[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4923324B2 - Non-aqueous electrolyte secondary battery and manufacturing method thereof - Google Patents

Non-aqueous electrolyte secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP4923324B2
JP4923324B2 JP2001025785A JP2001025785A JP4923324B2 JP 4923324 B2 JP4923324 B2 JP 4923324B2 JP 2001025785 A JP2001025785 A JP 2001025785A JP 2001025785 A JP2001025785 A JP 2001025785A JP 4923324 B2 JP4923324 B2 JP 4923324B2
Authority
JP
Japan
Prior art keywords
active material
present
positive electrode
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001025785A
Other languages
Japanese (ja)
Other versions
JP2002231239A (en
JP2002231239A5 (en
Inventor
厚志 船引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2001025785A priority Critical patent/JP4923324B2/en
Priority to PCT/JP2001/003223 priority patent/WO2001080337A1/en
Priority to US10/009,534 priority patent/US6916578B2/en
Priority to CNB018010008A priority patent/CN1209834C/en
Priority to EP01921848A priority patent/EP1251575A1/en
Publication of JP2002231239A publication Critical patent/JP2002231239A/en
Publication of JP2002231239A5 publication Critical patent/JP2002231239A5/ja
Application granted granted Critical
Publication of JP4923324B2 publication Critical patent/JP4923324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は正極活物質及びその製造方法並びにそれを備えた非水電解質二次電池に関する。
【0002】
【従来の技術】
近年、リチウム二次電池は、携帯電話、ノートパソコン、ビデオカメラ等の小型電源として急速に需要を伸ばしている。また、その高いエネルギー密度から、将来、電気自動車、電力平準化用等の大型電源への利用も期待されている。
【0003】
非水電解質二次電池の正極にはリチウム遷移金属酸化物が、負極には黒鉛、非晶質炭素、酸化物、リチウム合金およびリチウム金属が提案されている。現在、正極活物質としてコバルト酸リチウム(LiCoO2)が主に用いられているが、この活物質は高価であり、将来予測される非水電解質二次電池の大量消費に対応するためには、より安価な正極活物質の開発が重要である。
【0004】
さらに、環境問題への関心が日々高まる中で、活物質の環境負荷が極力低いことが望まれる。現在、マンガンやニッケル、鉄を含む化合物が非水電解質二次電池用正極活物質として精力的に研究されているが、中でも鉄は最も安価で環境負荷が低い材料であるため、鉄化合物は次世代非水電解質二次電池用正極活物質として大変魅力的である。
【0005】
非水電解質二次電池用鉄含有正極活物質として、これまで種々の鉄化合物、例えば、トンネル構造または層状ジグザグ構造を有するLiFeO2(J.Electrochem.Soc.、143、2435(1996))、オリビン型LiFePO4(J.Electrochem.Soc.、144、1609(1997))、スピネル型LiFe58(J.Electrochem.Soc.、146、4371(1999))、六方晶層状岩塩型構造を有するLiFeO2(特開平10―67519)、アモルファス状γ−FeOOH(J.Electrochem.Soc.、142、360(1995))、β−FeOOH(J.Power Sources、81−82、221(1999))、非晶質含銅水酸化鉄(第40回電池討論会講演要旨集、3C08)が提案されてきた。
【0006】
【発明が解決しようとする課題】
上記従来の鉄化合物の中で、高容量活物質であるオキシ水酸化鉄(FeOOH)が近年特に注目されている。FeOOHには種々の結晶系が存在するが、中でもβ型は良好なサイクル性能を示すことが報告されている(J.Power Sources、81−82、221(1999))。
【0007】
また、最近、β―FeOOHの非水電解質二次電池正極特性とその結晶性との関係が調べられ、非晶質β―FeOOHが高結晶β―FeOOHよりも良好なサイクル性能を示すことが報告された(第41回電池討論会講演要旨集、3D19(2000))。しかし、非晶質β―FeOOHの粒径とその充放電特性に関する知見はこれまで得られていない。
【0008】
そこで、本発明者はかかる課題を解決するために鋭意努力した結果、粒子のモード径が10μm以下である非晶質β―FeOOHを正極活物質に使用した非水電解質二次電池は良好なサイクル性能を示すことを初めて見出した。
【0009】
本発明は、従来にない新規な鉄化合物を正極活物質として適用することにより良好なサイクル性能を示し、しかも安価で環境負荷が低い非水電解質二次電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
発明は、非水電解質二次電池に関する発明であって、非水電解質二次電池の正極活物質として、Li、Na、K、Mg、Al、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Zr、Pb、Snからなる群から選ばれた少なくとも一種の元素を0.12wt%以上の含有量で含み、かつ、粒子のモード径が9.5μm以下で、さらにCuKα線を用いたX線回折法で、半値幅Yが0.3°<Y(2θ)の(110)面回折ピークを示すβ−FeOOHを用いることを特徴とする。
【0011】
本発明の非水電解質二次電池では、良好なサイクル性能が得られる。また、本発明によれば、上記元素が非晶質β―FeOOHの結晶内で柱の役割を果たし、非晶質構造を安定化し、これを正極活物質に用いた非水電解質二次電池では、良好なサイクル性能が得られる。
【0016】
上記非水電解質二次電池の製造方法に関しては、正極活物質の製造工程が、塩化第二鉄とLi、Na、K、Mg、Al、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Zr、Pb、Snからなる群から選ばれた少なくとも一種の元素を含む塩が溶解した水溶液を40℃から100℃の範囲内で加水分解する工程を含むことが好ましい
【0017】
この製造方法は、正極活物質製造の工業化プロセスとして優れ、非水電解質二次電池の簡便な製造方法である
【0018】
【発明の実施の形態】
本発明の非水電解質二次電池においては、正極活物質として、粒子のモード径が9.5μm以下で、さらにCuKα線を用いたX線回折法で、半値幅Yが0.3°<Y(2θ)の(110)面回折ピークを示すβ−FeOOHを用いる。
【0019】
また、このβ−FeOOHの粒子のモード径は9.5μm以下とする必要があり、より好ましくは6.2μm以下である。粒子のモード径が9.5μm以下に限定される理由は、モード径がより大きくなると、活物質のサイクル性能が著しく低下するからである。ここで粒子の「モード径」とは、粒度分布曲線の最大値であり、その粉体中に最も多く含まれる粒子径であり、Dmodで表わされる(粉体−理論と応用、久保輝一郎他編、丸善、1979年発行)。
【0020】
また、ここで粒子形状は、一次粒子でも、一次粒子の凝集体でも、あるいは一次粒子とその凝集体の混合物でもかまわず、一次粒子あるいはその凝集体のモード径が10μm以下であればよい。
【0021】
この正極活物質を非水電解質二次電池に使用する場合には、一次粒子よりも凝集体の方が好ましい。その理由は、凝集体を活物質として用いた方が導電剤の量を少量にすることができ、その結果電池エネルギー密度をより高くすることができるからである。
【0022】
本発明の非晶質β−FeOOHを非水電解質二次電池の正極活物質として適用した場合、リチウムの挿入・脱離に伴い、(110)面回折ピーク強度が低下し、結晶性が低下する。そこで非晶質β―FeOOHに、Li、Na、K、Mg、Al、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Zr、Pb、Snからなる群から選ばれた少なくとも一種の元素を含有させることにより、サイクル性能が向上する。この理由は、これらの元素が結晶内で柱の役割を果たし、非晶質構造を安定化する効果があるからと推察される。
【0023】
また、本発明のβ−FeOOH中における上記元素の含有量は0.01wt%以上とする必要がある。含有量が0.12wt%以上の時サイクル性能が著しく向上するが、一定以上添加してもサイクル性能向上への効果は変化せず、一方、非晶質β−FeOOH中の上記元素の添加量が多くなると、容量が減少するため、これらの元素の添加量は、0.12wt%以上で、できるだけの少量とすることが好ましい。
【0024】
本発明の非晶質β−FeOOHの製造方法を例示すれば、塩化第二鉄が溶解した水溶液に、Li、Na、K、Mg、Al、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Zr、Pb、Snからなる群から選ばれた少なくとも一種の元素を含む塩を添加し、40℃から100℃の範囲内で加水分解することによって得られる。なお、加水分解後に、1日以上熟成、濾過、水洗、乾燥することが好ましい。この製造方法は極めて簡便であり、工業化プロセスとして大変優れている。
【0025】
本発明の正極活物質の製造方法で用いられる塩化第二鉄には水和物を用いることもできる。Li、Na、K、Mg、Al、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Zr、Pb、Snからなる群から選ばれた少なくとも一種の元素を含む塩に関しては、水溶性であれば種類を問わないが、中でも硫酸塩が好ましい。これは、硫酸塩を用いると、収率が著しく向上するからである。上記塩として、硫酸塩、塩化物、硝酸塩、リン酸塩を用いた場合、生成物にそれぞれ、S、Cl、N、Pが混入する。上記元素を含む塩に関しては、水和物を用いることができ、それぞれの単独あるいは2種以上の混合物を用いることができる。
【0026】
本発明の非晶質β−FeOOHにリチウムを含有させる方法としては、電気化学的、化学的手法が例示される。化学的手法には、本発明活物質をn−BuLiやLiIに代表される還元剤と反応させる方法が例示される。
【0027】
本発明の非水電解質二次電池で用いられる負極材料においては、金属リチウムまたは/およびリチウムイオンを吸蔵放出することが可能な物質が用いられる。リチウムイオンを吸蔵、放出することが可能な物質としては、黒鉛、非晶質炭素、酸化物、窒化物およびリチウム合金が例示される。窒化物としてはLi2.6Co0.4Nに代表されるリチウム含有窒化物を用いることができ、またリチウム合金としては、例えばリチウムとアルミニウム、亜鉛、ビスマス、カドミウム、アンチモン、シリコン、鉛、錫との合金を用いることができる。
【0028】
本発明の非水電解質二次電池で用いられる非水電解質としては、非水電解液でも固体電解質であってもかまわない。非水電解液に用いられる溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒およびこれらの混合溶媒が例示される。また、その溶質としては、LiPF、LiBF、LiAsF、LiClO、LiSCN、LiCFCO、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCFおよびLiN(COCFCFなどの塩もしくはこれらの混合物が例示される。
【0029】
【実施例】
以下に本発明の非晶質β−FeOOHを正極活物質に用いた非水電解質二次電池を、実施例に基づいてさらに詳細に説明する。しかし、本発明は以下の実施例に限定されるものではない。
【0030】
[実施例1]
25℃でFeCl・6HOを0.1モル、LiSO・H2Oを0.0033モル秤量し、1dm3の水に溶解させた。次に、この溶液を10℃/h程度のゆっくりした速度で加温し、60℃で2日保った。生成した沈殿をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、本発明の正極活物質を得た。
【0031】
次に、上記正極活物質80重量部に、導電剤としてのアセチレンブラック10重量部と、結着剤としてのポリフッ化ビニリデン(PVdF)10重量部を加え、溶剤であるN―メチルー2ピロリドンと湿式混合してスラリーにした。このスラリーを集電体であるアルミニウムメッシュの両面に塗付した後、1t/cm2で加圧成形し、真空下にて100℃で乾燥し、大きさ15mm×15mm×0.5mmの正極を作製した。
【0032】
最後に、上記正極を用いて、本発明の正極活物質を備えた本発明電池(A1)を製作した。負極にリチウム金属、非水電解液に、1mol/lのLiClOが溶解した、エチレンカーボネートとジメチルカーボネートの体積比率1:1の混合溶媒を用い、フラッデドタイプの電池を製作した。
【0033】
[実施例2]
25℃でFeCl・6HOを0.1モル、LiSO・H2Oを0.05モル秤量し、1dm3の水に溶解させた。次に、この溶液を10℃/h程度のゆっくりした速度で加温し、70℃で2日保った。生成した沈殿をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、本発明の正極活物質を得た。次に、前記正極活物質を用いたこと以外は実施例1と同様にして、本発明電池(A2)を製作した。
【0034】
[実施例3]
25℃でFeCl・6HOを0.1モル、LiSO・HOを0.1モル秤量し、1dm3の水に溶解させた。次に、この溶液を10℃/h程度のゆっくりした速度で加温し、90℃で2日保った。生成した沈殿をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、本発明の正極活物質を得た。次に、前記正極活物質を用いたこと以外は実施例1と同様にして、本発明電池(A3)を製作した。
【0035】
[実施例4]
25℃でFeCl・6HOを0.1モル、MgSO・7HOを0.01モル秤量し、1dm3の水に溶解させた。次に、この溶液を10℃/h程度のゆっくりした速度で加温し、60℃で2日保った。生成した沈殿をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、本発明の正極活物質を得た。次に、前記正極活物質を用いたこと以外は実施例1と同様にして、本発明電池(A4)を製作した。
[実施例5]
25℃でFeCl・6HOを0.1モル、LiSO・HOを0.033モル秤量し、1dm3の水に溶解させた。次に、この溶液を10℃/h程度のゆっくりした速度で加温し、60℃で2日保った。生成した沈殿をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、正極活物質を得た。
次に、前記正極活物質を用いたこと以外は実施例1と同様にして、本発明電池(A5)を製作した。
【0036】
[実施例6]
25℃でFeCl・6HOを0.1モル、Al(SO・8HOを0.033モル秤量し、1dm3の水に溶解させた。次に、この溶液を10℃/h程度のゆっくりした速度で加温し、80℃で2日保った。生成した沈殿をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、本発明の正極活物質を得た。次に、前記正極活物質を用いたこと以外は実施例1と同様にして、本発明電池(A6)を製作した。
【0037】
[実施例7]
25℃でFeCl・6HOを0.1モル、Al(SO・8HOを0.04モル秤量し、1dm3の水に溶解させた。次に、この溶液を10℃/h程度のゆっくりした速度で加温し、80℃で2日保った。生成した沈殿をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、本発明の正極活物質を得た。次に、前記正極活物質を用いたこと以外は実施例1と同様にして、本発明電池(A7)を製作した。
【0038】
[実施例8]
25℃でFeCl・6HOを0.1モル、Al(SO・8HOを0.05モル秤量し、1dm3の水に溶解させた。次に、この溶液を10℃/h程度のゆっくりした速度で加温し、85℃で2日保った。生成した沈殿をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、本発明の正極活物質を得た。次に、前記正極活物質を用いたこと以外は実施例1と同様にして、本発明電池(A8)を製作した。
【0039】
[比較例1]
25℃でFeCl・6HOを0.1モル、CuSO・5HOを0.03モル秤量し、1dm3の水に溶解させた。次に、この溶液を10℃/h程度のゆっくりした速度で加温し、60℃で2日保った。生成した沈殿をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、正極活物質を得た。次に、前記正極活物質を用いたこと以外は実施例1と同様にして、比較電池(B1)を製作した。
【0040】
実施例9]25℃でFeCl・6HOを0.1モル、Al(SO・8HOを0.02モル秤量し、1dm3の水に溶解させた。次に、この溶液を10℃/h程度のゆっくりした速度で加温し、80℃で2日保った。生成した沈殿をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、正極活物質を得た。次に、前記正極活物質を用いたこと以外は実施例1と同様にして、本発明電池(A9)を製作した。
【0041】
実施例10]25℃でFeCl・6HOを0.1モル、Al(SO・8HOを0.025モル秤量し、1dm3の水に溶解させた。次に、この溶液を10℃/h程度のゆっくりした速度で加温し、80℃で2日保った。生成した沈殿をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、正極活物質を得た。次に、前記正極活物質を用いたこと以外は実施例1と同様にして、本発明電池(A10)を製作した。
【0042】
図1に、本発明電池A1に用いられた正極活物質のX線回折パターン(CuKα線)を示す。図1の回折ピークの位置から、本発明電池A1に用いられた活物質がβ―FeOOHであることがわかった。回折パターンを詳細に観察すると、回折ピークはブロードであり、(110)面回折ピークの半値幅は0.3°以上であった。したがって、本発明電池A1に用いられた活物質は非晶質β―FeOOHであることがわかった。なお、本発明電池A2、A3、A4、A5、A6、A7、A8、A9、A10および比較電池B1に用いられた活物質は、いずれも図1と同様のX線回折パターンを示し、非晶質β―FeOOHであることがわかった。
【0043】
表1に本発明電池A1、A2、A3、A4、A5および比較電池B1に関して、粒度分析で決定された各活物質粒子のモード径を示す。
【0044】
【表1】
【0045】
表1から、本発明電池A1、A2、A3、A4、A5に用いられた活物質粒子のモード径が9.5μm以下であることがわかった。また、SEM観察から、本発明電池A1に用いられた活物質は大部分が一次粒子からなり、本発明電池A2、A3、A4、A5に用いられた活物質は大部分が一次粒子の凝集体であることが確認された。
【0046】
[充放電特性]
上記のようにして製作した本発明電池および比較電池について、一定電流で10サイクルの充放電試験を実施した。充電、放電終始電圧をそれぞれ4.3V、1.6Vとし、電流値を0.2mA/cmとした。測定温度を25゜Cとした。
【0047】
図2は、10サイクル目における本発明電池A1、A2、A3、A4、A5および比較電池B1の放電容量維持率(%)と、各電池に用いられた正極活物質粒子のモード径との関係を示したものである。ここで、「放電容量維持率」を、初期放電容量に対する10サイクル目の放電容量の比として定義し、百分率で表した。
【0048】
図2から、本発明電池A1、A2、A3、A4、A5のほうが比較電池B1よりも放電容量維持率が高いことが分かった。さらに、活物質粒子のモード径が9.5μm以下、特に6.2μm以下のとき、放電容量維持率が著しく高くなることが分かった。したがって、粒子のモード径が9.5μm以下のとき、非晶質β―FeOOHのサイクル性能が著しく向上することがわかった。
【0049】
ICP発光分光分析から、本発明電池A6、A7、A8、A9、A10に用いられた活物質中にAlが含まれていることが確認された。そこでつぎに、Al含有量と充放電特性との関係を調べた。なお、粒度分析から、本発明電池A6、A7、A8、A9、A10に用いられた活物質粒子のモード径は3〜5μmであることがわかった。
【0050】
図3は、10サイクル目における本発明電池A6、A7、A8、A9、A10の放電容量維持率と、活物質中のAl含有量との関係を示したものである。明らかに活物質中のAl含有量が0.1wt%以上のとき、放電容量維持率が著しく高くなることがわかった。
【0051】
本実施例1〜10の電池の正極では、活物質、アセチレンブラック、およびPVdFの比を80:10:10とした。そこで、つぎに充放電特性に与える導電剤量の影響を調べた。本発明電池A11およびA12に関して、上記比率を70:20:10として充放電試験を行い、本発明電池A1およびA2の充放電特性と比較した。充放電条件は実施例1と同様である。その結果、本発明電池A11およびA12の10サイクル目における放電容量維持率は同様であった。
【0052】
一方、導電剤量を10wt%とした場合、図2に示したように、本発明電池A2の方がA1と比べて放電容量維持率は高かった。本発明電池A1に用いられた活物質は一次粒子、A2に用いられた活物質は凝集体である。したがって、活物質として凝集体を用いた方が、導電剤量を減らした場合においても高い放電容量を維持することがわかった。
【0053】
本実施例では、塩化第二鉄とリチウム塩、マグネシウム塩、銅塩、またはアルミニウム塩とをともに加水分解することによって得られた非晶質β−FeOOHについて述べたが、塩化第二鉄とNa、K、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Zr、Pb、Snを含む塩とをともに加水分解して得られた非晶質β―FeOOHも同様にして、良好なサイクル性能を示した。
【0054】
【発明の効果】
以上述べたように、本発明の、粒子のモード径が9.5μm以下であり、さらにCuKα線を用いたX線回折法で、半値幅Yが0.3°<Y(2θ)の(110)面回折ピークを示すβ−FeOOHを正極活物質に備えた非水電解質二次電池は良好なサイクル性能を示した。
【図面の簡単な説明】
【図1】本発明電池A1に用いられた活物質のX線回折パターンを示す図。
【図2】本発明電池A1、A2、A3、A4、A5および比較電池B1の、10サイクル目における放電容量維持率と、各電池に用いられた正極活物質粒子のモード径との関係を示す図。
【図3】本発明電池A6、A7、A8、A9、A10の10サイクル目における放電容量維持率と、各電池に用いられた正極活物質粒子中のAl含有量との関係を示す図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material, a method for producing the same, and a nonaqueous electrolyte secondary battery including the same.
[0002]
[Prior art]
In recent years, the demand for lithium secondary batteries has rapidly increased as a compact power source for mobile phones, notebook computers, video cameras, and the like. In addition, due to its high energy density, it is expected to be used for large power sources such as electric vehicles and power leveling in the future.
[0003]
A lithium transition metal oxide has been proposed for the positive electrode of the nonaqueous electrolyte secondary battery, and graphite, amorphous carbon, oxide, lithium alloy and lithium metal have been proposed for the negative electrode. Currently, lithium cobalt oxide (LiCoO 2 ) is mainly used as the positive electrode active material, but this active material is expensive, and in order to cope with mass consumption of non-aqueous electrolyte secondary batteries predicted in the future, It is important to develop a cheaper cathode active material.
[0004]
Furthermore, it is desired that the environmental load of the active material is as low as possible as interest in environmental issues increases day by day. Currently, compounds containing manganese, nickel, and iron have been energetically studied as positive electrode active materials for non-aqueous electrolyte secondary batteries. Among these, iron is the cheapest and environmentally friendly material, so It is very attractive as a positive electrode active material for generation non-aqueous electrolyte secondary batteries.
[0005]
As iron-containing positive electrode active materials for nonaqueous electrolyte secondary batteries, various iron compounds such as LiFeO 2 having a tunnel structure or a layered zigzag structure (J. Electrochem. Soc., 143 , 2435 (1996)), olivine Type LiFePO 4 (J. Electrochem. Soc., 144 , 1609 (1997)), spinel type LiFe 5 O 8 (J. Electrochem. Soc., 146 , 4371 (1999)), LiFeO having a hexagonal layered rock salt structure 2 (Japanese Unexamined Patent Publication No. 10-67519), amorphous γ-FeOOH (J. Electrochem. Soc., 142 , 360 (1995)), β-FeOOH (J. Power Sources, 81-82 , 221 (1999)), non- Crystalline copper-containing iron hydroxide ( 40 times the battery debate Abstracts, 3C08) have been proposed.
[0006]
[Problems to be solved by the invention]
Among the conventional iron compounds, iron oxyhydroxide (FeOOH), which is a high-capacity active material, has attracted particular attention in recent years. There are various crystal systems in FeOOH, and among them, β-type has been reported to show good cycle performance (J. Power Sources, 81-82 , 221 (1999)).
[0007]
Recently, the relationship between the positive electrode characteristics of β-FeOOH non-aqueous electrolyte secondary battery and its crystallinity has been investigated, and it has been reported that amorphous β-FeOOH exhibits better cycle performance than highly crystalline β-FeOOH. (Abstracts of the 41st Battery Conference, 3D19 (2000)). However, knowledge about the particle diameter of amorphous β-FeOOH and its charge / discharge characteristics has not been obtained so far.
[0008]
Therefore, as a result of intensive efforts to solve such problems, the present inventor has achieved a good cycle of a non-aqueous electrolyte secondary battery using amorphous β-FeOOH having a particle mode diameter of 10 μm or less as a positive electrode active material. It was found for the first time to show performance.
[0009]
An object of the present invention is to provide a non-aqueous electrolyte secondary battery that exhibits good cycle performance by applying an unprecedented novel iron compound as a positive electrode active material, and that is inexpensive and has a low environmental load.
[0010]
[Means for Solving the Problems]
The present invention relates to a non-aqueous electrolyte secondary battery, and as a positive electrode active material of the non-aqueous electrolyte secondary battery, Li, Na, K, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Containing at least one element selected from the group consisting of Co, Ni, Cu, Zn, Zr, Pb and Sn in a content of 0.12 wt% or more, and having a mode diameter of particles of 9.5 μm or less, In the X-ray diffraction method using CuKα rays, β-FeOOH showing a (110) plane diffraction peak with a half width Y of 0.3 ° <Y (2θ) is used.
[0011]
In the nonaqueous electrolyte secondary battery of the present invention , good cycle performance can be obtained. In addition, according to the present invention, in the non-aqueous electrolyte secondary battery in which the element serves as a pillar in the crystal of amorphous β-FeOOH, stabilizes the amorphous structure, and uses this as a positive electrode active material. Good cycle performance can be obtained.
[0016]
It is then about the manufacturing method of the nonaqueous electrolyte secondary battery, the manufacturing process of the positive electrode active material, ferric and Li chloride, Na, K, Mg, Al , Ca, Sc, Ti, V, Cr, Mn , Co, Ni, Cu, Zn , Zr, Pb, that an aqueous solution salt is dissolved containing at least one element selected from the group consisting of Sn, which in the range of 100 ° C. from 40 ° C. containing hydrolyzing Is preferred .
[0017]
This production method is excellent as an industrialization process for producing a positive electrode active material , and is a simple production method for a non-aqueous electrolyte secondary battery.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In the nonaqueous electrolyte secondary battery of the present invention, the positive electrode active material has a particle mode diameter of 9.5 μm or less, and an X-ray diffraction method using CuKα rays. Y of (2 [Theta]) a (110) plane diffraction peak indicates to use β -FeOOH.
[0019]
The mode diameter of the β- FeOOH particles needs to be 9.5 μm or less, more preferably 6.2 μm or less. The reason why the mode diameter of the particles is limited to 9.5 μm or less is that the cycle performance of the active material is significantly lowered when the mode diameter is larger. Here, the “mode diameter” of the particle is the maximum value of the particle size distribution curve, and is the particle diameter most contained in the powder and is expressed by D mod (powder-theory and application, Teruichiro Kubo Other edition, Maruzen, published in 1979).
[0020]
Here, the particle shape may be primary particles, aggregates of primary particles, or a mixture of primary particles and aggregates, and the mode diameter of primary particles or aggregates may be 10 μm or less.
[0021]
When this positive electrode active material is used in a nonaqueous electrolyte secondary battery, an aggregate is preferable to a primary particle. The reason is that the use of the aggregate as the active material can reduce the amount of the conductive agent, and as a result, the battery energy density can be further increased.
[0022]
When the amorphous β-FeOOH of the present invention is applied as a positive electrode active material for a non-aqueous electrolyte secondary battery, the (110) plane diffraction peak intensity decreases and the crystallinity decreases with the insertion and extraction of lithium. . Therefore, amorphous β-FeOOH is selected from the group consisting of Li, Na, K, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Zr, Pb, and Sn. Further, the cycle performance is improved by including at least one element. The reason for this is presumed that these elements play the role of columns in the crystal and have the effect of stabilizing the amorphous structure.
[0023]
In addition, the content of the element in β- FeOOH of the present invention needs to be 0.01 wt% or more. When the content is 0.12 wt% or more, the cycle performance is remarkably improved. However, the addition of the above elements in amorphous β-FeOOH does not change the effect of improving the cycle performance even when a certain amount or more is added. As the amount increases, the capacity decreases, so the amount of these elements added is preferably 0.12 wt% or more and as small as possible.
[0024]
To illustrate the method for producing amorphous β-FeOOH of the present invention, Li, Na, K, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Co are added to an aqueous solution in which ferric chloride is dissolved. It is obtained by adding a salt containing at least one element selected from the group consisting of Ni, Cu, Zn, Zr, Pb, and Sn and hydrolyzing within a range of 40 ° C to 100 ° C. In addition, it is preferable to age, filter, wash and dry for 1 day or more after hydrolysis. This manufacturing method is extremely simple and very excellent as an industrialization process.
[0025]
Hydrates can also be used for the ferric chloride used in the method for producing a positive electrode active material of the present invention. Regarding a salt containing at least one element selected from the group consisting of Li, Na, K, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Zr, Pb, and Sn Is not particularly limited as long as it is water-soluble, but sulfate is particularly preferable. This is because the yield is remarkably improved when sulfate is used. When sulfates, chlorides, nitrates, and phosphates are used as the salts, S, Cl, N, and P are mixed in the products, respectively. With respect to the salt containing the above elements, hydrates can be used, and each of them can be used alone or as a mixture of two or more.
[0026]
Examples of the method for incorporating lithium into the amorphous β-FeOOH of the present invention include electrochemical and chemical methods. Examples of the chemical method include a method in which the active material of the present invention is reacted with a reducing agent typified by n-BuLi or LiI.
[0027]
In the negative electrode material used in the nonaqueous electrolyte secondary battery of the present invention, a material capable of occluding and releasing metallic lithium and / or lithium ions is used. Examples of the substance capable of inserting and extracting lithium ions include graphite, amorphous carbon, oxide, nitride, and lithium alloy. As the nitride, a lithium-containing nitride typified by Li 2.6 Co 0.4 N can be used. As the lithium alloy, for example, lithium and aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, An alloy with tin can be used.
[0028]
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention may be a non-aqueous electrolyte or a solid electrolyte. Solvents used for the non-aqueous electrolyte include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane. And polar solvents such as 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane and methyl acetate, and mixed solvents thereof. The solutes include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiSCN, LiCF 3 CO 2 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2. And salts such as LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 or mixtures thereof.
[0029]
【Example】
The nonaqueous electrolyte secondary battery using the amorphous β-FeOOH of the present invention as a positive electrode active material will be described in more detail below based on examples. However, the present invention is not limited to the following examples.
[0030]
[Example 1]
At 25 ° C., 0.1 mol of FeCl 3 .6H 2 O and 0.0033 mol of Li 2 SO 4 .H 2 O were weighed and dissolved in 1 dm 3 of water. Next, this solution was heated at a slow rate of about 10 ° C./h and kept at 60 ° C. for 2 days. The produced precipitate was filtered, washed well with distilled water, and then dried at 80 ° C. to obtain the positive electrode active material of the present invention.
[0031]
Next, 10 parts by weight of acetylene black as a conductive agent and 10 parts by weight of polyvinylidene fluoride (PVdF) as a binder are added to 80 parts by weight of the positive electrode active material, and N-methyl-2-pyrrolidone as a solvent and a wet type are added. Mixed into a slurry. After applying this slurry on both sides of an aluminum mesh as a current collector, it was pressure-formed at 1 t / cm 2 and dried at 100 ° C. under vacuum to form a positive electrode having a size of 15 mm × 15 mm × 0.5 mm. Produced.
[0032]
Finally, the battery of the present invention (A1) provided with the positive electrode active material of the present invention was manufactured using the positive electrode. A flooded type battery was manufactured using a mixed solvent of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 1 in which lithium metal was dissolved in the negative electrode and 1 mol / l LiClO 4 was dissolved in the non-aqueous electrolyte.
[0033]
[Example 2]
At 25 ° C., 0.1 mol of FeCl 3 .6H 2 O and 0.05 mol of Li 2 SO 4 .H 2 O were weighed and dissolved in 1 dm 3 of water. Next, this solution was heated at a slow rate of about 10 ° C./h and kept at 70 ° C. for 2 days. The produced precipitate was filtered, washed well with distilled water, and then dried at 80 ° C. to obtain the positive electrode active material of the present invention. Next, a battery of the present invention (A2) was produced in the same manner as in Example 1 except that the positive electrode active material was used.
[0034]
[Example 3]
At 25 ° C., 0.1 mol of FeCl 3 .6H 2 O and 0.1 mol of Li 2 SO 4 .H 2 O were weighed and dissolved in 1 dm 3 of water. Next, this solution was heated at a slow rate of about 10 ° C./h and kept at 90 ° C. for 2 days. The produced precipitate was filtered, washed well with distilled water, and then dried at 80 ° C. to obtain the positive electrode active material of the present invention. Next, a battery (A3) of the present invention was produced in the same manner as in Example 1 except that the positive electrode active material was used.
[0035]
[Example 4]
At 25 ° C., 0.1 mol of FeCl 3 .6H 2 O and 0.01 mol of MgSO 4 .7H 2 O were weighed and dissolved in 1 dm 3 of water. Next, this solution was heated at a slow rate of about 10 ° C./h and kept at 60 ° C. for 2 days. The produced precipitate was filtered, washed well with distilled water, and then dried at 80 ° C. to obtain the positive electrode active material of the present invention. Next, a battery (A4) of the present invention was produced in the same manner as in Example 1 except that the positive electrode active material was used.
[Example 5]
At 25 ° C., 0.1 mol of FeCl 3 .6H 2 O and 0.033 mol of Li 2 SO 4 .H 2 O were weighed and dissolved in 1 dm 3 of water. Next, this solution was heated at a slow rate of about 10 ° C./h and kept at 60 ° C. for 2 days. The produced precipitate was filtered, washed well with distilled water, and dried at 80 ° C. to obtain a positive electrode active material.
Next, a battery (A5) of the present invention was produced in the same manner as in Example 1 except that the positive electrode active material was used.
[0036]
[Example 6]
At 25 ° C., 0.1 mol of FeCl 3 .6H 2 O and 0.033 mol of Al 2 (SO 4 ) 3 .8H 2 O were weighed and dissolved in 1 dm 3 of water. Next, this solution was heated at a slow rate of about 10 ° C./h and kept at 80 ° C. for 2 days. The produced precipitate was filtered, washed well with distilled water, and then dried at 80 ° C. to obtain the positive electrode active material of the present invention. Next, a battery (A6) of the present invention was produced in the same manner as in Example 1 except that the positive electrode active material was used.
[0037]
[Example 7]
At 25 ° C., 0.1 mol of FeCl 3 .6H 2 O and 0.04 mol of Al 2 (SO 4 ) 3 .8H 2 O were weighed and dissolved in 1 dm 3 of water. Next, this solution was heated at a slow rate of about 10 ° C./h and kept at 80 ° C. for 2 days. The produced precipitate was filtered, washed well with distilled water, and then dried at 80 ° C. to obtain the positive electrode active material of the present invention. Next, a battery (A7) of the present invention was produced in the same manner as in Example 1 except that the positive electrode active material was used.
[0038]
[Example 8]
At 25 ° C., 0.1 mol of FeCl 3 .6H 2 O and 0.05 mol of Al 2 (SO 4 ) 3 · 8H 2 O were weighed and dissolved in 1 dm 3 of water. Next, this solution was heated at a slow rate of about 10 ° C./h and kept at 85 ° C. for 2 days. The produced precipitate was filtered, washed well with distilled water, and then dried at 80 ° C. to obtain the positive electrode active material of the present invention. Next, a battery of the present invention (A8) was produced in the same manner as in Example 1 except that the positive electrode active material was used.
[0039]
[Comparative Example 1]
At 25 ° C., 0.1 mol of FeCl 3 .6H 2 O and 0.03 mol of CuSO 4 .5H 2 O were weighed and dissolved in 1 dm 3 of water. Next, this solution was heated at a slow rate of about 10 ° C./h and kept at 60 ° C. for 2 days. The produced precipitate was filtered, washed well with distilled water, and dried at 80 ° C. to obtain a positive electrode active material. Next, a comparative battery (B1) was produced in the same manner as in Example 1 except that the positive electrode active material was used.
[0040]
Example 9 0.1 mol of FeCl 3 · 6H 2 O at 25 ℃, Al 2 (SO 4 ) 3 · 8H 2 O and 0.02 mol weighed and dissolved in water 1 dm 3. Next, this solution was heated at a slow rate of about 10 ° C./h and kept at 80 ° C. for 2 days. The produced precipitate was filtered, washed well with distilled water, and dried at 80 ° C. to obtain a positive electrode active material. Next, a battery (A9) of the present invention was produced in the same manner as in Example 1 except that the positive electrode active material was used.
[0041]
Example 10 0.1 mol of FeCl 3 · 6H 2 O at 25 ℃, Al 2 (SO 4 ) 3 · 8H 2 O were 0.025 mole weighed and dissolved in water 1 dm 3. Next, this solution was heated at a slow rate of about 10 ° C./h and kept at 80 ° C. for 2 days. The produced precipitate was filtered, washed well with distilled water, and dried at 80 ° C. to obtain a positive electrode active material. Next, a battery of the present invention (A10) was produced in the same manner as in Example 1 except that the positive electrode active material was used.
[0042]
FIG. 1 shows an X-ray diffraction pattern (CuKα line) of the positive electrode active material used in the battery A1 of the present invention. From the position of the diffraction peak in FIG. 1, it was found that the active material used in the battery A1 of the present invention was β-FeOOH. When the diffraction pattern was observed in detail, the diffraction peak was broad, and the half width of the (110) plane diffraction peak was 0.3 ° or more. Therefore, it was found that the active material used in the battery A1 of the present invention was amorphous β-FeOOH. The active materials used in the batteries A2, A3, A4, A5, A6, A7, A8 , A9, A10 and the comparative battery B1 of the present invention all show the same X-ray diffraction pattern as in FIG. It was found to be β-FeOOH.
[0043]
Table 1 shows the mode diameter of each active material particle determined by the particle size analysis for the batteries A1, A2, A3, A4, A5 of the present invention and the comparative battery B1.
[0044]
[Table 1]
[0045]
From Table 1, it was found that the mode diameters of the active material particles used in the batteries A1, A2, A3, A4, and A5 of the present invention were 9.5 μm or less. Further, from the SEM observation, the active material used in the present invention battery A1 is mostly composed of primary particles, and the active material used in the present invention batteries A2, A3, A4, and A5 is mostly an aggregate of primary particles. It was confirmed that.
[0046]
[Charge / discharge characteristics]
The battery of the present invention and the comparative battery manufactured as described above were subjected to a charge / discharge test of 10 cycles at a constant current. The initial charge and discharge voltages were 4.3 V and 1.6 V, respectively, and the current value was 0.2 mA / cm 2 . The measurement temperature was 25 ° C.
[0047]
FIG. 2 shows the relationship between the discharge capacity retention rate (%) of the batteries A1, A2, A3, A4, A5 and comparative battery B1 of the present invention at the 10th cycle and the mode diameter of the positive electrode active material particles used in each battery. Is shown. Here, the “discharge capacity retention ratio” was defined as the ratio of the discharge capacity at the 10th cycle to the initial discharge capacity, and expressed as a percentage.
[0048]
From FIG. 2, it was found that the batteries A1, A2, A3, A4, and A5 of the present invention had a higher discharge capacity maintenance rate than the comparative battery B1. Furthermore, it has been found that when the mode diameter of the active material particles is 9.5 μm or less, particularly 6.2 μm or less, the discharge capacity retention rate is remarkably increased. Therefore, it was found that the cycle performance of amorphous β-FeOOH is remarkably improved when the mode diameter of the particles is 9.5 μm or less.
[0049]
From the ICP emission spectroscopic analysis, it was confirmed that Al was contained in the active materials used in the batteries A6, A7, A8, A9, and A10 of the present invention. Then, next, the relationship between Al content and a charge / discharge characteristic was investigated. From the particle size analysis, it was found that the mode diameter of the active material particles used in the batteries A6, A7, A8, A9, and A10 of the present invention was 3 to 5 μm.
[0050]
FIG. 3 shows the relationship between the discharge capacity retention rate of the batteries A6, A7, A8, A9, and A10 of the present invention and the Al content in the active material at the 10th cycle. Apparently, it was found that when the Al content in the active material is 0.1 wt% or more, the discharge capacity retention rate is remarkably increased.
[0051]
In the positive electrodes of the batteries of Examples 1 to 10, the ratio of the active material, acetylene black, and PVdF was 80:10:10. Then, the influence of the amount of the conductive agent on the charge / discharge characteristics was examined next. Regarding the batteries A11 and A12 of the present invention, a charge / discharge test was performed at the above ratio of 70:20:10, and compared with the charge / discharge characteristics of the batteries A1 and A2 of the present invention. The charge / discharge conditions are the same as in Example 1. As a result, the discharge capacity retention rates in the tenth cycle of the batteries A11 and A12 of the present invention were the same.
[0052]
On the other hand, when the amount of the conductive agent was 10 wt%, as shown in FIG. 2, the battery A2 of the present invention had a higher discharge capacity maintenance rate than A1. The active material used in the present invention battery A1 is primary particles, and the active material used in A2 is an aggregate. Therefore, it was found that the use of the aggregate as the active material maintains a high discharge capacity even when the amount of the conductive agent is reduced.
[0053]
In this example, amorphous β-FeOOH obtained by hydrolyzing ferric chloride and lithium salt, magnesium salt, copper salt, or aluminum salt together was described. Similarly, amorphous β-FeOOH obtained by hydrolyzing a salt containing K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Zr, Pb, and Sn together. And showed good cycle performance.
[0054]
【Effect of the invention】
As described above, according to the present invention, the mode diameter of the particles is 9.5 μm or less, and the half width Y is 0.3 ° <Y (2θ) in the X-ray diffraction method using CuKα rays. the beta -FeOOH shows the 110) plane diffraction peak nonaqueous electrolyte secondary battery comprising a positive electrode active material had good cycle performance.
[Brief description of the drawings]
FIG. 1 shows an X-ray diffraction pattern of an active material used in a battery A1 of the present invention.
FIG. 2 shows the relationship between the discharge capacity retention ratio at the 10th cycle and the mode diameter of the positive electrode active material particles used in each battery of the present invention batteries A1, A2, A3, A4, A5 and comparative battery B1. Figure.
FIG. 3 is a graph showing the relationship between the discharge capacity retention rate at the 10th cycle of the present invention batteries A6, A7, A8 , A9, and A10 and the Al content in the positive electrode active material particles used in each battery.

Claims (1)

Li、Na、K、Mg、Al、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Zr、Pb、Snからなる群から選ばれた少なくとも一種の元素を0.12wt%以上の含有量で含み、かつ、粒子のモード径が9.5μm以下で、さらにCuKα線を用いたX線回折法で、半値幅Yが0.3°<Y(2θ)の(110)面回折ピークを示すβ−FeOOHを正極活物質に用いたことを特徴とする非水電解質二次電池。 0.12 wt of at least one element selected from the group consisting of Li, Na, K, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Zr, Pb, and Sn (110) in which the FWHM is 0.3 ° <Y (2θ) by X-ray diffractometry using a CuKα ray in which the mode diameter of the particles is 9.5 μm or less. A nonaqueous electrolyte secondary battery using β-FeOOH exhibiting a surface diffraction peak as a positive electrode active material.
JP2001025785A 2000-04-19 2001-02-01 Non-aqueous electrolyte secondary battery and manufacturing method thereof Expired - Fee Related JP4923324B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001025785A JP4923324B2 (en) 2001-02-01 2001-02-01 Non-aqueous electrolyte secondary battery and manufacturing method thereof
PCT/JP2001/003223 WO2001080337A1 (en) 2000-04-19 2001-04-16 Positive electrode active material for secondary cell, method for producing the same and nonaqueous electrolyte secondary cell comprising the same
US10/009,534 US6916578B2 (en) 2000-04-19 2001-04-16 Positive electrode active material for secondary cell, method for producing the same and nonaqueous electrolyte secondary cell comprising the same
CNB018010008A CN1209834C (en) 2000-04-19 2001-04-16 Positive electrode active material for secondary cell, method for producing same and nonaqueous electrolyte secondary cell comprising same
EP01921848A EP1251575A1 (en) 2000-04-19 2001-04-16 Positive electrode active material for secondary cell, method for producing the same and nonaqueous electrolyte secondary cell comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001025785A JP4923324B2 (en) 2001-02-01 2001-02-01 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2002231239A JP2002231239A (en) 2002-08-16
JP2002231239A5 JP2002231239A5 (en) 2008-03-13
JP4923324B2 true JP4923324B2 (en) 2012-04-25

Family

ID=18890710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001025785A Expired - Fee Related JP4923324B2 (en) 2000-04-19 2001-02-01 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4923324B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719622B2 (en) * 1992-03-11 1995-03-06 工業技術院長 Non-aqueous electrolyte secondary battery
JPH0719621B2 (en) * 1992-03-11 1995-03-06 工業技術院長 Non-aqueous electrolyte secondary battery
JPH10233215A (en) * 1997-02-17 1998-09-02 Japan Storage Battery Co Ltd Positive electrode active material for lithium battery

Also Published As

Publication number Publication date
JP2002231239A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
JP5225615B2 (en) Lithium ion storage battery containing TiO2-B as negative electrode active material
JP3222022B2 (en) Method for producing lithium secondary battery and negative electrode active material
JP4186507B2 (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP3460413B2 (en) Positive electrode active material, method for producing the same, and non-aqueous solvent-based secondary battery using the same
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2003208895A (en) Lithium-nickel compound oxide for lithium secondary battery positive electrode active material, manufacturing method thereof and lithium secondary battery using the same
JP3200572B2 (en) Lithium secondary battery
US6916578B2 (en) Positive electrode active material for secondary cell, method for producing the same and nonaqueous electrolyte secondary cell comprising the same
JP6233828B2 (en) Negative electrode for lithium ion battery, lithium ion battery comprising the negative electrode
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP4686871B2 (en) Lithium secondary battery
JP2003242972A (en) Negative active material and non-aqueous electrolyte secondary battery and their manufacturing method
JP2005281128A (en) Method for producing lithium-containing iron oxyhydroxide and nonaqueous electrolyte electrochemical cell using electrode containing lithium-containing iron oxyhydroxide obtained by the same
JP5141356B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2002151065A (en) Negative electrode active material and non-aqueous electrolyte battery
US6716555B2 (en) Positive active material for secondary battery, process for preparation thereof and non-aqueous secondary battery comprising same
JP5034141B2 (en) Positive electrode active material for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery provided with the same
JP4923324B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2000215895A (en) Nonaqueous secondary battery
JP2002151068A (en) Positive electrode active material for secondary battery and its manufacturing method and non aqueous electrolyte secondary battery equipped with it
JP4770069B2 (en) Positive electrode active material for secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same
JP4562824B2 (en) Nonaqueous electrolyte secondary battery
JP2006156009A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte electrochemical cell and nonaqueous electrolyte electrochemical cell equipped with it
JP2003077467A (en) Active material for secondary battery and manufacturing method and non-aqueous electrolyte secondary battery having the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees