JP5044797B2 - Process for producing reaction sintered silicon nitride matrix composite - Google Patents
Process for producing reaction sintered silicon nitride matrix composite Download PDFInfo
- Publication number
- JP5044797B2 JP5044797B2 JP2007069637A JP2007069637A JP5044797B2 JP 5044797 B2 JP5044797 B2 JP 5044797B2 JP 2007069637 A JP2007069637 A JP 2007069637A JP 2007069637 A JP2007069637 A JP 2007069637A JP 5044797 B2 JP5044797 B2 JP 5044797B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- silicon nitride
- powder
- nitriding
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Ceramic Products (AREA)
Description
本発明は、反応焼結窒化ケイ素基複合材料の製造方法に関するものであり、更に詳しくは、構造部材として信頼性が高く、しかも安価な原料を用いて作製される窒化ケイ素基複合材料の製造方法に関するものである。本発明は、窒化ケイ素と比較して安価なケイ素を主原料として作製した高性能の反応焼結窒化ケイ素基複合材料を製造し、その構造部材としての用途を提供するものである。 The present invention relates to a method for producing a reaction-sintered silicon nitride based composite materials, and more particularly, high reliability as a structural member, yet inexpensive raw material is the silicon base of the composite materials nitride fabricated using It relates to a manufacturing method. The present invention as compared with silicon nitride to produce a high performance reaction sintering silicon nitride based composite material produced an inexpensive silicon as a main material, to provide a use as the structural member.
窒化ケイ素(Si3N4)焼結体は、強度や耐熱衝撃性等に優れることから、エンジン用部品材料、ベアリング材料、工具材料等の各種構造用材料として開発が進められ、実用化が進められている。また、この窒化ケイ素焼結体の高性能化についても、様々な開発がなされ、高強度高靭性なものが得られている。 Since silicon nitride (Si 3 N 4 ) sintered bodies are excellent in strength and thermal shock resistance, they are being developed as various structural materials such as engine component materials, bearing materials, and tool materials, and are being put to practical use. It has been. In addition, various developments have been made to improve the performance of this silicon nitride sintered body, and high strength and toughness has been obtained.
開発の例として、ジルコニア(ZrO2)表面に焼結助剤を塗布後、焼結することによって、ジルコニアの窒化を抑制し、応力誘起変態による靭性を有効に発現させる手法もまた開発されている(特許文献1)。 As an example of development, a method for suppressing the nitriding of zirconia and applying the sintering aid to the surface of zirconia (ZrO 2 ) and then sintering to effectively develop toughness due to stress-induced transformation has also been developed. (Patent Document 1).
また、先行技術文献においては、撥溶湯用部材用にZrO2を分散させた反応窒化ケイ素焼結体(特許文献2)の開発例が示されているが、本材料は、密度が75−85%の多孔体であり、構造材料として使用するには、大きな気孔の存在が強度を低下させると類推できる。 Further, in the prior art document, a development example of a reactive silicon nitride sintered body (Patent Document 2) in which ZrO 2 is dispersed for a member for a repellent molten metal is shown, but this material has a density of 75-85. It can be inferred that the presence of large pores reduces strength when used as a structural material.
窒化ケイ素粉末を使用した場合、高強度及び高靭性を有した高性能なセラミックス材料の作製が可能ではあるが、原料粉末の値段が高いため、部材としての値段は高くなる。また、焼結時の収縮が大きいために、品質管理が困難である。 When silicon nitride powder is used, it is possible to produce a high-performance ceramic material having high strength and high toughness. However, since the price of the raw material powder is high, the price as a member increases. In addition, since the shrinkage during sintering is large, quality control is difficult.
一方、ケイ素粉末を使用した場合、原料コストは安価となるが、ケイ素の融点と反応焼結温度が近似しているため、発熱反応である窒化反応が進行することによって、ケイ素粉末の温度が融点以下となるように制御する必要があり、長い反応焼結時間が必要となる。また、通常、30ミクロン以上の粗大なケイ素粒子は、窒化されず、焼結体内部に存在し、機械的特性を損なうため、高強度及び高靭性を得ることが困難であった。 On the other hand, when silicon powder is used, the raw material cost is low, but since the melting point of silicon and the reaction sintering temperature are close to each other, the nitriding reaction that is an exothermic reaction proceeds, so that the temperature of the silicon powder becomes the melting point. It is necessary to control to be as follows, and a long reaction sintering time is required. In general, coarse silicon particles of 30 microns or more are not nitrided and are present inside the sintered body and impair mechanical properties, so that it is difficult to obtain high strength and high toughness.
また、ケイ素の窒化を促す添加剤として、酸化鉄が知られている(非特許文献1)。しかし、酸化鉄は、ケイ素と反応し、ケイ化鉄を生成するが、同化合物は、窒化ケイ素粒子とぬれ難いため、欠陥となって、強度低下を生じてしまう。また、ケイ素も微細化すれば高強度化は可能となるが、もともと活性であるケイ素を長時間ボールミルによって粉砕する場合には、ケイ素と溶媒の反応を抑えるために、溶媒としてアルコールを使用せざるを得ない。 Further, iron oxide is known as an additive that promotes nitridation of silicon (Non-patent Document 1). However, iron oxide reacts with silicon to produce iron silicide, but the compound is difficult to wet with silicon nitride particles, and thus becomes a defect, resulting in a decrease in strength. In addition, if silicon is refined, high strength can be achieved. However, when silicon, which is originally active, is pulverized by a ball mill for a long time, alcohol must be used as a solvent in order to suppress the reaction between silicon and the solvent. I do not get.
しかし、有機溶媒の使用は、コスト高になるだけでなく、環境負荷低減上の観点からも望ましいことではない。一方、水を使用する場合には、短時間の混合となり、その結果、ケイ素は微細化されず、粗粒のまま残ることとなる。通常、30ミクロン以上の粗大なケイ素粒子は、窒化されず、焼結体内部に存在し、機械的特性を損なうため、高強度及び高靭性を得ることが困難であった。 However, the use of the organic solvent is not only expensive, but is not desirable from the viewpoint of reducing the environmental load. On the other hand, when water is used, mixing is performed for a short time, and as a result, the silicon is not refined and remains coarse. Usually, coarse silicon particles of 30 microns or more are not nitrided, exist inside the sintered body, and impair mechanical properties. Therefore, it is difficult to obtain high strength and high toughness.
このような状況の中で、本発明者らは、上記従来技術に鑑みて、構造部材として信頼が高く、しかも安価に作製することが可能な新しい窒化ケイ素基複合材料を開発することを目標として鋭意研究を積み重ねた結果、粗いケイ素を主原料とする成形体を、できるだけ低温、短時間で、窒化と緻密化を完了する添加剤あるいは条件を明らかにすることにより、ケイ素を含む原料を用い、酸化ジルコニウムを添加して作製した窒化ケイ素基複合材料が実用構造部材として十分な特性を有することを見出し、本発明を完成するに至った。本発明は、窒化ケイ素と比較して安価なケイ素を主原料として作製した高性能の反応焼結窒化ケイ素基複合材料の製造方法を提供することを目的とするものである。 Under such circumstances, the present inventors have aimed to develop a new silicon nitride-based composite material that is highly reliable as a structural member and can be manufactured at low cost in view of the above-described conventional technology. As a result of accumulating intensive research, we have clarified additives or conditions to complete nitriding and densification of molded bodies made of coarse silicon as the main raw material in the lowest possible temperature and in the shortest possible time. The inventors have found that a silicon nitride-based composite material produced by adding zirconium oxide has sufficient characteristics as a practical structural member, and has completed the present invention. The present invention aims to provide a manufacturing how the reaction sintering silicon nitride based composite materials of high performance produced an inexpensive silicon as compared to silicon nitride as a main raw material.
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)出発原料として、ケイ素を含む原料を用い、前記ケイ素が、粒径30ミクロン又はそれを上回る大きさの粒子を5−40%含み、酸化ジルコニウム及び焼結助剤としてのスピネルを所定の配合によって混合、成形し、窒素中において所定の温度で焼結してケイ素を窒化せしめる反応焼結を行った後、所定の温度に昇温して焼成し、緻密化させる窒化ケイ素基複合材料の製造方法であって、
窒化のための焼結温度が、1300−1500℃の範囲であり、反応焼結後の焼成温度が、1650−1950℃の範囲であり、酸化ジルコニウム2−20重量部、スピネル5−10重量部をそれぞれ添加した混合粉末を、成形後、窒素を含む雰囲気中でケイ素を窒化ケイ素に転化した後、温度を上げ、密度95%以上(相対密度)に緻密化する、ことを特徴とする窒化ケイ素基複合材料の製造方法。
(2)混合する酸化ジルコニウムが、Y、Mg又はCe元素の添加によって正方晶もしくは立方晶に少なくても90%が安定化されたジルコニアもしくは部分安定化ジルコニアである、前記(1)に記載の窒化ケイ素基複合材料の製造方法。
(3)酸化ジルコニウムが、酸化イットリウムにより部分的に安定化されている、前記(1)に記載の窒化ケイ素基複合材料の製造方法。
(4)酸化ジルコニウムが、2−3モルの酸化イットリウムの添加によって結晶相の少なくても90%が正方晶である、前記(1)に記載の窒化ケイ素基複合材料の製造方法。
(5)出発原料として、窒化ケイ素粉末を配合した原料を用いる、前記(1)に記載の窒化ケイ素基複合材料の製造方法。
(6)上記ケイ素粉末が、0.2−5%のFe元素を含む、前記(1)に記載の窒化ケイ素基複合材料の製造方法。
The present invention for solving the above-described problems comprises the following technical means.
( 1 ) A raw material containing silicon is used as a starting raw material, and the silicon contains 5-40% of particles having a particle size of 30 microns or larger, and zirconium oxide and spinel as a sintering aid are prescribed. mixed by blending, molding, after the reaction sintering allowed to nitride silicon sintered at a predetermined temperature in nitrogen, the temperature was raised and fired at a predetermined temperature, nitriding the silicon-based composite that Ru densified A method of manufacturing a material ,
The sintering temperature for nitriding is in the range of 1300-1500 ° C, the firing temperature after reaction sintering is in the range of 1650-1950 ° C, 2-20 parts by weight of zirconium oxide, 5-10 parts by weight of spinel Silicon nitride characterized in that, after forming the mixed powder to which each is added, after converting silicon to silicon nitride in an atmosphere containing nitrogen, the temperature is raised and the density is increased to 95% or more (relative density) Manufacturing method of matrix composite material.
( 2 ) Zirconium oxide to be mixed is zirconia or partially stabilized zirconia in which at least 90% is stabilized to tetragonal or cubic by addition of Y, Mg or Ce element, as described in ( 1 ) above A method for producing a silicon nitride-based composite material.
( 3 ) The method for producing a silicon nitride-based composite material according to ( 1 ), wherein the zirconium oxide is partially stabilized by yttrium oxide.
( 4 ) The method for producing a silicon nitride-based composite material according to ( 1 ), wherein zirconium oxide is tetragonal at least 90% of the crystal phase by adding 2-3 mol of yttrium oxide.
( 5 ) The method for producing a silicon nitride-based composite material according to ( 1 ), wherein a raw material in which silicon nitride powder is blended is used as a starting raw material.
( 6 ) The method for producing a silicon nitride-based composite material according to ( 1 ), wherein the silicon powder contains 0.2-5% Fe element.
次に、本発明について更に詳細に説明する。
本発明は、ケイ素を含む原料を用い、窒素中においてケイ素を窒化せしめる反応焼結の行程を経た後、緻密化された窒化ケイ素基複合材料を製造する方法であって、該緻密化された窒化ケイ素基複合材料は、Zrの酸化物及び/又は窒化物が分散した状態で含まれている、かつ、粒界相が少なくともAlとSiを含む酸化物又は酸窒化物の非晶質相である、ことを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a method for producing a silicon nitride-based composite material that has been densified after a reactive sintering step of nitriding silicon in nitrogen using a raw material containing silicon, the densified nitriding The silicon-based composite material contains an oxide and / or nitride of Zr in a dispersed state, and the grain boundary phase is an oxide or oxynitride amorphous phase containing at least Al and Si. It is characterized by that.
また、本発明は、上記窒化ケイ素基複合材料を製造する方法であって、出発原料として、ケイ素を含む原料を用い、酸化ジルコニウム及び焼結助剤を所定の配合によって混合、成形し、窒素中においてケイ素を窒化せしめる反応焼結を行った後、昇温し、緻密化させることを特徴とするものである。このとき、使用する酸化ジルコニウムは、酸化イットリウムが固溶された正方晶酸化ジルコニウムを使用することで、窒化完了までに要する時間、あるいは温度、そして、窒化後に生成するαとβの比率をコントロールすることができる。このα/β比は、二段目の焼結に影響を及ぼす。 Further, the present invention is a method for producing the above silicon nitride-based composite material, wherein a raw material containing silicon is used as a starting material, and zirconium oxide and a sintering aid are mixed and molded by a predetermined blending, and in nitrogen After performing reactive sintering in which silicon is nitrided, the temperature is raised and densification is performed. At this time, the zirconium oxide to be used is tetragonal zirconium oxide in which yttrium oxide is dissolved, thereby controlling the time or temperature required to complete nitriding and the ratio of α and β generated after nitriding. be able to. This α / β ratio affects the second stage sintering.
本発明では、以下の手段が採用される。すなわち、窒化の促進効果を有し、かつ焼結体中に存在したときに、応力誘起変態と熱膨張係数差による弱い界面を形成する酸化ジルコニウムを添加するとともに、窒化ケイ素表面の酸化ケイ素成分と液相を形成する焼結助剤成分を添加する。このことで、ケイ素と窒素の反応により窒化ケイ素を効率よく生成し、その後の焼結過程においては、焼結助剤が緻密化を促進することが可能となる。 In the present invention, the following means are employed. That is, zirconium oxide that has a nitriding promoting effect and forms a weak interface due to the difference between the stress-induced transformation and the thermal expansion coefficient when present in the sintered body, and the silicon oxide component on the silicon nitride surface A sintering aid component that forms a liquid phase is added. As a result, silicon nitride is efficiently generated by the reaction of silicon and nitrogen, and in the subsequent sintering process, the sintering aid can promote densification.
また、焼結後に粒界部に分散した酸化ジルコニウム及び窒化ジルコニウムが効率的な強靱化をすることによって、密度が95%以上においても、実用部品として十分な特性を有する窒化ケイ素基複合材料を得ることが可能となる。また、原料ケイ素中に含まれるFeの不純物は、酸化ジルコニウム及び窒化ジルコニウムと同様に、粒界部に分散し、弱い界面を形成するため、同様に強靱化に寄与する。 In addition, zirconium oxide and zirconium nitride dispersed in the grain boundary after sintering effectively toughen to obtain a silicon nitride-based composite material having sufficient characteristics as a practical part even at a density of 95% or more. It becomes possible. In addition, Fe impurities contained in the raw material silicon are dispersed in the grain boundary portion and form a weak interface, similarly to zirconium oxide and zirconium nitride, and thus contribute to toughening.
上記窒化ケイ素基複合材料を作製する方法として、主原料としてケイ素粉末を用い、ZrO2及び焼結助剤を所定の配合によって、混合及び成形し、窒素中において、反応焼結、引き続き昇温し、緻密化を促進させる。 As a method for producing the silicon nitride-based composite material, silicon powder is used as a main raw material, ZrO 2 and a sintering aid are mixed and molded by a predetermined composition, reaction sintering is performed in nitrogen, and then the temperature is raised. , Promote densification.
本発明で主原料として使用されるケイ素粉末としては、粒径が30ミクロン以上の粒子を含むことが好ましく、それにより、成形時の粉末の流動性が向上することに加えて、より安価なケイ素粉末を入手することが可能となる。また、上記ケイ素粉末が0.2−5%のFe元素を含むことが望ましい。上記ケイ素粉末として、好適には、例えば、半導体用途で使用されるシリコンウェハー作製時の低純度原料(いわゆる金属シリコン、純度99%以下)もしくは低純度シリコンウェハーの粉砕粉で、いわゆる#200から#600相当のケイ素粉末が例示される。 The silicon powder used as the main raw material in the present invention preferably contains particles having a particle size of 30 microns or more, thereby improving the fluidity of the powder at the time of molding, and more inexpensive silicon. It becomes possible to obtain powder. Moreover, it is desirable that the silicon powder contains 0.2-5% Fe element. As the silicon powder, for example, a low-purity raw material (so-called metallic silicon, purity 99% or less) or a pulverized powder of a low-purity silicon wafer at the time of producing a silicon wafer used for semiconductor applications, so-called # 200 to # A silicon powder equivalent to 600 is exemplified.
混合酸化ジルコニウム粉末としては、好適には、例えば、一次粒径が100nm程度の微細粉が望ましいが、平均粒径が3ミクロンの粉末においても同様の効果が得られるため、著しく粗大な粒子径の粉末を使用しなければ問題とはならない。混合するZrO2は、Y、MgもしくはCe等の元素によって安定化された安定化ジルコニアもしくは部分安定化ジルコニアを使用しても同様の効果が得られ、中でも、3モル程度の酸化イットリウムの添加された正方晶ジルコニアを使用することが好適である。 As the mixed zirconium oxide powder, for example, a fine powder having a primary particle size of about 100 nm is desirable, but the same effect can be obtained even in a powder having an average particle size of 3 microns. If no powder is used, there is no problem. The same effect can be obtained when ZrO 2 to be mixed is stabilized zirconia or partially stabilized zirconia stabilized by an element such as Y, Mg or Ce. Among them, about 3 moles of yttrium oxide is added. It is preferable to use tetragonal zirconia.
窒化のための焼結は、肉厚品の場合、通常は、1350〜1500℃の範囲で十分な時間をかけて行うことが望ましい。肉厚によっては、1300℃で5時間程度でも窒化は可能である。1300℃以下の場合、その場反応が終了しないため、その後の焼結過程において、未反応のケイ素が溶融揮発し、焼結体に欠陥を生じるとともに、焼結体に亀裂が生じる可能性がある。また、反応焼結後の焼成は、1650〜1950℃程度で行うことが望ましい。 In the case of a thick product, the sintering for nitriding is usually desirably performed within a range of 1350 to 1500 ° C. over a sufficient time. Depending on the wall thickness, nitriding can be performed at 1300 ° C. for about 5 hours. In the case of 1300 ° C. or lower, the in-situ reaction does not end, so in the subsequent sintering process, unreacted silicon melts and volatilizes, causing defects in the sintered body and possibly cracking the sintered body . Moreover, it is desirable to perform the firing after the reactive sintering at about 1650 to 1950 ° C.
本発明では、出発原料として、主原料のケイ素、ZrO2及び焼結助剤以外に窒化ケイ素粉末を配合して、窒化に伴う急激な発熱を制御することが適宜可能である。以上により、Zrの酸化物及び/又は窒化物が分散した状態で含まれ、かつ粒界相が少なくともAlとSiを含む酸化物又は窒化物の非晶質相であることを特徴とする窒化ケイ素基複合材料が製造される。 In the present invention, as a starting material, silicon nitride powder can be blended in addition to the main materials silicon, ZrO 2 and the sintering aid, and rapid heat generation accompanying nitriding can be appropriately controlled. As described above, silicon nitride is characterized in that it contains Zr oxide and / or nitride in a dispersed state and the grain boundary phase is an oxide or nitride amorphous phase containing at least Al and Si. A matrix composite is produced.
上記窒化ケイ素基複合材料において、分散しているZrの酸化物及び/又は窒化物の粒径は、20ミクロン以下であることが好ましい。また、分散しているZrの酸化物及び/又は窒化物の体積分率は、20vol%を超えないことが好ましい。 In the silicon nitride-based composite material, the dispersed Zr oxide and / or nitride preferably has a particle size of 20 microns or less. The volume fraction of the dispersed Zr oxide and / or nitride preferably does not exceed 20 vol%.
本発明の窒化ケイ素基複合材料は、粒界相にFeの酸化物もしくはケイ化物が分散された状態で含まれることで、弱い界面を形成するため、強靭性が向上することもあるが、基本的に、窒化ケイ素とぬれ難いため、量を多くすると欠陥となってしまう。 The silicon nitride-based composite material of the present invention contains a Fe oxide or silicide dispersed in the grain boundary phase, thereby forming a weak interface, which may improve toughness. In particular, since it is difficult to wet with silicon nitride, a large amount causes defects.
窒化ケイ素粉末を使用して作製した焼結体は、高強度で信頼性に優れるが、コストが高い。一方、反応焼結窒化ケイ素焼結体は、原料コストは安価であるが、十分な信頼性を有する強度を持つ焼結体を得ることが困難である。本発明では、窒化ケイ素と比較して安価なケイ素を主原料とし、ケイ素の窒化過程を含む反応焼結窒化ケイ素基複合材料を作製するに際して、ZrO2を添加することで、ケイ素の窒化反応を促進するとともに、ZrO2と窒化ケイ素の熱膨張係数差に起因する引っ張り応力の効果で界面が弱くなり亀裂先端の応力を緩和することで、焼結体自体の強度も大きく向上し、信頼性のおける材料が作製可能となる。また、同時にFe3O4が添加されることでその効果は更に大きくなり、優れた信頼性を有する反応焼結窒化ケイ素基複合材料を得ることが可能となる。 A sintered body produced using silicon nitride powder has high strength and excellent reliability, but is expensive. On the other hand, the reaction sintered silicon nitride sintered body has a low raw material cost, but it is difficult to obtain a sintered body having sufficient reliability and strength. In the present invention, when producing a reaction-sintered silicon nitride-based composite material including silicon nitriding process using silicon cheaper than silicon nitride as a main raw material, the nitriding reaction of silicon is performed by adding ZrO 2. As well as promoting, the interface weakens due to the effect of tensile stress due to the difference in thermal expansion coefficient between ZrO 2 and silicon nitride, and the stress at the crack tip is relaxed, so the strength of the sintered body itself is greatly improved, and the reliability This makes it possible to produce materials. At the same time, by adding Fe 3 O 4 , the effect is further increased, and a reaction-sintered silicon nitride-based composite material having excellent reliability can be obtained.
本発明により、次のような効果が奏される。
(1)本発明は、ケイ素を主原料として用いて、構造部材としての信頼性が高く、実用構造部材として十分な特性を有する窒化ケイ素基複合材料を低コストで作製し、提供することを可能とする。
(2)本発明で製造される窒化ケイ素基複合材料は、相対密度が95%程度においても、高強度、強靭性を有する構造部材として好適に使用することが可能な優れた特性を有している。
(3)本発明では、安価な原料を用いて、短い反応焼結時間で、省エネルギーで、高強度及び高靭性を備えた高品質の窒化ケイ素基複合材料を製造し、提供することができる。
(4)本発明で製造される窒化ケイ素基複合材料は、従来の窒化ケイ素粉末を原料として用いて作製される窒化ケイ素焼結体と比べて、安価な部材の提供が可能である、製造時の品質管理が容易である、等の利点が得られる。
(5)反応焼結という手法を用いているために、焼結時の収縮が従来の窒化ケイ素原料を使用した場合と比較して小さいために、製品作製時の焼成後のばらつきが減るため、歩留まりが向上する。
(6)粗大なケイ素粒子も短時間、低温で窒化可能であることから、混合時の溶媒として、アルコールではなく、水の使用も可能であるため、低環境負荷で材料を得ることが可能である。
The present invention has the following effects.
