeled off. On the other hand, as a result of applying the DLC thin film layer, an adhesive force of 2 to 10 (N / 25 mm) was generated, and the adhesive force was further increased by adding F. A maximum adhesive force of 60 (N / 25 mm) was observed at F60.
以上より、DLC膜をポリオレフィン基板に成膜することにより接着性が向上し、Fを添加することにより、一層の接着力向上がみられた。 As described above, the adhesion was improved by forming the DLC film on the polyolefin substrate, and the adhesion was further improved by adding F.
実施例1の記載のDLC被覆工程に準じて、ポリオレフィンとして、LLDPE及びHDPEを対象として、DLC被覆を行い、実施例1と同様にエポキシ樹脂を使用して接着し、その剥離強度からDLC被覆効果を確認した。
各ポリエチレン(LLDPE、HDPE)の未処理とDLC被覆のそれぞれの剥離接着強さ(N/25m)を表3に示す。
In accordance with the DLC coating process described in Example 1, DLC coating is performed for polyolefins, LLDPE and HDPE, and adhesion is performed using an epoxy resin in the same manner as in Example 1, and the DLC coating effect is determined based on the peel strength. It was confirmed.
Table 3 shows the peel adhesion strength (N / 25 m) of each of the untreated polyethylene and the DLC coating (LLDPE, HDPE).
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007273854A JP5070582B2 (en) | 2006-10-20 | 2007-10-22 | Polyolefin component with improved adhesion by coating with DLC film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006286459 | 2006-10-20 | ||
JP2006286459 | 2006-10-20 | ||
JP2007273854A JP5070582B2 (en) | 2006-10-20 | 2007-10-22 | Polyolefin component with improved adhesion by coating with DLC film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008120077A JP2008120077A (en) | 2008-05-29 |
JP5070582B2 true JP5070582B2 (en) | 2012-11-14 |
Family
ID=39505353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007273854A Expired - Fee Related JP5070582B2 (en) | 2006-10-20 | 2007-10-22 | Polyolefin component with improved adhesion by coating with DLC film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5070582B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102713724B1 (en) * | 2015-07-03 | 2024-10-04 | 테트라 라발 홀딩스 앤드 피낭스 소시에떼아노님 | Device for processing web substrates in plasma-enhanced processing |
RU2726549C2 (en) * | 2015-10-29 | 2020-07-14 | Тетра Лаваль Холдингз Энд Файнэнс С.А. | Laminated barrier film and covering edge strip for packing |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1191654B (en) * | 1986-01-24 | 1988-03-23 | Ausimont Spa | FILMS, LAYERS, TAPES, SLABS AND SIMILAR METAL STRUCTURES OR PLASTIC MATERIALS COATED WITH THIN POLYFLUOROCARBON FILMS |
JPS6310355A (en) * | 1986-07-02 | 1988-01-16 | Konica Corp | Magneto-optical recording medium |
JP3714471B2 (en) * | 2002-04-24 | 2005-11-09 | 学校法人慶應義塾 | Medical covering material |
JP2006247896A (en) * | 2005-03-08 | 2006-09-21 | Sumitomo Bakelite Co Ltd | Plastic laminating method, joining device and plastic product manufactured using plastic laminating method |
-
2007
- 2007-10-22 JP JP2007273854A patent/JP5070582B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008120077A (en) | 2008-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2231752B1 (en) | Preparation of a self-bonding thermoplastic elastomer using an in situ adhesion promoter | |
WO2008057673A1 (en) | Metallized multi-layer films, methods of manufacture and articles made therefrom | |
WO2009082034A1 (en) | Rubber moldings | |
JP6950247B2 (en) | Laminated film, rubber molded product using it, and their manufacturing method | |
JP5895468B2 (en) | Laminated film and rubber molded body using the same | |
KR20060045070A (en) | Polytetrafluoroethylene composite | |
Tsubone et al. | Fracture mechanics of diamond-like carbon (DLC) films coated on flexible polymer substrates | |
JPS60217148A (en) | Coated product | |
US20170283657A1 (en) | Method for increasing the adhesion between the first surface of a first web-type material and a first surface of a second web-type material | |
KR102032037B1 (en) | Adhesive Composition | |
US20090130325A1 (en) | Method for forming diamond-like carbon film | |
WO1997042257A1 (en) | Surface modification of polymers | |
JP5070582B2 (en) | Polyolefin component with improved adhesion by coating with DLC film | |
Hoshida et al. | Controlling the adhesion between diamond-like carbon (DLC) film and high-density polyethylene (HDPE) substrate | |
JP5633282B2 (en) | Gas barrier film laminate | |
EP1566407A1 (en) | Release agent, layered pressure-sensitive adhesive product, and layered pressure-sensitive adhesive tape | |
US20170275499A1 (en) | Method for increasing the adhesion between the first surface of a first web-shaped material and a first surface of a second web-shaped material | |
JP2010516850A (en) | Method for treating the surface of a polymer substrate, the resulting substrate and its use in the production of multilayer materials | |
TW201228825A (en) | Barrier film or fabric | |
US20170283656A1 (en) | Method for increasing the adhesion between the first surface of a first web-type material and a first surface of a second web-type material | |
JP2010150460A (en) | Method of modifying surface of polymer compound | |
WO2013141918A1 (en) | Metallized films and methods of making metallized films | |
Dwight | Surface analysis and adhesive bonding I. Fluoropolymers | |
EP3500429B1 (en) | Coated, metallized films | |
Zhang et al. | Adhesion improvement of polytetrafluoroethylene/metal interface by graft copolymerization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101019 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120329 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120710 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120731 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150831 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |