[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5057954B2 - Method for producing hydrocarbon oil - Google Patents

Method for producing hydrocarbon oil Download PDF

Info

Publication number
JP5057954B2
JP5057954B2 JP2007317549A JP2007317549A JP5057954B2 JP 5057954 B2 JP5057954 B2 JP 5057954B2 JP 2007317549 A JP2007317549 A JP 2007317549A JP 2007317549 A JP2007317549 A JP 2007317549A JP 5057954 B2 JP5057954 B2 JP 5057954B2
Authority
JP
Japan
Prior art keywords
oil
acid
hydrocarbon oil
raw material
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007317549A
Other languages
Japanese (ja)
Other versions
JP2009138144A (en
Inventor
英 壱岐
辰雄 濱松
敦史 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2007317549A priority Critical patent/JP5057954B2/en
Priority to PCT/JP2008/071808 priority patent/WO2009072468A1/en
Publication of JP2009138144A publication Critical patent/JP2009138144A/en
Application granted granted Critical
Publication of JP5057954B2 publication Critical patent/JP5057954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/02Refining fats or fatty oils by chemical reaction
    • C11B3/04Refining fats or fatty oils by chemical reaction with acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/12Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by hydrogenation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

本発明は、動植物に由来する油脂成分を含む原料油から炭化水素油を製造する方法に関
する。
The present invention relates to a method for producing a hydrocarbon oil from a raw material oil containing an oil and fat component derived from animals and plants.

地球温暖化の防止対策としてバイオマスのもつエネルギーの有効利用に注目が集まって
いる。その中でも植物由来のバイオマスエネルギーは、植物の成長過程で光合成により大
気中の二酸化炭素から固定化された炭素を有効利用できるため、ライフサイクルの観点か
らすると大気中の二酸化炭素の増加につながらない、所謂カーボンニュートラルという性
質を持つ。
Attention has been focused on the effective use of biomass energy as a measure to prevent global warming. Among them, biomass energy derived from plants can effectively use carbon immobilized from carbon dioxide in the atmosphere by photosynthesis during the growth process of plants, so it does not lead to an increase in carbon dioxide in the atmosphere from the viewpoint of the life cycle, so-called It has the property of being carbon neutral.

このようなバイオマスエネルギーの利用は輸送用燃料の分野においても種々検討がなさ
れている。例えば、ディーゼル燃料として動植物油由来の燃料を使用できれば、ディーゼ
ルエンジンの高いエネルギー効率との相乗効果により、二酸化炭素の排出量削減において
有効な役割を果たすと期待されている。動植物油を利用したディーゼル燃料としては、一
般的には脂肪酸メチルエステル油(Fatty Acid Methyl Ester
の頭文字から「FAME」と略称される。)が知られている。FAMEは動植物油の一般
的な構造であるトリグリセリドを、アルカリ触媒等の作用によりメタノールとエステル交
換反応に供することで製造される。
Various uses of such biomass energy have been studied in the field of transportation fuel. For example, if a fuel derived from animal and vegetable oils can be used as a diesel fuel, it is expected to play an effective role in reducing carbon dioxide emissions due to a synergistic effect with the high energy efficiency of a diesel engine. As diesel fuel using animal and vegetable oils, fatty acid methyl ester oil is generally used (Fatty Acid Methyl Ester).
Is abbreviated as “FAME”. )It has been known. FAME is produced by subjecting triglyceride, which is a general structure of animal and vegetable oils, to transesterification with methanol by the action of an alkali catalyst or the like.

しかしながら、FAMEを製造するプロセスにおいては、下記特許文献1に記載されて
いる通り、副生するグリセリンの処理が必要であり、また生成油の洗浄などにコストやエ
ネルギーを要する等の問題が指摘されている。
However, in the process for producing FAME, as described in Patent Document 1 below, it is necessary to treat glycerin produced as a by-product, and problems such as cost and energy are required for cleaning the produced oil. ing.

また、FAMEは1分子中に2つの酸素原子を有することから、燃料としては極めて高
い酸素含有量となり、従来の石油由来のディーゼル燃料に配合して使用する場合において
もなお、この酸素分がエンジン材質に与える悪影響が懸念されるとの問題もある。
Also, FAME has two oxygen atoms in one molecule, so it has an extremely high oxygen content as a fuel. Even when blended with conventional diesel fuel derived from petroleum, this oxygen content is still in the engine. There is also a problem that adverse effects on materials are concerned.

そこで、動植物由来の油脂成分を含む原料油を水素化触媒の存在下に水素化脱酸素処理
して、実質的に酸素を含まない炭化水素からなる燃料油を製造する方法が検討されている
(例えば下記特許文献2を参照。)。
Therefore, a method for producing a fuel oil composed of hydrocarbons substantially free of oxygen by hydrodeoxygenating raw material oils containing animal and plant-derived fats and oils in the presence of a hydrogenation catalyst has been studied ( For example, see the following Patent Document 2.)

一方、動植物由来の油脂成分には、本来的にアルカリ金属分、アルカリ土類金属分及び
遷移金属分が微量不純物元素として含有されている。これらの金属分は、前記水素化脱酸
素処理工程に用いる水素化触媒上の活性点を被毒し、水素化脱酸素活性を低下させる。ま
た、これらの金属分が触媒上に堆積することにより触媒層が閉塞し、差圧が発生すること
によって反応装置の運転が困難になる可能性もある。さらに、場合によっては反応器内で
原料油の偏流を誘発し、局所的な発熱による反応の制御の乱れを引き起こす恐れもある。
On the other hand, oil and fat components derived from animals and plants inherently contain an alkali metal component, an alkaline earth metal component, and a transition metal component as trace impurity elements. These metal components poison the active sites on the hydrogenation catalyst used in the hydrodeoxygenation treatment step and reduce the hydrodeoxygenation activity. In addition, the deposition of these metal components on the catalyst may block the catalyst layer and generate a differential pressure, which may make it difficult to operate the reactor. Further, in some cases, drift of the feedstock is induced in the reactor, and there is a risk of causing disorder of control of the reaction due to local heat generation.

上記のような問題を解決するために、水素化脱酸素処理工程の前処理として、植物由来
の油脂成分中に含まれるこれら金属分の除去を行う方法が提案されている(例えば下記特
許文献3を参照。)。
特開2005−154647号公報 特開2003−171670号公報 米国特開2006/264684A1号公報
In order to solve the above problems, as a pretreatment of the hydrodeoxygenation treatment process, a method for removing these metals contained in oil components derived from plants has been proposed (for example, Patent Document 3 below). See).
JP 2005-154647 A JP 2003-171670 A US 2006/264684 A1

しかし、本発明者らの検討によれば、上記特許文献3に記載の方法にあっては、原料油
中に含まれる金属分の除去が不十分であり、該方法による前処理を行った原料油を水素化
脱酸素工程に供すると、水素化触媒の活性が低下し、生成油中の酸素含有量の上昇及び炭
素−炭素二重結合含有量の上昇に伴う酸化安定性の低下により、燃料油として好ましくな
い品質となるとの問題が依然として残っている。
However, according to the study by the present inventors, in the method described in Patent Document 3, the removal of the metal contained in the raw material oil is insufficient, and the raw material subjected to the pretreatment by the method When the oil is subjected to a hydrodeoxygenation step, the activity of the hydrogenation catalyst is reduced, and the increase in the oxygen content in the product oil and the decrease in oxidation stability associated with the increase in the carbon-carbon double bond content result in a decrease in fuel. There remains a problem with the undesirable quality of oil.

本発明は、上記事情に鑑みてなされたものであり、動植物に由来する油脂成分を含む原
料油を水素化脱酸素処理して炭化水素油を製造するに際し、酸素含有量が十分に低減され
、且つ燃料油としての実用的な酸化安定性を有する炭化水素油を効率よく且つ安定的に得
ることが可能な炭化水素油の製造方法及び該製造方法により得られるディーゼルエンジン
用軽油を提供することを目的とする。
The present invention has been made in view of the above circumstances, and in producing a hydrocarbon oil by hydrodeoxygenating a raw oil containing an oil and fat component derived from animals and plants, the oxygen content is sufficiently reduced, And a method for producing a hydrocarbon oil capable of efficiently and stably obtaining a hydrocarbon oil having practical oxidation stability as a fuel oil, and a diesel oil for a diesel engine obtained by the production method. Objective.

本発明者らは、動植物に由来する油脂成分を含む原料油を、その中に含まれるアルカリ
金属分、アルカリ土類金属分及び遷移金属分の含有量を特定の値以下となるように洗浄処
理することにより、該原料油の水素化脱酸素処理工程において使用する水素化触媒の活性
低下が抑制され、酸素含有量が十分に低減され、且つ燃料油としての実用的な酸化安定性
を有する炭化水素油が効率よく且つ安定的に得られることを見出して本発明を完成するに
至った。
The present inventors washed raw material oil containing an oil and fat component derived from animals and plants so that the content of alkali metal, alkaline earth metal, and transition metal contained in the oil is less than a specific value. By doing so, the activity reduction of the hydrogenation catalyst used in the hydrodeoxygenation process of the raw material oil is suppressed, the oxygen content is sufficiently reduced, and carbonization having practical oxidation stability as a fuel oil. The inventors have found that hydrogen oil can be obtained efficiently and stably, and have completed the present invention.

すなわち、本発明は、動植物に由来する油脂成分を含む原料油と酸水溶液とを接触混合し、原料油中のアルカリ金属分、アルカリ土類金属分及び遷移金属分の合計含有量が15質量ppm以下となるように、原料油を洗浄する洗浄工程と、水素加圧下で、洗浄工程により洗浄された原料油と水素化触媒とを接触させ、炭化水素油を生成させる水素化脱酸素工程と、を備え、洗浄工程において、原料油と酸水溶液とを接触混合するときの温度が40〜100℃であることを特徴とする炭化水素油の製造方法を提供する。 That is, the present invention is obtained by contacting and mixing a raw oil containing an oil and fat component derived from animals and plants and an acid aqueous solution, and the total content of alkali metal, alkaline earth metal and transition metal in the raw oil is 15 mass ppm. A cleaning step for cleaning the raw material oil, and a hydrodeoxygenation step for bringing the raw material oil cleaned by the cleaning step and the hydrogenation catalyst into contact with each other under hydrogen pressure to produce a hydrocarbon oil, as follows: And a temperature at which the raw material oil and the aqueous acid solution are mixed in contact in the washing step is 40 to 100 ° C.

上記洗浄工程で用いられる酸水溶液は、リン酸、硫酸、硝酸、塩酸、酢酸、クエン酸、
酒石酸からなる群より選択される少なくとも1種を含むことが好ましい。
The acid aqueous solution used in the washing step is phosphoric acid, sulfuric acid, nitric acid, hydrochloric acid, acetic acid, citric acid,
It is preferable to include at least one selected from the group consisting of tartaric acid.

また、洗浄工程において、原料油と酸水溶液とを接触混合するときの温度は40〜100℃である。
Further, in the washing step, the temperature at the time of mixing and contacting the feedstock with an aqueous acid solution is Ru 40 to 100 ° C. der.

また、洗浄工程は、原料油と酸水溶液とを接触混合する接触混合工程と、接触混合工程
で得られる混合物について遠心分離を行う遠心分離工程とを含むことが好ましい。
Moreover, it is preferable that a washing | cleaning process includes the contact mixing process which carries out contact mixing of raw material oil and acid aqueous solution, and the centrifugation process which centrifuges about the mixture obtained at a contact mixing process.

また、洗浄工程における酸水溶液の使用量は、原料油に対して0.01〜20質量%で
あることが好ましい。
Moreover, it is preferable that the usage-amount of the acid aqueous solution in a washing | cleaning process is 0.01-20 mass% with respect to raw material oil.

また、水素化脱酸素工程で用いられる水素化触媒は、アルミニウム、ケイ素、ジルコニ
ウム、ホウ素、チタン及びマグネシウムからなる群より選択される2種以上の元素を含ん
で構成される多孔性無機酸化物と、該多孔性無機酸化物に担持された元素の周期表第6族
、第9族、第10族に属するいずれかの金属元素1種以上と、を含有することが好ましい
The hydrogenation catalyst used in the hydrodeoxygenation step is a porous inorganic oxide comprising two or more elements selected from the group consisting of aluminum, silicon, zirconium, boron, titanium, and magnesium, and It is preferable to contain one or more metal elements belonging to Groups 6, 9, and 10 of the periodic table of the elements supported on the porous inorganic oxide.

さらに、水素化触媒を構成する多孔性無機酸化物は、構成元素としてリンをさらに含有
することが好ましい。
Further, the porous inorganic oxide constituting the hydrogenation catalyst preferably further contains phosphorus as a constituent element.

また、水素化脱酸素工程により得られる炭化水素油のよう素価は0.1g−I/10
0g以下であることが好ましい。
Further, iodine value of the hydrocarbon oil obtained by hydrodeoxygenation step 0.1g-I 2/10
It is preferably 0 g or less.

また、水素化脱酸素工程で得られる炭化水素油に115℃で16時間酸素ガスを吹き込
んだ後の酸価増加量は、酸素ガスを吹き込む前の酸価を基準として0.25mg−KOH
/g以下であることが好ましい。
Further, the increase in the acid value after oxygen gas was blown into the hydrocarbon oil obtained in the hydrodeoxygenation step at 115 ° C. for 16 hours was 0.25 mg-KOH based on the acid value before blowing oxygen gas.
/ G or less is preferable.

また、本発明は、上記本発明の炭化水素油の製造方法で得られる炭化水素油を含むこと
を特徴とするディーゼルエンジン用軽油を提供する。
Moreover, this invention provides the diesel oil characterized by including the hydrocarbon oil obtained by the manufacturing method of the hydrocarbon oil of the said invention.

本発明によれば、動植物に由来する油脂成分を含む原料油を水素化脱酸素処理して炭化
水素油を製造するに際し、酸素含有量が十分に低減され、且つ燃料油としての実用的な酸
化安定性を有する炭化水素油を効率よく且つ安定的に得ることが可能となり、また前記性
状を有する炭化水素油を基油とするディーゼルエンジン用軽油が提供される。
According to the present invention, when producing a hydrocarbon oil by hydrodeoxygenating a raw oil containing an oil and fat component derived from animals and plants, the oxygen content is sufficiently reduced, and practical oxidation as a fuel oil is achieved. It is possible to efficiently and stably obtain a hydrocarbon oil having stability, and a diesel oil for diesel engines based on the hydrocarbon oil having the above properties is provided.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

(原料油)
本発明において原料として使用される動植物に由来する油脂成分とは、天然もしくは天
然物を原料に人工的に生産、製造される動植物油脂およびこれらの油脂を由来して生産、
製造される成分をいう。動物油脂及び動物油の原料としては、牛脂、牛乳脂質(バター)
、豚脂、羊脂、鯨油、魚油、肝油等が挙げられ、植物油脂及び植物油原料としては、ココ
ヤシ、パームヤシ、オリーブ、べにばな、菜種(菜の花)、米ぬか、ひまわり、綿実、と
うもろこし、大豆、ごま、アマニ等の種子部及びその他の部分が挙げられるが、これら以
外の油脂、油であっても使用に問題はない。これらの原料油に関しては常温におけるその
状態が固体、液体であることは問わない。また、取り扱いの容易さ、二酸化炭素排出の削
減及び生産性の高さの観点から、植物油脂、植物油を原料とすることが好ましい。また、
本発明においては、これらの動物油、植物油を民生用、産業用、食用等で使用した廃油も
きょう雑物等の除去工程を加えた後に原料とすることができる。
(Raw oil)
The oil and fat component derived from animals and plants used as a raw material in the present invention is artificially produced using natural or natural products as raw materials, animal and vegetable oils and fats produced and produced from these fats and oils,
This refers to the component that is produced. Animal fats and raw materials for animal oil include beef tallow and milk lipid (butter)
, Pork fat, sheep fat, whale oil, fish oil, liver oil, etc., as vegetable oil and vegetable oil raw materials, coconut palm, palm palm, olive, safflower, rapeseed (rapeseed), rice bran, sunflower, cottonseed, corn, Examples include seeds such as soybeans, sesame seeds, and flaxseed, and other parts. However, there is no problem in using oils and oils other than these. It does not matter whether these feedstock oils are solid or liquid at room temperature. Moreover, it is preferable to use vegetable oils and fats and vegetable oils as raw materials from the viewpoints of easy handling, reduction of carbon dioxide emissions, and high productivity. Also,
In the present invention, waste oils using these animal oils and vegetable oils for consumer use, industrial use, food use, etc. can also be used as raw materials after a removal step of impurities and the like.

これらの原料中に含有されるグリセリド化合物の脂肪酸部分の代表的な組成としては、
飽和脂肪酸と称する分子構造中に不飽和結合を有しない脂肪酸である酪酸(CCO
OH)、カプロン酸(C11COOH)、カプリル酸(C15COOH)、カプ
リン酸(C19COOH)、ラウリン酸(C1123COOH)、ミリスチン酸(
1327COOH)、パルミチン酸(C1531COOH)、ステアリン酸(C
35COOH)、及び不飽和結合を1つもしくは複数有する不飽和脂肪酸であるオレ
イン酸(C1733COOH)、リノール酸(C1731COOH)、リノレン酸(
1729COOH)、リシノレン酸(C1732(OH)COOH)等が挙げられ
る。自然界において産生されるこれら脂肪酸の炭化水素部は一般に直鎖であることが多い
が、本発明においては、本発明で規定する性状を満たす限りにおいて、側鎖を有する構造
であっても使用することができる。また、不飽和脂肪酸における分子中の不飽和結合の位
置も、本発明においては、本発明で規定する性状を満たす限りで、自然界で一般に存在確
認されているものだけでなく、化学的方法によって任意の位置に設定されたものも使用す
ることができる。
As a typical composition of the fatty acid portion of the glyceride compound contained in these raw materials,
Butyric acid (C 3 H 7 CO, which is a fatty acid having no unsaturated bond in the molecular structure called saturated fatty acid)
OH), caproic acid (C 5 H 11 COOH), caprylic acid (C 7 H 15 COOH), capric acid (C 9 H 19 COOH), lauric acid (C 11 H 23 COOH), myristic acid (
C 13 H 27 COOH), palmitic acid (C 15 H 31 COOH), stearic acid (C 1
7 H 35 COOH), and oleic acid (C 17 H 33 COOH), linoleic acid (C 17 H 31 COOH), linolenic acid (unsaturated fatty acids having one or more unsaturated bonds)
C 17 H 29 COOH), ricinolenic acid (C 17 H 32 (OH) COOH) and the like. In general, the hydrocarbon portion of these fatty acids produced in nature is often linear, but in the present invention, even if it has a structure having a side chain, as long as the properties defined in the present invention are satisfied. Can do. Further, in the present invention, the position of the unsaturated bond in the molecule of the unsaturated fatty acid is not limited to those generally confirmed in nature as long as the properties defined in the present invention are satisfied, and may be arbitrarily determined by a chemical method. The one set at the position can also be used.

上述の原料油(動植物油脂および動植物油脂由来成分)はこれらの脂肪酸成分を1種ま
たは複数種有しており、原料によってその有する脂肪酸類は異なっている。例えば、ココ
ヤシ油はラウリン酸、ミリスチン酸等の飽和脂肪酸を比較的多く有しているが、大豆油は
オレイン酸、リノール酸等の不飽和脂肪酸を多く有している。
The above-mentioned raw material oils (animal and vegetable oils and fats and components derived from animal and vegetable oils and fats) have one or more of these fatty acid components, and the fatty acids they have differ depending on the raw materials. For example, coconut oil has a relatively large amount of saturated fatty acids such as lauric acid and myristic acid, while soybean oil has a large amount of unsaturated fatty acids such as oleic acid and linoleic acid.

(洗浄工程)
本発明の製造方法における洗浄工程とは、上記原料油と酸水溶液とを接触混合し、原料
油中のアルカリ金属分、アルカリ土類金属分及び遷移金属分の合計含有量が15質量pp
m以下となるように、原料油を洗浄する工程である。本工程においては、原料油と酸水溶
液とを接触混合することにより、主として原料油中に含まれる不純物であるアルカリ金属
分、アルカリ土類金属分及び遷移金属分が油相である原料油から水相側に抽出されること
により、少なくともそれらの一部が原料油から除去される。
(Washing process)
The washing step in the production method of the present invention is a method in which the raw material oil and the acid aqueous solution are contact-mixed, and the total content of alkali metal, alkaline earth metal and transition metal in the raw material oil is 15 mass pp.
This is a step of washing the raw material oil so as to be m or less. In this step, the feedstock oil and the aqueous acid solution are contact-mixed to produce water from the feedstock oil in which the alkali metal component, the alkaline earth metal component and the transition metal component that are mainly contained in the feedstock oil are in the oil phase. By extracting to the phase side, at least some of them are removed from the feedstock.

原料油と接触混合する酸水溶液を構成する酸成分としては、洗浄処理温度において水に
溶解するものであれば特に限定されないが、例えばリン酸、硫酸、塩酸、硝酸などの無機
酸やクエン酸、酢酸、シュウ酸、酒石酸などの有機酸が好ましいれいとして挙げられる。
このうち、リン酸、硫酸、クエン酸がアルカリ金属分、アルカリ土類金属分及び遷移金属
分を主とする不純物の除去効率が高いことからより好ましく、リン酸、硫酸がさらに好ま
しい。また、排水中のリン濃度の規制の観点を考えると硫酸が特に好ましい。
The acid component constituting the acid aqueous solution to be mixed with the raw material oil is not particularly limited as long as it dissolves in water at the washing treatment temperature. For example, inorganic acids such as phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, citric acid, Organic acids such as acetic acid, oxalic acid, and tartaric acid are preferable.
Among these, phosphoric acid, sulfuric acid, and citric acid are more preferable because of high removal efficiency of impurities mainly composed of alkali metal, alkaline earth metal, and transition metal, and phosphoric acid and sulfuric acid are more preferable. Further, sulfuric acid is particularly preferable from the viewpoint of regulation of phosphorus concentration in waste water.

原料油と酸水溶液との接触混合を行う温度は、40〜100℃、より好ましくは40〜
90℃、特に好ましくは45〜85℃である。前記下限の温度よりも低い温度の場合には
金属分の除去効率が低く、また上限温度を超える場合には酸水溶液との接触による副反応
に起因する不溶分の生成などを招くおそれがあること、及び耐圧性の設備を要する等の点
で好ましくない。
The temperature at which the raw material oil and the aqueous acid solution are subjected to contact mixing is 40 to 100 ° C., more preferably 40 to
90 ° C., particularly preferably 45 to 85 ° C. When the temperature is lower than the lower limit temperature, the metal removal efficiency is low, and when the upper limit temperature is exceeded, there is a risk of causing insolubles due to side reactions due to contact with the acid aqueous solution. In addition, it is not preferable in terms of requiring pressure resistant equipment.

原料油に対する酸水溶液の添加量は、原料油の質量を基準として0.01〜20質量%
が好ましく、0.1〜10質量%がより好ましく、0.1〜5質量%が特に好ましい。酸
水溶液の添加量が前記下限値より少ない場合には金属分の除去効率が低く、また前記上限
値を超える場合には酸自体が洗浄処理油中に残存して不純物となるおそれがあるため好ま
しくないだけでなく、使用済み酸水溶液の量が多くなり、排水処理などの負担が増大する
傾向にある。
The amount of the acid aqueous solution added to the raw material oil is 0.01 to 20% by mass based on the mass of the raw material oil.
Is preferable, 0.1-10 mass% is more preferable, 0.1-5 mass% is especially preferable. When the addition amount of the acid aqueous solution is less than the lower limit value, the metal removal efficiency is low, and when the upper limit value is exceeded, the acid itself may remain in the cleaning treatment oil and become an impurity. In addition, there is a tendency that the amount of spent acid aqueous solution increases and the burden of wastewater treatment and the like increases.

酸水溶液中の酸の濃度は、酸水溶液質量を基準として0.001〜5質量%が好ましく
、0.005〜3質量%がより好ましい。酸成分濃度が0.001質量%未満の場合には
金属分の除去効率が低く、一方5質量%を越える場合には酸成分自体が洗浄処理油中に残
存して不純物となるおそれがあるため好ましくない。
The acid concentration in the aqueous acid solution is preferably 0.001 to 5 mass%, more preferably 0.005 to 3 mass%, based on the mass of the aqueous acid solution. When the acid component concentration is less than 0.001% by mass, the metal removal efficiency is low. On the other hand, when it exceeds 5% by mass, the acid component itself may remain in the cleaning oil and become an impurity. It is not preferable.

前記洗浄工程のうち、原料油と酸水溶液との接触混合工程における酸水溶液の添加方法
は特に限定されないが、原料油の流れに対して並流として注入し、スタティックミキサー
などの静置式の混合機器を使って連続的に混合することが、処理効率の観点から好ましい
。これ以外の方法としては、混合攪拌槽を設け、攪拌機などで攪拌しながら混合する回分
式あるいは連続的に混合物を入れ替える半回分式などを採用することもできる。
The method for adding the aqueous acid solution in the contact mixing step of the raw material oil and the aqueous acid solution among the washing steps is not particularly limited, but is injected as a parallel flow with respect to the flow of the raw material oil, and a stationary mixing device such as a static mixer. From the viewpoint of processing efficiency, it is preferable to continuously mix them using the above. As other methods, it is also possible to employ a batch system in which a mixing and stirring tank is provided and mixed while stirring with a stirrer or the like, or a semi-batch system in which the mixture is continuously replaced.

前記洗浄工程において、上記の接触混合工程によって得られる混合物は油相と金属分及
び酸を含む水相とで構成されており、油相と水相を分離し、油相を回収する必要がある。
このためには、静置槽において混合物を静置、分離せしめた後に油相/水相を分取する方
法もあるが、処理効率及び油相からの金属分及び酸の除去効率の観点から、遠心分離法に
よってこれらの二相を分離することが好ましい。
In the washing step, the mixture obtained by the contact mixing step is composed of an oil phase and an aqueous phase containing a metal component and an acid, and it is necessary to separate the oil phase from the aqueous phase and recover the oil phase. .
For this purpose, there is also a method of separating the oil phase / water phase after allowing the mixture to stand and separate in a stationary tank, but from the viewpoint of treatment efficiency and removal efficiency of metal and acid from the oil phase, It is preferred to separate these two phases by centrifugation.

前記洗浄工程のうち、遠心分離工程における分離条件は所定の分離効率を満たすように
任意に設定することが出来る。このうち、遠心分離装置の遠心効果は500G以上である
ことが好ましく、800G以上であることがより好ましく、1000G以上であることが
特に好ましい。遠心効果が500G未満の場合には酸水溶液の分離効率が低下し、不純物
の除去効率が低下する傾向にある。
Among the washing steps, separation conditions in the centrifugation step can be arbitrarily set so as to satisfy a predetermined separation efficiency. Among these, the centrifugal effect of the centrifugal separator is preferably 500 G or more, more preferably 800 G or more, and particularly preferably 1000 G or more. When the centrifugal effect is less than 500 G, the separation efficiency of the acid aqueous solution decreases, and the impurity removal efficiency tends to decrease.

抽出後の水溶液を油相から効率よく分離することができることから、遠心分離装置によ
る分離を行うことにより、特に遷移金属分あるいはリンを含む不純物の分離除去効率が向
上する傾向にあるため好ましい。また、遠心分離は処理効率の観点からは連続式が好まし
い。遠心分離方式は特に限定されないが、一般的な回転円筒型、分離板型、デカンター型
のいずれかの方式が採用できる。
Since the aqueous solution after extraction can be efficiently separated from the oil phase, it is preferable to perform the separation with a centrifugal separator because the separation and removal efficiency of impurities including transition metal or phosphorus tends to be improved. The centrifugal separation is preferably a continuous type from the viewpoint of processing efficiency. The centrifugal separation method is not particularly limited, but any one of a general rotating cylinder type, a separation plate type, and a decanter type can be adopted.

上記の分離工程で分離、回収された油相は、さらに水と接触混合せしめて水洗した後に再
び油相と水相を分離し、油相を回収してもよい。これは、洗浄に使用した酸由来の成分が
油相に含まれる場合にこれを除去し、さらに不純物残留濃度を低減せしめるために行うも
のである。
The oil phase separated and recovered in the above separation step may be further mixed with water and washed with water, and then the oil phase and the aqueous phase may be separated again to recover the oil phase. This is performed in order to remove the component derived from the acid used for washing in the oil phase and further reduce the residual impurity concentration.

なお、ここでいう原料油及び洗浄処理後の原料油中に含有される金属分の定量は、IP
−501「Determination of aluminium,Silicon,
vanadium, nickel, iron, sodium,calcium,z
inc and phosphorous in residual fuel oil
by ashing,fusion and inductively couple
d plazma emission spectrometry」に記載の方法に準拠
して行うものである。すなわち、試料に金属補足剤として硫黄を加えて燃焼によって灰化
し、灰分に塩酸を加え溶解したのちに、水を加え定溶したのちに、ICP(誘導結合プラ
ズマ)発光分光法などにより金属分濃度を測定する。
In addition, quantification of the metal content contained in the raw material oil and the raw material oil after the washing treatment here is IP
-501 “Determination of aluminum, Silicon,
vanadium, nickel, iron, sodium, calcium, z
inc and phosphorous in residual fuel oil
by asking, fusion and inductive couple
It is performed in accordance with the method described in “d plasma emission spectroscopy”. In other words, sulfur is added to the sample as a metal scavenger and ashed by combustion. After adding hydrochloric acid to the ash and dissolving it, water is added and dissolved, and then the metal concentration is determined by ICP (inductively coupled plasma) emission spectroscopy. Measure.

前記洗浄工程により洗浄処理された原料油中に含まれるアルカリ金属分、アルカリ土類
金属分及び遷移金属分の合計含有量は、処理油の質量を基準として15質量ppm以下で
あることが好ましく、10質量ppm以下であることがより好ましい。金属分合計含有量
が15質量ppmを超える場合には、水素化脱酸素工程において、水素化脱酸素反応およ
び原料油中に含有される不飽和脂肪酸成分由来のオレフィンの水素化反応活性が低下し、
生成油の酸素含有量が増加し、また生成油の酸化安定性が低下する傾向にあり好ましくな
い。
The total content of alkali metal, alkaline earth metal and transition metal contained in the raw oil washed by the washing step is preferably 15 ppm by mass or less based on the mass of the treated oil. It is more preferable that it is 10 mass ppm or less. If the total metal content exceeds 15 ppm by mass, the hydrodeoxygenation step and the hydrodeoxygenation activity of olefins derived from unsaturated fatty acid components contained in the feedstock are reduced in the hydrodeoxygenation step. ,
This is not preferable because the oxygen content of the product oil increases and the oxidation stability of the product oil tends to decrease.

(水素化脱酸素工程)   (Hydro-deoxygenation process)

本発明でいう「水素化脱酸素」とは、含酸素有機化合物を構成する酸素原子を除去し、
開裂した部分に水素を付加する処理を意味する。例えば脂肪酸トリグリセライドや脂肪酸
は、それぞれエステル基、カルボキシル基等の含酸素基を有しているが、水素化脱酸素に
よって、これらの含酸素基に含まれる酸素原子が取り除かれ、含酸素有機化合物は炭化水
素に転換される。脂肪酸トリグリセライド等が有する含酸素基の水素化脱酸素には、主と
して二つの反応経路がある。第1の反応経路は、脂肪酸トリグリセリド等の炭素数を維持
しながらアルデヒド、アルコールを経由して還元される水素化経路である。この場合、酸
素原子は水に転換される。第2の反応経路は、脂肪酸トリグリセリド等の含酸素基がその
まま二酸化炭素として脱離する脱炭酸経路であり、酸素原子は二酸化炭素として取り除か
れる。本発明における水素化脱酸素では、これらの反応は並列に進行し、動植物由来の油
脂類を含む被処理油の水素化処理では、炭化水素と水、二酸化炭素が生成する。なお、脂
肪酸トリグリセリド等の脂肪酸単位を構成する炭化水素骨格は、不飽和及び/又は飽和の
長鎖アルキル基からなるが、水素化脱酸素により生成する炭化水素の不飽和結合は、水素
化処理により実質的に飽和結合となる。また、含硫黄化合物、含窒素化合物等は水素化処
理により除去される。また生成した炭化水素等の分解反応等の副反応も一部起こる。
In the present invention, “hydrodeoxygenation” means that oxygen atoms constituting the oxygen-containing organic compound are removed,
It means a process of adding hydrogen to the cleaved portion. For example, fatty acid triglycerides and fatty acids each have an oxygen-containing group such as an ester group and a carboxyl group, but hydrodeoxygenation removes oxygen atoms contained in these oxygen-containing groups, and the oxygen-containing organic compound is Converted to hydrocarbons. There are mainly two reaction pathways for hydrodeoxygenation of oxygen-containing groups of fatty acid triglycerides and the like. The first reaction route is a hydrogenation route that is reduced via an aldehyde or alcohol while maintaining the number of carbon atoms such as fatty acid triglyceride. In this case, oxygen atoms are converted to water. The second reaction route is a decarboxylation route in which oxygen-containing groups such as fatty acid triglycerides are eliminated as carbon dioxide as they are, and oxygen atoms are removed as carbon dioxide. In the hydrodeoxygenation in the present invention, these reactions proceed in parallel, and in the hydrotreating of the oil to be treated containing fats and oils derived from animals and plants, hydrocarbons, water, and carbon dioxide are generated. The hydrocarbon skeleton constituting the fatty acid unit such as fatty acid triglyceride is composed of an unsaturated and / or saturated long chain alkyl group, but the unsaturated bond of the hydrocarbon generated by hydrodeoxygenation is caused by hydrogenation treatment. It becomes a saturated bond substantially. In addition, sulfur-containing compounds, nitrogen-containing compounds and the like are removed by hydrogenation treatment. In addition, some side reactions such as decomposition reactions of the generated hydrocarbons also occur.

本発明の製造方法における水素化脱酸素工程は単一の触媒床から構成されていてもよい
し、また複数の触媒床から構成されていてもよい。また、反応帯域が複数の触媒床から構
成される場合、それらの触媒床は単一の反応器内に間隔をおいて設置されてもよいし、あ
るいは複数の直列または並列に配置された反応器内に設置されていてもよい。
The hydrodeoxygenation step in the production method of the present invention may be composed of a single catalyst bed or may be composed of a plurality of catalyst beds. In addition, when the reaction zone is composed of a plurality of catalyst beds, the catalyst beds may be spaced apart in a single reactor, or a plurality of reactors arranged in series or in parallel. It may be installed inside.

水素化脱酸素工程における反応器の形式としては、固定床方式を採用することができる
。すなわち、水素は被処理油に対して向流又は並流のいずれの形式を採用することができ
る。また、複数の反応器を用いて、向流、並流を組み合せた形式としてもよい。一般的な
形式としては、ダウンフローであり、気液双並流形式を採用することができる。また、反
応器は単独又は複数を組み合せてもよく、一つの反応器内部を複数の触媒床に区分した構
造を採用してもよい。
As a form of the reactor in the hydrodeoxygenation step, a fixed bed system can be adopted. That is, hydrogen can adopt either a countercurrent or a parallel flow type with respect to the oil to be treated. Moreover, it is good also as a form which combined the countercurrent and the parallel flow using several reactors. As a general format, it is a down flow, and a gas-liquid twin parallel flow format can be adopted. Moreover, the reactor may be used alone or in combination, and a structure in which one reactor is divided into a plurality of catalyst beds may be adopted.

水素化脱酸素工程には、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマ
グネシウムからなる群より選択される2種以上の元素を含んで構成される多孔性無機酸化
物と、該多孔性無機酸化物に担持された周期表第6族、9族、10族に属するいずれかの
金属元素1種以上と、を含有してなる触媒を用いることが好ましい。
In the hydrodeoxygenation step, a porous inorganic oxide comprising two or more elements selected from the group consisting of aluminum, silicon, zirconium, boron, titanium and magnesium, and the porous inorganic oxide It is preferable to use a catalyst containing one or more metal elements belonging to any of Groups 6, 9, and 10 of the periodic table supported on the catalyst.

多孔性無機酸化物の構成元素としてアルミニウムを含有する、すなわちアルミニウムと
他の元素とを含む無機酸化物であることが好ましく、酸化アルミニウムと他の酸化物との
複合酸化物であることが更に好ましい。その場合、アルミニウムの含有量が多孔性無機酸
化物全量を基準として、アルミナ酸化物換算で、好ましくは1〜97質量%、より好まし
くは10〜97質量%、更に好ましくは20〜95質量%である。
It is preferably an inorganic oxide containing aluminum as a constituent element of the porous inorganic oxide, that is, containing aluminum and other elements, and more preferably a composite oxide of aluminum oxide and other oxides. . In that case, the content of aluminum is preferably 1 to 97% by mass, more preferably 10 to 97% by mass, and still more preferably 20 to 95% by mass in terms of alumina oxide based on the total amount of the porous inorganic oxide. is there.

水素化触媒を構成する多孔性無機酸化物は、構成元素としてさらにリンを含有すること
が好ましい。リンの含有量は、多孔性無機酸化物全量を基準として、好ましくは0.1〜
10質量%、より好ましくは0.5〜7質量%、更に好ましくは2〜6質量%である。リ
ンの含有量が0.1質量%未満の場合には十分な脱酸素活性及び脱硫活性の向上効果が発
揮されない傾向にあり、また、10質量%を超えると過度の分解反応が進行して目的とす
る生成油の収率が低下する恐れがある。
The porous inorganic oxide constituting the hydrogenation catalyst preferably further contains phosphorus as a constituent element. The phosphorus content is preferably 0.1 to 0.1, based on the total amount of the porous inorganic oxide.
It is 10 mass%, More preferably, it is 0.5-7 mass%, More preferably, it is 2-6 mass%. When the phosphorus content is less than 0.1% by mass, sufficient deoxygenation activity and desulfurization activity tend not to be exhibited. When the content exceeds 10% by mass, excessive decomposition reaction proceeds and the purpose is high. The yield of the resulting oil may be reduced.

水素化触媒を構成する多孔性無機酸化物を製造する方法は特に限定されないが、各構成
元素を含有する原料としては、例えばアルミニウムは水酸化アルミニウム、ベーマイト等
、ケイ素についてはケイ酸、水ガラス、シリカゾルなど、ホウ素についてはホウ酸など、
チタンについては硫化チタン、四塩化チタンや各種アルコキサイド塩など、ジルコニウム
については硫酸ジルコニウムや各種アルコキサイド塩など、リンについてはリン酸やリン
酸のアルカリ金属塩などを用いることができる。
The method for producing the porous inorganic oxide constituting the hydrogenation catalyst is not particularly limited. Examples of the raw material containing each constituent element include aluminum for aluminum hydroxide and boehmite, and silicon for silicic acid, water glass, Silica sol, boron, boric acid etc.
Titanium sulfide, titanium tetrachloride and various alkoxide salts can be used for titanium, zirconium sulfate and various alkoxide salts can be used for zirconium, and phosphoric acid and alkali metal salts of phosphoric acid can be used for phosphorus.

これらの原料を用いて多孔性無機酸化物を製造する方法としては、例えばアルミニウム
を構成元素のひとつとして含有する場合には、調合した水酸化アルミニウムゲルに対して
上記に例示したその他の構成元素を含有する原料を添加してもよい。あるいは、市販の酸
化アルミニウム中間体やベーマイトパウダーに水もしくは酸性水溶液を添加して混練する
工程においてその他の構成元素を含有する原料を添加してもよいが、水酸化アルミニウム
ゲルを調合する段階でその他の原料を共存させることがより好ましい。これら混合物を混
練し、必要により成型し、乾燥した後、焼成することにより多孔性無機酸化物を製造する
ことが好ましい。
As a method for producing a porous inorganic oxide using these raw materials, for example, when aluminum is contained as one of the constituent elements, other constituent elements exemplified above for the prepared aluminum hydroxide gel are used. You may add the raw material to contain. Alternatively, in the process of adding water or an acidic aqueous solution to a commercially available aluminum oxide intermediate or boehmite powder and kneading, raw materials containing other constituent elements may be added, but at the stage of preparing aluminum hydroxide gel More preferably, these raw materials are allowed to coexist. It is preferable to produce a porous inorganic oxide by kneading these mixtures, molding them if necessary, drying them, and firing them.

担体としての上記多孔性無機酸化物には、元素の周期表第6族、第9族、第10族に含
まれる元素から選ばれる1種以上の活性金属が担持される。ここで、元素の周期表とは、
国際純正・応用化学連合(IUPAC)により規定された元素の周期表をいう。活性金属
として好ましい、第6族の金属元素としてはクロム、モリブデン、タングステンが、第9
族の金属元素としてはコバルト、ロジウム、イリジウムが、第10族の金属元素としては
ニッケル、パラジウム、白金が挙げられる。これらの活性金属の中でも、モリブデン、タ
ングステン、コバルト及びニッケル選択される2種以上の金属を組み合わせて用いること
が好ましい。好適な組み合せとしては、例えば、コバルト−モリブデン、ニッケル−モリ
ブデン、ニッケル−コバルト−モリブデン、ニッケル−タングステンが挙げられる。これ
らのうち、ニッケル−モリブデン、ニッケル−コバルト−モリブデン及びニッケル−タン
グステンの組み合せがより好ましい。これらの活性金属を含む触媒を水素化脱酸素工程に
用いるに際しては、これらの金属を硫化物の状態に転換して使用することが好ましい。
The porous inorganic oxide as the carrier carries one or more active metals selected from elements included in Groups 6, 9, and 10 of the periodic table of elements. Here, the periodic table of elements is
This is a periodic table of elements specified by the International Union of Pure and Applied Chemistry (IUPAC). Preferred as active metals, Group 6 metal elements are chromium, molybdenum, and tungsten.
The group metal elements include cobalt, rhodium, and iridium, and the group 10 metal elements include nickel, palladium, and platinum. Among these active metals, it is preferable to use a combination of two or more metals selected from molybdenum, tungsten, cobalt and nickel. Examples of suitable combinations include cobalt-molybdenum, nickel-molybdenum, nickel-cobalt-molybdenum, and nickel-tungsten. Of these, combinations of nickel-molybdenum, nickel-cobalt-molybdenum, and nickel-tungsten are more preferred. When using these active metal-containing catalysts in the hydrodeoxygenation step, it is preferable to convert these metals into a sulfide state.

触媒質量を基準とする活性金属の担持量としては、モリブデン又はタングステンは酸化
物換算で12〜35質量%が好ましく、15〜30質量%がより好ましい。モリブデン又
はタングステンの担持量が12質量%未満であると活性点が少なくなり、十分な活性が得
られなくなる傾向にある。他方、35質量%を越えると、活性金属が効果的に分散せず、
十分な活性が得られなくなる傾向にある。コバルト及び/又はニッケルの合計担持量は酸
化物換算で1.0〜15質量%が好ましく、1.5〜12質量がより好ましい。コバルト
及び/又はニッケルの合計担持量が1.0質量%未満であると、十分な助触媒効果が得ら
れず、活性が低下する傾向がある。他方、15質量%を越えると、金属が効果的に分散せ
ず、十分な活性が得られなくなる傾向がある。
As the loading amount of the active metal based on the catalyst mass, molybdenum or tungsten is preferably 12 to 35 mass%, more preferably 15 to 30 mass% in terms of oxide. If the supported amount of molybdenum or tungsten is less than 12% by mass, the active sites tend to decrease and sufficient activity cannot be obtained. On the other hand, when it exceeds 35% by mass, the active metal is not effectively dispersed,
There is a tendency that sufficient activity cannot be obtained. The total supported amount of cobalt and / or nickel is preferably 1.0 to 15% by mass in terms of oxide, and more preferably 1.5 to 12% by mass. When the total supported amount of cobalt and / or nickel is less than 1.0% by mass, a sufficient promoter effect cannot be obtained and the activity tends to decrease. On the other hand, if it exceeds 15% by mass, the metal is not effectively dispersed and sufficient activity tends not to be obtained.

これらの活性金属を触媒に含有させる方法は特に限定されず、通常の脱硫触媒を製造す
る際に適用される公知の方法を用いることができる。通常、活性金属の塩を含む溶液を触
媒担体に含浸する方法が好ましく採用される。また、平衡吸着法、Pore−filli
ng法、Incipient−wetness法なども好ましく採用される。例えば、P
ore−filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金
属塩溶液を含浸する方法である。なお、含浸方法は特に限定されるものではなく、金属担
持量や触媒担体の物性に応じて適当な方法で含浸することができる。
The method for incorporating these active metals into the catalyst is not particularly limited, and a known method applied when producing an ordinary desulfurization catalyst can be used. Usually, a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed. Also, equilibrium adsorption method, Pore-filli
The ng method, the incident-wetness method, and the like are also preferably employed. For example, P
The ore-filling method is a method in which the pore volume of a carrier is measured in advance and impregnated with a metal salt solution having the same volume. The impregnation method is not particularly limited, and it can be impregnated by an appropriate method according to the amount of metal supported and the physical properties of the catalyst carrier.

本発明では、水素化脱酸素工程の触媒活性を維持するために、前記洗浄工程と水素化脱
酸素工程の間において、水素化脱酸素工程に流入する硫黄分量が全流体中の1質量ppm
以上となるように適宜調整して、硫黄化合物及び/又は硫化水素を流体に注入することが
好ましい。硫黄分濃度は、1質量ppm以上が好ましく、2〜100質量ppmの範囲で
あることがより好ましく、3〜60質量ppmの範囲であることがさらに好ましい。硫黄
分濃度が1質量ppm未満の場合には、水素化脱酸素工程の触媒活性が低下し、十分な水
素化脱酸素性能およびオレフィンの水素化性能が得られず、生成油中のよう素価や酸素含
有量が上昇する可能性がある。一方、硫黄分濃度が高くなると、生成油に硫黄分が混入し
硫黄分濃度が上昇したり、燃料としての品質を示すドクター試験、銅板腐食試験などの性
状が悪化するおそれがある。なお、本発明における硫黄分は、JIS K 2541「硫
黄分試験方法」又はASTM−5453に記載の方法に準拠して測定される硫黄分の質量
含有量を意味する。また、ドクター試験は、JIS K 2276「石油製品−航空燃料
油試験方法」又はASTM D−4952、に記載の方法に準拠して測定されるものであ
り、銅板腐食試験は、JIS K 2513「石油製品−銅板腐食試験方法」に記載の方
法に準拠して測定されるものである。
In the present invention, in order to maintain the catalytic activity of the hydrodeoxygenation step, the sulfur content flowing into the hydrodeoxygenation step is 1 mass ppm in the total fluid between the washing step and the hydrodeoxygenation step.
It is preferable that the sulfur compound and / or hydrogen sulfide is injected into the fluid by appropriately adjusting so as to achieve the above. The sulfur concentration is preferably 1 ppm by mass or more, more preferably in the range of 2 to 100 ppm by mass, and still more preferably in the range of 3 to 60 ppm by mass. When the sulfur concentration is less than 1 ppm by mass, the catalytic activity of the hydrodeoxygenation step decreases, and sufficient hydrodeoxygenation performance and olefin hydrogenation performance cannot be obtained. And oxygen content may increase. On the other hand, when the sulfur concentration is high, the sulfur content is mixed into the product oil to increase the sulfur content, or properties such as a doctor test and a copper plate corrosion test showing the quality as fuel may be deteriorated. In addition, the sulfur content in this invention means the mass content of the sulfur content measured based on the method of JISK2541 "Sulfur content test method" or ASTM-5453. The doctor test is measured in accordance with the method described in JIS K 2276 “Petroleum products-aviation fuel oil test method” or ASTM D-4952, and the copper plate corrosion test is performed in accordance with JIS K 2513 “Petroleum. It is measured according to the method described in “Product—Copper Plate Corrosion Test Method”.

硫黄分濃度の調整に用いる硫黄源としての硫黄化合物としては、例えばポリサルファイ
ド類、ジアルキルジスルフィド類、チオフェン類、メルカプタン類が挙げられる。さらに
、原油を蒸留して得られる留分を混合してもよく、該留分を精製処理して得られる精製留
分を用いて所定の硫黄濃度に調整してもよい。また、硫化水素ガスを注入してもよい。こ
のうち、分解反応が生じる温度や触媒上の活性金属の硫化効率を考慮すると、ポリサルフ
ァイド類、ジアルキルジスルフィド類が好ましく、ジアルキルスルフィド類の中では、ジ
メチルジスルフィド、ジブチルジスルフィドが好ましい。
Examples of the sulfur compound as a sulfur source used for adjusting the sulfur concentration include polysulfides, dialkyl disulfides, thiophenes, and mercaptans. Further, a fraction obtained by distilling crude oil may be mixed, and a refined fraction obtained by refining the fraction may be adjusted to a predetermined sulfur concentration. Further, hydrogen sulfide gas may be injected. Of these, polysulfides and dialkyl disulfides are preferred in consideration of the temperature at which the decomposition reaction occurs and the sulfidation efficiency of the active metal on the catalyst. Among dialkyl sulfides, dimethyl disulfide and dibutyl disulfide are preferred.

水素化脱酸素工程における反応条件としては、好ましくは水素圧力1〜10MPa、液
時空間速度(LHSV)0.3〜5.0h−1、水素油比(水素/油比)100〜150
0NL/Lであり、より好ましくは、水素圧力2〜8MPa、液時空間速度0.3〜3.
0h−1、水素油比200〜1200NL/Lであり、さらに好ましくは、水素圧力2.
5〜8MPa、液時空間速度0.5〜2.5h−1、水素油比250〜1000NL/L
である。これらの条件はいずれも反応活性を左右する因子であり、例えば水素圧力及び水
素油比が上記の下限値に満たない場合には、反応性が低下したり活性が急速に低下したり
する傾向がある。他方、水素圧力及び水素油比が上記の上限値を超える場合には、圧縮機
等の過大な設備投資が必要となる傾向がある。また、液空間速度は低いほど反応に有利な
傾向にあるが、上記の下限値未満の場合は、極めて大きな内容積の反応器が必要となり過
大な設備投資が必要となる傾向があり、他方、液空間速度が上記の上限値を超える場合は
、反応が十分に進行しなくなる傾向がある。
The reaction conditions in the hydrodeoxygenation step are preferably a hydrogen pressure of 1 to 10 MPa, a liquid hourly space velocity (LHSV) of 0.3 to 5.0 h −1 , and a hydrogen oil ratio (hydrogen / oil ratio) of 100 to 150.
0 NL / L, more preferably hydrogen pressure 2-8 MPa, liquid hourly space velocity 0.3-3.
0h −1 , hydrogen oil ratio 200 to 1200 NL / L, more preferably hydrogen pressure 2.
5-8 MPa, liquid hourly space velocity 0.5-2.5 h −1 , hydrogen oil ratio 250-1000 NL / L
It is. These conditions are factors that influence the reaction activity. For example, when the hydrogen pressure and the hydrogen oil ratio are less than the above lower limit values, the reactivity tends to decrease or the activity rapidly decreases. is there. On the other hand, when the hydrogen pressure and the hydrogen oil ratio exceed the above upper limit values, there is a tendency that excessive equipment investment such as a compressor is required. Further, the lower the liquid space velocity tends to be advantageous for the reaction, but if the liquid space velocity is less than the above lower limit value, there is a tendency that an extremely large internal volume reactor is required and excessive equipment investment is required, When the liquid space velocity exceeds the above upper limit, the reaction tends not to proceed sufficiently.

水素化脱酸素工程における反応温度は200〜390℃の範囲であることが好ましく、
220〜380℃の範囲であることがより好ましく、250〜365℃の範囲であること
が特に好ましい。反応温度が220℃より低い場合には、十分な水素化異性化反応が進行
せず、390℃より高い場合には、過度の分解や原料油の重合、その他の副反応が進行す
るおそれがある。
The reaction temperature in the hydrodeoxygenation step is preferably in the range of 200 to 390 ° C.
The range of 220 to 380 ° C is more preferable, and the range of 250 to 365 ° C is particularly preferable. When the reaction temperature is lower than 220 ° C., sufficient hydroisomerization reaction does not proceed, and when it is higher than 390 ° C., excessive decomposition, polymerization of raw material oil, and other side reactions may proceed. .

水素化脱酸素工程において、原料油にと共に反応器に導入される水素ガスは、所定の反
応温度まで昇温するための加熱炉の上流もしくは下流において原料油に随伴させて反応器
の入口から導入することが一般的であるが、これとは別に、反応器内の温度を制御すると
ともに、反応器の上流から下流にわたって水素圧力を維持する目的で、触媒床の間から、
あるいは複数の反応器で構成される場合には当該反応器の間から、水素ガスを導入しても
よい(クエンチ水素)。または、生成油、未反応油、反応中間油などのいずれかまたは複
数組み合わせて、その一部を、反応器入口や触媒床の間から、あるいは複数の反応器で構
成される場合には当該反応器の間から、導入してもよい。これにより反応温度を制御し、
反応温度上昇による過度の分解反応や反応暴走を回避することができる。
In the hydrodeoxygenation process, the hydrogen gas introduced into the reactor together with the feed oil is introduced from the inlet of the reactor along with the feed oil upstream or downstream of the heating furnace for raising the temperature to a predetermined reaction temperature. Apart from this, for the purpose of controlling the temperature in the reactor and maintaining the hydrogen pressure from upstream to downstream of the reactor, from between the catalyst beds,
Or when comprised with several reactors, you may introduce | transduce hydrogen gas from between the said reactors (quenching hydrogen). Alternatively, any or a combination of product oils, unreacted oils, reaction intermediate oils, etc., or a part of them, between the reactor inlet and the catalyst bed, or a plurality of reactors are used. It may be introduced in between. This controls the reaction temperature,
Excessive decomposition reactions and reaction runaway due to an increase in reaction temperature can be avoided.

本発明の製造方法において、水素化脱酸素工程で得られた生成油は、直鎖状炭化水素が
主体であり、水素化脱酸素工程の後に低温性能を改善するために異性化工程を設けてもよ
い。異性化工程では、一般的に知られている異性化触媒を用いることができる。例えば、
異性化触媒を構成する担体として、多孔性無機酸化物を選んでも良く、アルミニウム、ケ
イ素、ジルコニウム、チタンのうち少なくとも二種類以上の元素を含んで構成されている
ことがより好ましい。多孔性無機酸化物は、非結晶性、結晶性のいずれの形態でもよく、
ゼオライトを用いることもできる。ゼオライトを用いる場合には、国際ゼオライト学会が
定める構造コードのうち、FAU、BEA、MOR、MFI、MEL、MWW、TON、
AEL、MTTなどの結晶構造を有するゼオライトを用いることが好ましい。また、異性
化触媒の活性金属としては、元素の周期表第8族、第9族、第10族および第11族の元
素から選ばれる1種以上の金属であることが好ましく、このうち、白金、パラジウム、ル
テニウム、ロジウム、金、イルジウム、ニッケル、コバルトから選ばれる1種以上の金属
であることがより好ましく、白金、パラジウム、ルテニウム、ニッケルであることが特に
好ましい。なお、これらの活性金属は、2種類以上の金属を組み合わせてもよく、例えば
、白金−パラジウム、白金−ルテニウム、白金−ロジウム、白金−金、白金−イリジウム
などの例が挙げられる。異性化工程で得られた生成物は、分解生成物としての軽質炭化水
素を蒸留などによって除去して所定の炭化水素油を得ることができる。
In the production method of the present invention, the product oil obtained in the hydrodeoxygenation step is mainly composed of linear hydrocarbons, and an isomerization step is provided to improve low temperature performance after the hydrodeoxygenation step. Also good. In the isomerization step, a generally known isomerization catalyst can be used. For example,
As the carrier constituting the isomerization catalyst, a porous inorganic oxide may be selected, and it is more preferable that at least two elements selected from aluminum, silicon, zirconium and titanium are included. The porous inorganic oxide may be amorphous or crystalline,
Zeolite can also be used. When using zeolite, among the structure codes defined by the International Zeolite Society, FAU, BEA, MOR, MFI, MEL, MWW, TON,
It is preferable to use a zeolite having a crystal structure such as AEL or MTT. In addition, the active metal of the isomerization catalyst is preferably one or more metals selected from the elements of Group 8, Group 9, Group 10 and Group 11 of the Periodic Table of Elements. More preferably, it is one or more metals selected from palladium, ruthenium, rhodium, gold, irdium, nickel, and cobalt, and particularly preferably platinum, palladium, ruthenium, and nickel. In addition, these active metals may combine two or more types of metals, and examples include platinum-palladium, platinum-ruthenium, platinum-rhodium, platinum-gold, and platinum-iridium. The product obtained in the isomerization step can be obtained by removing light hydrocarbons as decomposition products by distillation or the like to obtain a predetermined hydrocarbon oil.

(生成油)
本発明の製造方法における水素化脱酸素工程では、水素化脱酸素反応の他に油脂類に含
まれる不飽和脂肪酸構造由来のオレフィン分の水素化反応が起こる。オレフィン分含有量
はよう素価によって定量することができる。なお、本発明におけるよう素価は、JIS
K 0070「化学製品の酸価,けん化価,エステル価,よう素価,水酸基価及び不けん
化物の試験方法」に記載の方法に準拠して測定した値である。酸洗浄処理油を水素化脱酸
素工程によって処理した生成油については、酸化安定性の観点から、生成油のよう素価は
、0.1g−I/g以下であることが好ましい。よう素価が、0.1g−I/g以下
を超える場合には、酸化安定性が悪化し、前述した酸価が著しく上昇する傾向にある。
(Production oil)
In the hydrodeoxygenation step in the production method of the present invention, a hydrogenation reaction of an olefin derived from an unsaturated fatty acid structure contained in fats and oils occurs in addition to the hydrodeoxygenation reaction. The olefin content can be quantified by iodine value. The iodine value in the present invention is JIS
This is a value measured in accordance with the method described in K 0070 “Testing Method for Acid Value, Saponification Value, Ester Value, Iodine Value, Hydroxyl Value and Unsaponified Product of Chemical Products”. About the product oil which processed the acid washing process oil by the hydrodeoxygenation process, it is preferable that the iodine value of a product oil is 0.1 g-I < 2 > / g or less from a viewpoint of oxidation stability. When the iodine value exceeds 0.1 g-I 2 / g or less, the oxidation stability is deteriorated and the acid value described above tends to increase remarkably.

生成油の酸化安定性は、115℃において16時間当該油試料に酸素ガスを吹き込んだ
後の酸価の、酸素ガスを吹き込む前の酸価を基準とした増加量により定量的に判定するこ
とができる。生成油の酸価増加量は0.25mg−KOH/g以下であることが好ましく
、0.15mgKOH/g以下であることがより好ましい。酸価は、試料1g中の酸性成
分量をあらわす指標であり、酸価増加量が0.25mgKOH/gを超える場合には、生
成油の貯蔵安定性が悪化する傾向にある。なお、本発明でいう「酸価」はJIS K 2
276「石油製品−航空燃料油試験方法」にある酸価試験方法に記載の方法に準拠して測
定した酸価を意味する。
The oxidation stability of the product oil can be determined quantitatively by the amount of increase in the acid value after blowing oxygen gas into the oil sample at 115 ° C. for 16 hours, based on the acid value before blowing oxygen gas. it can. The acid value increase amount of the produced oil is preferably 0.25 mg-KOH / g or less, and more preferably 0.15 mgKOH / g or less. The acid value is an index representing the amount of acidic components in 1 g of a sample, and when the increase in acid value exceeds 0.25 mgKOH / g, the storage stability of the product oil tends to deteriorate. The “acid value” in the present invention is JIS K 2
It means the acid value measured according to the method described in 276 “Petroleum products—aviation fuel oil test method”.

本発明の製造方法によって得られる炭化水素油は特にディーゼル軽油や重油基材として
好適に用いることができる。この場合、本発明の方法によって製造される炭化水素油は単
独でディーゼル軽油や重油基材として用いてもよいが、他の基材などの成分を混合したデ
ィーゼル軽油又は重質基材として用いることができる。他の基材としては、一般的な石油
精製工程で得られる軽油留分及び/又は灯油留分、本発明の炭化水素油の製造方法で得ら
れる残さ留分を混合することもできる。さらに、水素と一酸化炭素から構成される、所謂
合成ガスを原料とし、フィッシャー・トロプシュ反応などを経由して得られる合成軽油も
しくは合成灯油を混合することもできる。これらの合成軽油や合成灯油は芳香族分をほと
んど含有せず、飽和炭化水素を主成分とし、セタン価が高いことが特徴である。なお、合
成ガスの製造方法としては公知の方法を用いることができ、特に限定されるものではない
The hydrocarbon oil obtained by the production method of the present invention can be suitably used particularly as a diesel light oil or heavy oil base material. In this case, the hydrocarbon oil produced by the method of the present invention may be used alone as a diesel light oil or heavy oil base material, but used as a diesel light oil or heavy base material mixed with components such as other base materials. Can do. As other base materials, a light oil fraction and / or kerosene fraction obtained in a general petroleum refining process and a residual fraction obtained by the method for producing a hydrocarbon oil of the present invention can be mixed. Furthermore, so-called synthesis gas composed of hydrogen and carbon monoxide is used as a raw material, and synthetic light oil or synthetic kerosene obtained through a Fischer-Tropsch reaction or the like can be mixed. These synthetic light oils and kerosene are characterized by containing almost no aromatic content, having a saturated hydrocarbon as a main component, and a high cetane number. In addition, a well-known method can be used as a manufacturing method of synthesis gas, and it is not specifically limited.

以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実
施例に何ら限定されるものではない。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

[洗浄工程]
(実施例1)
粗パーム油を原料油として用い、これを75℃にて加熱撹拌しながら原料油質量に対し
て3質量%の硫酸水溶液を加えて20分間保持した後、遠心効果3000×Gにて15分間
遠心分離を行って、分離された油相である液Aを回収した。なお、洗浄の際に加えた硫酸
水溶液中の硫酸濃度は水溶液基準で1.7質量%であった。
[Washing process]
Example 1
Using crude palm oil as a raw material oil, adding 3% by weight sulfuric acid aqueous solution with respect to the raw material oil mass while heating and stirring at 75 ° C. and holding for 20 minutes, followed by centrifugation at 3000 × G for 15 minutes. Separation was performed, and liquid A, which was a separated oil phase, was recovered. The sulfuric acid concentration in the sulfuric acid aqueous solution added at the time of washing was 1.7% by mass based on the aqueous solution.

(実施例2)
硫酸水溶液に代えてリン酸水溶液を用いた以外は実施例1と同様の操作を行って液Bを
得た。なお、リン酸水溶液中のリン酸濃度は水溶液基準で1.7質量%であった。
(Example 2)
A liquid B was obtained in the same manner as in Example 1 except that a phosphoric acid aqueous solution was used instead of the sulfuric acid aqueous solution. The phosphoric acid concentration in the phosphoric acid aqueous solution was 1.7% by mass based on the aqueous solution.

(実施例3)
硫酸水溶液に代えてにクエン酸水溶液を用いた以外は実施例1と同様の操作を行って液C
を得た。なおクエン酸水溶液中のクエン酸濃度は水溶液基準で1.7質量%であった。
(Example 3)
Liquid C was prepared in the same manner as in Example 1 except that a citric acid aqueous solution was used instead of the sulfuric acid aqueous solution.
Got. The citric acid concentration in the citric acid aqueous solution was 1.7% by mass based on the aqueous solution.

(実施例4)
硫酸水溶液の代わりに酢酸水溶液を用いた以外は実施例1と同様の操作を行って液Dを得
た。酢酸水溶液中の酢酸濃度は水溶液基準で1.7質量%であった。
Example 4
A liquid D was obtained in the same manner as in Example 1 except that an acetic acid aqueous solution was used instead of the sulfuric acid aqueous solution. The acetic acid concentration in the aqueous acetic acid solution was 1.7% by mass based on the aqueous solution.

(実施例5)
粗パーム油を原料油として用い、これを75℃にて加熱撹拌しながら原料油質量に対して
100質量%の硫酸水溶液を加えて20分間保持した後に静置し、分離した油相を回収し
て液Eを得た。なお、硫酸水溶液中の硫酸濃度は1.7質量%であった。
(Example 5)
Using crude palm oil as a raw material oil, adding 100% by weight sulfuric acid aqueous solution to the raw material oil mass while heating and stirring at 75 ° C., holding it for 20 minutes, and allowing to stand, recovering the separated oil phase Thus, liquid E was obtained. The sulfuric acid concentration in the sulfuric acid aqueous solution was 1.7% by mass.

(実施例6)
実施例1で得られた液Aを75℃にて加熱撹拌しながら液Aの質量に対して3質量%の水
を加えて20分間保持した後、実施例1と同様の遠心分離操作を行って油相である液Fを
得た。
(Example 6)
While the liquid A obtained in Example 1 was heated and stirred at 75 ° C., 3% by mass of water was added to the mass of the liquid A and held for 20 minutes, and then the same centrifugal operation as in Example 1 was performed. As a result, an oily phase liquid F was obtained.

(実施例7)
粗パーム油を原料油として用い、これを75℃に加熱撹拌しながら原料油質量に対して
3質量%の硫酸水溶液を加えて20分間保持し、混合物を静置した後に油相である液Gを
得た。なお、硫酸水溶液中の硫酸濃度は1.7質量%であった。
(Example 7)
Using crude palm oil as a raw material oil, while heating and stirring at 75 ° C., a 3% by weight sulfuric acid aqueous solution is added to the raw material oil weight, and the mixture is held for 20 minutes. Got. The sulfuric acid concentration in the sulfuric acid aqueous solution was 1.7% by mass.

(実施例8)
硫酸水溶液との混合温度を97℃とした以外は実施例1と同様の操作を行って液Hを得
た。なお、硫酸水溶液中の硫酸濃度は水溶液基準で1.7質量%であった。
(Example 8)
A liquid H was obtained in the same manner as in Example 1 except that the mixing temperature with the sulfuric acid aqueous solution was set to 97 ° C. The sulfuric acid concentration in the aqueous sulfuric acid solution was 1.7% by mass based on the aqueous solution.

(比較例1)
粗パーム油を全く洗浄処理しなかった。
(Comparative Example 1)
No crude palm oil was washed.

(比較例2)
粗パーム油を原料油として用い、これを30℃にて加熱撹拌しながら原料油質量に対し
て3質量%の硫酸水溶液を加えて20分間保持した後、遠心効果3000×Gにて15分間
遠心分離を行って、分離された油相である液Iを回収した。なお、洗浄の際に加えた硫酸
水溶液中の硫酸濃度は水溶液基準で1.7質量%であった。
(Comparative Example 2)
Using crude palm oil as a raw material oil, adding 3% by weight sulfuric acid aqueous solution to the raw material oil mass while heating and stirring at 30 ° C. and holding it for 20 minutes, followed by centrifugation at 3000 × G for 15 minutes. Separation was performed, and liquid I, which was a separated oil phase, was recovered. The sulfuric acid concentration in the sulfuric acid aqueous solution added at the time of washing was 1.7% by mass based on the aqueous solution.

(比較例3)
200gの強酸型陽イオン交換樹脂、ローム・アンド・ハース社製「アンバーリスト1
5」(商品名)をジャケット付きカラムに充填し、これを35℃の温水で保温しながら3
5℃に保った粗パーム油を通油し、留出油として液Jを得た。
(Comparative Example 3)
200 g of strong acid cation exchange resin, manufactured by Rohm and Haas “Amberlyst 1
5 ”(trade name) is packed in a jacketed column and this is kept warm with 35 ° C. warm water.
Crude palm oil kept at 5 ° C. was passed through to obtain liquid J as a distillate.

以上の実施例又は比較例における洗浄工程で得られた洗浄処理済みの各液A〜Jの金属
分等の各不純物含有量を表1、2に示す。
Tables 1 and 2 show the contents of impurities such as the metal content of each of the liquids A to J that have been subjected to the cleaning treatment obtained in the cleaning step in the above examples or comparative examples.

Figure 0005057954
Figure 0005057954

Figure 0005057954
Figure 0005057954

表1、2より、実施例1〜8においては、酸水溶液による洗浄処理によってアルカリ金
属分、アルカリ土類金属分及び遷移金属分の含有量が十分なレベルにまで低減できている
のに対し、洗浄処理の温度が低い比較例2及びイオン交換樹脂による処理を行った比較例
3については、前記金属分が充分に除去されていないことが明らかになった。また、遠心
分離操作を行わない場合には(実施例5)、リン分、鉄分の残留濃度の増加が見られる。
さらに、97℃にて洗浄を行った実施例8においては、洗浄後の原料油中に褐色の不溶分
の生成がみられたが、前記金属分は充分に除去されていた。
From Tables 1 and 2, in Examples 1 to 8, the content of alkali metal, alkaline earth metal and transition metal can be reduced to a sufficient level by washing treatment with an acid aqueous solution, In Comparative Example 2 where the temperature of the cleaning treatment was low and in Comparative Example 3 where the treatment with the ion exchange resin was performed, it was revealed that the metal component was not sufficiently removed. Further, when the centrifugation operation is not performed (Example 5), an increase in the residual concentration of phosphorus and iron is observed.
Furthermore, in Example 8 which performed washing | cleaning at 97 degreeC, although the production | generation of the brown insoluble content was seen in the raw material oil after washing | cleaning, the said metal content was fully removed.

(水素化脱酸素工程用触媒の調製)
濃度5質量%のアルミン酸ナトリウム水溶液に水ガラス3号を加え、65℃に保温した
容器に入れた。他方、65℃に保温した別の容器において濃度2.5質量%の硫酸アルミ
ニウム水溶液にリン酸(濃度85%)を加えた溶液を調製し、これに前述のアルミン酸ナ
トリウムを含む水溶液を滴下した。混合溶液のpHが7.0になる時点を終点とし、得ら
れたスラリー状の生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。次に
、ケーキ状のスラリーを、還流冷却器を取り付けた容器に移し、蒸留水150mlと27
%アンモニア水溶液10gを加え、75℃で20時間加熱攪拌した。該スラリーを混練装
置に入れ、80℃以上に加熱し水分を除去しながら混練し、粘土状の混練物を得た。得ら
れた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押し出し、110
℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。得られた成形担体50gを
ナス型フラスコに入れ、ロータリーエバポレータ−で脱気しながら三酸化モリブデン、硝
酸ニッケル(II)6水和物、リン酸(濃度85質量%)及びリンゴ酸を含む含浸溶液を
フラスコ内に注入した。含浸した固形物を120℃で1時間乾燥した後、550℃で焼成
し、触媒を得た。調製した触媒の組成を表3に示す。
(Preparation of catalyst for hydrodeoxygenation process)
Water glass No. 3 was added to an aqueous solution of sodium aluminate having a concentration of 5% by mass and placed in a container kept at 65 ° C. On the other hand, a solution obtained by adding phosphoric acid (concentration 85%) to an aqueous solution of aluminum sulfate having a concentration of 2.5 mass% in another container kept at 65 ° C. was prepared, and the aqueous solution containing sodium aluminate was added dropwise thereto. . The time when the pH of the mixed solution reached 7.0 was set as the end point, and the resulting slurry product was filtered through a filter to obtain a cake slurry. Next, the cake-like slurry was transferred to a container equipped with a reflux condenser, and 150 ml and 27 ml of distilled water were added.
A 10% aqueous ammonia solution was added, and the mixture was stirred with heating at 75 ° C. for 20 hours. The slurry was put in a kneading apparatus and heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product. The obtained kneaded material was extruded into the shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine.
After drying at 0 ° C. for 1 hour, it was fired at 550 ° C. to obtain a shaped carrier. An impregnating solution containing 50 g of the obtained shaped carrier in an eggplant type flask and containing molybdenum trioxide, nickel (II) nitrate hexahydrate, phosphoric acid (concentration 85% by mass) and malic acid while degassing with a rotary evaporator. Was poured into the flask. The impregnated solid was dried at 120 ° C. for 1 hour and then calcined at 550 ° C. to obtain a catalyst. The composition of the prepared catalyst is shown in Table 3.

Figure 0005057954
Figure 0005057954

(水素化触媒の調製)
上記触媒(20ml)を充填した反応管(内径20mm)を固定床流通式反応装置に取
り付けた。この触媒層に対してジメチルジサルファイドを加えた直留軽油(硫黄分3質量
%)を、触媒層平均温度300℃、水素分圧6MPa、液空間速度1h−1、水素/油比
200NL/Lの条件下に4時間通油し、触媒の予備硫化を行った。
(Preparation of hydrogenation catalyst)
A reaction tube (inner diameter 20 mm) filled with the catalyst (20 ml) was attached to a fixed bed flow type reactor. A straight-run gas oil (sulfur content: 3% by mass) obtained by adding dimethyl disulfide to the catalyst layer was mixed with an average catalyst layer temperature of 300 ° C., a hydrogen partial pressure of 6 MPa, a liquid space velocity of 1 h −1 , and a hydrogen / oil ratio of 200 NL / L. The catalyst was presulfided for 4 hours under these conditions.

(実施例9〜12、比較例4、5)
実施例9〜12においては実施例1〜3及び8で得た洗浄処理油である液A、B、C及
びHを、比較例4、5においては比較例1、2で得た未洗浄処理油又は洗浄処理油である
液HIを、それぞれ原料油として水素化脱酸素工程に供した。水素化脱酸素工程において
は、各原料油に硫黄分濃度が10質量ppmになるようにジメチルジスルフィドを予め添
加したものを用い、上記の触媒層にこれらをそれぞれ通油し、水素圧力:5.0MPa、
LHSV(液時空間速度):1.0h−1、水素油費:800NL/L、反応温度:28
0℃にて水素化脱酸素処理を行った。なお、未洗浄処理パーム油の性状は、15℃におけ
る密度:0.916g/ml、酸素分含有量:11.4質量%であった。
(Examples 9 to 12, Comparative Examples 4 and 5)
In Examples 9 to 12, the liquids A, B, C and H, which are the cleaning oils obtained in Examples 1 to 3 and 8, were used. In Comparative Examples 4 and 5, the unwashed process obtained in Comparative Examples 1 and 2 Liquid HI, which is oil or cleaning oil, was subjected to a hydrodeoxygenation step as a raw material oil. In the hydrodeoxygenation step, dimethyl disulfide previously added to each raw material oil so as to have a sulfur concentration of 10 mass ppm is used, and these are passed through the catalyst layer, respectively, and hydrogen pressure: 5. 0 MPa,
LHSV (liquid hourly space velocity): 1.0 h −1 , hydrogen oil cost: 800 NL / L, reaction temperature: 28
Hydrodeoxygenation treatment was performed at 0 ° C. The properties of unwashed palm oil were as follows: density at 15 ° C .: 0.916 g / ml, oxygen content: 11.4% by mass.

各原料油を用いた場合の、水素化脱酸素工程の生成油の酸素分除去率、オレフィン水素
化率及び酸化安定性を表4に示す。
Table 4 shows the oxygen content removal rate, olefin hydrogenation rate, and oxidation stability of the product oil in the hydrodeoxygenation step when each raw material oil is used.

なお、本願でいう「酸素分除去率」とは、以下の式で定義される値をいう。
酸素分除去率(%)=100−{(水素化脱酸素工程後の生成油の酸素含有量)/(原料
油の酸素含有量)}×100
また、ここでいう原料油及び生成油中の「酸素含有量」とは、UOP−649に記載の方
法に準拠して測定される酸素分をいう。
As used herein, “oxygen removal rate” refers to a value defined by the following equation.
Oxygen content removal rate (%) = 100 − {(Oxygen content of product oil after hydrodeoxygenation step) / (Oxygen content of raw material oil)} × 100
In addition, the “oxygen content” in the raw material oil and the product oil here refers to an oxygen content measured in accordance with the method described in UOP-649.

また、「オレフィン水素化率」は以下の式で定義される値をいう。
オレフィン水素化率(%)=100−{(水素化脱酸素工程後の生成油よう素価)/(原
料油のよう素価)}×100
The “olefin hydrogenation rate” is a value defined by the following formula.
Olefin hydrogenation rate (%) = 100 − {(Production iodine value after hydrodeoxygenation step) / (Iodine value of feedstock)} × 100

さらに、酸化安定性の指標である酸価増加量は以下に示す方法によって測定した。すな
わち、酸化加速試験前後の酸価を、JIS K 2276「石油製品−航空燃料油試験方
法」にある酸価試験方法に記載の方法に準拠して測定し、加速試験後の酸価から生成油の
酸価を差し引いてその増加量を求めた。なお、酸化加速試験として生成油を115℃に保
ち、16時間酸素ガスを吹き込む操作を行った。
Furthermore, the increase in acid value, which is an index of oxidation stability, was measured by the following method. That is, the acid value before and after the oxidation acceleration test is measured according to the method described in the acid value test method in JIS K 2276 “Petroleum products—aviation fuel oil test method”, and the oil value is determined from the acid value after the acceleration test. The amount of increase was determined by subtracting the acid value of. In the oxidation acceleration test, an operation was performed in which the generated oil was kept at 115 ° C. and oxygen gas was blown for 16 hours.


Figure 0005057954
Figure 0005057954

表4から明らかなように、アルカリ金属分、アルカリ土類金属分及び遷移金属分が十分
除去された実施例9〜12においては、水素化脱酸素工程における触媒の水素化脱酸素活
性及びオレフィン水素化活性が十分高いレベルで維持されており、生成油は酸素分除去率
が充分高く、また酸化安定性に優れていることが確認された。一方、比較例4、5におい
ては、水素化脱酸素反応およびオレフィン水素化反応が十分に進行せず、生成油酸素分除
去率が低く、また不飽和分が多く酸化安定性が不十分であった。
As is apparent from Table 4, in Examples 9 to 12 in which the alkali metal content, alkaline earth metal content and transition metal content were sufficiently removed, the hydrodeoxygenation activity and olefin hydrogen of the catalyst in the hydrodeoxygenation step It was confirmed that the oxidization activity was maintained at a sufficiently high level, and the product oil had a sufficiently high oxygen removal rate and excellent oxidation stability. On the other hand, in Comparative Examples 4 and 5, the hydrodeoxygenation reaction and the olefin hydrogenation reaction did not proceed sufficiently, the product oil oxygen content removal rate was low, the unsaturated content was large, and the oxidation stability was insufficient. It was.

Claims (8)

動植物に由来する油脂成分を含む原料油と酸水溶液とを接触混合し、前記原料油中のアルカリ金属分、アルカリ土類金属分及び遷移金属分の合計含有量が15質量ppm以下となるように、前記原料油を洗浄する洗浄工程と、
水素加圧下で、前記洗浄工程により洗浄された前記原料油と水素化触媒とを接触させ、炭化水素油を生成させる水素化脱酸素工程と、
を備え
前記洗浄工程において、前記原料油と前記酸水溶液とを接触混合するときの温度が40〜100℃であることを特徴とする炭化水素油の製造方法。
A raw material oil containing an oil and fat component derived from animals and plants is contact-mixed with an acid aqueous solution so that the total content of alkali metal, alkaline earth metal and transition metal in the raw oil is 15 mass ppm or less. A washing step for washing the raw material oil;
A hydrodeoxygenation step in which the raw material oil washed in the washing step is brought into contact with a hydrogenation catalyst under hydrogen pressure to produce a hydrocarbon oil;
Equipped with a,
In the washing step, the temperature when the raw material oil and the acid aqueous solution are contact-mixed is 40 to 100 ° C.
前記酸水溶液が、リン酸、硫酸、硝酸、塩酸、酢酸、クエン酸、酒石酸からなる群より選択される少なくとも1種を含むことを特徴とする、請求項1に記載の炭化水素油の製造方法。 The method for producing a hydrocarbon oil according to claim 1, wherein the acid aqueous solution contains at least one selected from the group consisting of phosphoric acid, sulfuric acid, nitric acid, hydrochloric acid, acetic acid, citric acid, and tartaric acid. . 前記洗浄工程が、
前記原料油と前記酸水溶液とを接触混合する接触混合工程と、
前記接触混合工程で得られる混合物について遠心分離を行う遠心分離工程と
を含むことを特徴とする、請求項1又は2に記載の炭化水素油の製造方法。
The washing step
A contact mixing step of contacting and mixing the raw oil and the acid aqueous solution;
Characterized in that it comprises a centrifugation step of performing centrifugal separation on the mixture obtained in the contacting mixing step, producing a hydrocarbon oil according to claim 1 or 2.
前記洗浄工程における前記酸水溶液の使用量が、前記原料油に対して0.01〜20質量%であることを特徴とする、請求項1〜のいずれか1項に記載の炭化水素油の製造方法。 The amount of the acid solution in the cleaning process, characterized in that from 0.01 to 20 wt% with respect to the feed oil, a hydrocarbon oil according to any one of claims 1 to 3 Production method. 前記水素化触媒が、
アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムからなる群より選択される2種以上の元素を含んで構成される多孔性無機酸化物と、
該多孔性無機酸化物に担持された元素の周期表第6族、第9族、第10族に属するいずれかの金属元素1種以上と、
を含有することを特徴とする、請求項1〜のいずれか1項に記載の炭化水素油の製造方法。
The hydrogenation catalyst,
A porous inorganic oxide comprising two or more elements selected from the group consisting of aluminum, silicon, zirconium, boron, titanium and magnesium;
One or more metal elements belonging to any one of Group 6, Group 9, and Group 10 of the periodic table of elements supported on the porous inorganic oxide;
The method for producing a hydrocarbon oil according to any one of claims 1 to 4 , wherein the hydrocarbon oil is contained.
前記多孔性無機酸化物が、構成元素としてリンをさらに含有することを特徴とする、請求項に記載の炭化水素油の製造方法。 The method for producing a hydrocarbon oil according to claim 5 , wherein the porous inorganic oxide further contains phosphorus as a constituent element. 前記水素化脱酸素工程により得られる炭化水素油のよう素価が0.1g−I/100g以下であることを特徴とする、請求項1〜のいずれか1項に記載の炭化水素油の製造方法。 Wherein the iodine value of the hydrocarbon oil obtained by the hydrodeoxygenation step is equal to or less than 0.1g-I 2 / 100g, a hydrocarbon oil according to any one of claims 1 to 6 Manufacturing method. 前記水素化脱酸素工程で得られる炭化水素油に115℃で16時間酸素ガスを吹き込んだ後の酸価増加量が、酸素ガスを吹き込む前の酸価を基準として0.25mg−KOH/g以下であることを特徴とする、請求項1〜のいずれか1項に記載の炭化水素油の製造方法。 The increase in acid value after blowing oxygen gas at 115 ° C. for 16 hours into the hydrocarbon oil obtained in the hydrodeoxygenation step is 0.25 mg-KOH / g or less based on the acid value before blowing oxygen gas and characterized in that, the production method of the hydrocarbon oil according to any one of claims 1-7.
JP2007317549A 2007-12-07 2007-12-07 Method for producing hydrocarbon oil Active JP5057954B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007317549A JP5057954B2 (en) 2007-12-07 2007-12-07 Method for producing hydrocarbon oil
PCT/JP2008/071808 WO2009072468A1 (en) 2007-12-07 2008-12-01 Process for production of hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007317549A JP5057954B2 (en) 2007-12-07 2007-12-07 Method for producing hydrocarbon oil

Publications (2)

Publication Number Publication Date
JP2009138144A JP2009138144A (en) 2009-06-25
JP5057954B2 true JP5057954B2 (en) 2012-10-24

Family

ID=40717648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007317549A Active JP5057954B2 (en) 2007-12-07 2007-12-07 Method for producing hydrocarbon oil

Country Status (2)

Country Link
JP (1) JP5057954B2 (en)
WO (1) WO2009072468A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102911697A (en) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 Method for producing clean fuels by hydrogenation of biological oil and fat
CN102911699A (en) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 Hydrogenation method for producing motor fuels by using biological oil and fat
CN102909084B (en) * 2011-08-04 2016-04-27 中国石油化工股份有限公司 The Hydrogenation active protective agent being carrier with the aluminium oxide-silicon oxide of titaniferous and Synthesis and applications thereof
JP6744099B2 (en) * 2016-01-13 2020-08-19 コスモ石油株式会社 Method for producing hydrocarbon fraction
FI128826B (en) 2018-12-14 2021-01-15 Upm Kymmene Corp Process for purifying feedstock comprising fatty acids
FI128827B2 (en) 2018-12-14 2023-03-30 Upm Kymmene Corp Process for purifying renewable feedstock comprising fatty acids
FI128504B (en) 2018-12-14 2020-06-30 Upm Kymmene Corp Process for purifying renewable feedstock comprising triglycerides
EP4139427A1 (en) 2020-04-20 2023-03-01 Desmet Belgium Versatile method for purifying glyceridic materials
WO2022036117A1 (en) 2020-08-12 2022-02-17 Zick Matthias Versatile oil recovery process from spent oily solid material
CA3190986A1 (en) 2022-02-24 2023-08-24 Desmet Usa, Inc. Continuous oil recovery process from spent oily solid material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172248B1 (en) * 1998-11-20 2001-01-09 Ip Holdings, L.L.C. Methods for refining vegetable oils and byproducts thereof
US20060264684A1 (en) * 2005-05-19 2006-11-23 Petri John A Production of diesel fuel from biorenewable feedstocks
JP5072010B2 (en) * 2006-05-17 2012-11-14 Jx日鉱日石エネルギー株式会社 Light oil composition
JP2007308564A (en) * 2006-05-17 2007-11-29 Nippon Oil Corp Hydrogenation purification method
KR101362950B1 (en) * 2006-05-17 2014-02-12 제이엑스 닛코닛세키에너지주식회사 Hydrorefining process

Also Published As

Publication number Publication date
JP2009138144A (en) 2009-06-25
WO2009072468A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5057954B2 (en) Method for producing hydrocarbon oil
KR101301459B1 (en) Hydrorefining process and hydrorefined oil
JP4878824B2 (en) Manufacturing method of environmentally low load type fuel and environmentally low load type fuel
AU2009293731B2 (en) Process for producing hydrocarbon oil
JP5005451B2 (en) Method for producing hydrocarbon oil
JP2010121072A (en) Method for producing aviation fuel oil base
CA2769716A1 (en) The removal of impurities from oils and/or fats
JP5022117B2 (en) Method for producing hydrocarbon oil
KR101452793B1 (en) Hydrorefining process
JP2007308564A (en) Hydrogenation purification method
JP2010070650A (en) Process for producing hydrocarbon oil
KR101362950B1 (en) Hydrorefining process
JP5189740B2 (en) Hydrorefining method
TW201113361A (en) Method of converting feeds from renewable sources in co-processing with a petroleum feed using a catalyst based on molybdenum
JP4914644B2 (en) Hydrorefining method and environment-friendly gasoline base material
JP4914643B2 (en) Hydrorefining method and environment-friendly gasoline base material
JP5349213B2 (en) Aviation fuel oil base material production method and aviation fuel oil composition
JP2010070649A (en) Manufacturing method of hydrocarbon oil
JP5588171B2 (en) Method for producing hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5057954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250