[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4914643B2 - Hydrorefining method and environment-friendly gasoline base material - Google Patents

Hydrorefining method and environment-friendly gasoline base material Download PDF

Info

Publication number
JP4914643B2
JP4914643B2 JP2006138298A JP2006138298A JP4914643B2 JP 4914643 B2 JP4914643 B2 JP 4914643B2 JP 2006138298 A JP2006138298 A JP 2006138298A JP 2006138298 A JP2006138298 A JP 2006138298A JP 4914643 B2 JP4914643 B2 JP 4914643B2
Authority
JP
Japan
Prior art keywords
oil
mass
catalyst
content
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006138298A
Other languages
Japanese (ja)
Other versions
JP2007308566A (en
Inventor
英 壱岐
タカシ 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2006138298A priority Critical patent/JP4914643B2/en
Priority to KR1020087030554A priority patent/KR20090025241A/en
Priority to CNA2007800227649A priority patent/CN101473016A/en
Priority to PCT/JP2007/060303 priority patent/WO2007142013A1/en
Publication of JP2007308566A publication Critical patent/JP2007308566A/en
Application granted granted Critical
Publication of JP4914643B2 publication Critical patent/JP4914643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、水素化精製方法に関し、より詳しくは、動植物油由来の油脂成分を含む被処理油の水素化精製方法に関する。   The present invention relates to a hydrorefining method, and more particularly, to a hydrotreating method for oil to be treated containing fat and oil components derived from animal and vegetable oils.

地球温暖化の防止対策として、バイオマスエネルギーの有効利用に注目が集まっている。バイオマスエネルギーの中でも植物由来のバイオマスエネルギーは、植物の成長過程で光合成により二酸化炭素から変換された炭化水素を有効利用できるため、ライフサイクルの観点からすると大気中の二酸化炭素の増加につながらない、いわゆる、カーボンニュートラルという性質を持つ。   Attention has been focused on the effective use of biomass energy as a measure to prevent global warming. Among biomass energy, biomass energy derived from plants can effectively use hydrocarbons converted from carbon dioxide by photosynthesis in the growth process of plants, so it does not lead to an increase in carbon dioxide in the atmosphere from the viewpoint of life cycle, so-called, It has the property of being carbon neutral.

このようなバイオマスエネルギーの利用は、輸送用燃料の分野においても種々検討がなされている。例えば、ガソリン燃料として動植物油由来の燃料を使用できれば、ガソリンエンジンの普及率の高さから二酸化炭素の排出量削減において有効な役割を果たすと期待されている。動植物油を利用した燃料としては、脂肪酸メチルエステル油(Fatty Acid Methyl Ester)が知られている。脂肪酸メチルエステル油は、動植物油の一般的な構造であるトリグリセリド構造に対し、アルカリ等によってメタノールとのエステル交換を行うことで製造されている。しかしながら、脂肪酸メチルエステル油を製造するプロセスにおいては、以下の特許文献1に記載されている通り、副生するグリセリンの処理が必要であったり、生成油の洗浄などにコストやエネルギーがかかったりすることが指摘されている。
特開2005−154647号公報
Various uses of such biomass energy have been studied in the field of transportation fuel. For example, if a fuel derived from animal and vegetable oils can be used as gasoline fuel, it is expected to play an effective role in reducing carbon dioxide emissions due to the high penetration rate of gasoline engines. Fatty acid methyl ester oil is known as a fuel using animal and vegetable oils. Fatty acid methyl ester oil is produced by transesterifying with methanol with an alkali or the like for a triglyceride structure which is a general structure of animal and vegetable oils. However, in the process for producing fatty acid methyl ester oil, as described in Patent Document 1 below, it is necessary to treat glycerin produced as a by-product, and cost and energy are required for washing the produced oil. It has been pointed out.
JP 2005-154647 A

動植物油由来の油脂成分やこれを原料として製造される燃料を使用するには、上記のような問題に加え、以下のような問題がある。すなわち、動植物油由来の油脂成分は、一般に分子中に酸素原子を有しているため、酸素分がエンジン材質に与える悪影響が懸念されること、並びに、当該酸素分を極低濃度まで除去することが困難であることなどである。また、燃料基材として使用する場合、ノルマルパラフィン含有量が少なく、逆にイソパラフィン含有量が高い方が望ましい。例えば自動車用ガソリンの場合、ノルマルパラフィン含有量が多くなるとオクタン価が不十分となる。   In addition to the above problems, there are the following problems in order to use oil and fat components derived from animal and vegetable oils and fuels produced from these components. That is, since the oil and fat component derived from animal and vegetable oils generally has an oxygen atom in the molecule, there is a concern that the oxygen content may adversely affect the engine material, and that the oxygen content is removed to an extremely low concentration. Is difficult. Moreover, when using as a fuel base material, it is desirable that the normal paraffin content is low and the isoparaffin content is high. For example, in the case of automobile gasoline, the octane number becomes insufficient when the normal paraffin content increases.

そこで、本発明は、含酸素炭化水素化合物を含有する被処理油を用いた場合に、酸素分が十分に低減されているとともにノルマルパラフィン含有量が十分少ない水素化精製油を得ることが可能な水素化精製方法及びかかる水素化精製方法を利用して得られる環境低負荷型ガソリン基材を提供することを目的とする。   Therefore, the present invention can provide a hydrorefined oil that has a sufficiently reduced oxygen content and a sufficiently low normal paraffin content when an oil to be treated containing an oxygen-containing hydrocarbon compound is used. An object of the present invention is to provide a hydrorefining method and an environmentally low-load gasoline base material obtained by using such a hydrorefining method.

上記課題を解決するために、本発明は、水素の存在下、動植物油に由来する油脂成分を含有する被処理油と、結晶性メタロシリケートを含有する担体及び該担体に担持された周期律表第8族の元素から選ばれる1種以上の金属を含有する触媒と、を接触させて水素化精製油を得ることを特徴とする水素化精製方法を提供する。 In order to solve the above problems, the present invention provides an oil to be treated containing an oil and fat component derived from animal and vegetable oils in the presence of hydrogen, a carrier containing crystalline metallosilicate, and a periodic table carried on the carrier. There is provided a hydrorefining method characterized in that a hydrorefined oil is obtained by contacting a catalyst containing one or more metals selected from Group 8 elements.

本発明の水素化精製方法によれば、動植物油に由来する油脂成分を含有する被処理油と上記特定の触媒とを接触させることによって、酸素分が十分に低減されているとともにノルマルパラフィン含有量が十分少ない水素化精製油を経済的に極めて有効に得ることができる。 According to the hydrorefining method of the present invention, the oxygen content is sufficiently reduced and the normal paraffin content is obtained by contacting the oil to be treated containing the fat and oil component derived from animal and vegetable oils with the specific catalyst. Can be obtained very effectively economically.

本発明の水素化精製方法においては、得られる水素化精製油の沸点範囲80〜135℃の留分における酸素分の含有量が0.2質量%以下且つノルマルパラフィンの含有量が30質量%以下となるように、水素圧力2〜13MPa、液空間速度0.1〜3.0h −1 、水素/油比150〜1500NL/L、反応温度250〜550℃の条件で被処理油と触媒とを接触させることが好ましい。このような条件を満たすように被処理油を水素化精製することにより、ガソリン基材として有用な成分をより高い含有量で含む水素化精製油を得ることができる。この場合、酸素分が十分に低減されているとともにノルマルパラフィン含有量が十分少ない環境低負荷型ガソリン基材を経済的に極めて有効に得ることができる。 In the hydrorefining method of the present invention, the content of oxygen in the fraction having a boiling range of 80 to 135 ° C. of the resulting hydrorefined oil is 0.2% by mass or less and the content of normal paraffin is 30% by mass or less. The oil to be treated and the catalyst under the conditions of a hydrogen pressure of 2 to 13 MPa, a liquid space velocity of 0.1 to 3.0 h −1 , a hydrogen / oil ratio of 150 to 1500 NL / L, and a reaction temperature of 250 to 550 ° C. It is preferable to make it contact. By hydrotreating the oil to be treated so as to satisfy such conditions, a hydrorefined oil containing a higher content of components useful as a gasoline base can be obtained. In this case, it is possible to obtain an environmentally low load gasoline base material that is sufficiently reduced in oxygen and has a sufficiently low normal paraffin content economically.

本発明の水素化精製方法においては、被処理油の全量を基準として、酸素分の含有量が0.1〜15質量%であることが好ましい。被処理油の酸素分が上記の範囲内であると、安定した脱酸素活性を長期にわたって維持することができる。   In the hydrorefining method of this invention, it is preferable that content of oxygen content is 0.1-15 mass% on the basis of the whole quantity of to-be-processed oil. When the oxygen content of the oil to be treated is within the above range, stable deoxygenation activity can be maintained over a long period of time.

更に、被処理油の全量を基準として、酸素分の含有量が0.1〜15質量%であり、硫黄分の含有量が50質量ppm以下であることが好ましい。被処理油の酸素分及び硫黄分のそれぞれが上記の範囲内であると、安定した脱酸素活性をより長期にわたって維持することができる。   Furthermore, based on the total amount of the oil to be treated, the oxygen content is preferably 0.1 to 15% by mass, and the sulfur content is preferably 50 mass ppm or less. When the oxygen content and sulfur content of the oil to be treated are within the above ranges, stable deoxygenation activity can be maintained over a longer period.

また、本発明の水素化精製方法においては、バイオマスエネルギーの有効利用の点から、被処理油が動植物油に由来する油脂成分を含有するMoreover, in the hydrorefining method of this invention, the to- be-processed oil contains the fats and oils component derived from animal and vegetable oil from the point of the effective utilization of biomass energy.

また、原材料の加工に必要なエネルギーを低減できることから、動植物油に由来する油脂成分に占めるトリグリセリド構造を有する化合物の割合は90モル%以上であることが好ましい。 Moreover, since the energy required for processing raw materials can be reduced, the proportion of the compound having a triglyceride structure in the oil and fat component derived from animal and vegetable oils is preferably 90 mol% or more.

本発明の水素化精製方法においては、触媒に含まれる金属がPd、Pt、Rh、Ir、Au及びNiから選ばれる1種以上の金属であることが好ましい。   In the hydrorefining method of the present invention, the metal contained in the catalyst is preferably one or more metals selected from Pd, Pt, Rh, Ir, Au and Ni.

また、本発明の水素化精製方法においては、触媒に含まれる結晶性メタロシリケートがフォージャサイト型の構造を有するものであることが好ましい。   In the hydrorefining method of the present invention, it is preferable that the crystalline metallosilicate contained in the catalyst has a faujasite structure.

更に、結晶性メタロシリケートが、シリカとアルミナとのモル比(シリカ/アルミナ)が10〜100の範囲にある超安定化Y型ゼオライトであることが好ましい。かかるモル比が10未満である場合、コーク生成が促進され大幅な活性低下を招きやすくなる傾向にあり、モル比が100を超える場合、水素化分解活性が不十分となり、燃料基材として有用な成分の収率が低下する傾向にある。   Furthermore, it is preferable that the crystalline metallosilicate is a super-stabilized Y-type zeolite having a silica to alumina molar ratio (silica / alumina) in the range of 10 to 100. When such a molar ratio is less than 10, coke formation tends to be promoted and a significant decrease in activity tends to be caused. When the molar ratio exceeds 100, hydrocracking activity becomes insufficient and useful as a fuel substrate. The component yield tends to decrease.

また、本発明は、上記本発明の水素化精製方法により得られる沸点が25〜220℃の範囲内にある水素化精製油を含むことを特徴とする環境低負荷型ガソリン基材を提供する。本発明の環境低負荷型ガソリン基材によれば、二酸化炭素の排出量の削減を有効に実現できる。   The present invention also provides an environmentally low-load gasoline base comprising a hydrorefined oil having a boiling point within the range of 25 to 220 ° C. obtained by the hydrorefining method of the present invention. According to the environmentally low load gasoline base material of the present invention, it is possible to effectively reduce the emission amount of carbon dioxide.

本発明によれば、含酸素炭化水素化合物を含有する被処理油を用いた場合に、酸素分が十分に低減されているとともにノルマルパラフィン含有量が十分少ない水素化精製油を経済的に極めて有効に得ることが可能な水素化精製方法が提供される。また、本発明によれば、二酸化炭素の排出量の削減を有効に実現できる環境低負荷型ガソリン基材が提供される。   According to the present invention, when an oil to be treated containing an oxygen-containing hydrocarbon compound is used, a hydrorefined oil having a sufficiently reduced oxygen content and a sufficiently low normal paraffin content is economically extremely effective. A hydrorefining method that can be obtained is provided. Moreover, according to this invention, the environmental low load type gasoline base material which can implement | achieve the reduction of the discharge | emission amount of a carbon dioxide effectively is provided.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明においては、含酸素炭化水素化合物を含有する被処理油が用いられる。含酸素炭化水素化合物としては、動植物油由来の油脂成分が好適である。ここで、本発明における油脂成分には、天然もしくは人工的に生産、製造される動植物油脂及び動植物油成分及び/又はこれらの油脂を由来して生産、製造される成分及びこれらの油脂製品の性能を維持、向上させる目的で添加される成分が包含される。   In the present invention, an oil to be treated containing an oxygen-containing hydrocarbon compound is used. As the oxygen-containing hydrocarbon compound, oil and fat components derived from animal and vegetable oils are suitable. Here, the fats and oils component in the present invention includes natural and artificially produced and manufactured animal and vegetable oils and fats and / or animal and vegetable oil components and / or components produced and produced from these fats and oils and the performance of these fat and oil products. Components added for the purpose of maintaining and improving the above are included.

動植物油に由来する油脂成分としては、例えば、牛脂、菜種油、大豆油、パーム油などが挙げられる。本発明においては動植物油に由来する油脂成分として、いかなる油脂を用いてもよく、これら油脂を使用した後の廃油でもよい。ただし、カーボンニュートラルの観点からは植物油脂が好ましく、脂肪酸アルキル鎖炭素数及びその反応性の観点から、菜種油、大豆油及びパーム油がより好ましい。なお、上記の油脂は1種を単独で又は2種以上を混合して用いてもよい。   Examples of the oil and fat component derived from animal and vegetable oils include beef tallow, rapeseed oil, soybean oil, and palm oil. In the present invention, any fats and oils derived from animal and vegetable oils may be used, and waste oil after using these fats and oils may be used. However, vegetable oils and fats are preferable from the viewpoint of carbon neutral, and rapeseed oil, soybean oil, and palm oil are more preferable from the viewpoint of the number of fatty acid alkyl chain carbons and their reactivity. In addition, you may use said fats and oils individually by 1 type or in mixture of 2 or more types.

動植物油に由来する油脂成分は、一般に脂肪酸トリグリセリド構造を有しているが、その他の脂肪酸や脂肪酸メチルエステルなどのエステル体に加工されている油脂成分を含んでいてもよい。ただし、植物油脂から脂肪酸や脂肪酸エステルを製造する際には二酸化炭素が発生するため、二酸化炭素の排出量を低減化する観点から、植物油脂としてトリグリセリド構造を有した成分が主体であることが好ましい。本発明においては、被処理油に含まれる含酸素炭化水素化合物に占めるトリグリセリド構造を有する化合物の割合が90モル%以上であることが好ましく、92モル%以上であることがより好ましく、95モル%以上であることが更に好ましい。   Oils and fats derived from animal and vegetable oils generally have a fatty acid triglyceride structure, but may contain other oils and fats processed into esters such as fatty acids and fatty acid methyl esters. However, since carbon dioxide is generated when producing fatty acids and fatty acid esters from vegetable oils and fats, it is preferable that the components having a triglyceride structure are mainly used as vegetable oils and fats from the viewpoint of reducing carbon dioxide emissions. . In the present invention, the proportion of the compound having a triglyceride structure in the oxygenated hydrocarbon compound contained in the oil to be treated is preferably 90 mol% or more, more preferably 92 mol% or more, and 95 mol%. It is still more preferable that it is above.

なお、被処理油は、含酸素炭化水素化合物として、上記の動植物油由来の油脂成分の他、プラスチックや溶剤等の化学品由来の化合物を含んでいてもよく、一酸化炭素と水素とからなる合成ガスを原料としたフィッシャートロプシュ反応を経由して得られる合成油を含んでいてもよい。   The oil to be treated may contain, as an oxygen-containing hydrocarbon compound, a compound derived from a chemical such as a plastic or a solvent, in addition to the oil and fat component derived from the above-mentioned animal and vegetable oils, and consists of carbon monoxide and hydrogen. A synthetic oil obtained via a Fischer-Tropsch reaction using synthesis gas as a raw material may be contained.

被処理油に含まれる酸素分は、被処理油全量を基準として、好ましくは0.1〜15質量%であり、より好ましくは1〜15質量%、更に好ましくは3〜14質量%、特に好ましくは5〜13質量%である。酸素分の含有量が0.1質量%未満であると、脱酸素活性及び脱硫活性を安定的に維持することが困難となる傾向にある。他方、酸素分の含有量が15質量%を超えると、副生する水の処理に要する設備が必要となることや、水と触媒担体との相互作用が過度となり活性低下したり触媒強度が低下したりする。なお、酸素分の含有量は、一般的な元素分析装置で測定することができ、例えば、試料を白金炭素上で一酸化炭素に変換し、もしくは更に二酸化炭素に変換した後に熱伝導度検出器を用いて測定することができる。   The oxygen content contained in the oil to be treated is preferably 0.1 to 15% by mass, more preferably 1 to 15% by mass, still more preferably 3 to 14% by mass, particularly preferably based on the total amount of the oil to be treated. Is 5 to 13% by mass. If the oxygen content is less than 0.1% by mass, it tends to be difficult to stably maintain the deoxygenation activity and desulfurization activity. On the other hand, if the oxygen content exceeds 15% by mass, equipment required for the treatment of by-product water is required, the interaction between water and the catalyst carrier becomes excessive, and the activity decreases or the catalyst strength decreases. To do. The oxygen content can be measured with a general elemental analyzer. For example, the sample is converted to carbon monoxide on platinum carbon, or further converted to carbon dioxide, and then a thermal conductivity detector. Can be measured.

また、被処理油は、石油系炭化水素留分を含んでいてもよい。石油系炭化水素留分としては、一般的な石油精製工程で得られる留分を用いることができる。例えば、常圧蒸留装置や減圧蒸留装置から得られる所定の沸点範囲に相当する留分、あるいは、水素化脱硫装置、水素化分解装置、残油直接脱硫装置、流動接触分解装置などから得られる、所定の沸点範囲に相当する留分を使用してもよい。なお、上記の各装置から得られる留分は1種を単独で又は2種以上を混合して用いてもよい。   Moreover, the to-be-processed oil may contain the petroleum-type hydrocarbon fraction. As the petroleum hydrocarbon fraction, a fraction obtained in a general petroleum refining process can be used. For example, a fraction corresponding to a predetermined boiling range obtained from an atmospheric distillation apparatus or a vacuum distillation apparatus, or obtained from a hydrodesulfurization apparatus, a hydrocracking apparatus, a residual oil direct desulfurization apparatus, a fluid catalytic cracking apparatus, etc. A fraction corresponding to a predetermined boiling range may be used. In addition, you may use the fraction obtained from each said apparatus individually by 1 type or in mixture of 2 or more types.

石油系炭化水素留分は、被処理油と予め混合してその混合物を水素化精製装置の反応器に導入してもよく、あるいは被処理油を反応器に導入する際に、反応器の前段において供給してもよい。   The petroleum hydrocarbon fraction may be premixed with the oil to be treated and the mixture introduced into the reactor of the hydrorefining apparatus, or when the oil to be treated is introduced into the reactor, You may supply in.

ただし、本発明においては、触媒に接触させる際の被処理油に含まれる硫黄分は、被処理油全量を基準として、50質量ppm以下とすることが好ましい。硫黄分の含有量が50質量ppmを超えると、水素化精製油に含まれる硫黄分含有量が増加する傾向にあり、ガソリンエンジン等の燃料として用いる場合にエンジン排ガス浄化装置への悪影響が懸念される。なお、本発明における硫黄分は、JIS K 2541「硫黄分試験方法」又はASTM−5453に記載の方法に準拠して測定される硫黄分の質量含有量を意味する。被処理油に前処理を施すことにより被処理油に含まれる硫黄分を上記の範囲内にすることができ、かかる前処理方法としては、一般的に石油精製で用いられている水素脱硫、水素化分解を採用することができる。   However, in this invention, it is preferable that the sulfur content contained in the to-be-processed oil at the time of making it contact with a catalyst shall be 50 mass ppm or less on the basis of the total amount of to-be-processed oil. When the sulfur content exceeds 50 ppm by mass, the sulfur content contained in the hydrorefined oil tends to increase, and there is a concern about adverse effects on engine exhaust gas purification devices when used as fuel for gasoline engines and the like. The In addition, the sulfur content in this invention means the mass content of the sulfur content measured based on the method of JISK2541 "Sulfur content test method" or ASTM-5453. By subjecting the oil to be treated to pretreatment, the sulfur content in the oil to be treated can be within the above range, and as such a pretreatment method, hydrogen desulfurization, Chemical decomposition can be employed.

本発明で用いられる被処理油は、沸点300℃以上の留分を含有することが好ましく、また、沸点700℃を超える重質な留分を含んでいないことが好ましい。沸点300℃以上の留分を含有しない被処理油を用いると、過度の分解によって十分な収率を得ることが困難となる傾向にある。他方、被処理油が沸点700℃を超える重質な留分を含む場合は、重質成分によって触媒における炭素の析出が促進され、活性が低下する傾向にある。なお、本発明における沸点は、JIS K 2254「蒸留試験方法」又はASTM−D86に記載の方法に準拠して測定される値である。   The oil to be treated used in the present invention preferably contains a fraction having a boiling point of 300 ° C. or higher, and preferably does not contain a heavy fraction having a boiling point exceeding 700 ° C. When the oil to be treated that does not contain a fraction having a boiling point of 300 ° C. or higher is used, it tends to be difficult to obtain a sufficient yield due to excessive decomposition. On the other hand, when the oil to be treated contains a heavy fraction having a boiling point higher than 700 ° C., carbon deposition in the catalyst is promoted by the heavy components, and the activity tends to decrease. In addition, the boiling point in this invention is a value measured based on the method as described in JISK2254 "distillation test method" or ASTM-D86.

本発明の水素化精製方法においては、結晶性メタロシリケートを含有する担体及び該担体に担持された周期律表第8族の元素から選ばれる1種以上の金属を含有する触媒が用いられる。   In the hydrorefining method of the present invention, a carrier containing a crystalline metallosilicate and a catalyst containing one or more metals selected from Group 8 elements supported on the carrier are used.

本発明で用いられる触媒の担体としては、結晶性メタロシリケートを含んで構成される多孔性無機酸化物が用いられる。結晶性メタロシリケートは、国際ゼオライト学会が定める構造のうちFAU、AEL、MFI、MMW、TON、MTW、*BEA、MORの各コードで表される構造を有するものが好ましく、FAU、*BEA、MOR、MFIの各コードで表される構造を有するものがより好ましい。本発明においては、結晶性メタロシリケートがフォージャサイト型とも呼ばれるFAUで表される構造を有するものであることが更により好ましい。また、結晶性メタロシリケートは、超安定化処理を施したY型であることが特に好ましい。超安定化処理は、水熱処理および/または酸性水溶液による洗浄処理を指し、このような操作によって、例えば、構造にアルミニウムが含まれる場合にはその含有量を調整し、細孔直径2〜50nmと定義されるメソ細孔に由来する細孔容積を付与することができる。   As the catalyst carrier used in the present invention, a porous inorganic oxide containing a crystalline metallosilicate is used. The crystalline metallosilicate preferably has a structure represented by each code of FAU, AEL, MFI, MMW, TON, MTW, * BEA, MOR among structures defined by the International Zeolite Society. FAU, * BEA, MOR And those having a structure represented by each code of MFI are more preferable. In the present invention, it is even more preferable that the crystalline metallosilicate has a structure represented by FAU also called a faujasite type. The crystalline metallosilicate is particularly preferably Y-type that has undergone ultrastabilization treatment. The ultra-stabilization treatment refers to a hydrothermal treatment and / or a washing treatment with an acidic aqueous solution. By such an operation, for example, when the structure contains aluminum, the content thereof is adjusted, and the pore diameter is 2 to 50 nm. A pore volume derived from the defined mesopores can be imparted.

また、触媒の担体に含まれる結晶性メタロシリケートとしては、アルミニウム、珪素及び酸素の3元素で構成される結晶性アルミノシリケートが好ましい。結晶性アルミノシリケートとしては、シリカ及びアルミナを含有するいわゆるゼオライトを使用することができる。好ましい例としては、Y型ゼオライト、超安定化Y型ゼオライト(USY型ゼオライト)、β型ゼオライト、モルデナイト、ZSM−5などが挙げられ、中でもUSYゼオライトが特に好ましい。本発明では結晶性アルミノシリケートの1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。   The crystalline metallosilicate contained in the catalyst carrier is preferably a crystalline aluminosilicate composed of three elements of aluminum, silicon and oxygen. A so-called zeolite containing silica and alumina can be used as the crystalline aluminosilicate. Preferable examples include Y-type zeolite, ultra-stabilized Y-type zeolite (USY-type zeolite), β-type zeolite, mordenite, ZSM-5, etc. Among them, USY zeolite is particularly preferable. In the present invention, one type of crystalline aluminosilicate may be used alone, or two or more types may be used in combination.

結晶性メタロシリケートがシリカ及びアルミナを含んで構成される場合、シリカとアルミナとのモル比(シリカ/アルミナ)が10〜100の範囲内にあることが好ましい。かかるモル比が10未満である場合、コーク生成が促進され大幅な活性低下を招きやすくなる傾向にあり、モル比が100を超える場合、水素化分解活性が不十分となり、燃料基材として有用な成分の収率が低下する傾向にある。本発明においては、触媒の担体が、結晶性メタロシリケートとして、シリカとアルミナとのモル比(シリカ/アルミナ)が10〜100の範囲内にある超安定化Y型ゼオライトを含むことが特に好ましい。   When the crystalline metallosilicate includes silica and alumina, the molar ratio of silica to alumina (silica / alumina) is preferably in the range of 10 to 100. When such a molar ratio is less than 10, coke formation tends to be promoted and a significant decrease in activity tends to be caused. When the molar ratio exceeds 100, hydrocracking activity becomes insufficient and useful as a fuel substrate. The component yield tends to decrease. In the present invention, it is particularly preferable that the catalyst carrier contains, as a crystalline metallosilicate, a super-stabilized Y-type zeolite in which the molar ratio of silica to alumina (silica / alumina) is in the range of 10 to 100.

本発明で用いられる結晶性メタロシリケートの合成方法としては、特に限定されるものではなく、一般的に知られている方法を利用できる。例えば、構成成分原料を、必要に応じて構造指示剤を共存させ、加熱することにより結晶性メタロシリケートを合成することができる。構成成分原料としては、例えば、ケイ酸ナトリウム、コロイダルシリカ、ケイ酸アルコキサイドなどのケイ素含有化合物、水酸化アルミニウム、アルミン酸ナトリウムなどのアルミニウム含有化合物が挙げられる。構造指示剤としては、例えば、テトラプロピルアンモニウム塩などのアミン化合物が挙げられる。   The method for synthesizing the crystalline metallosilicate used in the present invention is not particularly limited, and a generally known method can be used. For example, a crystalline metallosilicate can be synthesized by heating a constituent raw material in the presence of a structure indicator if necessary. Examples of the constituent raw material include silicon-containing compounds such as sodium silicate, colloidal silica and alkoxide silicate, and aluminum-containing compounds such as aluminum hydroxide and sodium aluminate. Examples of the structure directing agent include amine compounds such as tetrapropylammonium salt.

本発明で用いられる触媒には、上記結晶性メタロシリケート以外の構成成分が含まれていてもよい。結晶性メタロシリケート以外の構成成分としては、例えば、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる元素を含む無機酸化物が挙げられる。これらの無機酸化物は、結晶性メタロシリケートを成形する際の接合剤として機能するとともに、水素化脱酸素と水素化異性化を促進する活性成分としても機能することができる。これらの機能をより確実に得る観点から、上記無機酸化物は、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上の元素を含むものであることが好ましい。   The catalyst used in the present invention may contain components other than the crystalline metallosilicate. Examples of constituents other than the crystalline metallosilicate include inorganic oxides containing an element selected from aluminum, silicon, zirconium, boron, titanium, and magnesium. These inorganic oxides can function as a bonding agent when forming a crystalline metallosilicate, and can also function as an active component that promotes hydrodeoxygenation and hydroisomerization. From the viewpoint of more reliably obtaining these functions, the inorganic oxide preferably contains two or more elements selected from aluminum, silicon, zirconium, boron, titanium, and magnesium.

触媒全体に占める結晶性メタロシリケートの含有量は、2〜90質量%が好ましく、5〜85質量%がより好ましく、10〜80質量%がさらにより好ましい。かかる含有量が2質量%未満である場合には、触媒の水素化脱酸素活性及び水素化異性化活性が不十分となる傾向にあり、含有量が90質量%を超える場合には、触媒成形性が低くなりすぎて触媒を工業的に製造することが困難となる。   The content of the crystalline metallosilicate in the entire catalyst is preferably 2 to 90% by mass, more preferably 5 to 85% by mass, and even more preferably 10 to 80% by mass. When the content is less than 2% by mass, the hydrodeoxygenation activity and hydroisomerization activity of the catalyst tend to be insufficient. When the content exceeds 90% by mass, catalyst molding is performed. Therefore, it becomes difficult to industrially produce the catalyst.

触媒の担体としての上記多孔性無機酸化物には、周期律表第8族の元素から選ばれる1種以上の金属が担持される。これらの金属の中でも、Pd、Pt、Rh、Ir、Au及びNiから選ばれる1種以上の金属が好ましい。2種以上の金属を組み合わせて用いる場合、好適な組み合わせとしては、Pd−Pt、Pd−Ir、Pd−Rh、Pd−Au、Pd−Ni、Pt−Rh、Pt−Ir、Pt−Au、Pt−Ni、Rh−Ir、Rh−Au、Rh−Ni、Ir−Au、Ir−Ni、Au−Ni、Pd−Pt−Rh、Pd−Pt−Ir、Pt−Pd−Niなどが挙げられる。これらのうち、Pd−Pt、Pd−Ni、Pt−Ni、Pd−Ir、Pt−Rh、Pt−Ir、Rh−Ir、Pd−Pt−Rh、Pd−Pt−Ni、Pd−Pt−Irの組み合わせが好ましく、Pd−Pt、Pd−Ni、Pt−Ni、Pd−Ir、Pt−Ir、Pd−Pt−Ni、Pd−Pt−Irの組み合わせがより好ましい。水素化精製に際しては、これらの金属を還元物の状態に転換して使用することが好ましい。   The porous inorganic oxide as the catalyst carrier supports one or more metals selected from Group 8 elements of the periodic table. Among these metals, one or more metals selected from Pd, Pt, Rh, Ir, Au, and Ni are preferable. When two or more kinds of metals are used in combination, suitable combinations include Pd—Pt, Pd—Ir, Pd—Rh, Pd—Au, Pd—Ni, Pt—Rh, Pt—Ir, Pt—Au, Pt. -Ni, Rh-Ir, Rh-Au, Rh-Ni, Ir-Au, Ir-Ni, Au-Ni, Pd-Pt-Rh, Pd-Pt-Ir, Pt-Pd-Ni and the like. Of these, Pd—Pt, Pd—Ni, Pt—Ni, Pd—Ir, Pt—Rh, Pt—Ir, Rh—Ir, Pd—Pt—Rh, Pd—Pt—Ni, Pd—Pt—Ir A combination is preferable, and a combination of Pd—Pt, Pd—Ni, Pt—Ni, Pd—Ir, Pt—Ir, Pd—Pt—Ni, and Pd—Pt—Ir is more preferable. In hydrorefining, it is preferable to convert these metals into a reduced product.

触媒質量を基準とする活性金属の含有量としては、周期律表第8族の元素から選ばれる金属の合計が0.1〜2質量%の範囲内であることが好ましく、0.2〜1.5質量%の範囲内であることがより好ましく、0.5〜1.3質量%の範囲内であることがさらにより好ましい。上記金属の合計含有量が0.1質量%未満であると、活性点が少なくなり、十分な活性が得られなくなる傾向がある。他方、2質量%を越えると、金属が効果的に分散せず、十分な活性が得られなくなる傾向がある。   As the content of the active metal based on the catalyst mass, the total of metals selected from Group 8 elements of the periodic table is preferably in the range of 0.1 to 2% by mass, 0.2 to 1 More preferably, it is in the range of 0.5% by mass, and even more preferably in the range of 0.5 to 1.3% by mass. When the total content of the above metals is less than 0.1% by mass, the active sites tend to decrease and sufficient activity cannot be obtained. On the other hand, if it exceeds 2% by mass, the metal is not effectively dispersed and sufficient activity tends not to be obtained.

これらの活性金属を触媒に含有させる方法は特に限定されず、通常の脱硫触媒を製造する際に適用される公知の方法を用いることができる。通常、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また、平衡吸着法、Pore−filling法、Incipient−wetness法なども好ましく採用される。例えば、Pore−filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法である。なお、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。   The method for incorporating these active metals into the catalyst is not particularly limited, and a known method applied when producing an ordinary desulfurization catalyst can be used. Usually, a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed. In addition, an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are also preferably employed. For example, the pore-filling method is a method in which the pore volume of the carrier is measured in advance and impregnated with a metal salt solution having the same volume. The impregnation method is not particularly limited, and it can be impregnated by an appropriate method according to the amount of metal supported and the physical properties of the catalyst carrier.

本発明において、使用する水素化精製触媒の種類数は特に限定されない。例えば、一種類の触媒を単独で使用してもよく、活性金属種や担体構成成分の異なる触媒を複数使用してもよい。担体成分が異なる複数の触媒を組み合せる場合には、例えば、担体の総質量を基準として結晶性メタロシリケートの含有量が5質量%以下である触媒の後段に、結晶性メタロシリケートの含有量が2〜90質量%の範囲にある触媒を用いればよい。   In the present invention, the number of hydrorefining catalysts to be used is not particularly limited. For example, one type of catalyst may be used alone, or a plurality of catalysts having different active metal species and carrier components may be used. In the case of combining a plurality of catalysts having different support components, for example, the content of the crystalline metallosilicate is the latter stage of the catalyst in which the content of the crystalline metallosilicate is 5% by mass or less based on the total mass of the support. What is necessary is just to use the catalyst in the range of 2-90 mass%.

さらに、水素化精製触媒以外に、必要に応じて被処理油に随伴して流入するスケール分をトラップしたり触媒床の区切り部分で水素化精製触媒を支持したりする目的でガード触媒、脱金属触媒、不活性充填物を用いてもよい。なお、これらは単独又は組み合せて用いることができる。   In addition to hydrorefining catalysts, guard catalysts and demetals are used to trap the scale that flows in along with the oil to be treated, if necessary, and to support the hydrorefining catalyst at the separation part of the catalyst bed. Catalysts and inert packing may be used. In addition, these can be used individually or in combination.

水素の存在下で上記の被処理油と触媒とを接触させる際の条件は、水素圧力2〜13MPa、液空間速度(LHSV)0.1〜3.0h−1、水素油比(水素/油比)150〜1500NL/Lであり、好ましくは、水素圧力2〜10MPa、液空間速度0.2〜2.0h−1、水素油比200〜1200NL/Lであることがより好ましく、水素圧力2〜6MPa、空間速度0.3〜1.5h−1、水素油比250〜1000NL/Lであることが更に好ましい。これらの条件はいずれも反応活性を左右する因子であり、例えば水素圧力及び水素油比が上記の下限値に満たない場合には、反応性が低下したり活性が急速に低下したりする傾向がある。他方、水素圧力及び水素油比が上記の上限値を超える場合には、圧縮機等の過大な設備投資が必要となる傾向がある。また、液空間速度は低いほど反応に有利な傾向にあるが、上記の下限値未満の場合は、極めて大きな内容積の反応器が必要となり過大な設備投資が必要となる傾向があり、他方、液空間速度が上記の上限値を超える場合は、反応が十分に進行しなくなる傾向がある。また、反応温度は250〜550℃が好ましく、280〜480℃がより好ましく、300〜460℃が更に好ましい。 The conditions for contacting the oil to be treated and the catalyst in the presence of hydrogen are as follows: hydrogen pressure 2-13 MPa, liquid space velocity (LHSV) 0.1-3.0 h −1 , hydrogen oil ratio (hydrogen / oil Ratio) 150-1500 NL / L, preferably hydrogen pressure 2-10 MPa, liquid space velocity 0.2-2.0 h −1 , hydrogen oil ratio 200-1200 NL / L, more preferably hydrogen pressure 2 More preferably, it is -6MPa, space velocity 0.3-1.5h- 1 , and hydrogen oil ratio 250-1000NL / L. These conditions are factors that influence the reaction activity. For example, when the hydrogen pressure and the hydrogen oil ratio are less than the above lower limit values, the reactivity tends to decrease or the activity rapidly decreases. is there. On the other hand, when the hydrogen pressure and the hydrogen oil ratio exceed the above upper limit values, there is a tendency that excessive equipment investment such as a compressor is required. Further, the lower the liquid space velocity tends to be advantageous for the reaction, but if the liquid space velocity is less than the above lower limit value, there is a tendency that an extremely large internal volume reactor is required and excessive equipment investment is required, When the liquid space velocity exceeds the above upper limit, the reaction tends not to proceed sufficiently. Moreover, 250-550 degreeC is preferable for reaction temperature, 280-480 degreeC is more preferable, and 300-460 degreeC is still more preferable.

反応器の形式としては、固定床方式を採用することができる。すなわち、水素は被処理油に対して向流又は並流のいずれの形式を採用することができる。また、複数の反応器を用いて、向流、並流を組み合せた形式としてもよい。一般的な形式としては、ダウンフローであり、気液双並流形式を採用することができる。また、反応器は単独又は複数を組み合せてもよく、一つの反応器内部を複数の触媒床に区分した構造を採用してもよい。   As the type of the reactor, a fixed bed system can be adopted. That is, hydrogen can adopt either a countercurrent or a parallel flow type with respect to the oil to be treated. Moreover, it is good also as a form which combined the countercurrent and the parallel flow using several reactors. As a general format, it is a down flow, and a gas-liquid twin parallel flow format can be adopted. Further, the reactor may be used alone or in combination, and a structure in which one reactor is divided into a plurality of catalyst beds may be adopted.

反応器内で水素化精製された水素化精製油は気液分離工程や精留工程等を経て所定の留分を含有する水素化精製油に分画される。例えば、軽油留分や残さ留分に分画される。さらに必要に応じてガス、ナフサ留分、灯油留分を分画することもある。なお、被処理油に含まれている酸素分や硫黄分の反応に伴って水、一酸化炭素、二酸化炭素、硫化水素などが発生する可能性があるが、複数の反応器の間や生成物回収工程に気液分離設備やその他の副生ガス除去装置を設置してもよい。   The hydrorefined oil hydrorefined in the reactor is fractionated into a hydrorefined oil containing a predetermined fraction through a gas-liquid separation process, a rectification process, and the like. For example, it is fractionated into a light oil fraction and a residual fraction. Furthermore, the gas, naphtha fraction, and kerosene fraction may be fractionated as necessary. In addition, water, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. may be generated due to the reaction of oxygen and sulfur contained in the oil to be treated. A gas-liquid separation facility or other by-product gas removal device may be installed in the recovery process.

水素ガスは加熱炉を通過前もしくは通過後の被処理油に随伴させて最初の反応器の入口から導入することが一般的であるが、これとは別に、反応器内の温度を制御するとともに、反応器内全体にわたって水素圧力を維持する目的で触媒床の間や複数の反応器の間から水素ガスを導入してもよい。このようにして導入される水素を一般にクエンチ水素と呼ぶ。被処理油に随伴して導入する水素ガスに対するクエンチ水素の割合は、10〜60容量%であることが好ましく、15〜50容量%であることがより好ましい。クエンチ水素の割合が10容量未満であると後段の反応部位での反応が十分に進行しない傾向があり、クエンチ水素の割合が60容積%を超えると反応器入口付近での反応が十分に進行しない傾向がある。   In general, hydrogen gas is introduced from the inlet of the first reactor along with the oil to be treated before or after passing through the heating furnace, but separately from this, the temperature in the reactor is controlled. In order to maintain the hydrogen pressure throughout the reactor, hydrogen gas may be introduced between the catalyst beds or between a plurality of reactors. The hydrogen thus introduced is generally called quench hydrogen. The ratio of quench hydrogen to hydrogen gas introduced along with the oil to be treated is preferably 10 to 60% by volume, and more preferably 15 to 50% by volume. If the rate of quench hydrogen is less than 10 volumes, the reaction at the subsequent reaction site tends not to proceed sufficiently. If the rate of quench hydrogen exceeds 60% by volume, the reaction near the reactor inlet does not proceed sufficiently. Tend.

本発明の水素化精製方法においては、得られる水素化精製油の沸点範囲80〜135℃の留分における酸素分の含有量が0.2質量%以下且つノルマルパラフィンの含有量が30質量%以下となる条件で上記被処理油を水素化精製することが好ましい。更に、上記留分における酸素分の含有量が0.2質量%以下且つノルマルパラフィンの含有量が25質量%以下となる条件で上記被処理油を水素化精製することがより好ましい。本発明の水素化精製方法で得られる水素化精製油においては、残存する酸素分は主として水酸基、アルデヒド基、カルボキシル基のうちのいずれかの官能基又はこれらの複数の官能基の状態で存在しているため、上記留分における酸素分の含有量が0.2質量%を超えると、腐食性の増大と排出ガス中のアルデヒド濃度が高くなる懸念がある。また、上記留分におけるノルマルパラフィンの含有量が30質量%を超えると、ガソリン基材としてのオクタン価が低下してしまい、ガソリン製品に利用した場合に高速における耐ノッキング性能の悪化を招く虞がある。上記の水素化精製油における条件を満足するように、上記の被処理油と触媒とを接触させる際の条件のうち好ましくは反応温度及び液空間速度を調節して水素化精製を行うことにより、上記被処理油からガソリン基材として有用な成分を高収率で得ることができる。なお、ノルマルパラフィン含有量は、JIS K 2536−2「石油製品−成分試験方法−ガスクロマトグラフによる全分析の求め方」に準処して測定することにより求めることができる。   In the hydrorefining method of the present invention, the content of oxygen in the fraction having a boiling range of 80 to 135 ° C. of the resulting hydrorefined oil is 0.2% by mass or less and the content of normal paraffin is 30% by mass or less. It is preferable to hydrotreat the oil to be treated under such conditions. Furthermore, it is more preferable that the oil to be treated is hydrorefined under the condition that the content of oxygen in the fraction is 0.2% by mass or less and the content of normal paraffin is 25% by mass or less. In the hydrorefined oil obtained by the hydrorefining method of the present invention, the remaining oxygen content exists mainly in the state of any functional group of a hydroxyl group, an aldehyde group, a carboxyl group, or a plurality of these functional groups. Therefore, if the oxygen content in the fraction exceeds 0.2% by mass, there is a concern that the corrosiveness increases and the aldehyde concentration in the exhaust gas increases. In addition, when the content of normal paraffin in the fraction exceeds 30% by mass, the octane number as a gasoline base material is lowered, and there is a possibility of causing deterioration of anti-knocking performance at high speed when used for gasoline products. . By performing hydrorefining by preferably adjusting the reaction temperature and liquid space velocity among the conditions when contacting the oil to be treated and the catalyst so as to satisfy the conditions in the hydrorefined oil, A component useful as a gasoline base material can be obtained in high yield from the oil to be treated. In addition, normal paraffin content can be calculated | required by measuring according to JISK2536-2 "Petroleum products-component test method-how to obtain the total analysis by a gas chromatograph".

本発明によって製造される水素化精製油をガソリン基材として用いる場合、好ましくは沸点が25〜220℃の範囲内、より好ましくは沸点が80〜135℃の範囲内にある留分を含有させることで、高品質の環境低負荷型ガソリン基材を経済性よく得ることができる。更に、エンジンやその他の材質への悪影響を抑制する観点から、ガソリン基材として用いる留分における酸素分の含有量が0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましい。また、かかる留分における硫黄分の含有量が10質量ppm以下であることが好ましい。硫黄分が上記の上限値を超える場合、ガソリンエンジンの排出ガス処理装置で使用されるフィルターや触媒に影響を及ぼす恐れがある。   When the hydrorefined oil produced by the present invention is used as a gasoline base, it preferably contains a fraction having a boiling point in the range of 25 to 220 ° C, more preferably in the range of 80 to 135 ° C. Thus, it is possible to obtain a high quality environmentally low load gasoline base material with good economic efficiency. Furthermore, from the viewpoint of suppressing adverse effects on the engine and other materials, the oxygen content in the fraction used as a gasoline base material is preferably 0.5% by mass or less, and 0.3% by mass or less. It is more preferable. Moreover, it is preferable that content of the sulfur content in this fraction is 10 mass ppm or less. When the sulfur content exceeds the above upper limit, there is a risk of affecting the filter and catalyst used in the exhaust gas treatment device of the gasoline engine.

本発明によって得られるガソリン留分は、接触改質装置の原料油として用いることもできる。被処理油がバイオマスを含む場合、水素、ガソリンエンジン用燃料、並びに、石油化学製品の基礎原料であるベンゼン、トルエン及びキシレン類の製造において、ライフサイクルの観点で見積もられる二酸化炭素の排出量(LCA−CO)の削減効果を有効に付与することができる。すなわち、本発明によれば、LCA−COを十分に低減化できる水素、ガソリンエンジン用燃料、並びに、石油化学製品の基礎原料であるベンゼン、トルエン及びキシレン類を得ることができる。 The gasoline fraction obtained by the present invention can also be used as a feedstock for a catalytic reformer. When the oil to be treated contains biomass, carbon dioxide emissions (LCA) estimated from the viewpoint of the life cycle in the production of hydrogen, gasoline engine fuel, and benzene, toluene and xylenes, which are basic raw materials for petrochemical products -CO 2) can effectively impart the effect of reducing. That is, according to the present invention, hydrogen capable of sufficiently reducing LCA-CO 2 , fuel for gasoline engines, and benzene, toluene and xylenes which are basic raw materials for petrochemical products can be obtained.

本発明によって製造される水素化精製油の一部の留分を水蒸気改質装置や接触改質装置により改質することで、水素を製造することができる。被処理油がバイオマスを含む場合には得られる水素がカーボンニュートラルという特徴を有することから、水素製造および/またはガソリン基材製造における環境への負荷を低減することができる。   Hydrogen can be produced by reforming a portion of the hydrorefined oil produced according to the present invention with a steam reformer or a catalytic reformer. When the oil to be treated contains biomass, the obtained hydrogen has the characteristic of being carbon neutral. Therefore, it is possible to reduce the environmental load in hydrogen production and / or gasoline base material production.

本発明によって製造される水素化精製油のうち、沸点が220〜350℃の範囲内にある灯油留分は、特にディーゼル軽油や重油基材として好適に用いることができる。上記の留分をディーゼル軽油として使用する場合、かかる留分における硫黄分の含有量が10質量ppm以下であることが好ましい。硫黄分が上記の上限値を超える場合、ディーゼルエンジンの排出ガス処理装置で使用されるフィルターや触媒に影響を及ぼす恐れがある。水素化精製油は単独でディーゼル軽油や重油基材として用いてもよいが、他の基材などの成分を混合したディーゼル軽油又は重質基材として用いることができる。他の基材としては、一般的な石油精製工程で得られる軽油留分及び/又は灯油留分、本発明の水素化精製方法で得られる残さ留分を混合することもできる。さらに、水素と一酸化炭素から構成される、いわゆる合成ガスを原料とし、フィッシャートロプシュ反応などを経由して得られる合成軽油もしくは合成灯油を混合することができる。これらの合成軽油や合成灯油は芳香族分をほとんど含有せず、飽和炭化水素を主成分とし、セタン価が高いことが特徴である。なお、合成ガスの製造方法としては公知の方法を用いることができ、特に限定されるものではない。   Of the hydrorefined oil produced by the present invention, a kerosene fraction having a boiling point within the range of 220 to 350 ° C. can be suitably used particularly as a diesel light oil or heavy oil base material. When using the said fraction as diesel light oil, it is preferable that content of the sulfur content in this fraction is 10 mass ppm or less. When the sulfur content exceeds the above upper limit, there is a risk of affecting the filter and catalyst used in the exhaust gas treatment device of the diesel engine. The hydrorefined oil may be used alone as a diesel light oil or heavy oil base material, but can be used as a diesel light oil or a heavy base material mixed with components such as other base materials. As other base materials, a light oil fraction and / or kerosene fraction obtained in a general petroleum refining process and a residual fraction obtained by the hydrorefining method of the present invention can be mixed. Furthermore, a synthetic light oil or a kerosene obtained through a Fischer-Tropsch reaction or the like using so-called synthesis gas composed of hydrogen and carbon monoxide as a raw material can be mixed. These synthetic light oils and kerosene are characterized by containing almost no aromatic content, having a saturated hydrocarbon as a main component, and a high cetane number. In addition, a well-known method can be used as a manufacturing method of synthesis gas, and it is not specifically limited.

本発明によって製造される水素化精製油のうち、灯油留分及び/又は残さ分はその全量又は一部を被処理油に混合し、リサイクル処理を行っても良い。これにより、ガソリン基材として有用な留分の収率をより高めることができる。   Of the hydrorefined oil produced according to the present invention, the kerosene fraction and / or the residue may be mixed with the oil to be treated in whole or in part for recycling. Thereby, the yield of the fraction useful as a gasoline base material can be raised more.

以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

(触媒の調製)
<触媒A>
シリカとアルミナとの比(SiO/Al)が5であるY型ゼオライトを、スチーミング装置を用い、780℃で1時間、飽和水蒸気雰囲気中で水熱処理して超安定化した後、1N硝酸水溶液により酸処理を施し、X線回折によって求められる格子定数が24.33Å、シリカとアルミナとの比(SiO/Al)が30であるプロトン型の超安定化Y型ゼオライト210gを得た。
(Preparation of catalyst)
<Catalyst A>
After ultra-stabilizing a Y-type zeolite having a silica / alumina ratio (SiO 2 / Al 2 O 3 ) of 5 by hydrothermal treatment in a saturated steam atmosphere at 780 ° C. for 1 hour using a steaming device Proton-type super-stabilized Y-type that is acid-treated with 1N nitric acid aqueous solution, has a lattice constant of 24.33Å determined by X-ray diffraction, and a ratio of silica to alumina (SiO 2 / Al 2 O 3 ) of 30 210 g of zeolite was obtained.

一方、濃度5質量%のアルミン酸ナトリウム水溶液3000gに水ガラス3号185gを加え、65℃に保温した容器に入れた。他方、65℃に保温した別の容器において濃度2.5質量%の硫酸アルミニウム水溶液3000gを調製し、これに前述のアルミン酸ナトリウムを含む水溶液を滴下した。混合溶液のpHが7.0になる時点を終点とし、得られたスラリー状の生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。   On the other hand, 185 g of water glass No. 3 was added to 3000 g of an aqueous sodium aluminate solution having a concentration of 5% by mass and placed in a container kept at 65 ° C. On the other hand, 3000 g of an aluminum sulfate aqueous solution having a concentration of 2.5% by mass was prepared in another container kept at 65 ° C., and the aqueous solution containing sodium aluminate described above was added dropwise thereto. The time when the pH of the mixed solution reached 7.0 was set as the end point, and the resulting slurry product was filtered through a filter to obtain a cake slurry.

ケーキ状のスラリーを還流冷却器を取り付けた容器に移し、蒸留水150mlと27%アンモニア水溶液10gを加え、75℃で20時間加熱攪拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去しながら混練し、粘土状の混練物を得た。得られた混練物に上記で得られた超安定化Y型ゼオライト186gを加えさらに混練し、これを押出し成形機によって直径1.5mmのシリンダーの形状に押し出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。   The cake-like slurry was transferred to a container equipped with a reflux condenser, 150 ml of distilled water and 10 g of 27% aqueous ammonia solution were added, and the mixture was heated and stirred at 75 ° C. for 20 hours. The slurry was put in a kneading apparatus and heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product. After adding 186 g of the ultra-stabilized Y-type zeolite obtained above to the kneaded product obtained and further kneading, this was extruded into the shape of a cylinder with a diameter of 1.5 mm by an extruder and dried at 110 ° C. for 1 hour, Firing was performed at 550 ° C. to obtain a shaped carrier.

得られた成形担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながらテトラアンミン白金(II)クロライドとテトラアンミンパラジウム(II)クロライドの混合水溶液35mlを用いて金属を含浸せしめ、110℃で乾燥後、350℃で焼成を行い、触媒Aを得た。触媒Aにおける白金、パラジウムの担持量はそれぞれ、触媒全量に対して0.5質量%、0.7質量%であった。   50 g of the obtained shaped carrier was put into an eggplant-shaped flask, impregnated with metal using 35 ml of a mixed aqueous solution of tetraammineplatinum (II) chloride and tetraamminepalladium (II) chloride while degassing with a rotary evaporator, and dried at 110 ° C. And calcining at 350 ° C. to obtain catalyst A. The supported amounts of platinum and palladium in the catalyst A were 0.5% by mass and 0.7% by mass, respectively, with respect to the total amount of the catalyst.

<触媒B>
濃度5質量%のアルミン酸ナトリウム水溶液3000gを65℃に保温した容器に入れた。他方、65℃に保温した別の容器において濃度2.5質量%の硫酸アルミニウム水溶液3000gを調製し、これに前述のアルミン酸ナトリウム水溶液を滴下した。混合溶液のpHが7.0になる時点を終点とし、得られたスラリー状生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。
<Catalyst B>
A sodium aluminate aqueous solution having a concentration of 5% by mass was placed in a container kept at 65 ° C. On the other hand, 3000 g of a 2.5 mass% aluminum sulfate aqueous solution was prepared in another container kept at 65 ° C., and the above-mentioned sodium aluminate aqueous solution was added dropwise thereto. The end point was when the pH of the mixed solution reached 7.0, and the resulting slurry product was filtered through a filter to obtain a cake-like slurry.

ケーキ状スラリーを乾留冷却器を取り付けた容器に移し、蒸留水150mlと27%アンモニア代水溶液10gを加え、75℃で20時間加熱撹拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去しながら混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmのシリンダーの形状に押し出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。   The cake-like slurry was transferred to a container equipped with a dry distillation cooler, 150 ml of distilled water and 10 g of a 27% aqueous ammonia solution were added, and the mixture was heated and stirred at 75 ° C. for 20 hours. The slurry was put in a kneading apparatus and heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product. The obtained kneaded product was extruded into the shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier.

得られた成形担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながら、ジニトロアンミン白金(II)とジニトロアンミンパラジウム(II)との混合水溶液35mlを用いて金属を含有せしめ、110℃で乾燥後、350℃で焼成を行い、触媒Bを得た。触媒Bにおける白金、パラジウムの担持量はそれぞれ、触媒全量に対して0.5質量%、0.7質量%であった。   50 g of the obtained shaped carrier was put into an eggplant-shaped flask, and while degassing with a rotary evaporator, metal was added using 35 ml of a mixed aqueous solution of dinitroammineplatinum (II) and dinitroamminepalladium (II) at 110 ° C. After drying, firing was performed at 350 ° C. to obtain catalyst B. The supported amounts of platinum and palladium in the catalyst B were 0.5% by mass and 0.7% by mass, respectively, with respect to the total amount of the catalyst.

(実施例1)
触媒A(50ml)を充填した第一反応管(内径20mm)と、同じく触媒A(50ml)を充填した第二反応管(内径20mm)を直列に固定床流通式反応装置に取り付けた。その後、触媒層平均温度300℃、水素分圧5MPa、水素ガス量83ml/minの条件下で、6時間触媒の還元処理を行った。
Example 1
A first reaction tube (inner diameter 20 mm) filled with catalyst A (50 ml) and a second reaction tube (inner diameter 20 mm) also filled with catalyst A (50 ml) were attached in series to a fixed bed flow reactor. Thereafter, the catalyst was reduced for 6 hours under the conditions of an average catalyst layer temperature of 300 ° C., a hydrogen partial pressure of 5 MPa, and a hydrogen gas amount of 83 ml / min.

触媒の還元処理後、被処理油としてパーム油(含酸素炭化水素化合物に占めるトリグリセリド構造を有する化合物の割合:98モル%)を用いて、水素化精製を行った。なお、被処理油の15℃密度は0.916g/ml、酸素分含有量は11.4質量%であった。また、水素化精製の条件は、第一及び第二反応管の反応温度を415℃、圧力を5MPa、液空間速度を0.45h−1とした。なお、第一反応管と第二反応管の間で導入する水素ガスの容量比率(クエンチ水素比率)は全導入水素の20容量%とし、導入した全水素によって求めた水素/油比を1010NL/Lとした。水素化精製によって得られた水素化精製油について、水素化精製油中の酸素分及び硫黄分、各留分の収量、沸点範囲80〜135℃のナフサ留分(炭素数5〜10の炭化水素に相当する留分)中の酸素分及びノルマルパラフィン含有量を測定した。得られた結果を表1に示す。 After the reduction treatment of the catalyst, hydrorefining was performed using palm oil (ratio of the compound having a triglyceride structure in the oxygen-containing hydrocarbon compound: 98 mol%) as the oil to be treated. In addition, 15 degreeC density of to-be-processed oil was 0.916 g / ml, and oxygen content was 11.4 mass%. The hydrorefining conditions were such that the reaction temperature of the first and second reaction tubes was 415 ° C., the pressure was 5 MPa, and the liquid space velocity was 0.45 h −1 . The volume ratio of hydrogen gas introduced between the first reaction pipe and the second reaction pipe (quenching hydrogen ratio) is 20% by volume of the total introduced hydrogen, and the hydrogen / oil ratio determined by the total introduced hydrogen is 1010 NL / L. About hydrorefined oil obtained by hydrorefining, oxygen content and sulfur content in hydrorefined oil, yield of each fraction, naphtha fraction having a boiling range of 80 to 135 ° C (hydrocarbon having 5 to 10 carbon atoms) The oxygen content and the normal paraffin content in the fraction) were measured. The obtained results are shown in Table 1.

(比較例1)
触媒Aの代わりに触媒Bを用いたこと以外は実施例1と同様にして水素化精製を行った。得られた水素化精製油について実施例1と同様の測定を行った。得られた結果を表1に示す。
(Comparative Example 1)
The hydrorefining was performed in the same manner as in Example 1 except that the catalyst B was used instead of the catalyst A. The obtained hydrorefined oil was measured in the same manner as in Example 1. The obtained results are shown in Table 1.

Figure 0004914643
Figure 0004914643



Claims (7)

水素の存在下、
動植物油に由来する油脂成分を含有する被処理油と、
結晶性メタロシリケートを含有する担体及び該担体に担持された周期律表第8族の元素から選ばれる1種以上の金属を含有する触媒と、
を接触させて水素化精製油を得ることを特徴とする水素化精製方法。
In the presence of hydrogen,
Oil to be treated containing fat and oil components derived from animal and vegetable oils ,
A support containing a crystalline metallosilicate and a catalyst containing one or more metals selected from Group 8 elements of the periodic table supported on the support;
A hydrorefining method characterized in that hydrorefined oil is obtained by bringing into contact therewith.
前記水素化精製油の沸点範囲80〜135℃の留分における酸素分の含有量が0.2質量%以下且つノルマルパラフィンの含有量が30質量%以下となるように、水素圧力2〜13MPa、液空間速度0.1〜3.0h −1 、水素/油比150〜1500NL/L、反応温度250〜550℃の条件で前記被処理油と前記触媒とを接触させることを特徴とする、請求項1に記載の水素化精製方法。 A hydrogen pressure of 2 to 13 MPa so that the content of oxygen in a fraction having a boiling point range of 80 to 135 ° C. of the hydrorefined oil is 0.2 mass% or less and the content of normal paraffin is 30 mass% or less , The oil to be treated and the catalyst are brought into contact under conditions of a liquid space velocity of 0.1 to 3.0 h −1 , a hydrogen / oil ratio of 150 to 1500 NL / L, and a reaction temperature of 250 to 550 ° C. Item 4. The hydrorefining method according to Item 1. 前記被処理油の全量を基準として、酸素分の含有量が0.1〜15質量%であることを特徴とする、請求項1又は2に記載の水素化精製方法。   The hydrorefining method according to claim 1 or 2, wherein the content of oxygen is 0.1 to 15% by mass based on the total amount of the oil to be treated. 前記動植物油に由来する油脂成分に占めるトリグリセリド構造を有する化合物の割合が90モル%以上であることを特徴とする、請求項1〜のうちのいずれか1項に記載の水素化精製方法。 The hydrorefining method according to any one of claims 1 to 3 , wherein a ratio of a compound having a triglyceride structure to an oil and fat component derived from the animal and vegetable oil is 90 mol% or more. 前記金属がPd、Pt、Rh、Ir、Au及びNiから選ばれる1種以上の金属であることを特徴とする、請求項1〜のうちのいずれか1項に記載の水素化精製方法。 The hydrorefining method according to any one of claims 1 to 4 , wherein the metal is one or more metals selected from Pd, Pt, Rh, Ir, Au, and Ni. 前記結晶性メタロシリケートがフォージャサイト型の構造を有するものであることを特徴とする、請求項1〜のうちのいずれか1項に記載の水素化精製方法。 Characterized in that the crystalline metallosilicate has the structure of faujasite type, hydrorefining method according to any one of claims 1-5. 前記結晶性メタロシリケートが、シリカとアルミナとのモル比(シリカ/アルミナ)が10〜100の範囲内にある超安定化Y型ゼオライトであることを特徴とする、請求項1〜のうちのいずれか1項に記載の水素化精製方法。 The crystalline metallosilicate, wherein the molar ratio of silica to alumina (silica / alumina) is ultra-stable Y-type zeolite is in the range of 10 to 100, of the claims 1-6 The hydrorefining method according to any one of the above.
JP2006138298A 2006-05-17 2006-05-17 Hydrorefining method and environment-friendly gasoline base material Active JP4914643B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006138298A JP4914643B2 (en) 2006-05-17 2006-05-17 Hydrorefining method and environment-friendly gasoline base material
KR1020087030554A KR20090025241A (en) 2006-05-17 2007-05-15 Hydrotreating process, low environmental load gasoline base material and lead-free gasoline compositions
CNA2007800227649A CN101473016A (en) 2006-05-17 2007-05-15 Hydrotreating process, low environmental load gasoline base material and lead-free gasoline compositions
PCT/JP2007/060303 WO2007142013A1 (en) 2006-05-17 2007-05-15 Hydrotreating process, low environmental load gasoline base material and lead-free gasoline compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138298A JP4914643B2 (en) 2006-05-17 2006-05-17 Hydrorefining method and environment-friendly gasoline base material

Publications (2)

Publication Number Publication Date
JP2007308566A JP2007308566A (en) 2007-11-29
JP4914643B2 true JP4914643B2 (en) 2012-04-11

Family

ID=38841728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138298A Active JP4914643B2 (en) 2006-05-17 2006-05-17 Hydrorefining method and environment-friendly gasoline base material

Country Status (2)

Country Link
JP (1) JP4914643B2 (en)
CN (1) CN101473016A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5330935B2 (en) 2009-08-31 2013-10-30 Jx日鉱日石エネルギー株式会社 Aviation fuel oil base material production method and aviation fuel oil composition
JP5530134B2 (en) * 2009-08-31 2014-06-25 Jx日鉱日石エネルギー株式会社 Aviation fuel oil composition
JP5525786B2 (en) * 2009-08-31 2014-06-18 Jx日鉱日石エネルギー株式会社 Aviation fuel oil base material production method and aviation fuel oil composition production method
CN105435806B (en) * 2015-12-16 2017-10-13 西南化工研究设计院有限公司 A kind of deoxidation and Organic sulfur hydro-conversion bifunctional catalyst and its preparation and application
CN107189829A (en) * 2017-04-25 2017-09-22 南宁市钱隆汽车租赁有限公司 Gasoline additive
CN112961023A (en) * 2021-01-18 2021-06-15 宁夏天源石化有限责任公司 Mixed benzene hydrofining process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108088A (en) * 1982-11-10 1984-06-22 Honda Motor Co Ltd Production of paraffin hydrocarbon
JP2003171670A (en) * 2001-12-07 2003-06-20 Kawaken Fine Chem Co Ltd Method for producing hydrocarbons and catalyst for producing hydrocarbons
US7232935B2 (en) * 2002-09-06 2007-06-19 Fortum Oyj Process for producing a hydrocarbon component of biological origin
JP4236170B2 (en) * 2003-09-26 2009-03-11 株式会社ジャパンエナジー Method for producing gasoline base material

Also Published As

Publication number Publication date
CN101473016A (en) 2009-07-01
JP2007308566A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4878824B2 (en) Manufacturing method of environmentally low load type fuel and environmentally low load type fuel
JP4832871B2 (en) Hydrorefining method
AU2009293731B2 (en) Process for producing hydrocarbon oil
JP5317644B2 (en) Method for producing aviation fuel base material
RU2505582C2 (en) Hydrocarbon composition used as fuel and obtained from oil components and biologic component
JP5057954B2 (en) Method for producing hydrocarbon oil
JP2007308564A (en) Hydrogenation purification method
JP4914643B2 (en) Hydrorefining method and environment-friendly gasoline base material
JP5070169B2 (en) Method for producing hydrocarbon oil
JP5005451B2 (en) Method for producing hydrocarbon oil
JP5189740B2 (en) Hydrorefining method
JP5022117B2 (en) Method for producing hydrocarbon oil
JP5196734B2 (en) Hydrorefining method
JP4914644B2 (en) Hydrorefining method and environment-friendly gasoline base material
KR101362950B1 (en) Hydrorefining process
WO2007142013A1 (en) Hydrotreating process, low environmental load gasoline base material and lead-free gasoline compositions
JP4979269B2 (en) Method for producing A heavy oil composition
JP5091401B2 (en) Method for producing hydrogen, method for producing reformed gasoline, and method for producing aromatic hydrocarbon
JP5070168B2 (en) Method for producing hydrocarbon oil
JP5588171B2 (en) Method for producing hydrocarbon oil
WO2009020056A1 (en) Gas oil composition
Quiroga et al. Industrial Crude Bioethanol Dehydration to Ethylene Over Zsm-5: Effect of Impurities, Doping, and Si/Al Ratio on Activity and Stability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

R150 Certificate of patent or registration of utility model

Ref document number: 4914643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250