(1) The present invention can produce and provide a silicon nitride-based composite material having high reliability as a structural member and sufficient characteristics as a practical structural member at low cost, using silicon as a main raw material. And
(2) The silicon nitride-based composite material produced by the present invention has excellent characteristics that can be suitably used as a structural member having high strength and toughness even when the relative density is about 95%. Yes.
(3) In the present invention, it is possible to produce and provide a high-quality silicon nitride-based composite material having high strength and high toughness with a low reaction sintering time, energy saving, using an inexpensive raw material.
(4) The silicon nitride-based composite material produced in the present invention can provide an inexpensive member as compared with a silicon nitride sintered body produced using a conventional silicon nitride powder as a raw material. It is possible to obtain advantages such as easy quality control.
(5) Since the method of reactive sintering is used, the shrinkage during sintering is small compared to the case where a conventional silicon nitride raw material is used. Yield is improved.
(6) Since coarse silicon particles can be nitrided at a low temperature for a short time, it is possible to use water instead of alcohol as a solvent at the time of mixing, so it is possible to obtain a material with a low environmental load. is there.
次に、実施例に基いて本発明を具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。 Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
高純度ケイ素1.8gに対して、Al2O3、MgAl2O4、MgO、Y2O3、Fe2O3、m−ZrO2、3Y−ZrO2、8Y−ZrO2の粉末を、それぞれ0.2g添加し、エタノールを10mL加え、ボールミル混合を行った。混合後、乾燥した後、ケイ素の窒化挙動を確認するために、窒素中において、熱重量分析(TG)を行った。 For 1.8 g of high-purity silicon, powders of Al 2 O 3 , MgAl 2 O 4 , MgO, Y 2 O 3 , Fe 2 O 3 , m-ZrO 2 , 3Y-ZrO 2 , 8Y-ZrO 2 0.2 g of each was added, 10 mL of ethanol was added, and ball mill mixing was performed. After mixing and drying, thermogravimetric analysis (TG) was performed in nitrogen to confirm the nitriding behavior of silicon.
熱重量分析の条件は、試料30mg、10℃/minで1400℃まで昇温し、保持時間無しで室温まで冷却した。なお、試験時の雰囲気は、N2中であり、流量20ml/minで試験中は流し続けた。試験後の重量増化率を図1に示す。明らかにジルコニアを添加したものについては、いずれのジルコニアにおいても、重量増加が大きいことが確認された。ケイ素が窒化ケイ素になる場合は、以下の反応である。
3Si+2N2→Si3N4
この場合、質量は約1.67倍に増加する。すなわち、本試験結果は、ZrO2の添加がケイ素の窒化を促進していることを示している。
The conditions of thermogravimetric analysis were as follows: sample 30 mg, heated to 1400 ° C. at 10 ° C./min, and cooled to room temperature without holding time. In addition, the atmosphere at the time of the test was in N 2 and kept flowing during the test at a flow rate of 20 ml / min. The weight increase rate after the test is shown in FIG. Obviously, the zirconia added was confirmed to have a large weight increase in any zirconia. When silicon becomes silicon nitride, the reaction is as follows.
3Si + 2N 2 → Si 3 N 4
In this case, the mass increases about 1.67 times. That is, this test result shows that addition of ZrO 2 promotes nitriding of silicon.
表1に、使用した原料粉末の配合比を示す。これらの原料を秤量し、粉末総重量の1.5倍のエタノールとポリビニルブチラールを1%加え、ボールミルで約6時間、混合することによりスラリー化した後、スプレードライヤーを用いて、造粒粉を作製した。次に、内寸法が20×80mmの金型内に造粒粉を入れ、8.3MPaで加圧し、予備成形した後、ナイロン製の袋に入れ、内部を減圧することによって密封した。 Table 1 shows the mixing ratio of the raw material powders used. These raw materials are weighed, and 1% ethanol and polyvinyl butyral 1.5 times the total weight of the powder are added, and the mixture is slurried by mixing for about 6 hours with a ball mill. Produced. Next, the granulated powder was put in a mold having an inner size of 20 × 80 mm, pressurized at 8.3 MPa, preformed, put in a nylon bag, and sealed by reducing the pressure inside.
これを、CIP装置にて200MPaの圧力で加圧し、成形体を得た。次に、0.2MPaのN2雰囲気内において、550℃まで加熱することで脱脂処理を行い、0.93MPaのN2雰囲気内において、最高1300℃まで加熱して反応焼結させた。また、その後、引き続き昇温を行い、1750℃で4時間の本焼結を行った。 This was pressurized with a CIP apparatus at a pressure of 200 MPa to obtain a molded body. Next, degreasing treatment was performed by heating to 550 ° C. in an N 2 atmosphere of 0.2 MPa, and reaction sintering was performed by heating to a maximum of 1300 ° C. in an N 2 atmosphere of 0.93 MPa. Thereafter, the temperature was continuously increased, and main sintering was performed at 1750 ° C. for 4 hours.
図2に、1300℃まで昇温し、反応焼結を行った場合のX線回折を示す。また、図3に、その場合の重量増加より算出した窒化率を示す。ZrO2を添加した開発材の場合、安定化剤であるY2O3の添加量に依存せず、本温度において、すべての試料で窒化率が95%以上となるのに対して、比較材は、窒化率が60%以下であり、未反応のケイ素が大量に残っていることが確認された。また、本条件で、反応焼結体を1750℃で本焼成したところ、開発材は、いずれの場合も良好な焼結体が得られたのに対して、比較材は、いずれもケイ素が溶融し、焼結体の作製ができなかった。 FIG. 2 shows X-ray diffraction when the temperature is raised to 1300 ° C. and reaction sintering is performed. FIG. 3 shows the nitriding rate calculated from the weight increase in that case. In the case of the developed material to which ZrO 2 is added, the nitriding rate is 95% or more for all the samples at this temperature without depending on the added amount of the stabilizer Y 2 O 3. It was confirmed that the nitriding rate was 60% or less and a large amount of unreacted silicon remained. Moreover, when the reaction sintered body was calcined at 1750 ° C. under these conditions, the developed material obtained a good sintered body in any case, whereas the comparative material was fused with silicon. However, the sintered body could not be produced.
表2に、使用した原料粉末の配合比を示す。これらの原料を秤量し、粉末総重量の1.5倍のエタノールとポリビニルブチラールを1%加え、ボールミルで約6時間、混合することによりスラリー化した後、スプレードライヤーを用いて、造粒粉を作製した。次に、内寸法が20×80mmの金型内に造粒粉を入れ、8.3MPaで加圧し、予備成形した後、ナイロン製の袋に入れ、内部を減圧することによって密封した。 Table 2 shows the mixing ratio of the raw material powders used. These raw materials are weighed, and 1% ethanol and polyvinyl butyral 1.5 times the total weight of the powder are added, and the mixture is slurried by mixing for about 6 hours with a ball mill. Produced. Next, the granulated powder was put in a mold having an inner size of 20 × 80 mm, pressurized at 8.3 MPa, preformed, put in a nylon bag, and sealed by reducing the pressure inside.
これを、CIP装置にて200MPaの圧力で加圧し、成形体を得た。次に、0.2MPaのN2雰囲気内において、550℃まで加熱することで脱脂処理を行い、0.93MPaのN2雰囲気内において、最高1450℃まで加熱して反応焼結させた。また、その後、引き続き昇温を行い、1750℃で4時間の本焼結を行った。得られた焼結体を加工後、JISR1601に沿って4点曲げ強度の評価を行った。 This was pressurized with a CIP apparatus at a pressure of 200 MPa to obtain a molded body. Next, degreasing treatment was performed by heating to 550 ° C. in a N 2 atmosphere of 0.2 MPa, and reaction sintering was performed by heating to a maximum of 1450 ° C. in a N 2 atmosphere of 0.93 MPa. Thereafter, the temperature was continuously increased, and main sintering was performed at 1750 ° C. for 4 hours. After processing the obtained sintered body, four-point bending strength was evaluated according to JIS R1601.
図4に、その結果を示す。ZrO2を添加した開発材の場合、いずれの試料も600MPa以上の強度を示し、比較材と比べて、高い強度を示すことが確認された。また、ZrO2の添加量は、焼結体中の分率で1vol%以下(開発材11、ZrO2約0.45vol%)においても、高強度化に寄与し、20vol%(開発材14、ZrO2約20vol%)まで強靱化の挙動を示す。 FIG. 4 shows the result. In the case of the developed material to which ZrO 2 was added, all the samples showed a strength of 600 MPa or more, and it was confirmed that the strength was higher than that of the comparative material. The amount of ZrO 2 is also below 1 vol% in fraction of the sintered body (developing material 11, ZrO 2 about 0.45vol%), it contributes to higher strength, 20 vol% (the developed material 14, ZrO 2 shows a toughening behavior up to about 20 vol%.
しかしながら、20vol%以上の添加(開発材15、ZrO2約26vol%)の添加においては、強度が低下する傾向を示す。また、強度に関しては、焼結助剤がMgAl2O4(スピネル)の場合がAl2O3と比較して、わずかに高い傾向を示すが、大きな優位性はなく、いずれの場合においても、高強度を示していた。 However, the addition of 20 vol% or more (development material 15, ZrO 2 approximately 26 vol%) shows a tendency for the strength to decrease. As for strength, the case where the sintering aid is MgAl 2 O 4 (spinel) shows a slightly higher tendency than Al 2 O 3 , but there is no significant advantage, and in either case, It showed high strength.
図5に、焼結体の微構造を示す。ジルコニアは、従来の窒化ケイ素の助剤と同様な粒界相成分として働くのではなく、分散した状態で焼結体中に存在していることが確認された。また、窒化ケイ素粒子は、従来の窒化ケイ素セラミックスの場合と同様に、柱状であることが確認された。図6に、TEMで観察した微構造を示す。窒化ケイ素のマトリクス中にジルコニウムの化合物が分散していることが確認された。また、界面には、熱膨張係数差に起因する剥離等は存在していないことも確認された。 FIG. 5 shows the microstructure of the sintered body. It was confirmed that zirconia does not work as a grain boundary phase component similar to the conventional silicon nitride auxiliary agent but exists in the sintered body in a dispersed state. Moreover, it was confirmed that the silicon nitride particles are columnar as in the case of conventional silicon nitride ceramics. FIG. 6 shows the microstructure observed by TEM. It was confirmed that the zirconium compound was dispersed in the silicon nitride matrix. It was also confirmed that there was no delamination or the like due to the difference in thermal expansion coefficient at the interface.
表1に示した開発材1の組成を用い、これらの原料を秤量し、粉末総重量の1.5倍のエタノールとポリビニルブチラールを1%加え、ボールミルで約6時間、混合することによりスラリー化した後、スプレードライヤーを用いて、造粒粉を作製した。同様に、粉末総重量の1.5倍の蒸留水とポリビニルアルコールを1%加え、ボールミルで約6時間、混合することによりスラリー化した後、スプレードライヤーを用いて、造粒粉を作製した。次に、内寸法が20×80mmの金型内に造粒粉を入れ、8.3MPaで加圧し、予備成形した後、ナイロン製の袋に入れ、内部を減圧することによって密封した。 Using the composition of the developed material 1 shown in Table 1, weighed these raw materials, added 1% ethanol and polyvinyl butyral 1.5 times the total weight of the powder, and mixed them in a ball mill for about 6 hours to make a slurry. Then, granulated powder was produced using a spray dryer. Similarly, 1% of distilled water 1.5 times the total weight of the powder and polyvinyl alcohol were added, and the mixture was slurried by mixing with a ball mill for about 6 hours, and then granulated powder was produced using a spray dryer. Next, the granulated powder was put in a mold having an inner size of 20 × 80 mm, pressurized at 8.3 MPa, preformed, put in a nylon bag, and sealed by reducing the pressure inside.
これを、CIP装置にて200MPaの圧力で加圧し、成形体を得た。次に、0.2MPaのN2雰囲気内において、550℃まで加熱することで脱脂処理を行い、0.93MPaのN2雰囲気内において、最高1400℃まで加熱して反応焼結させた。また、その後、引き続き昇温を行い、1750℃で4時間の焼結を行った。得られた焼結体を加工後、JISR1601に沿って、4点曲げ強度の評価を行った。 This was pressurized with a CIP apparatus at a pressure of 200 MPa to obtain a molded body. Next, degreasing treatment was performed by heating to 550 ° C. in an N 2 atmosphere of 0.2 MPa, and reaction sintering was performed by heating to a maximum of 1400 ° C. in an N 2 atmosphere of 0.93 MPa. Thereafter, the temperature was continuously increased, and sintering was performed at 1750 ° C. for 4 hours. After processing the obtained sintered body, four-point bending strength was evaluated according to JIS R1601.
水で混合した場合と、アルコールで混合した場合の結晶相の違いを確認した場合、水で混合した場合は、ZrO2が多く生じているのに対して、アルコールで混合した場合は、
ZrNの生成量が多いことが確認されたが、いずれの場合においても、800MPa程度の高い強度を示していた。これは、ZrO2の応力誘起変態が、強靱化の主因子ではなく、マトリクスである窒化ケイ素と熱膨張差に起因する弱い界面が粒界で形成されるため、亀裂が界面に沿って進行し、強靱化を行っていることによると考えられる。
When the difference in crystal phase when mixed with water and when mixed with alcohol is confirmed, when mixed with water, a large amount of ZrO 2 is generated, whereas when mixed with alcohol,
Although it was confirmed that the amount of ZrN produced was large, in any case, it showed a high strength of about 800 MPa. This is because the stress-induced transformation of ZrO 2 is not the main factor for toughening, and a weak interface due to thermal expansion difference is formed at the grain boundary with silicon nitride as a matrix, so that cracks progress along the interface. This is thought to be due to toughening.
表3に、使用した原料粉末の配合比を示す。これらの原料を秤量し、粉末総重量の1.5倍のエタノールとポリビニルブチラールを1%加え、ボールミルで約6時間、混合することによりスラリー化した後、スプレードライヤーを用いて、造粒粉を作製した。次に、内寸法が20×80mmの金型内に造粒粉を入れ、8.3MPaで加圧し、予備成形した後、ナイロン製の袋に入れ、内部を減圧することによって密封した。 Table 3 shows the mixing ratio of the raw material powders used. These raw materials are weighed, and 1% ethanol and polyvinyl butyral 1.5 times the total weight of the powder are added, and the mixture is slurried by mixing for about 6 hours with a ball mill. Produced. Next, the granulated powder was put in a mold having an inner size of 20 × 80 mm, pressurized at 8.3 MPa, preformed, put in a nylon bag, and sealed by reducing the pressure inside.
これを、CIP装置にて200MPaの圧力で加圧し、成形体を得た。次に、0.2MPaのN2雰囲気内において、550℃まで加熱することで脱脂処理を行い、0.93MPaのN2雰囲気内において、最高1450℃まで加熱して反応焼結させた。また、その後、引き続き昇温を行い、1750℃で4時間の本焼結を行った。得られた焼結体を加工後、JISR1601に沿って、4点曲げ強度の評価を行った。得られた焼結体内部では添加したFe3O4がFe化合物(ケイ化物、FeSi2)になっており、図7に示すように、界面には剥離している部分も確認された。 This was pressurized with a CIP apparatus at a pressure of 200 MPa to obtain a molded body. Next, degreasing treatment was performed by heating to 550 ° C. in a N 2 atmosphere of 0.2 MPa, and reaction sintering was performed by heating to a maximum of 1450 ° C. in a N 2 atmosphere of 0.93 MPa. Thereafter, the temperature was continuously increased, and main sintering was performed at 1750 ° C. for 4 hours. After processing the obtained sintered body, four-point bending strength was evaluated according to JIS R1601. In the obtained sintered body, the added Fe 3 O 4 is an Fe compound (silicide, FeSi 2 ), and as shown in FIG. 7, a peeled portion was also confirmed at the interface.
図8に、Fe3O4の添加量と強度の関係を示す。Fe3O4の添加量が5wt%までは700MPa以上の高い強度を示していたが、5wt%を越えると強度が大幅に低下した。これは、添加したFe3O4が、焼結時にFe化合物になった場合、マトリクス界面との結合が弱く、少量の場合は亀裂を引き込み強靱化に寄与するが、ある一定量以上の添加をした場合、弱い界面同士が結合し、大きな欠陥となるためと考えられる。このため、5wt%以上添加することは望ましくない。 FIG. 8 shows the relationship between the added amount of Fe 3 O 4 and the strength. The strength of 700 MPa or higher was exhibited up to 5 wt% of the added amount of Fe 3 O 4 , but the strength significantly decreased when the amount exceeded 5 wt%. This is because when the added Fe 3 O 4 becomes an Fe compound at the time of sintering, the bond with the matrix interface is weak, and in the case of a small amount, a crack is drawn and contributes to toughening. In this case, it is considered that weak interfaces are bonded to each other, resulting in a large defect. For this reason, it is not desirable to add 5 wt% or more.
粒度の異なるケイ素粉末として、平均粒径2、30、80ミクロンの粉末を用いて、それぞれのケイ素粉末84.25gに対して、Al2O3及び部分安定化ジルコニア3Y−ZrO2をそれぞれ7.83gずつ添加し、粉末総重量の1.5倍のエタノールとポリビニルブチラールを1%加え、ボールミルで約6時間、混合することによりスラリー化した後、スプレードライヤーを用いて、造粒粉を作製した。同様に、粉末84.25gに対して、Al2O3及びY2O3をそれぞれ7.83gずつ添加した混合粉末も、また、同様に作製した。 As silicon powders having different particle sizes, powders having an average particle size of 2, 30, and 80 microns were used, and Al 2 O 3 and partially stabilized zirconia 3Y-ZrO 2 were each added to 84.25 g of each silicon powder. After adding 83 g at a time, adding 1% ethanol and polyvinyl butyral 1.5 times the total weight of the powder and mixing with a ball mill for about 6 hours, the mixture was slurried and then granulated powder was prepared using a spray dryer. . Similarly, a mixed powder obtained by adding 7.83 g of Al 2 O 3 and Y 2 O 3 to 84.25 g of the powder was also produced in the same manner.
次に、内寸法が20×80mmの金型内に造粒粉を入れ、8.3MPaで加圧し、予備成形した後、ナイロン製の袋に入れ、内部を減圧することによって密封した。これを、CIP装置にて200MPaの圧力で加圧し、成形体を得た。次に、0.2MPaのN2雰囲気内において、550℃まで加熱することで脱脂処理を行い、0.93MPaのN2雰囲気内において、最高1300℃まで加熱して反応焼結させた。 Next, the granulated powder was put in a mold having an inner size of 20 × 80 mm, pressurized at 8.3 MPa, preformed, put in a nylon bag, and sealed by reducing the pressure inside. This was pressurized with a CIP apparatus at a pressure of 200 MPa to obtain a molded body. Next, degreasing treatment was performed by heating to 550 ° C. in an N 2 atmosphere of 0.2 MPa, and reaction sintering was performed by heating to a maximum of 1300 ° C. in an N 2 atmosphere of 0.93 MPa.
反応焼結後のケイ素の窒化率を比較すると、3Y−ZrO2を添加した場合、いずれの粒径のケイ素粉末を使用した場合も、本反応焼結条件で90%以上の窒化率を示したのに対して、3Y−ZrO2を添加していない場合、窒化率は、ケイ素の粒径が大きくなるにつれて低くなり、80ミクロンの出発原料を使用した場合には、窒化率約30%しか得られなかった。 Comparing the nitridation rate of silicon after reaction sintering, when 3Y-ZrO 2 was added, the nitridation rate of 90% or more was exhibited under the present reaction sintering conditions when silicon powder of any particle size was used. On the other hand, when 3Y—ZrO 2 is not added, the nitriding rate decreases as the silicon particle size increases, and when an 80 micron starting material is used, only about 30% nitriding rate is obtained. I couldn't.
図9に、Y量違いZrO2添加がケイ素の窒化に及ぼす影響を調査した結果を示す。窒素気流中1300℃で保持した条件での重量増加挙動を熱天秤によって測定した。同図より、ケイ素のみを窒化した場合、一気に窒化が進行するのに対して、ジルコニアと共存させた試料では、いずれも窒化に伴う重量増加が緩慢となっていることがわかる。このことは、反応焼結過程の速度を速め、短時間で窒化できる可能性を示している。また、3モルのイットリアで安定化したジルコニアを使用すると、窒化に伴う重量増加も多くなっていることがわかった。 FIG. 9 shows the results of investigating the influence of Y amount-difference ZrO 2 addition on silicon nitridation. The weight increase behavior under the condition of keeping at 1300 ° C. in a nitrogen stream was measured by a thermobalance. From the figure, it can be seen that when only silicon is nitrided, nitriding proceeds at once, whereas in the samples coexisting with zirconia, the increase in weight accompanying nitriding is slow. This indicates the possibility of nitriding in a short time by increasing the speed of the reaction sintering process. It was also found that when zirconia stabilized with 3 mol of yttria was used, the weight increase associated with nitriding increased.
図10に、Si+助剤でなるペレットを成形、1300℃まで昇温し、ただちに降温、炉冷後、取り出し、重量を測定した結果を示す。種々の組み合わせの中で、スピネルとの同時添加も含めて、ジルコニアを含んだ助剤は、1300℃でも窒化促進に効果が認められることがわかった。特に、スピネルは、低温で液相を形成することが知られており、窒化と二段目の緻密化過程の低温化を考えた場合には、ジルコニアとスピネルの組み合わせは効果的である。 FIG. 10 shows the results of forming pellets made of Si + auxiliary, raising the temperature to 1300 ° C., immediately taking out the temperature after cooling and furnace cooling, and measuring the weight. Among the various combinations, it has been found that the auxiliary agent containing zirconia including the simultaneous addition with spinel is effective in promoting nitriding even at 1300 ° C. In particular, spinel is known to form a liquid phase at a low temperature, and the combination of zirconia and spinel is effective when considering nitriding and lowering the second-stage densification process.
図11に、Y量違いZrO2添加Si粉末の窒化後の生成相をXRDを使って調査した結果を示す。処理条件は、遊星ミル500rpm 1h粉砕粉、ZrO2添加量:5wt%、窒化:1450℃×4H、とした。α(102)、α(210)、β(101)、β(210)ピーク強度からα比を算出した。いずれの試料も、窒化は完了していること、ケイ素の窒化により生成したα率は、ジルコニアの組成により異なることがわかった。これは、窒化と同時に窒化ケイ素の焼結メカニズムの一つである溶解再析出挙動が生じるためと考えられる。 FIG. 11 shows the result of investigating the produced phase after nitriding of the Y-difference ZrO 2 -added Si powder using XRD. The processing conditions were planetary mill 500 rpm 1 h pulverized powder, ZrO 2 addition amount: 5 wt%, nitriding: 1450 ° C. × 4 H. α ratio was calculated from α (102), α (210), β (101), β (210) peak intensity. It was found that nitriding was completed in all samples, and the α rate generated by nitriding silicon varied depending on the composition of zirconia. This is presumably because dissolution and reprecipitation behavior, which is one of the sintering mechanisms of silicon nitride, occurs simultaneously with nitriding.
つまり、通常、窒化後のケイ素の多くは、気相反応を経由して生成されるため、α相が主成分となるが、この反応焼結過程においても、少量のSiO2を主成分とする液相が形成されている。本液相にα相の窒化ケイ素粒子は溶解し、β相として再析出する機構も同時に進行している。また、本試験で用いた3Y−ZrO2に添加されている酸化イットリウムは、この溶解再析出にα相からβ相への変化を促進する効果を有しているため、添加されている酸化イットリウムが多い場合に、β相が多く生じていると考えられる。 That is, since most of the silicon after nitriding is usually generated through a gas phase reaction, the α phase is the main component, but even in this reaction sintering process, a small amount of SiO 2 is the main component. A liquid phase is formed. The mechanism in which α-phase silicon nitride particles are dissolved in the liquid phase and re-precipitated as β-phase is also in progress. In addition, yttrium oxide added to 3Y—ZrO 2 used in this test has an effect of accelerating the change from α phase to β phase in this dissolution and re-precipitation. When there are many, it is thought that many (beta) phases have arisen.
図12に、窒化に及ぼす温度、時間の影響を明らかにするために、1300、1450℃で窒化した後の重量変化を測定した結果を示す。同図より、ZrO2+MgAl2O4添加系では、1300℃に到達した時点で、ほぼ窒化は完了していることがわかった。この結果は、先の熱天秤を使って得られた結果と矛盾しない。上述した試験結果から、窒化過程におけるジルコニア添加の効果を推定した。ケイ素粗粉末のみでは、反応速度速く、短時間表面が窒化され、その後、律速になる。なお、微粉末使用時には、発熱が伴うため、健全な制御は困難となる。 FIG. 12 shows the results of measuring the weight change after nitriding at 1300 ° C. and 1450 ° C. in order to clarify the effects of temperature and time on nitriding. From the figure, it was found that in the ZrO 2 + MgAl 2 O 4 added system, nitriding was almost completed when the temperature reached 1300 ° C. This result is consistent with the result obtained using the previous thermobalance. From the test results described above, the effect of zirconia addition in the nitriding process was estimated. With only the silicon coarse powder, the reaction rate is high, the surface is nitrided for a short time, and then becomes rate limiting. In addition, when using fine powder, since heat_generation | fever accompanies, sound control becomes difficult.
一方、ジルコニアを添加した系では、下記の反応が段階的に生じ、緩慢な反応で窒化が進む。それにより、昇温速度を高めることができ、窒化時間の短縮に繋がる。
0.5N2[g]+ZrO2[sl]=O2[g]+ZrN[sl]
2SiO2[sl]+ZrN[sl]=0.5N2[g]+2SiO[g]+ZrO2[sl]
2N2[g]+3SiO[g]=1.5O2[g]+Si3N4[s]
On the other hand, in the system to which zirconia is added, the following reaction occurs stepwise, and nitriding proceeds with a slow reaction. As a result, the rate of temperature increase can be increased, leading to a reduction in nitriding time.
0.5N 2 [g] + ZrO 2 [sl] = O 2 [g] + ZrN [sl]
2SiO 2 [sl] + ZrN [sl] = 0.5N 2 [g] + 2SiO [g] + ZrO 2 [sl]
2N 2 [g] + 3SiO [g] = 1.5O 2 [g] + Si 3 N 4 [s]
表4に、本実施例で使用した原料粉末の配合比を示す。これらの原料を秤量し、粉末総重量の1.5倍のエタノールとポリビニルブチラールを1%加え、ボールミルで約6時間、混合することによりスラリー化した後、スプレードライヤーを用いて造粒粉を作製した。次に、内寸法が45×45mmの金型内に造粒粉を入れ、2MPaで加圧し、予備成形した後、ナイロン製の袋に入れ、内部を減圧することによって密封した。 Table 4 shows the mixing ratio of the raw material powders used in this example. Weigh these ingredients, add 1% ethanol and polyvinyl butyral 1.5 times the total weight of the powder, mix with a ball mill for about 6 hours, and then slurry to produce granulated powder using a spray dryer. did. Next, the granulated powder was put in a mold having an inner dimension of 45 × 45 mm, pressurized at 2 MPa, preformed, put in a nylon bag, and sealed by reducing the pressure inside.
これをCIP装置にて200MPaの圧力で加圧し、成形体を得た。次に、0.2MPaのN2雰囲気内において、550℃まで加熱することで脱脂処理を行い、0.1MPaのN2雰囲気内において、最高1450℃まで加熱して反応焼結させた。また、その後、引き続き昇温を行い、1750℃で8h、0.9MPaの窒素中において、本焼結を行った。 This was pressurized with a CIP device at a pressure of 200 MPa to obtain a molded body. Next, degreasing treatment was performed by heating to 550 ° C. in a 0.2 MPa N 2 atmosphere, and reaction sintering was performed by heating to a maximum of 1450 ° C. in a 0.1 MPa N 2 atmosphere. Thereafter, the temperature was continuously increased, and main sintering was performed at 1750 ° C. for 8 hours in 0.9 MPa of nitrogen.
得られた焼結体の密度、開気孔率等をアルキメデス法において、測定を行った。また、加工後JISR1601に沿って4点曲げ強度の評価を行った。また、CF4ガスを用いたプラズマエッチング装置によって、対プラズマ性の評価を行った。図13に、焼結体の密度と開気孔率を示す。ZrO2を添加しない場合、いずれの試料も密度が低く、開気孔率も大きく緻密化していなかった。一方で、ZrO2を添加した場合は、密度も高くなり、開気孔率も小さな緻密体を得ることができた。 The density, open porosity and the like of the obtained sintered body were measured by the Archimedes method. Further, the four-point bending strength was evaluated according to JIS R1601 after processing. Moreover, the plasma resistance was evaluated by a plasma etching apparatus using CF 4 gas. FIG. 13 shows the density and open porosity of the sintered body. When ZrO 2 was not added, none of the samples had a low density and the open porosity was large and not densified. On the other hand, when ZrO 2 was added, a dense body with a high density and a small open porosity could be obtained.
図14に、SiAlONのZ値と強度の関係を示す。ZrO2を添加した試料では、無添加のものと比較して、明らかに強度が高いことが確認された。図15に、対プラズマ性を評価した試料のSEM像を示す。従来の窒化ケイ素セラミックスは、粒子自体がプラズマによって腐食されているのに対して、ZrO2を添加したSiAlONの場合粒子等の腐食は、全く確認されず、従来のSiAlONセラミックスと同等の特徴を有していた。 FIG. 14 shows the relationship between the Z value and strength of SiAlON. It was confirmed that the sample to which ZrO 2 was added had clearly higher strength than the sample without addition. FIG. 15 shows an SEM image of the sample evaluated for plasma resistance. In contrast to conventional silicon nitride ceramics, the particles themselves are corroded by plasma. In the case of SiAlON to which ZrO 2 is added, no corrosion of the particles or the like is confirmed, and the same characteristics as conventional SiAlON ceramics are observed. Was.
以上詳述したように、本発明は、反応焼結窒化ケイ素基複合材料の製造方法に係るものであり、本発明により、低コストで、構造部材として信頼性に優れた、窒化ケイ素基複合材料を製造し、提供することが可能となる。本発明で製造される反応焼結窒化ケイ素基複合材料は、安価な原料を用いて作製することが可能であり、本発明は、高強度及び高靭性を有し、構造部材として好適に使用することができる高性能なセラミックス材料及び高耐食性を有する高性能なセラミックスを提供することを可能とするものである。 As described above in detail, the present invention according to the manufacturing method of reaction sintering silicon nitride based composite materials, the present invention, at a low cost, highly reliable as a structural member, silicon nitride based composite Materials can be manufactured and provided. Reaction sintering silicon nitride-based composite material produced in the present invention can be manufactured using inexpensive raw materials, the present invention has a high strength and high toughness, it is suitably used as a structural member It is possible to provide a high-performance ceramic material and a high-performance ceramic having high corrosion resistance.
Claims (6)
窒化のための焼結温度が、1300−1500℃の範囲であり、反応焼結後の焼成温度が、1650−1950℃の範囲であり、酸化ジルコニウム2−20重量部、スピネル5−10重量部をそれぞれ添加した混合粉末を、成形後、窒素を含む雰囲気中でケイ素を窒化ケイ素に転化した後、温度を上げ、密度95%以上(相対密度)に緻密化する、ことを特徴とする窒化ケイ素基複合材料の製造方法。 A raw material containing silicon is used as a starting raw material, and the silicon contains 5-40% of particles having a particle size of 30 microns or larger, and zirconium oxide and spinel as a sintering aid are mixed by a predetermined composition. , the production of molded, after the reaction sintering allowed to nitride silicon sintered at a predetermined temperature in nitrogen, the temperature was raised and fired at a predetermined temperature, nitriding the silicon-based composite material Ru densified A method ,
The sintering temperature for nitriding is in the range of 1300-1500 ° C, the firing temperature after reaction sintering is in the range of 1650-1950 ° C, 2-20 parts by weight of zirconium oxide, 5-10 parts by weight of spinel Silicon nitride characterized in that, after forming the mixed powder to which each is added, after converting silicon to silicon nitride in an atmosphere containing nitrogen, the temperature is raised and the density is increased to 95% or more (relative density) Manufacturing method of matrix composite material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007069637A JP5044797B2 (en) | 2006-03-31 | 2007-03-16 | Process for producing reaction sintered silicon nitride matrix composite |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006100311 | 2006-03-31 | ||
JP2006100311 | 2006-03-31 | ||
JP2006174491 | 2006-06-23 | ||
JP2006174491 | 2006-06-23 | ||
JP2007069637A JP5044797B2 (en) | 2006-03-31 | 2007-03-16 | Process for producing reaction sintered silicon nitride matrix composite |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008024579A JP2008024579A (en) | 2008-02-07 |
JP5044797B2 true JP5044797B2 (en) | 2012-10-10 |
Family
ID=39115598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007069637A Active JP5044797B2 (en) | 2006-03-31 | 2007-03-16 | Process for producing reaction sintered silicon nitride matrix composite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5044797B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006057232A1 (en) * | 2004-11-26 | 2006-06-01 | Kyocera Corporation | Silicon nitride based sintered compact and method for production thereof, and member for molten metal, member for hot working and member for excavation |
JP5062402B2 (en) * | 2007-03-30 | 2012-10-31 | 独立行政法人産業技術総合研究所 | Reaction sintered silicon nitride-based sintered body and method for producing the same |
JP2009293787A (en) * | 2008-06-09 | 2009-12-17 | Ntn Corp | Rolling bearing for electromagnetic clutch and electromagnetic clutch |
JP5341597B2 (en) * | 2009-03-31 | 2013-11-13 | 独立行政法人産業技術総合研究所 | Manufacturing method of silicon nitride filter and silicon nitride filter |
JP5503236B2 (en) * | 2009-09-18 | 2014-05-28 | 株式会社クボタ | Ceramic filter and method for manufacturing ceramic filter |
KR101155549B1 (en) * | 2009-11-24 | 2012-06-19 | 한국기계연구원 | Manufacturing Methods of Porous Sintered Reaction-Bonded Silicon Nitride and Porous Sintered Reaction-Bonded Silicon Nitride Fabricated Thereby |
JP5751672B2 (en) * | 2011-08-30 | 2015-07-22 | 国立研究開発法人産業技術総合研究所 | Method for producing sintered silicon nitride |
US8992651B2 (en) | 2012-03-28 | 2015-03-31 | Kubota Corporation | Ceramic filter and method for manufacturing the same |
CN106220205A (en) * | 2015-02-11 | 2016-12-14 | 汤炼芳 | A kind of calcining kiln burner prefabricated component and preparation method |
WO2019093370A1 (en) * | 2017-11-10 | 2019-05-16 | 株式会社フェローテックセラミックス | Ceramic, probe guidance component, probe card, and package inspecting socket |
WO2024070470A1 (en) * | 2022-09-27 | 2024-04-04 | 株式会社 東芝 | Silicon nitride sintered body, wear-resistant member, substrate for semiconductor devices, and method for producing silicon nitride sintered body |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6050750B2 (en) * | 1982-06-02 | 1985-11-09 | 品川白煉瓦株式会社 | Silicon nitride composite sintered body |
JPS6389462A (en) * | 1986-10-02 | 1988-04-20 | 日産自動車株式会社 | Manufacture of silicon nitride base sintered body |
JPH06279125A (en) * | 1993-03-30 | 1994-10-04 | Kanagawa Kagaku Gijutsu Akad | Production of silicon nitride-based composite |
JP2005282753A (en) * | 2004-03-30 | 2005-10-13 | Kubota Corp | Underground embedded material cutting protecting member |
-
2007
- 2007-03-16 JP JP2007069637A patent/JP5044797B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008024579A (en) | 2008-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5044797B2 (en) | Process for producing reaction sintered silicon nitride matrix composite | |
JP2012051798A (en) | Silicon nitride sintered body and method of manufacturing the same, member for molten metal, member for hot working, and member for digging | |
JP2001328869A (en) | Abrasion-resistant member and method for producing the same | |
US9546114B2 (en) | SiAlON bonded silicon carbide material | |
JP5062402B2 (en) | Reaction sintered silicon nitride-based sintered body and method for producing the same | |
JP5189786B2 (en) | Conductive alumina sintered body | |
JP4850007B2 (en) | Silicon nitride sintered body | |
KR102086570B1 (en) | Method for manufacturing sialon-based ceramic materials having controlled hardness and toughness for cutting tools and materials manufactured thereby | |
JP2507480B2 (en) | SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof | |
JP2015086125A (en) | Nitrogen and silicon-based sintered body and manufacturing method thereof | |
JP4348429B2 (en) | Porous silicon nitride and method for producing the same | |
TW202028154A (en) | Mullite-base sintered compact and method for producing same | |
JP4903431B2 (en) | Silicon nitride sintered body and manufacturing method thereof, semiconductor manufacturing apparatus member and liquid crystal manufacturing apparatus member using the same | |
JP3537241B2 (en) | Method for producing silicon nitride sintered body | |
JP5224293B2 (en) | Reaction-sintered silicon nitride ceramics and method for producing the same | |
JP2690571B2 (en) | Zirconia cutting tool and its manufacturing method | |
JP2008156142A (en) | Aluminum nitride sintered compact and method for manufacturing the same | |
JPH09142935A (en) | Silicon nitride sintered compact and its production | |
JP3121996B2 (en) | Alumina sintered body | |
JP5001567B2 (en) | Corrosion resistant ceramic material | |
JPH06287066A (en) | Silicon nitride sintered compact and its production | |
JP2581128B2 (en) | Alumina-sialon composite sintered body | |
KR102086571B1 (en) | METHOD FOR MANUFACTURING SIALON-BASED CERAMIC MATERIALS HAVING MAINLY α-SIALON FOR CUTTING TOOLS MATERIALS MANUFACTURED THEREBY | |
JPS6230666A (en) | High toughenss silicon nitride sintered body and manufacture | |
JPH05330926A (en) | Boride-based composite ceramic sintered compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091015 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091016 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110908 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120529 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120622 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150727 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5044797 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |