JP4770069B2 - Positive electrode active material for secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same - Google Patents
Positive electrode active material for secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same Download PDFInfo
- Publication number
- JP4770069B2 JP4770069B2 JP2001176003A JP2001176003A JP4770069B2 JP 4770069 B2 JP4770069 B2 JP 4770069B2 JP 2001176003 A JP2001176003 A JP 2001176003A JP 2001176003 A JP2001176003 A JP 2001176003A JP 4770069 B2 JP4770069 B2 JP 4770069B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- positive electrode
- electrode active
- secondary battery
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Compounds Of Iron (AREA)
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は二次電池用正極活物質及びその製造方法、並びにそれを備えた非水電解質二次電池に関する。
【0002】
【従来の技術】
近年、携帯用電話、ビデオカメラ等の小型電源および電気自動車、電力平準化用等の大型電源として、高エネルギー密度、高出力密度を有する非水電解質二次電池が大きな注目を受けている。この非水電解質二次電池の正極活物質にはリチウム遷移金属複合酸化物が、負極活物質には黒鉛、非晶質炭素、酸化物、リチウム合金および金属リチウムが提案されている。
【0003】
正極活物質として使われているコバルト酸リチウム(LiCoO2)は高価であり、将来予測される非水電解質二次電池の大量需要に対応するためには、より安価で埋蔵量が豊富な資源から製造される正極活物質の開発が重要である。現在、マンガンやニッケル、鉄を含む酸化物が非水電解質二次電池用正極活物質として精力的に研究されている。これらの中でも、鉄は最も安価で、環境負荷が低い材料であるため、鉄系化合物は次世代非水電解質二次電池用正極活物質として大変魅力的である。
【0004】
非水電解質二次電池用鉄含有正極活物質として、これまで種々の鉄系化合物が研究され、報告されてきたが、中でもFe0.12V2O5.16(J.Power Sources、54、342(1995))や非晶質FeVO4(DENKI KAGAKU、61、224(1993))をはじめとするバナジウム鉄複合酸化物は、従来の鉄系化合物、例えばLiFeO2(J.Electrochem.Soc.、143、2435(1996))、LiFePO4(J.Electrochem.Soc.、144、1609(1997))、β―FeOOH(J.Power Sources,81―82、221(1999))とくらべて高容量であり、次世代正極活物質として注目されている。
【0005】
【発明が解決しようとする課題】
バナジウムは鉄と比べて毒性が高いため、バナジウム鉄複合酸化物を電池活物質として用いる場合、そのバナジウム含有量が低いことが好ましい。二次電池用正極活物質として従来報告されたバナジウム鉄複合酸化物の中でも、非晶質FeVO4は比較的バナジウム含有量が低く、したがって従来のバナジウム鉄複合酸化物の中では環境負荷の低い活物質と言える。しかし、M.Sugawaraらの報告(DENKI KAGAKU、61、224(1993))によると、非晶質FeVO4を非水電解質二次電池の正極活物質として適用した場合、その放電容量は5サイクルで初期の80%まで低下する。つまり、非晶質FeVO4には初期サイクル性能が低いという課題がある。したがって、現在に至るまで、高容量で、良好な充放電サイクル性能を示し、さらにバナジウム含有量が低いバナジウム鉄複合酸化物は見出されていない。
【0006】
本発明者は、かかる課題を解決するために鋭意努力した結果、非晶質FeVO4と同等またはそれ以下のバナジウムを含有する新規バナジウム鉄複合酸化物を合成し、それが二次電池用正極活物質として優れた性能を示すことをはじめて見出した。本発明は、新規正極活物質を用いることにより、安価で環境負荷が低く、さらに良好なサイクル性能を示す二次電池を提供することを目的としている。
【0007】
【課題を解決するための手段】
請求項1にかかる発明は、二次電池用正極活物質に関する発明であって、該活物質がFe、V、Oを含有し、FeとVの含有量をそれぞれX、Y(重量%)とするとき、28≦X≦42、20≦Y≦28であり、さらにCuKα線を用いたX線回折パターンにおいて、充放電前には回折角(2θ)が26°〜29°および29°〜32°の範囲にそれぞれ主回折ピークを示すことを特徴としている。
【0008】
請求項2にかかる発明は、正極と、金属リチウムおよび/またはリチウムイオンを吸蔵・放出することが可能な物質を負極活物質とする負極とを備える非水電解質二次電池において、前記正極に、請求項1に記載の正極活物質を備えることを特徴とする。
【0009】
本発明になる二次電池用正極活物質は、Fe、V、Oを含有し、FeとVの含有量をそれぞれX、Y(重量%)とするとき、28≦X≦42、20≦Y≦28であり、さらに充放電を行った後、CuKα線を用いたX線回折パターンにおいて、少なくとも、回折角(2θ)が18°〜20°および31°〜33°の範囲にそれぞれ回折ピークを示す。
【0010】
本発明の正極活物質は、充放電を行った後、CuKα線を用いたX線回折パターンにおいて、少なくとも、回折角(2θ)が18°〜20°、21°〜23°、25°〜27°および31°〜33°の範囲に回折ピークを示す。
【0011】
本発明の正極活物質の製造方法としては、塩化第二鉄(FeCl3)およびバナジウム塩がともに溶解した水溶液を40℃から100℃の範囲内で加水分解する工程を含むことが好ましい。
【0012】
本発明の正極活物質の製造方法において、バナジウム塩がVOSO4であり、FeCl3とVOSO4とが、0.034<(VOSO4/FeCl3)のモル比で溶解した水溶液を用いることが好ましい。
【0013】
本発明の正極活物質の製造方法において、上記の製造方法によって製造された活物質をさらに不活性雰囲気下で100〜300℃で焼成する工程を含むことが好ましい。
【0016】
【発明の実施の形態】
本発明の正極活物質は、Fe、V、Oを含有し、FeとVの含有量をそれぞれX、Y(重量%)とするとき、28≦X≦42、20≦Y≦28であり、さらにリチウムを含有しない初期状態、つまり充放電処理前では、CuKα線を用いたX線回折パターンにおいて、回折角(2θ)が26°〜29°および29°〜32°の範囲にそれぞれ主回折ピークを示す。なお、ここで、主回折ピークとは、強度が高い方から数えて2番目以内の回折ピークを指している。これらの主回折ピークに加えて、さらに17°〜19°、41°〜43°、51°〜53°、および54°〜56°の範囲に回折ピークを示すのが好ましい。
【0017】
これは、従来の非晶質FeVO4中のFeおよびV含有量がそれぞれ33、30重量%であり、Fe含有量およびV含有量をそれぞれ28≦X≦42、20≦Y≦28とすることにより、本発明の正極活物質は、従来の活物質より環境負荷の低い化合物となるからである。V含有量を20≦Y≦28とすることによって、本発明正極活物質の放電容量がより高くなるからである。本発明正極活物質のFeおよびV含有量をそれぞれ28≦X≦42、20≦Y≦28とする理由は、上記主回折ピークを示し、さらにXおよびYがこれらの値の範囲を越えた活物質が得られなかったからである。
【0018】
本発明の正極活物質を非水電解質二次電池に適用した場合、リチウムの挿入・脱離に伴い活物質の結晶性が低下し、さらにその結晶構造が変化する。この構造変化はX線回折測定で確認することができる。例えば、充放電試験を終えた本発明正極活物質は、CuKα線を用いたX線回折パターンにおいて、少なくとも回折角(2θ)が18°〜20°および31°〜33°、好ましくはこれらのピークに加えてさらに21°〜23°および25°〜27°の範囲に各1本新たな回折ピークを示す。
【0019】
本発明の正極活物質は、Fe、V、Oを含有し、そのFeおよびV含有量は、それぞれ28≦X≦42、20≦Y≦28であり、充放電を行った後、CuKα線を用いたX線回折パターンにおいて、少なくとも回折角(2θ)が18°〜20°および31°〜33°、好ましくはこれらのピークに加えてさらに21°〜23°および25°〜27°の範囲に回折ピークを示す。
【0020】
本発明正極活物質を4.3V(vs.Li/Li+)まで充電し、その正極活物質に関して、回折角(2θ)が18°〜70°の範囲でX線回折測定(CuKα線)を行うと、18°〜20°、21°〜23°、25°〜27°および31°〜33°の範囲のいずれかに最大強度のピークが現れる。好ましくは、これら4つの回折角範囲にそれぞれ主回折ピークが現れる。ここでの主回折ピークとは、強度が高い方から数えて4番目以内の回折ピークを指している。一方、本発明正極活物質を1.6V(vs.Li/Li+)まで放電し、その正極活物質に関してX線回折測定(CuKα線)を行うと、上記回折ピークに加えて、42°〜44°および62°〜64°の範囲に各1本回折ピークが現れる。これら2本の回折ピークの強度は充放電にともなって大きく変化し、その変化は可逆である。
【0021】
本発明の正極活物質は、塩化第二鉄およびバナジウム塩がともに溶解した水溶液を40℃から100℃の範囲内で加水分解することによって得られる。加熱速度は10℃/h程度のゆっくりした速度であることが好ましい。なお、加水分解後に、1日以上の熟成を行った上で、濾過、水洗、乾燥することが好ましい。この製造方法は極めて簡便であるため、工業的な量産プロセスとして大変優れている。
【0022】
また、本発明の正極活物質の製造に用いられる塩化第二鉄として塩化鉄(III)(FeCl3)の無水物、または水和物を用いることができる。さらにバナジウム塩としては、V2O3、V2O4、V2O5、NH4VO3、VOCl3、VOSO4が例示され、同様にしてこれらの無水物または水和物を用いることができる。
【0023】
上記の製造方法において、バナジウム塩としてVOSO4を用いた場合、FeCl3とVOSO4の混合モル比を0.034<(VOSO4/FeCl3)とすることによって、本発明の正極活物質を得ることができる。バナジウム塩のモル量がこの割合を外れて小さくなると、本発明活物質とくらべて放電容量がはるかに低いβ−FeOOHが付随的に形成され、その結果、活物質の放電容量が低下する。
【0024】
本発明の正極活物質には水和水を含んでいても、含まなくてもどちらでも構わないが、水和水を含んでいても少量であることが特に好ましい。これは、含水量が少ないほど、活物質が良好なサイクル性能を示すからである。含水量が少ない本発明の正極活物質を製造する方法として、上記製造方法によって製作された本発明の活物質をさらに不活性雰囲気下100〜300℃で焼成する方法が例示される。
【0025】
本正極活物質を備えた非水電解質二次電池は2.1V〜2.5V(vs.Li/Li+)の範囲内に平均電位を示す。ここで、平均電位とは、P1(下限カットオフ電位)とP2(上限カットオフ電位)との間で充放電試験を行った場合に得られる放電容量の半分の値における電位を意味する。なお、P1とP2の値は、それぞれ1.5≦P1<2.0、4.0<P2≦4.5とする。
【0026】
本発明の非水電解質二次電池で用いられる負極材料としては、金属リチウムおよび/またはリチウムイオンを吸蔵・放出することが可能な物質が用いられる。リチウムイオンを吸蔵・放出することが可能な物質としては、黒鉛、非晶質炭素、酸化物、窒化物およびリチウム合金が例示される。リチウム合金としては、例えばリチウムとアルミニウム、亜鉛、ビスマス、カドミウム、アンチモン、シリコン、鉛、錫との合金を用いることができる。
【0027】
本発明の非水電解質二次電池で用いられる非水電解質としては、非水電解液であっても、ポリマー電解質、固体電解質であっても構わない。非水電解液に用いられる溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1、2−ジメトキシエタン、1、2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の溶媒およびこれらの混合溶媒が例示される。
【0028】
また、非水電解液の溶質としては、LiPF6、LiBF4、LiAsF6、LiClO4、LiSCN、LiCF3CO2、LiCF3SO3、LiN(SO2CF3)2、LiN(SO2CF2CF3)2、LiN(COCF3)2およびLiN(COCF2CF3)2などの塩もしくはこれらの混合物が例示される。
【0029】
【実施例】
以下に、本発明の正極活物質を備えた非水電解質二次電池を実施例に基づいて、さらに詳細に説明する。しかしながら、本発明は、以下の実施例によって限定されるものではない。
【0030】
[実施例1]
25℃で、300mlの水に、0.03モルのFeCl3・6H2Oおよび0.0032モルのVOSO4・2H2Oをともに溶解させた。次に、この水溶液を10℃/h程度のゆっくりした速度で加熱し、80℃で2日間保持した。生成した沈殿物をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、本発明の正極活物質を得た。
【0031】
つぎに、上記正極活物質75重量%に、アセチレンブラック20重量%と、ポリフッ化ビニリデン(PVdF)5重量%とを加え、さらにN―メチル−2ピロリドンを添加し、これらを湿式混合してスラリー状にした。このスラリー状の塗液を、集電体であるアルミニウムメッシュの両面に塗付し、80℃で乾燥させることによって電極体を得た。そして、この電極体を1ton/cm2で加圧成形し、つぎに真空下にて100℃で乾燥することによって、大きさ15mm×15mm×0.5mmの正極を作製した。
【0032】
最後に、上記正極を用いて、本発明の正極活物質を備えた実施例電池(A1)を製作した。負極には金属リチウム、非水電解液には1mol/lのLiClO4が溶解した、エチレンカーボネートとジメチルカーボネートとの体積比率1:1の混合溶媒を用い、フラッデドタイプの電池を製作した。
【0033】
[実施例2]
25℃で、300mlの水に、0.03モルのFeCl3・6H2Oおよび0.0035モルのVOSO4・2H2Oをともに溶解させた。次に、この水溶液を10℃/h程度のゆっくりした速度で加熱し、70℃で2日間保持した。生成した沈殿物をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、本発明の正極活物質を得た。そして、この正極活物質を用いたこと以外は実施例1と同様にして、実施例電池(A2)を製作した。
【0034】
[実施例3]
25℃で、300mlの水に、0.03モルのFeCl3・6H2Oおよび0.015モルのVOSO4・2H2Oをともに溶解させた。次に、この水溶液を10℃/h程度のゆっくりした速度で加熱し、60℃で2日間保持した。生成した沈殿物をろ過し、蒸留水でよく洗浄した後、80℃で乾燥させることにより、本発明の正極活物質を得た。そして、この正極活物質を用いたこと以外は実施例1と同様にして、実施例電池(A3)を製作した。
【0035】
[実施例4]
実施例2で得られた活物質をさらにアルゴン雰囲気下200℃で10h焼成することによって、本発明の正極活物質を得た。そして、この正極活物質を用いたこと以外は実施例1と同様にして、実施例電池(A4)を製作した。
【0036】
[比較例1]
25℃で、300mlの水に、0.03モルのFeCl3・6H2Oおよび0.001モルのVOSO4・2H2Oをともに溶解させた。次に、この水溶液を10℃/h程度のゆっくりした速度で加熱し、80℃で2日間保持した。生成した沈殿物をろ過し、蒸留水で洗浄した後、80℃で乾燥させることにより、本発明にとって比較例となる正極活物質を得た。そして、この正極活物質を用いたこと以外は実施例1と同様にして、比較例電池(B1)を製作した。
【0037】
[正極活物質のX線回折パターン]
図1(a)、(b)に、それぞれ比較例電池B1および実施例電池A2に用いられた正極活物質のX線回折パターン(CuKα線を使用)を示す。図1(a)に示される回折ピークの位置から、比較電池B1に用いられた活物質がβ−FeOOHであることがわかった。一方、図1(b)に示されるように、実施例電池A2に用いられた正極活物質の結晶構造はβ−FeOOHと異なり、回折角約28°および約30°の位置に明瞭な回折ピークを示した。さらに、約18°、42°、52°、および55°にそれぞれ小さな回折ピークが確認された。なお、実施例電池A1、A3、A4に用いられた正極活物質も図1(b)と同様のX線回折パターンを示した。
【0038】
[充放電特性]
上記のようにして製作された実施例電池および比較例電池について、0.2mA/cm2の一定電流で充放電試験を実施した。充電、放電終止電圧をそれぞれ4.3V(vs.Li/Li+)、1.6V(vs.Li/Li+)とした。測定温度を25℃とした。正極活物質の重量は10mg/cm2であった。
【0039】
図2(a)に、実施例電池A2および比較例電池B1に用いられた正極活物質の初期充放電曲線を示す。図2(b)に、実施例電池A2に用いられた正極活物質の2サイクル目における充放電曲線を示す。ここで、記号■は本発明電池A2、記号○は比較例電池B1の充放電曲線を示すものである。
【0040】
また、表1に、実施例電池A1、A2、A3、A4および比較例電池B1について、正極活物質を合成する際に出発原料として用いたVOSO4とFeCl3との混合モル比(VOSO4/FeCl3)、正極活物質中のFeおよびVの含有量、ならびに正極活物質1g当たりの初期放電容量を示す。
【0041】
【表1】
【0042】
図2および表1から、いずれの実施例電池も、比較例電池と比べてはるかに高い放電容量を示すことがわかった。図2(a)から明らかなように、本発明電池A2は、初期放電時に約1.8V(vs.Li/Li+)に電位の平坦部を示した。一方、図2(b)に示すように、本発明電池A2は2サイクル目以降、4.3V〜1.6V(vs.Li/Li+)の電位範囲で、電位平坦部の無い連続的な電位特性を持つ充放電曲線を示した。さらに、本発明電池A2の平均電位は約2.3V(vs.Li/Li+)であり、比較電池B1の約2.0V(vs.Li/Li+)とくらべて貴であった。
【0043】
図3に実施例電池A2、およびA4に用いられた正極活物質の充放電サイクル性能を示す。ここで、実線は実施例電池A4、破線は実施例電池A2の充放電サイクル性能を示すものである。明らかに、実施例電池A4は、実施例電池A2よりも良好なサイクル性能を示すことがわかる。さて、上述したように、実施例電池A4に用いられた正極活物質は、実施例電池A2に用いられた活物質をさらにアルゴン雰囲気下200℃で焼成して得られたものである。焼成後、約14wt%の重量減少が確認された。一方、焼成前後で、活物質のX線回折パターンには変化は確認されなかった。このような事実から、焼成後の重量減少は活物質に含まれる水の脱離によるものと考えられる。したがって、含水量を少なくすることにより、本発明正極活物質の充放電サイクル性能が向上することが明らかとなった。
【0044】
4.3Vまで充電した後の実施例電池A2、および1.6Vまで放電した後の実施例電池A2をそれぞれ解体し、各正極のX線回折測定を行った。充電状態および放電状態での正極のX線回折パターンをそれぞれ図4(a)、(b)に示す。また、実施例電池A2に用いられた活物質の充放電前におけるX線回折パターンを図4(c)に示す。
【0045】
図4(a)、(b)と(c)を比較すると、充放電を行うことによって活物質の回折ピーク強度が著しく低下し、さらに、回折角約19°、22°、26°、32°の位置に新たな回折ピークが出現することがわかる。また、図4(b)から、放電状態では約43°および63°に新たにピークが出現することがわかった。これら約43°および63°の回折ピークの強度は、充放電にしたがって、可逆的に大きく変化した。すなわち、放電するにしたがい強度が大きくなり、充電するにしたがい強度が小さくなった。したがって、本発明活物質を非水電解質二次電池用正極活物質に用いた場合、リチウム挿入・脱離反応によって、その結晶性が低下し、さらに構造も大きく変化することが明らかとなった。
【0046】
なお、ここで、正極は、正極活物質、アセチレンブラック、PVDF、およびアルミニウムメッシュを備える。しかし、アセチレンブラックおよびPVDFの含有量は正極活物質と比べて低く、その回折強度も正極活物質とくらべてはるかに低い。したがって、正極の回折ピークは主に、正極活物質とアルミニウムメッシュに起因する。ところで、図4(a)、(b)において、約38°、45°、65°の位置に観察される強度の大きなピークは、集電体として用いたアルミニウムによるものであり、したがって、その他の角度で観察される回折ピークは主に正極活物質によるものである。
【0047】
4.3Vまで充電した後の比較電池B1、および1.6Vまで放電した後の比較電池B1をそれぞれ解体し、各正極のX線回折測定を行った。充電状態および放電状態における各正極のX線回折パターンは図4(a)、(b)とほぼ同様であった。一方、表1から、実施例電池A2は比較例電池B1とくらべてはるかに高い放電容量を示すことがわかる。ここで、両電池に含まれるFeとVの含有量を比較すると、Fe含有量は比較例電池B1の方が高く、一方、V含有量は実施例電池A2の方が高い。両元素が放電反応に寄与することを考慮すると、実施例電池A2の方が高い放電容量を示す原因は、そのV含有量が高いことに起因すると考えられる。
【0048】
本実施例では、負極材料に金属リチウムを用いた。なお、負極材料にはLi2.6Co0.4Nに代表されるリチウム含有窒化物も用いることができる。さらに、リチウムを含有した本発明正極活物質を用いた場合、負極材料として、黒鉛、非晶質炭素、酸化物、窒化物およびリチウム合金等を用いることができる。
【0049】
また、本発明の活物質にリチウムを含有させる方法としては、電気化学的手法以外にも、化学的手法や固相法が例示される。化学的手法には、本発明活物質をn−BuLiやLiIに代表される還元剤と反応させる方法が例示される。また、固相法としては、リチウム塩、鉄塩、およびバナジウム塩を所定の比率で秤量し、混合した後、その混合物を真空中、または水素を含む還元雰囲気下で焼成する方法が例示される。
【0050】
【発明の効果】
以上述べたように、Fe、V、Oを含有し、FeとVの含有量をそれぞれX、Y(重量%)とするとき、28≦X≦42、20≦Y≦28であり、充放電前にはCuKα線を用いたX線回折法で、回折角2θが26°〜29°および29°〜32°の範囲にそれぞれ主回折ピークを示す正極活物質を備えた二次電池は、高い放電容量と良好な充放電サイクル性能を示す。この正極活物質は、極めて簡便な量産プロセスで製造可能であり、安価で、しかも環境負荷の低いものであることから、その工業的利用価値は極めて高いものであると言える。
【図面の簡単な説明】
【図1】(a)比較例電池B1、および(b)本発明電池A2に用いられた正極活物質のX線回折パターンを示す図。
【図2】本発明電池A2(■)および比較例電池B1(○)の(a)初期、および(b)2サイクル目における充放電特性を示す図。
【図3】本発明電池A2(点線)および本発明電池A4(実線)の各サイクルにおける放電容量を示す図。
【図4】本発明電池A2に用いられた正極活物質の、(a)充電状態、(b)放電状態、および(c)充放電前におけるX線回折パターンを示す図。図中、*印は、充放電によって新たに出現した回折ピークを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material for a secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery including the same.
[0002]
[Prior art]
In recent years, non-aqueous electrolyte secondary batteries having high energy density and high output density have received a great deal of attention as small power sources for mobile phones, video cameras and the like and large power sources for electric vehicles and power leveling. As the positive electrode active material of this nonaqueous electrolyte secondary battery, lithium transition metal composite oxides have been proposed, and as the negative electrode active material, graphite, amorphous carbon, oxide, lithium alloy and lithium metal have been proposed.
[0003]
Lithium cobalt oxide (LiCoO 2 ) used as the positive electrode active material is expensive, and in order to meet the large-scale demand for non-aqueous electrolyte secondary batteries predicted in the future, it is cheaper and has abundant reserves. Development of the positive electrode active material to be manufactured is important. At present, oxides containing manganese, nickel, and iron are actively studied as positive electrode active materials for non-aqueous electrolyte secondary batteries. Among these, since iron is the cheapest material and has a low environmental impact, iron-based compounds are very attractive as positive electrode active materials for next-generation non-aqueous electrolyte secondary batteries.
[0004]
As iron-containing positive electrode active materials for non-aqueous electrolyte secondary batteries, various iron-based compounds have been studied and reported so far. Among them, Fe 0.12 V 2 O 5.16 (J. Power Sources, 54 , 342 (1995)) and amorphous FeVO 4 (DENKI KAGAKA, 61 , 224 (1993)), vanadium iron composite oxides include conventional iron-based compounds such as LiFeO 2 (J. Electrochem. Soc., 143 , 2435 (1996)), LiFePO 4 (J. Electrochem. Soc., 144 , 1609 (1997)), β-FeOOH (J. Power Sources, 81-82 , 221 (1999)). It is attracting attention as a next-generation positive electrode active material.
[0005]
[Problems to be solved by the invention]
Since vanadium has higher toxicity than iron, when the vanadium iron composite oxide is used as a battery active material, the vanadium content is preferably low. Among the vanadium iron composite oxides conventionally reported as the positive electrode active material for the secondary battery, amorphous FeVO 4 has a relatively low vanadium content, and therefore, the conventional vanadium iron composite oxide has a low environmental impact. It can be said that it is a substance. However, M.M. According to a report by Sugawara et al. (DENKI KAGAKA, 61 , 224 (1993)), when amorphous FeVO 4 is applied as a positive electrode active material of a non-aqueous electrolyte secondary battery, its discharge capacity is 80% of the initial value in 5 cycles. To fall. That is, amorphous FeVO 4 has a problem that the initial cycle performance is low. Therefore, to date, no vanadium iron composite oxide having a high capacity, good charge / discharge cycle performance, and a low vanadium content has been found.
[0006]
As a result of diligent efforts to solve such problems, the present inventors have synthesized a novel vanadium iron composite oxide containing vanadium equivalent to or lower than amorphous FeVO 4 , which is used as a positive electrode active material for secondary batteries. It has been found for the first time that it exhibits excellent performance as a substance. An object of the present invention is to provide a secondary battery that is inexpensive, has a low environmental load, and exhibits good cycle performance by using a novel positive electrode active material.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is an invention relating to a positive electrode active material for a secondary battery, wherein the active material contains Fe, V, and O, and the contents of Fe and V are respectively X, Y (wt%) and to time, a 28 ≦ X ≦ 42,20 ≦ Y ≦ 28, still in the X-ray diffraction pattern using CuKα ray, the diffraction angle before charge and discharge (2 [Theta]) is 26 ° ~ 29 ° and 29 ° to 32 Main diffraction peaks are shown in the range of °.
[0008]
The invention according to claim 2 is a nonaqueous electrolyte secondary battery comprising a positive electrode and a negative electrode using a material capable of occluding and releasing metallic lithium and / or lithium ions as a negative electrode active material . The positive electrode active material according to claim 1 is provided.
[0009]
The positive electrode active material for a secondary battery according to the present invention contains Fe, V, and O, and the contents of Fe and V are X and Y (% by weight), respectively, 28 ≦ X ≦ 42, 20 ≦ Y ≦ 28 , and after further charging and discharging, in the X-ray diffraction pattern using CuKα rays, at least diffraction angles (2θ) have diffraction peaks in the ranges of 18 ° to 20 ° and 31 ° to 33 °, respectively. Show.
[0010]
In the X-ray diffraction pattern using CuKα rays , the positive electrode active material of the present invention has at least a diffraction angle (2θ) of 18 ° to 20 °, 21 ° to 23 °, 25 ° to 27 after charge / discharge . A diffraction peak is shown in ° and in the range of 31 ° to 33 ° .
[0011]
The method for producing a positive electrode active material of the present invention preferably includes a step of hydrolyzing an aqueous solution in which both ferric chloride (FeCl 3 ) and a vanadium salt are dissolved within a range of 40 ° C. to 100 ° C.
[0012]
Oite the method for producing a positive electrode active material of the present invention, the vanadium salt is VOSO 4, and FeCl 3 and VOSO 4 is 0.034 <using an aqueous solution prepared by dissolving a molar ratio of (VOSO 4 / FeCl 3) Is preferred .
[0013]
Positive active Oite the manufacturing method of the substance of the present invention preferably includes a step of firing at 100 to 300 ° C. In addition an inert atmosphere an active material produced by the above production method.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The positive electrode active material of the present invention contains Fe, V, and O. When the contents of Fe and V are X and Y (% by weight), respectively, 28 ≦ X ≦ 42, 20 ≦ Y ≦ 28 , Further, in the initial state not containing lithium, that is, before the charge / discharge treatment, in the X-ray diffraction pattern using CuKα ray, the diffraction angle (2θ) is in the range of 26 ° to 29 ° and 29 ° to 32 °, respectively. Indicates. Here, the main diffraction peak refers to a diffraction peak within the second count from the higher intensity. In addition to these main diffraction peaks, it is preferable to show diffraction peaks in the ranges of 17 ° to 19 °, 41 ° to 43 °, 51 ° to 53 °, and 54 ° to 56 °.
[0017]
This is because the Fe and V contents in the conventional amorphous FeVO 4 are 33 and 30% by weight, respectively, and the Fe content and the V content are 28 ≦ X ≦ 42 and 20 ≦ Y ≦ 28 , respectively. This is because the positive electrode active material of the present invention becomes a compound having a lower environmental load than the conventional active material. This is because by setting the V content to 20 ≦ Y ≦ 28 , the discharge capacity of the positive electrode active material of the present invention becomes higher. The reason why the Fe and V contents of the positive electrode active material of the present invention are 28 ≦ X ≦ 42 and 20 ≦ Y ≦ 28 , respectively, is the above-mentioned main diffraction peak, and further, the activity in which X and Y exceed the range of these values. This is because no substance was obtained.
[0018]
When the positive electrode active material of the present invention is applied to a non-aqueous electrolyte secondary battery, the crystallinity of the active material is lowered with the insertion / extraction of lithium, and the crystal structure thereof is changed. This structural change can be confirmed by X-ray diffraction measurement. For example, the positive electrode active material of the present invention that has been subjected to the charge / discharge test has at least a diffraction angle (2θ) of 18 ° to 20 ° and 31 ° to 33 °, preferably these peaks, in an X-ray diffraction pattern using CuKα rays. In addition, one new diffraction peak is shown in the range of 21 ° to 23 ° and 25 ° to 27 °.
[0019]
The cathode active material of the present invention, Fe, V, containing O, the Fe and V contents are respectively 28 ≦ X ≦ 42, 20 ≦ Y ≦ 28, after charge and discharge, the CuKα line In the X-ray diffraction pattern used, at least the diffraction angle (2θ) is in the range of 18 ° to 20 ° and 31 ° to 33 °, preferably 21 ° to 23 ° and 25 ° to 27 ° in addition to these peaks. A diffraction peak is shown.
[0020]
The positive electrode active material of the present invention is charged to 4.3 V (vs. Li / Li + ), and the positive electrode active material is subjected to X-ray diffraction measurement (CuKα ray) at a diffraction angle (2θ) of 18 ° to 70 °. When performed, a peak of maximum intensity appears in any of the ranges of 18 ° to 20 °, 21 ° to 23 °, 25 ° to 27 °, and 31 ° to 33 °. Preferably, a main diffraction peak appears in each of these four diffraction angle ranges. The main diffraction peak here refers to a diffraction peak within the fourth from the highest intensity. On the other hand, when the positive electrode active material of the present invention was discharged to 1.6 V (vs. Li / Li + ) and X-ray diffraction measurement (CuKα ray) was performed on the positive electrode active material, in addition to the diffraction peak, 42 ° to One diffraction peak appears in each of 44 ° and 62 ° to 64 °. The intensity of these two diffraction peaks changes greatly with charge / discharge, and the change is reversible.
[0021]
The positive electrode active material of the present invention can be obtained by hydrolyzing an aqueous solution in which both ferric chloride and a vanadium salt are dissolved within a range of 40 ° C to 100 ° C. The heating rate is preferably a slow rate of about 10 ° C./h. In addition, it is preferable to filter, wash with water, and dry after aging for 1 day or more after hydrolysis. Since this manufacturing method is very simple, it is very excellent as an industrial mass production process.
[0022]
It is also possible to use anhydrides or hydrates, iron chloride as ferric chloride used in preparation of the positive electrode active material of the present invention (III) (FeCl 3). Further examples of vanadium salts include V 2 O 3 , V 2 O 4 , V 2 O 5 , NH 4 VO 3 , VOCl 3 , and VOSO 4 , and these anhydrides or hydrates may be used in the same manner. it can.
[0023]
In the above production method, when VOSO 4 is used as the vanadium salt, the mixture molar ratio of FeCl 3 and VOSO 4 is set to 0.034 <(VOSO 4 / FeCl 3 ), thereby obtaining the positive electrode active material of the present invention. be able to. When the molar amount of the vanadium salt is smaller than this ratio, β-FeOOH having a discharge capacity much lower than that of the active material of the present invention is incidentally formed, and as a result, the discharge capacity of the active material is lowered.
[0024]
The positive electrode active material of the present invention may or may not contain hydration water, but it is particularly preferable that the amount is small even if it contains hydration water. This is because the active material shows better cycle performance as the water content is lower. Examples of a method for producing the positive electrode active material of the present invention having a low water content include a method of firing the active material of the present invention produced by the above production method at 100 to 300 ° C. in an inert atmosphere.
[0025]
The nonaqueous electrolyte secondary battery provided with the present positive electrode active material exhibits an average potential within a range of 2.1 V to 2.5 V (vs. Li / Li + ). Here, the average potential means a potential at half the value of the discharge capacity obtained when a charge / discharge test is performed between P1 (lower limit cutoff potential) and P2 (upper limit cutoff potential). Note that the values of P1 and P2 are 1.5 ≦ P1 <2.0 and 4.0 <P2 ≦ 4.5, respectively.
[0026]
As the negative electrode material used in the nonaqueous electrolyte secondary battery of the present invention, a material capable of inserting and extracting metallic lithium and / or lithium ions is used. Examples of the substance capable of inserting and extracting lithium ions include graphite, amorphous carbon, oxide, nitride, and lithium alloy. As the lithium alloy, for example, an alloy of lithium and aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, and tin can be used.
[0027]
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention may be a non-aqueous electrolyte, a polymer electrolyte, or a solid electrolyte. Solvents used for the non-aqueous electrolyte include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane. , 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate and the like, and mixed solvents thereof.
[0028]
Moreover, as a solute of the nonaqueous electrolytic solution, LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiSCN, LiCF 3 CO 2 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2). Illustrative are salts such as CF 3 ) 2 , LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 or mixtures thereof.
[0029]
【Example】
Below, the nonaqueous electrolyte secondary battery provided with the positive electrode active material of the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples.
[0030]
[Example 1]
At 25 ° C., 0.03 mol of FeCl 3 .6H 2 O and 0.0032 mol of VOSO 4 .2H 2 O were dissolved together in 300 ml of water. Next, this aqueous solution was heated at a slow rate of about 10 ° C./h and held at 80 ° C. for 2 days. The produced precipitate was filtered, washed thoroughly with distilled water, and then dried at 80 ° C. to obtain the positive electrode active material of the present invention.
[0031]
Next, 20% by weight of acetylene black and 5% by weight of polyvinylidene fluoride (PVdF) are added to 75% by weight of the positive electrode active material, N-methyl-2-pyrrolidone is further added, and these are wet mixed to form a slurry. I made it. This slurry-like coating liquid was applied to both surfaces of an aluminum mesh as a current collector and dried at 80 ° C. to obtain an electrode body. And this electrode body was press-molded at 1 ton / cm 2 , and then dried at 100 ° C. under vacuum to produce a positive electrode having a size of 15 mm × 15 mm × 0.5 mm.
[0032]
Finally, an example battery (A1) including the positive electrode active material of the present invention was manufactured using the positive electrode. A flooded type battery was manufactured using a mixed solvent of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 1 in which metallic lithium was dissolved in the negative electrode and 1 mol / l LiClO 4 was dissolved in the non-aqueous electrolyte.
[0033]
[Example 2]
At 25 ° C., 0.03 mol of FeCl 3 .6H 2 O and 0.0035 mol of VOSO 4 .2H 2 O were dissolved together in 300 ml of water. Next, this aqueous solution was heated at a slow rate of about 10 ° C./h and held at 70 ° C. for 2 days. The produced precipitate was filtered, washed thoroughly with distilled water, and then dried at 80 ° C. to obtain the positive electrode active material of the present invention. And Example battery (A2) was manufactured like Example 1 except having used this positive electrode active material.
[0034]
[Example 3]
At 25 ° C., 0.03 mol of FeCl 3 .6H 2 O and 0.015 mol of VOSO 4 .2H 2 O were dissolved together in 300 ml of water. Next, this aqueous solution was heated at a slow rate of about 10 ° C./h and held at 60 ° C. for 2 days. The produced precipitate was filtered, washed thoroughly with distilled water, and then dried at 80 ° C. to obtain the positive electrode active material of the present invention. And Example battery (A3) was manufactured like Example 1 except having used this positive electrode active material.
[0035]
[Example 4]
The active material obtained in Example 2 was further baked at 200 ° C. for 10 h in an argon atmosphere, to obtain the positive electrode active material of the present invention. And Example battery (A4) was manufactured like Example 1 except having used this positive electrode active material.
[0036]
[Comparative Example 1]
At 25 ° C., 0.03 mol of FeCl 3 .6H 2 O and 0.001 mol of VOSO 4 .2H 2 O were dissolved together in 300 ml of water. Next, this aqueous solution was heated at a slow rate of about 10 ° C./h and held at 80 ° C. for 2 days. The produced precipitate was filtered, washed with distilled water, and then dried at 80 ° C. to obtain a positive electrode active material as a comparative example for the present invention. Then, a comparative battery (B1) was manufactured in the same manner as in Example 1 except that this positive electrode active material was used.
[0037]
[X-ray diffraction pattern of positive electrode active material]
FIGS. 1A and 1B show X-ray diffraction patterns (using CuKα rays) of the positive electrode active materials used in Comparative Battery B1 and Example Battery A2, respectively. From the position of the diffraction peak shown in FIG. 1A, it was found that the active material used in the comparative battery B1 was β-FeOOH. On the other hand, as shown in FIG. 1B, the crystal structure of the positive electrode active material used in Example Battery A2 is different from β-FeOOH, and clear diffraction peaks at diffraction angles of about 28 ° and about 30 °. showed that. Furthermore, small diffraction peaks were confirmed at about 18 °, 42 °, 52 °, and 55 °, respectively. In addition, the positive electrode active material used for Example battery A1, A3, A4 also showed the same X-ray-diffraction pattern as FIG.1 (b).
[0038]
[Charge / discharge characteristics]
About the Example battery and the comparative example battery manufactured as described above, a charge / discharge test was performed at a constant current of 0.2 mA / cm 2 . The charge and discharge end voltages were 4.3 V (vs. Li / Li + ) and 1.6 V (vs. Li / Li + ), respectively. The measurement temperature was 25 ° C. The weight of the positive electrode active material was 10 mg / cm 2 .
[0039]
FIG. 2A shows initial charge / discharge curves of the positive electrode active material used in Example Battery A2 and Comparative Example Battery B1. In FIG.2 (b), the charging / discharging curve in the 2nd cycle of the positive electrode active material used for Example battery A2 is shown. Here, the symbol ■ indicates the charging / discharging curve of the present invention battery A2, and the symbol O indicates the comparative battery B1.
[0040]
Table 1 shows a mixture molar ratio of VOSO 4 and FeCl 3 (VOSO 4 / V) used as starting materials when synthesizing the positive electrode active material for the example batteries A1, A2, A3, A4 and the comparative example battery B1. FeCl 3 ), Fe and V contents in the positive electrode active material, and initial discharge capacity per 1 g of the positive electrode active material are shown.
[0041]
[Table 1]
[0042]
From FIG. 2 and Table 1, it was found that any of the battery examples had a much higher discharge capacity than the comparative battery. As is clear from FIG. 2A, the battery A2 of the present invention showed a flat portion of the potential at about 1.8 V (vs. Li / Li + ) during initial discharge. On the other hand, as shown in FIG. 2 (b), the battery A2 of the present invention has a potential range of 4.3 V to 1.6 V (vs. Li / Li + ) in the second cycle and thereafter, and has no potential flat portion. A charge / discharge curve with potential characteristics is shown. Further, the average potential of the battery A2 of the present invention is about 2.3 V (vs. Li / Li + ), which is noble compared with about 2.0 V (vs. Li / Li + ) of the comparative battery B1.
[0043]
FIG. 3 shows the charge / discharge cycle performance of the positive electrode active material used in Examples Batteries A2 and A4. Here, the solid line shows the charge / discharge cycle performance of Example Battery A4 and the broken line shows Example Battery A2. Obviously, Example Battery A4 shows better cycle performance than Example Battery A2. As described above, the positive electrode active material used in Example Battery A4 is obtained by further firing the active material used in Example Battery A2 at 200 ° C. in an argon atmosphere. After firing, a weight loss of about 14 wt% was confirmed. On the other hand, no change was observed in the X-ray diffraction pattern of the active material before and after firing. From these facts, it is considered that the weight reduction after firing is due to desorption of water contained in the active material. Therefore, it became clear that the charge / discharge cycle performance of the positive electrode active material of the present invention is improved by reducing the water content.
[0044]
Example battery A2 after charging to 4.3V and Example battery A2 after discharging to 1.6V were disassembled, and X-ray diffraction measurement was performed on each positive electrode. FIGS. 4A and 4B show the X-ray diffraction patterns of the positive electrode in the charged state and in the discharged state, respectively. Moreover, the X-ray-diffraction pattern before charging / discharging of the active material used for Example battery A2 is shown in FIG.4 (c).
[0045]
Comparing FIGS. 4A, 4B and 4C, the diffraction peak intensity of the active material is remarkably lowered by charging and discharging, and the diffraction angles are about 19 °, 22 °, 26 ° and 32 °. It can be seen that a new diffraction peak appears at the position of. Further, FIG. 4B shows that new peaks appear at about 43 ° and 63 ° in the discharge state. The intensity of the diffraction peaks at about 43 ° and 63 ° changed reversibly greatly according to charge and discharge. That is, the strength increased as the battery was discharged, and the strength decreased as the battery was charged. Therefore, when the active material of the present invention is used as a positive electrode active material for a non-aqueous electrolyte secondary battery, it has been clarified that the crystallinity is lowered and the structure is greatly changed by the lithium insertion / extraction reaction.
[0046]
Here, the positive electrode includes a positive electrode active material, acetylene black, PVDF, and an aluminum mesh. However, the content of acetylene black and PVDF is lower than that of the positive electrode active material, and the diffraction intensity is much lower than that of the positive electrode active material. Therefore, the diffraction peak of the positive electrode is mainly attributed to the positive electrode active material and the aluminum mesh. By the way, in FIGS. 4A and 4B, the large intensity peaks observed at positions of about 38 °, 45 °, and 65 ° are attributed to the aluminum used as the current collector. The diffraction peak observed at an angle is mainly due to the positive electrode active material.
[0047]
The comparative battery B1 after charging to 4.3V and the comparative battery B1 after discharging to 1.6V were disassembled, and X-ray diffraction measurement of each positive electrode was performed. The X-ray diffraction patterns of the positive electrodes in the charged state and the discharged state were almost the same as those shown in FIGS. 4 (a) and 4 (b). On the other hand, it can be seen from Table 1 that Example Battery A2 has a much higher discharge capacity than Comparative Battery B1. Here, when the contents of Fe and V contained in both batteries are compared, the Fe content is higher in Comparative Battery B1, while the V content is higher in Example Battery A2. Considering that both elements contribute to the discharge reaction, the cause of the higher discharge capacity of Example Battery A2 is considered to be due to its higher V content.
[0048]
In this example, metallic lithium was used as the negative electrode material. Note that a lithium-containing nitride typified by Li 2.6 Co 0.4 N can also be used as the negative electrode material. Furthermore, when the positive electrode active material of the present invention containing lithium is used, graphite, amorphous carbon, oxide, nitride, lithium alloy, or the like can be used as the negative electrode material.
[0049]
Moreover, as a method of making the active material of this invention contain lithium, a chemical method and a solid-phase method are illustrated other than an electrochemical method. Examples of the chemical method include a method in which the active material of the present invention is reacted with a reducing agent typified by n-BuLi or LiI. Examples of the solid phase method include a method in which lithium salt, iron salt, and vanadium salt are weighed in a predetermined ratio and mixed, and then the mixture is baked in vacuum or in a reducing atmosphere containing hydrogen. .
[0050]
【The invention's effect】
As described above, when Fe, V, and O are contained, and the contents of Fe and V are X and Y (% by weight), respectively, 28 ≦ X ≦ 42 and 20 ≦ Y ≦ 28 , and charging / discharging Previously, a secondary battery provided with a positive electrode active material having a main diffraction peak in the range of diffraction angles 2θ of 26 ° to 29 ° and 29 ° to 32 ° by the X-ray diffraction method using CuKα rays is high. Shows discharge capacity and good charge / discharge cycle performance. This positive electrode active material can be manufactured by a very simple mass production process, is inexpensive, and has a low environmental load, and thus can be said to have an extremely high industrial utility value.
[Brief description of the drawings]
FIG. 1 is a diagram showing an X-ray diffraction pattern of a positive electrode active material used in (a) Comparative Example Battery B1 and (b) Invention Battery A2.
FIG. 2 is a graph showing charge / discharge characteristics of the present invention battery A2 (■) and comparative battery B1 (◯) at (a) initial stage and (b) second cycle.
FIG. 3 is a diagram showing discharge capacities in each cycle of the present invention battery A2 (dotted line) and the present invention battery A4 (solid line).
FIG. 4 is a diagram showing an X-ray diffraction pattern of (a) a charged state, (b) a discharged state, and (c) before charge / discharge of a positive electrode active material used in the battery A2 of the present invention. In the figure, * indicates a diffraction peak that newly appears due to charge / discharge.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001176003A JP4770069B2 (en) | 2000-06-13 | 2001-06-11 | Positive electrode active material for secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000177431 | 2000-06-13 | ||
JP2000177431 | 2000-06-13 | ||
JP2001-111906 | 2001-04-10 | ||
JP2001111906 | 2001-04-10 | ||
JP2001111906 | 2001-04-10 | ||
JP2000-177431 | 2001-04-10 | ||
JP2001176003A JP4770069B2 (en) | 2000-06-13 | 2001-06-11 | Positive electrode active material for secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002373652A JP2002373652A (en) | 2002-12-26 |
JP2002373652A5 JP2002373652A5 (en) | 2008-07-17 |
JP4770069B2 true JP4770069B2 (en) | 2011-09-07 |
Family
ID=27343712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001176003A Expired - Fee Related JP4770069B2 (en) | 2000-06-13 | 2001-06-11 | Positive electrode active material for secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4770069B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111900389B (en) * | 2020-05-26 | 2022-06-14 | 北京理工大学 | Fe2VO4Ordered mesoporous carbon composite material and application thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000124085A (en) * | 1998-10-20 | 2000-04-28 | Fuji Electric Co Ltd | Electrode material for energy-storing element and manufacture thereof |
-
2001
- 2001-06-11 JP JP2001176003A patent/JP4770069B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002373652A (en) | 2002-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3502118B2 (en) | Method for producing lithium secondary battery and negative electrode thereof | |
JP3918311B2 (en) | Negative electrode material and non-aqueous electrolyte secondary battery using the same | |
JP2003034534A (en) | Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same | |
CN110649232B (en) | Positive electrode active material for lithium ion secondary battery | |
JP2008091236A (en) | Nonaqueous electrolyte secondary battery | |
JP3819940B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH10162823A (en) | Non-aqueous secondary battery | |
JP3200572B2 (en) | Lithium secondary battery | |
JP2003017056A (en) | Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same | |
JP3667468B2 (en) | Nonaqueous electrolyte lithium secondary battery and method for producing positive electrode material thereof | |
JP2002042812A (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery using the same | |
WO2013125798A1 (en) | Method for manufacturing cathode active material for lithium secondary battery | |
JP3462764B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002321920A (en) | Element substitution lithium manganese compound oxide granulated composition, its manufacturing method and its utilization for secondary battery | |
JP3625629B2 (en) | Nickel oxide cathode material manufacturing method and battery using nickel oxide manufactured by the method | |
JP2000156224A (en) | Nonaqueous electrolyte battery | |
US6716555B2 (en) | Positive active material for secondary battery, process for preparation thereof and non-aqueous secondary battery comprising same | |
KR101602419B1 (en) | Cathode active material cathode comprising the same and lithium battery using the cathode | |
JP3625630B2 (en) | Method for producing cobalt oxide positive electrode material, and battery using cobalt oxide positive electrode material produced by the method | |
JP4770069B2 (en) | Positive electrode active material for secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same | |
JPH10125309A (en) | Nonaqueous secondary battery | |
JPH05174823A (en) | Lithium secondary battery and its manufacture | |
JP4697504B2 (en) | Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and method for producing the same | |
JP5034141B2 (en) | Positive electrode active material for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery provided with the same | |
JP3639462B2 (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080529 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080529 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100507 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110408 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110606 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140701 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |