[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5047426B2 - Steam heating device - Google Patents

Steam heating device Download PDF

Info

Publication number
JP5047426B2
JP5047426B2 JP2001115080A JP2001115080A JP5047426B2 JP 5047426 B2 JP5047426 B2 JP 5047426B2 JP 2001115080 A JP2001115080 A JP 2001115080A JP 2001115080 A JP2001115080 A JP 2001115080A JP 5047426 B2 JP5047426 B2 JP 5047426B2
Authority
JP
Japan
Prior art keywords
steam
pump
condensate
pressure
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001115080A
Other languages
Japanese (ja)
Other versions
JP2002306956A (en
Inventor
鎮麿 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tlv Co Ltd
Original Assignee
Tlv Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tlv Co Ltd filed Critical Tlv Co Ltd
Priority to JP2001115080A priority Critical patent/JP5047426B2/en
Publication of JP2002306956A publication Critical patent/JP2002306956A/en
Application granted granted Critical
Publication of JP5047426B2 publication Critical patent/JP5047426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は被加熱物を蒸気で加熱するものに関し、特にその加熱温度が100℃程度の比較的低温の場合に適した蒸気加熱装置に関する。具体的には重合反応等に用いられる各種反応釜や食品の蒸溜装置、濃縮装置、あるいは殺菌装置等の蒸気加熱に用いるものである。これらの場合の被加熱物は、少しの温度変化によって熱損傷を生じてしまう場合が多く、加熱温度を精度良く維持する必要がある。
【0002】
【従来の技術】
従来の蒸気加熱装置は、例えば特開平7−328422号公報に示されている。これは、加熱部に加熱用の蒸気供給管を接続し、加熱により生じた復水を排出する復水回収装置を接続すると共に、加熱部内の空気と置換する置換流体供給管を接続したもので、置換流体により加熱部内の空気を排除して減圧状態とすることによって、100℃以下の低温で蒸気加熱することができるものである。
【0003】
【発明が解決しようとする課題】
上記従来のものでは、加熱部で発生した復水を復水回収装置に流入させるのに流入水頭に基づく自然流下によるために、復水の発生量が変動して多くなると加熱部の復水を滞留することなく速やかに加熱部外に排出することができず、加熱部の一部が復水で覆われることによって、加熱部の全体を均一に蒸気加熱することができない問題があった。
【0004】
従って本発明の課題は、加熱部で発生した復水を滞留させることがなく、蒸気加熱温度を精度良く所定値に維持することのできる蒸気加熱装置を得ることである。
【0005】
【課題を解決するための手段】
上記の課題を解決するために講じた本発明の手段は、加熱部に蒸気を供給して被加熱物を蒸気加熱すると共に、加熱部にヘッダータンクを介して復水圧送ポンプを接続して、加熱により生じた復水を復水圧送ポンプによって所定箇所に圧送するものにおいて、復水圧送ポンプに高圧蒸気導入口と冷却流体供給口を設けて、当該高圧蒸気導入口に、復水圧送ポンプに圧送用の蒸気を供給する蒸気供給手段を接続し、当該冷却流体供給口に、復水圧送ポンプ内の蒸気を凝縮させる蒸気凝縮手段を接続して、復水圧送ポンプの内部に配置したフロートが復水の液位の上昇によって上方部に位置する場合に、高圧蒸気導入口が開口されて高圧蒸気がポンプ内に流入し、一方、冷却流体供給口は閉口して、ポンプ内部の復水を蒸気の圧力によって圧送口から所定の圧送先に圧送し、復水圧送ポンプ内の復水が圧送されて内部のフロートが所定の下方部に位置して蒸気供給手段と蒸気凝縮手段が切り替えられることによって、高圧蒸気導入口が閉口され、一方、冷却流体供給口が開口されることにより、ポンプ内に冷却流体が供給され、ポンプ内の高圧蒸気の残存分が凝縮され、ポンプ内の蒸気の体積が急激に減少してポンプ内は大気圧以下の減圧状態となることによって、加熱部で加熱により生じた復水がポンプ内へ吸引されると共に、加熱部へ蒸気を供給する蒸気供給管を分岐した管路に自動弁と蒸気エゼクタを配置し、当該蒸気エゼクタの吸込室をヘッダータンクと接続し、当該ヘッダータンクに内部の温度を検出する温度センサを取り付けて、当該温度センサと自動弁と蒸気エゼクタで不凝縮ガス排出手段を構成し、当該不凝縮ガス排出手段によって、加熱部に溜まった不凝縮ガスを系外に排出するものである。
【0006】
【発明の実施の形態】
加熱部で発生した復水が復水圧送ポンプに至り所定の液位に達すると、蒸気供給手段と蒸気凝縮手段が切り替えられて、蒸気供給手段から復水圧送ポンプ内に圧送用の高圧蒸気が供給され、復水は所定箇所に圧送される。復水が圧送され所定の低液位になると、蒸気供給手段から蒸気凝縮手段へ切り替えられて、復水圧送ポンプ内に残存している蒸気は凝縮されその体積が急減することによって、復水圧送ポンプ内は大気圧以下の負圧状態となる。このように復水圧送ポンプ内が負圧状態となることによって、加熱部で発生した復水は圧力差により速やかに復水圧送ポンプへ流下し、加熱部に滞留することはない。
【0007】
蒸気凝縮手段としては、復水圧送ポンプ内の蒸気を凝縮させることができるものであれば良く、蒸気と冷却流体を直接に接触させて凝縮させるものや、あるいは、間接的に熱交換して凝縮させるものを使用することができる。
【0008】
加熱部に不凝縮ガス排出手段を取り付けたことにより、加熱部内が負圧となることによって外部から流入する空気等の不凝縮ガスや、あるいは、供給される蒸気に混入して加熱部内に流入してきた不凝縮ガスは、この不凝縮ガス排出手段によって外部に排出される。
【0009】
不凝縮ガス排出手段としては、加熱部内に空気等が溜まって温度が低下したことを、温度センサで検出して、真空ポンプを駆動させて排出するものなどを使用することができる。
【0010】
【実施例】
本実施例においては、加熱部として反応釜1のジャケット部2の例を示す。図1において、ジャケット部2にヘッダータンク3を介して復水圧送ポンプ4を接続して蒸気加熱装置を構成する。
【0011】
ジャケット部2へ加熱用の蒸気を供給する蒸気供給管5にバルブ6を介して接続する。バルブ6から所定圧力又は温度の蒸気をジャケット部2に供給して、図示しない反応釜1内の被加熱物を加熱するものである。
【0012】
ジャケット部2の上部に大気連通管7をバルブ8を介して取り付ける。ジャケット部2の下部にはバルブ9を介してヘッダータンク3を接続する。ヘッダータンク3はジャケット部2で発生した復水を一旦溜めるためのタンクである。
【0013】
蒸気供給管5を分岐した管路30に自動弁31と蒸気エゼクタ32を配置する。蒸気エゼクタ32は、内部に図示しないノズルを有する吸込室33とディフューザ34で構成する。吸込室33に管路35と逆止弁36を介してヘッダータンク3の上部と接続する。また、ヘッダータンク3の上部には内部の温度を検出する温度センサ37を取り付けて、図示しない温度調節計を介して自動弁31と接続する。
【0014】
ヘッダータンク3内に空気等の不凝縮ガスが溜まると、温度センサ37がその温度の低下を検出して自動弁31を開弁し、蒸気エゼクタ32に蒸気を供給することによってタンク3内の不凝縮ガスを吸引して外部に排除するものである。
【0015】
本実施例においては、自動弁31と蒸気エゼクタ32及び温度センサ37で不凝縮ガス排出手段を構成する
【0016】
ヘッダータンク3の下部をパイプ11により復水圧送ポンプ4の復水流入口12と接続する。タンク3の下方側部にバルブ14を介して置換流体供給管15を接続する。
【0017】
パイプ11にはバルブ21と逆止弁22を取り付ける。逆止弁22はヘッダータンク3から復水圧送ポンプ4方向のみの流体の通過を許容するもので、逆方向の流体の通過は許容しないものである。また、バルブ21は復水圧送ポンプ4に流下する復水の量を調節するためのものである。
【0018】
復水圧送ポンプ4の復水圧送口23にも逆止弁24とバルブ25を介して復水圧送管路26を接続する。この逆止弁24は復水圧送ポンプ4から復水圧送管路26側への外部方向へのみ流体を通過させるものである。
【0019】
復水圧送ポンプ4の上部に、蒸気供給管5を分岐した蒸気管27と接続した高圧蒸気導入口28を設ける。高圧蒸気導入口28の側方には冷却流体供給口29を設ける。冷却流体供給口29には、バルブ13を介して冷却流体供給管17を接続する。本実施例においては、蒸気管27と蒸気導入口28で蒸気供給手段を構成し、冷却流体供給管17と冷却流体供給口29で蒸気凝縮手段を構成する。
【0020】
冷却流体供給口29の管17を更に分岐して連通管10とバルブ16を介してヘッダータンク3と接続する。バルブ16を開弁することにより、ポンプ4内をヘッダータンク3内と同圧力状態にすることができるものである。
【0021】
復水圧送ポンプ4は、内部に配置した図示しないフロートが復水の液位の上昇によって上方部に位置する場合に、高圧蒸気の導入口28が開口されて蒸気管27から高圧蒸気がポンプ4内に流入し、一方、冷却流体供給口29は閉口されているために、ポンプ4内部の復水を蒸気の圧力によって圧送口23と逆止弁24とバルブ25及び復水圧送管路26を経て所定の圧送先に圧送するものである。
【0022】
復水圧送ポンプ4内の復水が圧送されて図示しないフロートが所定の下方部に位置して蒸気供給手段と蒸気凝縮手段が切り替えられると、高圧蒸気の導入口28は閉口され、一方、冷却流体供給口29が開口されることにより、冷却流体供給管17からポンプ4内に冷却流体が供給され、ポンプ4内の高圧蒸気の残存分が凝縮される。
【0023】
ポンプ4内の蒸気が凝縮してその体積が急激に減少するために、ポンプ4内は大気圧以下の減圧状態となる。減圧状態となることにより、ジャケット部2で加熱により生じた復水はヘッダータンク3を介してポンプ4内へ速やかに吸引される。
【0024】
反応釜1の加熱初期においては、ジャケット部2内には不凝縮性の空気が滞留しているために、バルブ14,9及び8を開弁し、バルブ21を閉弁して、置換流体供給管15から例えば水をヘッダータンク3とジャケット部2へ供給すると、タンク3内とジャケット部2内の空気は大気連通管7から流体に押し出されて外部に排出される。
【0025】
初期空気が排出されると、バルブ8,14を閉弁し、バルブ9,21を開弁して、ヘッダータンク3とジャケット部2の流体を復水圧送ポンプ4から系外に排出する。
【0026】
バルブ6から加熱用の蒸気がジャケット部2に供給されて反応釜1を初期加熱すると、復水はヘッダータンク3を経て復水圧送ポンプ4内に流下する。ポンプ4内に復水が溜まって高圧蒸気導入口28が開口すると、ポンプ4内に高圧蒸気が導入されて溜まった復水は圧送口23から圧送される。
【0027】
ポンプ4内の復水が圧送されると図示しないフロートが下部に位置して、蒸気導入口28から冷却流体供給口29に切り替えられることにより、供給口29からポンプ4内に冷却流体が供給されて残存していた蒸気が凝縮し、その体積が急減することによってポンプ4内は負圧状態となる。ポンプ4内が負圧状態となることによって、ジャケット部2内の復水はヘッダータンク3を介して速やかにポンプ4内に流下する。
【0028】
【発明の効果】
上記のように本発明によれば、復水圧送ポンプ内の復水の液位に応じて蒸気供給手段と蒸気凝縮手段を切り替えることにより、加熱部で発生した復水を滞留させることがなく、加熱部の全体を蒸気で均一に加熱することができ、蒸気加熱温度を精度良く所定値に維持することができる。
【0029】
また本発明によれば、加熱部内に溜まった不凝縮ガスを系外に排出する不凝縮ガス排出手段を取り付けたことにより、加熱温度を更に精度良く維持することができる。
【図面の簡単な説明】
【図1】本発明の蒸気加熱装置の実施例を示す構成図。
【符号の説明】
1 反応釜
2 ジャケット部
3 ヘッダータンク
4 復水圧送ポンプ
5 蒸気供給管
12 復水流入口
15 置換流体供給管
17 冷却流体供給管
23 復水圧送口
28 高圧蒸気の導入口
29 冷却流体の供給口
31 自動弁
32 蒸気エゼクタ
37 温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for heating an object to be heated with steam, and more particularly to a steam heating apparatus suitable for heating at a relatively low temperature of about 100 ° C. Specifically, it is used for steam heating of various reaction kettles used for polymerization reactions and the like, food distillers, concentrators, and sterilizers. The object to be heated in these cases often causes thermal damage due to a slight temperature change, and it is necessary to maintain the heating temperature with high accuracy.
[0002]
[Prior art]
A conventional steam heating apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-328422. This is a heating steam supply pipe connected to the heating section, a condensate recovery device that discharges the condensate generated by heating, and a replacement fluid supply pipe that replaces the air in the heating section. The steam can be heated at a low temperature of 100 ° C. or lower by eliminating the air in the heating section with a replacement fluid and reducing the pressure.
[0003]
[Problems to be solved by the invention]
In the above conventional one, since the condensate generated in the heating unit flows into the condensate recovery device by natural flow based on the inflow head, the condensate in the heating unit is reduced when the amount of condensate generated increases. There was a problem that the entire heating unit could not be uniformly heated by steam because the heating unit could not be quickly discharged without stagnation and part of the heating unit was covered with condensate.
[0004]
Therefore, the subject of this invention is obtaining the steam heating apparatus which can maintain steam heating temperature to a predetermined value accurately, without making the condensate which generate | occur | produced in the heating part stay.
[0005]
[Means for Solving the Problems]
The means of the present invention taken to solve the above problems is to supply steam to the heating unit to steam-heat the object to be heated, and connect a condensate pump to the heating unit via a header tank, Condensate generated by heating is pumped to a predetermined location by a condensate pump, and the condensate pump is provided with a high-pressure steam inlet and a cooling fluid supply port, and the condensate pump is connected to the high-pressure steam inlet. A float supplying means for supplying steam for pressure feeding is connected, and a steam condensing means for condensing steam in the condensate pump is connected to the cooling fluid supply port, and a float arranged inside the condensate pump is When the condensate liquid level rises, the high pressure steam inlet is opened and the high pressure steam flows into the pump, while the cooling fluid supply port is closed and the condensate inside the pump is closed. Pumping port by steam pressure The condensate pump in the condensate pump is pumped and the internal float is located at a predetermined lower portion so that the steam supply means and the steam condensing means are switched, thereby providing a high-pressure steam inlet. When the cooling fluid supply port is opened, cooling fluid is supplied into the pump, the remaining high-pressure steam in the pump is condensed, and the volume of steam in the pump is drastically reduced. When the pressure inside the pump is reduced to a pressure lower than atmospheric pressure, the condensate generated by heating in the heating section is sucked into the pump, and the steam supply pipe for supplying steam to the heating section is automatically connected to a pipe branching out. A steam ejector, connect the suction chamber of the steam ejector to the header tank, attach a temperature sensor to the header tank to detect the internal temperature, and use the temperature sensor, automatic valve, and steam ejector. It constitutes the condensed gas outlet means, by the noncondensable gas discharging means is for discharging the noncondensable gas accumulated in the heating section to the outside of the system.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
When the condensate generated in the heating section reaches the condensate pressure pump and reaches a predetermined liquid level, the steam supply means and the steam condensing means are switched, and high-pressure steam for pressure feed is fed from the steam supply means into the condensate pressure feed pump. Supplied and condensate is pumped to a predetermined location. When the condensate is pumped to a predetermined low liquid level, the steam supply means is switched to the steam condensing means, and the steam remaining in the condensate pump is condensed and its volume is rapidly reduced. The pump is in a negative pressure state below atmospheric pressure. Thus, the condensate pumping pump is brought into a negative pressure state, so that the condensate generated in the heating unit quickly flows down to the condensate pumping pump due to the pressure difference and does not stay in the heating unit.
[0007]
Any vapor condensing means may be used as long as it can condense the vapor in the condensate pump, and the vapor and cooling fluid may be brought into direct contact with each other to condense, or indirectly condensed through heat exchange. Can be used.
[0008]
By attaching the non-condensable gas discharge means to the heating unit, the inside of the heating unit becomes negative pressure, and flows into the heating unit by mixing with non-condensable gas such as air flowing in from the outside, or supplied steam. The non-condensable gas is discharged to the outside by the non-condensable gas discharging means.
[0009]
The uncondensed gas discharge means, and by accumulation of air or the like temperature decreases kite to the heating portion, is detected by a temperature sensor can be used such as those discharged by driving the vacuum pump.
[0010]
【Example】
In a present Example, the example of the jacket part 2 of the reaction kettle 1 is shown as a heating part. In FIG. 1, a steam heating apparatus is configured by connecting a condensate pressure pump 4 to a jacket portion 2 via a header tank 3.
[0011]
A steam supply pipe 5 for supplying steam for heating to the jacket portion 2 is connected via a valve 6. Steam with a predetermined pressure or temperature is supplied from the valve 6 to the jacket part 2 to heat the object to be heated in the reaction kettle 1 (not shown).
[0012]
An atmosphere communication pipe 7 is attached to the upper part of the jacket part 2 via a valve 8. A header tank 3 is connected to the lower portion of the jacket portion 2 via a valve 9. The header tank 3 is a tank for temporarily storing the condensate generated in the jacket portion 2.
[0013]
An automatic valve 31 and a steam ejector 32 are arranged in a pipe line 30 branched from the steam supply pipe 5. The steam ejector 32 includes a suction chamber 33 having a nozzle (not shown) and a diffuser 34 inside. The suction chamber 33 is connected to the upper portion of the header tank 3 through a pipe line 35 and a check valve 36. A temperature sensor 37 for detecting the internal temperature is attached to the upper part of the header tank 3 and connected to the automatic valve 31 via a temperature controller (not shown).
[0014]
When non-condensable gas such as air accumulates in the header tank 3, the temperature sensor 37 detects a decrease in the temperature, opens the automatic valve 31, and supplies steam to the steam ejector 32, thereby causing non-condensable gas in the tank 3. Condensed gas is sucked and removed to the outside.
[0015]
In this embodiment, the automatic valve 31, the steam ejector 32, and the temperature sensor 37 constitute a non-condensable gas discharge means .
[0016]
The lower part of the header tank 3 is connected to the condensate inlet 12 of the condensate pressure pump 4 by a pipe 11. A replacement fluid supply pipe 15 is connected to the lower side portion of the tank 3 through a valve 14.
[0017]
A valve 21 and a check valve 22 are attached to the pipe 11. The check valve 22 allows passage of fluid only from the header tank 3 in the direction of the condensate pressure pump 4, and does not allow passage of fluid in the reverse direction. The valve 21 is for adjusting the amount of condensate flowing down to the condensate pressure-feed pump 4.
[0018]
A condensate pressure feed line 26 is also connected to the condensate pressure feed port 23 of the condensate pressure feed pump 4 via a check valve 24 and a valve 25. The check valve 24 allows fluid to pass only in the outward direction from the condensate pump 4 to the condensate pump line 26 side.
[0019]
A high-pressure steam inlet 28 connected to a steam pipe 27 branched from the steam supply pipe 5 is provided above the condensate pressure pump 4. A cooling fluid supply port 29 is provided on the side of the high-pressure steam inlet 28. A cooling fluid supply pipe 17 is connected to the cooling fluid supply port 29 via the valve 13. In the present embodiment, the steam pipe 27 and the steam inlet 28 constitute a steam supply means, and the cooling fluid supply pipe 17 and the cooling fluid supply port 29 constitute a steam condensing means.
[0020]
The pipe 17 of the cooling fluid supply port 29 is further branched and connected to the header tank 3 via the communication pipe 10 and the valve 16. By opening the valve 16, the inside of the pump 4 can be brought into the same pressure state as the inside of the header tank 3.
[0021]
The condensate pump 4 is configured such that when a float (not shown) disposed therein is positioned at an upper portion due to the rise in the condensate liquid level, the high-pressure steam inlet 28 is opened and high-pressure steam is pumped from the steam pipe 27. On the other hand, since the cooling fluid supply port 29 is closed, the condensate inside the pump 4 is fed into the pressure feed port 23, the check valve 24, the valve 25 and the condensate pressure feed line 26 by the pressure of steam. Then, it is pumped to a predetermined pumping destination.
[0022]
When the condensate in the condensate pump 4 is pumped and a float (not shown) is positioned at a predetermined lower portion and the steam supply means and the steam condensing means are switched, the high-pressure steam inlet 28 is closed, while the cooling is performed. By opening the fluid supply port 29, the cooling fluid is supplied from the cooling fluid supply pipe 17 into the pump 4, and the remaining high-pressure steam in the pump 4 is condensed.
[0023]
Since the vapor | steam in the pump 4 condenses and the volume reduces rapidly, the inside of the pump 4 will be in the pressure reduction state below atmospheric pressure. Due to the reduced pressure state, the condensate generated by heating in the jacket portion 2 is quickly sucked into the pump 4 through the header tank 3.
[0024]
In the initial stage of heating the reaction kettle 1, since non-condensable air remains in the jacket portion 2, the valves 14, 9 and 8 are opened, the valve 21 is closed, and the replacement fluid is supplied. When, for example, water is supplied from the pipe 15 to the header tank 3 and the jacket part 2, the air in the tank 3 and the jacket part 2 is pushed out by the fluid from the atmosphere communication pipe 7 and discharged to the outside.
[0025]
When the initial air is discharged, the valves 8 and 14 are closed, the valves 9 and 21 are opened, and the fluid in the header tank 3 and the jacket portion 2 is discharged from the condensate pump 4 to the outside of the system.
[0026]
When steam for heating is supplied from the valve 6 to the jacket portion 2 to initially heat the reaction kettle 1, the condensate flows down into the condensate pressure pump 4 through the header tank 3. When condensate accumulates in the pump 4 and the high-pressure steam inlet 28 opens, the condensate accumulated by introducing high-pressure steam into the pump 4 is pumped from the pumping port 23.
[0027]
When the condensate in the pump 4 is pumped, a float (not shown) is positioned at the lower part, and the cooling fluid is supplied from the supply port 29 into the pump 4 by switching from the steam inlet 28 to the cooling fluid supply port 29. The remaining steam is condensed and the volume of the steam is rapidly reduced, so that the pump 4 is in a negative pressure state. When the inside of the pump 4 is in a negative pressure state, the condensate in the jacket portion 2 immediately flows down into the pump 4 via the header tank 3.
[0028]
【Effect of the invention】
As described above, according to the present invention, by switching between the steam supply means and the steam condensing means according to the condensate liquid level in the condensate pressure pump, the condensate generated in the heating unit is not retained, The entire heating unit can be uniformly heated with steam, and the steam heating temperature can be maintained at a predetermined value with high accuracy.
[0029]
According to the present invention, the non-condensable gas discharging means for discharging the non-condensable gas accumulated in the heating unit to the outside of the system is attached, so that the heating temperature can be maintained with higher accuracy.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a steam heating apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction kettle 2 Jacket part 3 Header tank 4 Condensate pressure feed pump 5 Steam supply pipe 12 Condensate inlet 15 Replacement fluid supply pipe 17 Cooling fluid supply pipe 23 Condensate pressure feed port 28 High pressure steam inlet 29 Cooling fluid supply 31 Automatic valve 32 Steam ejector 37 Temperature sensor

Claims (1)

加熱部に蒸気を供給して被加熱物を蒸気加熱すると共に、加熱部にヘッダータンクを介して復水圧送ポンプを接続して、加熱により生じた復水を復水圧送ポンプによって所定箇所に圧送するものにおいて、復水圧送ポンプに高圧蒸気導入口と冷却流体供給口を設けて、当該高圧蒸気導入口に、復水圧送ポンプに圧送用の蒸気を供給する蒸気供給手段を接続し、当該冷却流体供給口に、復水圧送ポンプ内の蒸気を凝縮させる蒸気凝縮手段を接続して、復水圧送ポンプの内部に配置したフロートが復水の液位の上昇によって上方部に位置する場合に、高圧蒸気導入口が開口されて高圧蒸気がポンプ内に流入し、一方、冷却流体供給口は閉口して、ポンプ内部の復水を蒸気の圧力によって圧送口から所定の圧送先に圧送し、復水圧送ポンプ内の復水が圧送されて内部のフロートが所定の下方部に位置して蒸気供給手段と蒸気凝縮手段が切り替えられることによって、高圧蒸気導入口が閉口され、一方、冷却流体供給口が開口されることにより、ポンプ内に冷却流体が供給され、ポンプ内の高圧蒸気の残存分が凝縮され、ポンプ内の蒸気の体積が急激に減少してポンプ内は大気圧以下の減圧状態となることによって、加熱部で加熱により生じた復水がポンプ内へ吸引されると共に、加熱部へ蒸気を供給する蒸気供給管を分岐した管路に自動弁と蒸気エゼクタを配置し、当該蒸気エゼクタの吸込室をヘッダータンクと接続し、当該ヘッダータンクに内部の温度を検出する温度センサを取り付けて、当該温度センサと自動弁と蒸気エゼクタで不凝縮ガス排出手段を構成し、当該不凝縮ガス排出手段によって、加熱部に溜まった不凝縮ガスを系外に排出することを特徴とする蒸気加熱装置。Steam is supplied to the heating unit to steam-heat the object to be heated, and a condensate pump is connected to the heating unit via a header tank, and the condensate generated by heating is pumped to a predetermined location by the condensate pump. The condensate pump is provided with a high-pressure steam inlet and a cooling fluid supply port, and a steam supply means for supplying steam for pumping to the condensate pump is connected to the high-pressure steam inlet. When the steam condensing means for condensing the steam in the condensate pressure pump is connected to the fluid supply port, and the float arranged inside the condensate pressure pump is located at the upper part due to the rise of the condensate liquid level, The high-pressure steam inlet is opened and high-pressure steam flows into the pump, while the cooling fluid supply port is closed, and the condensate inside the pump is pumped from the pumping port to a predetermined pumping destination by the steam pressure. Condensate in water pump By pumping and switching the steam supply means and the steam condensation means when the internal float is located at a predetermined lower part, the high-pressure steam inlet is closed, while the cooling fluid supply opening is opened. The cooling fluid is supplied inside, the remaining high-pressure steam in the pump is condensed, the volume of the steam in the pump decreases rapidly, and the pump is depressurized to below atmospheric pressure. The condensate generated by the pump is sucked into the pump, and an automatic valve and a steam ejector are placed in a pipe branching the steam supply pipe that supplies steam to the heating unit, and the suction chamber of the steam ejector is connected to the header tank. A temperature sensor for detecting the internal temperature is attached to the header tank, and the temperature sensor, the automatic valve, and the steam ejector constitute non-condensable gas discharge means. Accordingly, steam heating device comprising a Turkey to discharge the noncondensable gas accumulated in the heating section to the outside of the system.
JP2001115080A 2001-04-13 2001-04-13 Steam heating device Expired - Fee Related JP5047426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001115080A JP5047426B2 (en) 2001-04-13 2001-04-13 Steam heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001115080A JP5047426B2 (en) 2001-04-13 2001-04-13 Steam heating device

Publications (2)

Publication Number Publication Date
JP2002306956A JP2002306956A (en) 2002-10-22
JP5047426B2 true JP5047426B2 (en) 2012-10-10

Family

ID=18966038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001115080A Expired - Fee Related JP5047426B2 (en) 2001-04-13 2001-04-13 Steam heating device

Country Status (1)

Country Link
JP (1) JP5047426B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109568612B (en) * 2018-12-06 2021-06-11 肇庆市天臻生物化工技术有限公司 Continuous sterilization system and method for fermentation medium containing starch

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101832A (en) * 1989-09-14 1991-04-26 Tlv Co Ltd Steam heating and vaporization cooling device
JPH03127625A (en) * 1989-10-13 1991-05-30 Tlv Co Ltd Steam heating and vaporization cooling equipment
JPH04338232A (en) * 1991-05-15 1992-11-25 Tlv Co Ltd Decompressed vaporization cooler
JP2724774B2 (en) * 1991-05-15 1998-03-09 株式会社テイエルブイ Decompression evaporative cooling equipment
JP3054990B2 (en) * 1993-09-14 2000-06-19 株式会社テイエルブイ Steam heating device
JP3013070B2 (en) * 1993-10-15 2000-02-28 株式会社テイエルブイ Heating and cooling device
JP3281998B2 (en) * 1994-06-15 2002-05-13 株式会社テイエルブイ Steam heating device
JP3282000B2 (en) * 1994-06-15 2002-05-13 株式会社テイエルブイ Steam heating evaporative cooling system
JP3281999B2 (en) * 1994-06-15 2002-05-13 株式会社テイエルブイ Steam heating device
JP3509954B2 (en) * 1994-09-14 2004-03-22 株式会社テイエルブイ Condensate discharge device
JP3507841B2 (en) * 1994-10-14 2004-03-15 株式会社テイエルブイ Steam or hot water heating device
JP3455308B2 (en) * 1994-10-14 2003-10-14 株式会社テイエルブイ Steam or hot water heating device
JP3455307B2 (en) * 1994-10-14 2003-10-14 株式会社テイエルブイ Steam or hot water heating device
JP3593406B2 (en) * 1995-12-15 2004-11-24 株式会社テイエルブイ Decompression heating and cooling equipment
JP3785215B2 (en) * 1996-03-15 2006-06-14 株式会社テイエルブイ Steam heating device

Also Published As

Publication number Publication date
JP2002306956A (en) 2002-10-22

Similar Documents

Publication Publication Date Title
KR100470880B1 (en) Steam heating device
JP5047426B2 (en) Steam heating device
JP4361203B2 (en) Steam heating device
JP4583583B2 (en) Steam heating device
JP4594270B2 (en) Heat exchanger
JP4387536B2 (en) Steam heating device
JP5047425B2 (en) Steam heating device
JP3895423B2 (en) Liquid pumping device
JP4583610B2 (en) Steam heating device
JP4409715B2 (en) Steam heating device
JP5546803B2 (en) Heat exchanger
JP5384152B2 (en) Air heater
JP4330730B2 (en) Steam heating device
JP2001201274A (en) Steam-heating equipment
JP3282005B2 (en) Steam heating device
JP2000354541A (en) Steam heating device
JP4472102B2 (en) Steam heating device
JP2000356306A (en) Steam heater
JP3507866B2 (en) Steam heating device
JP5457731B2 (en) Heat exchanger
JP4472103B2 (en) Steam heating device
JP3394929B2 (en) Steam heating device
JP3341209B2 (en) Steam heating device
JP2001324294A (en) Condensate discharger
JP3282006B2 (en) Steam heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5047426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees