JP4913866B2 - Sensitive sensor and manufacturing method thereof - Google Patents
Sensitive sensor and manufacturing method thereof Download PDFInfo
- Publication number
- JP4913866B2 JP4913866B2 JP2009509370A JP2009509370A JP4913866B2 JP 4913866 B2 JP4913866 B2 JP 4913866B2 JP 2009509370 A JP2009509370 A JP 2009509370A JP 2009509370 A JP2009509370 A JP 2009509370A JP 4913866 B2 JP4913866 B2 JP 4913866B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- pair
- sensitive
- counter electrodes
- film counter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000010409 thin film Substances 0.000 claims description 357
- 239000010408 film Substances 0.000 claims description 152
- 239000007788 liquid Substances 0.000 claims description 38
- 239000000758 substrate Substances 0.000 claims description 36
- 238000000605 extraction Methods 0.000 claims description 26
- 238000004544 sputter deposition Methods 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 22
- 230000002093 peripheral effect Effects 0.000 description 11
- 229910052697 platinum Inorganic materials 0.000 description 11
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 229910052737 gold Inorganic materials 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Description
本発明は、ガスセンサ等のように特定の物質に感応する感応膜を備えた感応センサ及びその製造方法に関するものである。 The present invention relates to a sensitive sensor having a sensitive film sensitive to a specific substance such as a gas sensor and a method for manufacturing the same.
特開平5−281177号公報(特許文献1)には、絶縁性基体上に相互間に間隔をあけて対向する一対の薄膜対向電極と、該一対の薄膜対向電極に一端が接続された一対の薄膜配線パターンとを形成した感応センサが示されている。一対の薄膜対向電極は、細長い基本電極部と、該基本電極部から延びる1以上の直線状電極部とをそれぞれ有している。そして一方の薄膜対向電極の1以上の直線状電極部と他方の薄膜状対向電極の1以上の直線状電極とが等しい間隔をあけて交互に並ぶように、一対の薄膜対向電極が形成されている。この種の感応センサでは、一対の薄膜対向電極の間の抵抗値を測定してガス濃度や湿度を測定する。 In Japanese Patent Laid-Open No. 5-281177 (Patent Document 1), a pair of thin film counter electrodes opposed to each other with an interval between them on an insulating substrate, and a pair of one end connected to the pair of thin film counter electrodes A sensitive sensor formed with a thin film wiring pattern is shown. Each of the pair of thin film counter electrodes has an elongated basic electrode portion and one or more linear electrode portions extending from the basic electrode portion. A pair of thin film counter electrodes are formed such that one or more linear electrode portions of one thin film counter electrode and one or more linear electrodes of the other thin film counter electrode are alternately arranged at equal intervals. Yes. In this type of sensitive sensor, a gas concentration and humidity are measured by measuring a resistance value between a pair of thin film counter electrodes.
特開2006−47276号公報(特許文献2)には、デスペンサを用いて、一対の薄膜対向電極に跨るように感応液を滴下して形成した未硬化感応膜を加熱硬化させて感応センサの感応膜を形成する技術が示されている。
しかしながら、特許文献1に示すような感応センサに特許文献2に示す技術を適用して、一対の薄膜対向電極に跨るように感応液をデスペンサを用いて滴下すると、感応液は同心円的に広がって、円形形状の未硬化感応膜が形成される。そのため、一対の薄膜対向電極の輪郭形状と未硬化感応膜の輪郭形状との相違から、一対の薄膜対向電極の一部が未硬化感応膜の外にはみ出ることになる。そのため、一対の薄膜対向電極の占有面積を大きくしなければならなかった。また、このようにして形成した感応膜では、厚み寸法にばらつきが生じて、感応センサを量産した場合、感応センサの検出精度にばらつきが生じるという問題があった。 However, when the technique shown in Patent Document 2 is applied to a sensitive sensor as shown in Patent Document 1 and the sensitive liquid is dropped using a dispenser so as to straddle the pair of thin film counter electrodes, the sensitive liquid spreads concentrically. A circular uncured sensitive film is formed. Therefore, due to the difference between the contour shape of the pair of thin film counter electrodes and the contour shape of the uncured sensitive film, a part of the pair of thin film counter electrodes protrudes from the uncured sensitive film. Therefore, the area occupied by the pair of thin film counter electrodes has to be increased. Further, the sensitive film thus formed has a problem in that the thickness dimension varies, and when the sensitive sensor is mass-produced, the detection accuracy of the sensitive sensor varies.
本発明の目的は、一対の薄膜対向電極が占める占有部分の輪郭形状と感応膜が占める占有部分の輪郭形状との差を少なくして、しかも感応センサの検出精度にばらつきが生じるのを防ぐことができる感応センサを提供することにある。 An object of the present invention is to reduce the difference between the contour shape of the occupied portion occupied by the pair of thin film counter electrodes and the contour shape of the occupied portion occupied by the sensitive film, and to prevent variation in detection accuracy of the sensitive sensor. It is to provide a sensitive sensor capable of
本発明の他目的は、感応膜の寸法及び形状をできるだけ正確に形成して、感応精度にばらつきが生じるのを防ぐことができる感応センサ及びその製造方法を提供することにある。 Another object of the present invention is to provide a sensitive sensor and a method for manufacturing the same, which can form the dimension and shape of the sensitive film as accurately as possible to prevent variation in the sensitive accuracy.
本願発明が改良の対象とする感応センサは、絶縁性基体と、該絶縁性基体上に形成され相互間に間隔をあけて対向する一対の薄膜対向電極と、該一対の薄膜対向電極に一端が接続された一対の薄膜配線パターンと、一対の対向電極に跨って形成された感応膜とを有している。そして、感応膜が一対の薄膜対向電極に跨るように感応液を滴下して形成した未硬化感応膜を硬化させて形成されている。ここで感応液は、滴下後に同心円的に広がって平面輪郭形状が円形形状の未硬化感応膜を形成する。また硬化とは、溶媒を加熱または自然放置により揮発させて生じる硬化及び焼成による硬化を含むものである。本発明では、一対の薄膜対向電極の一方の薄膜対向電極は、仮想環状形に沿うように形成された弧状を呈している。そして、一対の薄膜対向電極の他方の薄膜対向電極は、一方の薄膜対向電極に囲まれて仮想環状形の中心部に位置している。ここでいう仮想環状形は、仮想円、仮想楕円、円形に近似した仮想多角形等を含むものである。また、ここでいう弧状は、曲線だけでなく、1以上の角部を有する直線が組み合わされた弧も含むものである。 The sensitive sensor to be improved by the present invention includes an insulating substrate, a pair of thin film counter electrodes formed on the insulating substrate and opposed to each other with a space therebetween, and one end of the pair of thin film counter electrodes. It has a pair of connected thin film wiring patterns and a sensitive film formed across a pair of counter electrodes. And the uncured sensitive film | membrane formed by dripping the sensitive liquid so that a sensitive film may straddle a pair of thin film counter electrode is hardened | cured and formed. Here, the sensitive liquid spreads concentrically after dropping to form an uncured sensitive film having a circular planar contour shape. Curing includes curing caused by volatilizing a solvent by heating or natural standing and curing by baking. In the present invention, one thin film counter electrode of the pair of thin film counter electrodes has an arc shape formed so as to follow a virtual annular shape. Then, the other thin film counter electrode of the pair of thin film counter electrodes is surrounded by one thin film counter electrode and is located at the center of the virtual annular shape. The virtual annular shape here includes a virtual circle, a virtual ellipse, a virtual polygon approximate to a circle, and the like. Moreover, the arc shape here includes not only a curve but also an arc in which straight lines having one or more corners are combined.
感応液は、滴下後に同心円的に広がって平面輪郭形状が円形形状になる。そのため、本発明のように、一対の薄膜対向電極の一方の薄膜対向電極が仮想環状形に沿うように形成された弧状を呈していると、一方の薄膜対向電極の占有部分の輪郭形状と、感応膜が占める占有部分の輪郭形状とが、共に環状形に近い形になるため、両者の大きさに大きな差は生じない。しかしながら、前述の未硬化感応膜は、中心部が盛り上がった薄いドーム型形状を有しており、未硬化感応膜の中心部では、厚み寸法にバラツキが生じやすい。そのため、未硬化感応膜を硬化した感応膜の中心部における感応膜部分も利用すると、感応センサの精度にばらつきが生じてしまう。そこで、本発明では、他方の薄膜対向電極を一方の薄膜対向電極に囲ませて仮想環状形の中心部に位置させた。このようにすれば、一方の薄膜対向電極と他方の薄膜対向電極との間に位置する感応膜の部分(周縁部分)は、他方の薄膜対向電極の上に位置する感応膜の部分(中央部分)よりも、厚み寸法のばらつきが小さい。そして他方の薄膜対向電極上に位置する感応膜の部分は、実質的に計測には寄与しない。そのため、本発明のように構成すると、感応センサの精度にばらつきが生じるのを抑制することができる。 The sensitive liquid spreads concentrically after dropping, and the planar contour shape becomes a circular shape. Therefore, as in the present invention, when one thin film counter electrode of the pair of thin film counter electrodes has an arc shape formed along the virtual annular shape, the contour shape of the occupied portion of one thin film counter electrode, Since the contour shape of the occupying portion occupied by the sensitive film is close to an annular shape, there is no significant difference between the sizes of the two. However, the above-mentioned uncured sensitive film has a thin dome shape with a raised central part, and the thickness dimension tends to vary at the central part of the uncured sensitive film. Therefore, if the sensitive film portion at the center of the sensitive film obtained by curing the uncured sensitive film is also used, the accuracy of the sensitive sensor varies. Therefore, in the present invention, the other thin film counter electrode is surrounded by one thin film counter electrode and positioned at the center of the virtual annular shape. In this way, the sensitive film portion (peripheral portion) positioned between one thin film counter electrode and the other thin film counter electrode is the sensitive film portion (center portion) positioned on the other thin film counter electrode. ) Variation in thickness dimension is smaller. And the part of the sensitive film | membrane located on the other thin film counter electrode does not contribute to measurement substantially. Therefore, when configured as in the present invention, variations in the accuracy of the sensitive sensor can be suppressed.
絶縁性基体の内部には、感応膜を加熱するためのヒータを内蔵することができる。このようにヒータにより感応膜を加熱すれば、感応膜に必要以上に水分やガスが付着するのを防止することができ、感応センサの精度を高めることができる。この場合、他方の薄膜対向電極の中央には、他方の薄膜対向電極を貫通する孔部を形成するのが好ましい。他方の薄膜対向電極及び孔部の平面輪郭形状は、仮想環状形と同心の環状形状を有している。このようにすれば、ヒータの熱による絶縁性基体の上下方向の歪みを抑えることができ、絶縁性基体やヒータの損傷を防止できる。 A heater for heating the sensitive film can be built in the insulating substrate. When the sensitive film is heated by the heater in this way, it is possible to prevent moisture and gas from adhering to the sensitive film more than necessary, and the accuracy of the sensitive sensor can be increased. In this case, it is preferable to form a hole penetrating the other thin film counter electrode in the center of the other thin film counter electrode. The planar contour shape of the other thin film counter electrode and the hole has an annular shape concentric with the virtual annular shape. In this way, the vertical distortion of the insulating base due to the heat of the heater can be suppressed, and damage to the insulating base and the heater can be prevented.
一対の薄膜対向電極の一方の薄膜対向電極と他方の薄膜対向電極との間の寸法L1と、一対の薄膜配線パターンの他方の薄膜配線パターンと一方の薄膜対向電極との間の寸法L2とを等しくするのが好ましい。このようにすれば、一方の薄膜対向電極と他方の薄膜対向電極との間に位置する感応膜の部分が同じ寸法になり、感応センサの精度にばらつきが生じるのをさらに抑制することができる。 A dimension L1 between one thin film counter electrode of the pair of thin film counter electrodes and the other thin film counter electrode, and a dimension L2 between the other thin film wiring pattern of the pair of thin film counter electrodes and the one thin film counter electrode. Preferably they are equal. In this way, the sensitive film portion positioned between one thin film counter electrode and the other thin film counter electrode has the same size, and it is possible to further suppress variation in the accuracy of the sensitive sensor.
仮想環状形を仮想円とし、他方の薄膜対向電極及び孔部の平面輪郭形状を仮想円と同心の相似形状を有するようにすることができる。この場合、孔部の半径R1は、他方の薄膜対向電極の半径R2の30〜90%とするのが好ましい。30%を下回ると、絶縁性基体の上下方向の歪みを十分に抑えることができない。また90%を上回ると、感応膜と他方の薄膜対向電極との密着性が低下する上、感応膜の抵抗値にばらつきが生じるおそれがある。 The virtual annular shape may be a virtual circle, and the other thin film counter electrode and the planar contour shape of the hole may have a similar shape concentric with the virtual circle. In this case, the radius R1 of the hole is preferably 30 to 90% of the radius R2 of the other thin film counter electrode. If it is less than 30%, the vertical distortion of the insulating substrate cannot be sufficiently suppressed. On the other hand, if it exceeds 90%, the adhesiveness between the sensitive film and the other thin film counter electrode is lowered, and the resistance value of the sensitive film may vary.
感応膜は、例えば、ガスを吸収すると抵抗値が変化するガス感応膜とすることができる。 The sensitive film can be, for example, a gas sensitive film whose resistance value changes when gas is absorbed.
本発明において、一対の薄膜対向電極の他方の薄膜対向電極も、仮想環状形に沿うように形成し且つ一方の薄膜対向電極と対向するように弧状に形成してもよい。その場合は、一対の薄膜対向電極間に大きなスペースが形成されるため、仮想環状形の中心部には、一対の薄膜対向電極との間に間隔をあけて薄膜導電部を形成する。 In the present invention, the other thin film counter electrode of the pair of thin film counter electrodes may also be formed in an arc shape so as to be along the virtual annular shape and to be opposed to the one thin film counter electrode. In that case, since a large space is formed between the pair of thin film counter electrodes, the thin film conductive portion is formed in the center portion of the virtual annular shape with a space between the pair of thin film counter electrodes.
このように、一対の薄膜対向電極を、仮想環状形に沿い且つ互いに対向するように形成された弧状を呈する形状にすると、一対の薄膜対向電極の占有部分の輪郭形状と、感応膜が占める占有部分の輪郭形状とが、ともに環状形に近い形になるため、両者の大きさに大きな差は生じない。また、仮想環状形の中心部(感応膜の中心部)に、一対の薄膜対向電極との間に間隔をあけて薄膜導電部を形成したので、一対の薄膜対向電極の一方の薄膜対向電極から他方の薄膜対向電極に流れる電流の多くは、一方の薄膜対向電極→感応膜の一部分→薄膜導電部→感応膜の一部分→他方の薄膜対向電極という経路で流れる。薄膜対向電極と薄膜導電部との間に位置する感応膜の部分(周縁部分)は、薄膜導電部の上に位置する感応膜の部分(中央部分)よりも、厚み寸法のばらつきが小さい。そして薄膜導電部上に位置する感応膜の部分は、実質的に計測には寄与しない。そのため、本発明のように構成すると、感応センサの精度にばらつきが生じるのを抑制することができる。 As described above, when the pair of thin film counter electrodes have an arc shape formed so as to be opposed to each other along the virtual annular shape, the contour shape of the occupied portion of the pair of thin film counter electrodes and the occupation occupied by the sensitive film Since the contour shapes of the portions are both close to an annular shape, there is no significant difference between the sizes of the two. In addition, since the thin-film conductive portion is formed at the center portion of the virtual annular shape (the central portion of the sensitive film) with a space between the pair of thin-film counter electrodes, from one thin-film counter electrode of the pair of thin-film counter electrodes Most of the current flowing through the other thin film counter electrode flows through the path of one thin film counter electrode → part of the sensitive film → thin film conductive portion → part of the sensitive film → the other thin film counter electrode. The sensitive film portion (peripheral portion) positioned between the thin film counter electrode and the thin film conductive portion has a smaller variation in thickness than the sensitive film portion (center portion) positioned on the thin film conductive portion. And the part of the sensitive film | membrane located on a thin film conductive part does not contribute to a measurement substantially. Therefore, when configured as in the present invention, variations in the accuracy of the sensitive sensor can be suppressed.
前述の仮想環状形が仮想円または仮想楕円の場合、薄膜導電部の平面輪郭形状は、該仮想円または仮想楕円と同心の相似形状を有しているように形成することができる。このようすれば、一対の薄膜対向電極の一方の薄膜対向電極から他方の薄膜対向電極に流れる電流が経由する感応膜の一部分は、ほぼ円弧状となる。そのため、一対の薄膜対向電極の一方の薄膜対向電極から他方の薄膜対向電極に流れる電流が経由する感応膜の部分の厚み寸法のばらつきを極めて小さくして、感応センサの精度にばらつきが生じるのを抑制することができる。 When the above-mentioned virtual annular shape is a virtual circle or a virtual ellipse, the planar contour shape of the thin film conductive portion can be formed so as to have a similar shape concentric with the virtual circle or the virtual ellipse. In this way, a part of the sensitive film through which the current flowing from one thin film counter electrode to the other thin film counter electrode of the pair of thin film counter electrodes is substantially arc-shaped. Therefore, the variation in the thickness of the sensitive film part through which the current flowing from one thin film counter electrode to the other thin film counter electrode of the pair of thin film counter electrodes is made extremely small, resulting in variations in the accuracy of the sensitive sensor. Can be suppressed.
本発明の感応センサは種々のセンサに適用できる。例えば、感応膜を加熱するためのヒータを内蔵し、感応膜が、ガスを吸収すると抵抗値が変化するガス感応膜とすることができる。このようにすれば、ガスの検出を確実に行うことができる。 The sensitive sensor of the present invention can be applied to various sensors. For example, a heater for heating the sensitive film can be built in, and the sensitive film can be a gas sensitive film whose resistance value changes when gas is absorbed. In this way, gas detection can be performed reliably.
一対の薄膜対向電極には、未硬化感応膜が一対の薄膜対向電極が対向する方向とは逆の方向に広がるのを抑制するように、未硬化感応膜の広がりに対して抵抗となる抵抗発生構造を形成することができる。このように、抵抗発生構造を形成すると、未硬化感応膜を形成するために感応液を滴下する際に、抵抗発生構造により、未硬化感応膜が一対の薄膜対向電極が対向する方向とは逆の方向に広がるのが抑制される。そのため、感応膜の面積が小さく設計されていても、感応膜の寸法及び形状をできるだけ正確に形成することができる。その結果、ガスセンサを量産した場合、ガスの感応精度にばらつきが生じるのを抑制できる。 The pair of thin film counter electrodes has a resistance that resists the spread of the uncured sensitive film so as to prevent the uncured sensitive film from spreading in a direction opposite to the direction in which the pair of thin film counter electrodes face each other. A structure can be formed. Thus, when the resistance generating structure is formed, when the sensitive liquid is dropped to form the uncured sensitive film, the resistance generating structure causes the uncured sensitive film to be opposite to the direction in which the pair of thin film counter electrodes face each other. Spreading in the direction of is suppressed. Therefore, even if the area of the sensitive film is designed to be small, the size and shape of the sensitive film can be formed as accurately as possible. As a result, when the gas sensor is mass-produced, it is possible to suppress variation in the gas sensitivity accuracy.
抵抗発生構造としては、種々のものを採用できる。例えば、一対の薄膜対向電極の上面に固定されて絶縁性基体から離れる方向に突出し、一対の薄膜対向電極が対向する方向とは逆の方向に位置する薄膜対向電極の縁部に沿って連続して延びる薄膜によって形成された1以上の堰部から抵抗発生構造を構成することができる。このようにすれば、未硬化感応膜を形成するために感応液を滴下する際に、堰部により、未硬化感応膜が一対の薄膜対向電極が対向する方向とは逆の方向に広がるのが抑制され、未硬化感応膜は、堰部に接触した状態で中心部が盛り上がった円板形状となる。そのため、未硬化感応膜の広がりを確実に抑制して、感応膜の外周を堰部に沿ったものにすることができる。 Various resistance generating structures can be employed. For example, it is fixed to the upper surface of a pair of thin film counter electrodes, protrudes in a direction away from the insulating substrate, and continues along the edge of the thin film counter electrode located in the direction opposite to the direction in which the pair of thin film counter electrodes are opposed. The resistance generating structure can be constituted by one or more dam portions formed by a thin film extending in the direction. In this way, when the sensitive liquid is dropped to form the uncured sensitive film, the uncured sensitive film spreads in a direction opposite to the direction in which the pair of thin film counter electrodes face each other due to the weir portion. The uncured sensitive film is suppressed and has a disk shape with the center portion raised in contact with the weir portion. Therefore, it is possible to reliably suppress the spread of the uncured sensitive film and to make the outer periphery of the sensitive film along the dam part.
また、一対の薄膜対向電極の上面に固定されて絶縁性基体から離れる方向に突出し、一対の薄膜対向電極が対向する方向とは逆の方向に位置する薄膜対向電極の縁部に沿って不連続に延びる薄膜によって形成された1以上の突部から抵抗発生構造を構成することもできる。このようにすれば、未硬化感応膜を形成するために感応液を滴下する際に、感応液の表面張力により、未硬化感応膜の外周は、1以上の突部(不連続突部)に沿うことになる。このような不連続突部を形成すれば、抵抗発生構造の材料の量を少なくすることができる。 Also, it is fixed to the upper surface of the pair of thin film counter electrodes and protrudes away from the insulating substrate, and is discontinuous along the edge of the thin film counter electrode located in the direction opposite to the direction in which the pair of thin film counter electrodes are opposed to each other The resistance generating structure can also be constituted by one or more protrusions formed by a thin film extending in the direction. In this way, when the sensitive liquid is dropped to form the uncured sensitive film, the outer periphery of the uncured sensitive film is formed into one or more protrusions (discontinuous protrusions) due to the surface tension of the sensitive liquid. Will be along. If such discontinuous protrusions are formed, the amount of material of the resistance generating structure can be reduced.
また、一対の薄膜対向電極の上面に固定されて絶縁性基体から離れる方向に突出し、薄膜対向電極上に分散して薄膜によって形成された複数の突部から抵抗発生構造を構成することもできる。このようにすれば、一対の薄膜対向電極と複数の突部との段差により、未硬化感応膜を形成するために感応液を滴下する際に、一対の薄膜対向電極上を流れる感応液と一対の薄膜対向電極との抵抗が大きくなる。 Alternatively, the resistance generating structure can be constituted by a plurality of protrusions that are fixed to the upper surfaces of the pair of thin film counter electrodes, protrude in a direction away from the insulating base, and are dispersed on the thin film counter electrode and formed by a thin film. In this way, when the sensitive liquid is dropped to form an uncured sensitive film due to the step between the pair of thin film counter electrodes and the plurality of protrusions, the sensitive liquid and the pair that flow on the pair of thin film counter electrodes are dropped. The resistance with the thin film counter electrode increases.
一対の薄膜配線パターンの一部の上には、出力取出用の引出電極をそれぞれ形成することができる。この場合、引出電極と抵抗発生構造とを同じ材質で形成するのが好ましい。このようにすれば、引出電極を形成する工程で抵抗発生構造を同時に形成でき、抵抗発生構造の形成が容易になる。 An output extraction electrode can be formed on a part of the pair of thin film wiring patterns. In this case, it is preferable to form the extraction electrode and the resistance generating structure with the same material. In this way, the resistance generating structure can be formed simultaneously in the process of forming the extraction electrode, and the formation of the resistance generating structure is facilitated.
一対の薄膜対向電極は白金から形成することができ、また、引出電極と抵抗発生構造は金から形成することができる。このような材質を選択すれば、一対の薄膜対向電極及び引出電極を熱的、化学的、電気的に安定させることができる。 The pair of thin film counter electrodes can be formed from platinum, and the extraction electrode and the resistance generating structure can be formed from gold. If such a material is selected, the pair of thin film counter electrodes and extraction electrodes can be stabilized thermally, chemically, and electrically.
抵抗発生構造は、一対の薄膜対向電極の上面に開口し且つ薄膜対向電極に分散して形成された複数の凹部をさらに備えて構成することができる。このようにすれば、未硬化感応膜を形成するために感応液を滴下する際に、複数の凹部により、一対の薄膜対向電極上を流れる感応液と一対の薄膜対向電極との抵抗が大きくなり、未硬化感応膜が一対の薄膜対向電極が対向する方向とは逆の方向に広がるのが抑制される。抵抗発生構造は、複数の凹部からのみ構成しても構わない。 The resistance generating structure can be configured to further include a plurality of recesses that are opened on the upper surfaces of the pair of thin film counter electrodes and are dispersed in the thin film counter electrodes. In this way, when the sensitive liquid is dropped to form an uncured sensitive film, the multiple recesses increase the resistance between the sensitive liquid flowing on the pair of thin film counter electrodes and the pair of thin film counter electrodes. The uncured sensitive film is prevented from spreading in the direction opposite to the direction in which the pair of thin film counter electrodes face each other. The resistance generating structure may be configured only from a plurality of recesses.
本願の発明が改良の対象とする感応センサの製造方法は、まず、スパッタリングにより、相互間に間隔をあけて対向する一対の薄膜対向電極と、該一対の薄膜対向電極に一端がそれぞれ接続された一対の薄膜配線パターンとを絶縁性基体上に形成する。次に、一対の薄膜配線パターンの一部の上に出力取出用の引出電極をそれぞれ形成する。そして、一対の薄膜対向電極に跨るように感応液を滴下して形成した未硬化感応膜を硬化させて感応膜を形成する。本発明では、一対の薄膜対向電極の上面に固定されて絶縁性基体から離れる方向に突出して、未硬化感応膜が一対の薄膜対向電極が対向する方向とは逆の方向に広がるのを抑制するように、未硬化感応膜の広がりに対して抵抗となる抵抗発生構造を、引出電極と同じ材質で同時にスパッタリングにより形成する。本発明の製造方法によれば、引出電極を形成する工程で抵抗発生構造を同時に形成できるので、抵抗発生構造を容易に形成することができる。 In the method of manufacturing a sensitive sensor to be improved by the invention of the present application, first, a pair of thin film counter electrodes facing each other with a gap between each other and one end of each pair are connected to the pair of thin film counter electrodes by sputtering. A pair of thin film wiring patterns is formed on the insulating substrate. Next, an output extraction electrode is formed on part of the pair of thin film wiring patterns. Then, the uncured sensitive film formed by dropping the sensitive liquid so as to straddle the pair of thin film counter electrodes is cured to form the sensitive film. In this invention, it fixes to the upper surface of a pair of thin film counter electrode, protrudes in the direction away from an insulating base | substrate, and suppresses that an unhardened sensitive film spreads in the direction opposite to the direction where a pair of thin film counter electrode opposes. As described above, the resistance generating structure that is resistant to the spread of the uncured sensitive film is simultaneously formed by sputtering using the same material as the extraction electrode. According to the manufacturing method of the present invention, since the resistance generating structure can be formed at the same time in the step of forming the extraction electrode, the resistance generating structure can be easily formed.
抵抗発生構造は、一対の薄膜対向電極が対向する方向とは逆の方向に位置する薄膜対向電極の縁部に沿って連続して延びる薄膜によって形成された1以上の堰部、薄膜対向電極に沿って不連続に延びる薄膜によって形成された1以上の突部、または、薄膜対向電極上に分散して薄膜によって形成された複数の突部から構成することができる。 The resistance generating structure includes one or more dam portions formed by a thin film continuously extending along an edge of the thin film counter electrode positioned in a direction opposite to the direction in which the pair of thin film counter electrodes are opposed to the thin film counter electrode. It can be composed of one or more protrusions formed by a thin film extending discontinuously along the plurality, or a plurality of protrusions formed by a thin film dispersed on the thin film counter electrode.
また本発明において、一対の薄膜対向電極を仮想環状形に沿い且つ互いに対向するように形成された弧状を呈する形状にする場合には、まず、スパッタリングにより、相互間に間隔をあけて対向する一対の薄膜対向電極と、一対の薄膜対向電極に一端がそれぞれ接続された一対の薄膜配線パターンとを絶縁性基体上に形成する。次に、一対の薄膜対向電極に跨るように感応液を滴下して形成した未硬化感応膜を硬化させて感応膜を形成する。本発明では、一対の薄膜対向電極の上面に開口し且つ薄膜対向電極に沿って分散し、未硬化感応膜が一対の薄膜対向電極が対向する方向とは逆の方向に広がるのを抑制するように、未硬化感応膜の広がりに対して抵抗となる複数の凹部からなる抵抗発生構造を、前述の一対の薄膜対向電極を形成するときに同時に形成する。本発明の製造方法によれば、一対の薄膜対向電極を形成する工程で抵抗発生構造(複数の凹部)を同時に形成できるので、抵抗発生構造を容易に形成することができる。 Further, in the present invention, when the pair of thin film counter electrodes are formed in an arc shape formed so as to be opposed to each other along the virtual annular shape, first, a pair of facing each other with a gap therebetween by sputtering. The thin film counter electrode and a pair of thin film wiring patterns each having one end connected to the pair of thin film counter electrodes are formed on the insulating substrate. Next, the uncured sensitive film formed by dropping the sensitive liquid so as to straddle the pair of thin film counter electrodes is cured to form a sensitive film. In the present invention, an opening is formed on the upper surface of the pair of thin film counter electrodes and dispersed along the thin film counter electrode, so that the uncured sensitive film is prevented from spreading in a direction opposite to the direction in which the pair of thin film counter electrodes face each other. In addition, a resistance generating structure composed of a plurality of recesses that resists the spread of the uncured sensitive film is formed simultaneously with the pair of thin film counter electrodes. According to the manufacturing method of the present invention, since the resistance generating structure (a plurality of recesses) can be formed simultaneously in the step of forming the pair of thin film counter electrodes, the resistance generating structure can be easily formed.
また、複数の凹部と一以上の堰部との両方を形成しても構わない。複数の凹部は一対の薄膜対向電極を形成するときに同時に形成でき、1以上の堰部は、引出電極と同じ材質で同時にスパッタリングにより形成することができる。そのため、未硬化感応膜が一対の薄膜対向電極が対向する方向とは逆の方向に広がるのを効果的に抑制される感応センサを容易に形成することができる。 Moreover, you may form both a some recessed part and one or more dam parts. A plurality of recesses can be formed simultaneously when forming a pair of thin film counter electrodes, and one or more dam portions can be formed simultaneously by sputtering with the same material as the extraction electrode. Therefore, it is possible to easily form a sensitive sensor that effectively suppresses the uncured sensitive film from spreading in the direction opposite to the direction in which the pair of thin film counter electrodes face each other.
図1は、ガスセンサに適用した本発明の一実施の形態の感応センサを模式的に表した断面図であり、図2は、図1のガスセンサの中央部を上方から見た部分平面図であり、図3は、図1のガスセンサの中央部の拡大図(図2のIII−III線断面図)である。各図に示すように、本例のガスセンサは、絶縁性基体1と一対の薄膜対向電極3,5と一対の薄膜配線パターン7A,7Bと感応膜9とを有している。なお、理解を容易にするため、図2においては、感応膜9を透明なものとして描いている。本例では、絶縁性基体1は薄板部11により構成されている。薄板部11は、シリコン単結晶からなる筒状の支持部13上に配置されている。このため、支持部13に周縁部が支持されている薄板部11の一部分は、いわゆるダイヤフラム状に形成されることになる。薄板部11は、図3の上方から下方に向かってSiO0.7N0.7層11aとSi3N4層11bとSiO2層11cとが積層されて構成されている。本例では、SiO0.7N0.7層11a内のSi3N4層11bの上方に位置する部分には、白金からなり蛇行して配置されるヒータ15が内蔵されている。FIG. 1 is a cross-sectional view schematically showing a sensitive sensor according to an embodiment of the present invention applied to a gas sensor, and FIG. 2 is a partial plan view of a central portion of the gas sensor of FIG. 3 is an enlarged view of the central portion of the gas sensor of FIG. 1 (a cross-sectional view taken along line III-III of FIG. 2). As shown in each drawing, the gas sensor of this example includes an insulating substrate 1, a pair of thin film counter electrodes 3, 5, a pair of thin film wiring patterns 7A, 7B, and a sensitive film 9. In order to facilitate understanding, in FIG. 2, the sensitive film 9 is depicted as being transparent. In this example, the insulating substrate 1 is composed of a thin plate portion 11. The thin plate portion 11 is disposed on a cylindrical support portion 13 made of silicon single crystal. For this reason, a part of the thin plate portion 11 whose peripheral portion is supported by the support portion 13 is formed in a so-called diaphragm shape. The thin plate portion 11 is configured by laminating a SiO 0.7 N 0.7 layer 11a, a Si 3 N 4 layer 11b, and a SiO 2 layer 11c from the upper side to the lower side in FIG. In this example, a heater 15 which is made of platinum and is arranged in a meandering manner is incorporated in a portion of the SiO 0.7 N 0.7 layer 11 a located above the Si 3 N 4 layer 11 b.
一対の薄膜対向電極3,5は、白金からなり、薄板部11の中央部表面上にスパッタリングにより形成されている。本例では、一対の薄膜対向電極3,5は、4000Åの厚み寸法を有している。図2に示すように、一対の薄膜対向電極3,5の一方の薄膜対向電極3は、仮想環状形(仮想円)CAに沿うように形成された円弧状を呈している。なお、本例では、感応膜9の輪郭と仮想円CAとはほぼ一致している。一対の薄膜対向電極3,5の他方の薄膜対向電極5は、一方の薄膜対向電極3に囲まれて仮想円CAの中心部に位置している。この他方の薄膜対向電極5の平面輪郭形状は、仮想円CAと同心の相似形状となる円形を有している。このため、一方の薄膜対向電極3の内周部3aと、他方の薄膜対向電極5の外周部5aとが間隔をあけて対向する。また、一方の薄膜対向電極3の一方の薄膜配線パターン7Aが位置する側の反対側の端部3b,3cと、他方の薄膜配線パターン7Bの長手方向と直交する方向の両側部7c,7dとがそれぞれ間隔をあけて対向する。本例では、一方の薄膜対向電極3の内周部3aと他方の薄膜対向電極5の外周部5aとの間隔寸法L1は、いずれの箇所においても等しく、一方の薄膜対向電極3の端部3b,3cと他方の薄膜配線パターン7Bの両側部7c,7dとのそれぞれの間隔寸法L2は、いずれの箇所においても等しい。また、間隔寸法L1と間隔寸法L2も等しくなっている。他方の薄膜対向電極5の中央には、他方の薄膜対向電極5を貫通する孔部5bが形成されている。この孔部5bの平面輪郭形状も、仮想円CAと同心の相似形状となる円形を有している。孔部5bの半径R1は、他方の薄膜対向電極5の半径R2の30〜90%とするのが好ましい。 The pair of thin film counter electrodes 3 and 5 are made of platinum, and are formed on the surface of the central portion of the thin plate portion 11 by sputtering. In this example, the pair of thin film counter electrodes 3 and 5 has a thickness dimension of 4000 mm. As shown in FIG. 2, one thin film counter electrode 3 of the pair of thin film counter electrodes 3 and 5 has an arc shape formed along a virtual annular shape (virtual circle) CA. In the present example, the contour of the sensitive film 9 and the virtual circle CA substantially coincide with each other. The other thin film counter electrode 5 of the pair of thin film counter electrodes 3 and 5 is surrounded by the one thin film counter electrode 3 and positioned at the center of the virtual circle CA. The planar contour shape of the other thin film counter electrode 5 has a circular shape that is concentric with the virtual circle CA. For this reason, the inner peripheral part 3a of one thin film counter electrode 3 and the outer peripheral part 5a of the other thin film counter electrode 5 are opposed to each other with a gap. Also, end portions 3b and 3c on the opposite side of one thin film counter electrode 3 on the side where one thin film wiring pattern 7A is located, and both side portions 7c and 7d in a direction perpendicular to the longitudinal direction of the other thin film wiring pattern 7B, Face each other at intervals. In this example, the distance L1 between the inner peripheral portion 3a of one thin film counter electrode 3 and the outer peripheral portion 5a of the other thin film counter electrode 5 is the same at any location, and the end portion 3b of one thin film counter electrode 3 is the same. , 3c and the distance L2 between the two side portions 7c, 7d of the other thin film wiring pattern 7B is the same at any location. The interval dimension L1 and the interval dimension L2 are also equal. In the center of the other thin film counter electrode 5, a hole 5b penetrating the other thin film counter electrode 5 is formed. The planar contour shape of the hole 5b also has a circular shape that is similar to the virtual circle CA. The radius R1 of the hole 5b is preferably 30 to 90% of the radius R2 of the other thin film counter electrode 5.
一対の薄膜配線パターン7A,7Bは、白金からなり、一対の薄膜対向電極3,5と共にスパッタリングにより形成されている。一対の薄膜配線パターン7A,7Bは、一対の薄膜対向電極3,5に一端が接続されて絶縁性基体1の縁部に向けてそれぞれ延びている。一対の薄膜配線パターン7A,7Bの縁部近傍の表面上には、引出電極21がそれぞれ形成されている(図1)。引出電極21は、外部への出力取出用の電極であり、金からなり、スパッタリングにより形成されている。 The pair of thin film wiring patterns 7A and 7B are made of platinum and are formed together with the pair of thin film counter electrodes 3 and 5 by sputtering. The pair of thin film wiring patterns 7A and 7B are connected at one end to the pair of thin film counter electrodes 3 and 5 and extend toward the edge of the insulating substrate 1 respectively. On the surface in the vicinity of the edge of the pair of thin film wiring patterns 7A and 7B, extraction electrodes 21 are respectively formed (FIG. 1). The extraction electrode 21 is an electrode for extracting output to the outside, is made of gold, and is formed by sputtering.
感応膜9は、SnO2を主成分とする金属酸化物半導体からなり、一対の薄膜対向電極3,5に跨るように感応液を滴下して形成した未硬化感応膜が加熱により硬化されて形成されている。この感応膜9は、中心部が盛り上がった円板形状を有しており、一対の薄膜対向電極3,5に跨って形成されている。The sensitive film 9 is made of a metal oxide semiconductor containing SnO 2 as a main component, and an uncured sensitive film formed by dripping a sensitive liquid so as to straddle the pair of thin film counter electrodes 3 and 5 is cured by heating and formed. Has been. The sensitive film 9 has a disk shape with a raised central portion, and is formed across a pair of thin film counter electrodes 3 and 5.
本例のガスセンサは、以下のようにして製造した。まず、一対の薄膜対向電極3,5と一対の薄膜配線パターン7A,7Bとを白金を用いてスパッタリングにより絶縁性基体1上に形成した。そして、引出電極21を金を用いてスパッタリングにより一対の薄膜配線パターン7A,7B上に形成した。 The gas sensor of this example was manufactured as follows. First, a pair of thin film counter electrodes 3 and 5 and a pair of thin film wiring patterns 7A and 7B were formed on the insulating substrate 1 by sputtering using platinum. Then, the extraction electrode 21 was formed on the pair of thin film wiring patterns 7A and 7B by sputtering using gold.
次に、一対の薄膜対向電極3,5に跨るように感応液をデスペンサにより滴下して未硬化感応膜を形成した。未硬化感応膜は、中心部が盛り上がった円板形状となる。そして、未硬化感応膜を約600℃で加熱により硬化(焼成)させて感応膜9を形成してガスセンサを完成した。 Next, the sensitive liquid was dropped with a dispenser so as to straddle the pair of thin film counter electrodes 3 and 5 to form an uncured sensitive film. The uncured sensitive film has a disk shape with a raised center part. The uncured sensitive film was cured (baked) by heating at about 600 ° C. to form the sensitive film 9 to complete the gas sensor.
本例のガスセンサでは、一対の薄膜対向電極3,5の間の抵抗値を測定してガス濃度を測定する。また、本例のガスセンサによれば、一対の薄膜対向電極3,5に跨るように感応液を滴下して未硬化感応膜を形成するので、感応液が滴下後に同心円的に広がって未硬化感応膜が形成される。そのため、一方の薄膜対向電極3が、仮想円CAに沿うように形成された弧状を呈するので、一対の薄膜対向電極3,5が占める占有部分の輪郭形状と感応膜9が占める占有部分の輪郭形状との差を少なくできる。そのため、一対の薄膜対向電極3,5の占有面積を小さくできる。また、他方の薄膜対向電極5が一方の薄膜対向電極3に囲まれた仮想円CAの中心部に位置するため、一方の薄膜対向電極3と他方の薄膜対向電極5との間に位置する感応膜の部分(周縁部分)の厚み寸法のばらつきが小さくなる。そのため、ガスセンサの精度にばらつきが生じるのを抑制することができる。 In the gas sensor of this example, the gas concentration is measured by measuring the resistance value between the pair of thin film counter electrodes 3 and 5. In addition, according to the gas sensor of this example, since the sensitive liquid is dropped so as to straddle the pair of thin film counter electrodes 3 and 5, an uncured sensitive film is formed. A film is formed. Therefore, since one thin film counter electrode 3 has an arc shape formed along the virtual circle CA, the contour shape of the occupied portion occupied by the pair of thin film counter electrodes 3 and 5 and the contour of the occupied portion occupied by the sensitive film 9 The difference from the shape can be reduced. Therefore, the area occupied by the pair of thin film counter electrodes 3 and 5 can be reduced. In addition, since the other thin film counter electrode 5 is located at the center of the virtual circle CA surrounded by the one thin film counter electrode 3, the sensitivity located between the one thin film counter electrode 3 and the other thin film counter electrode 5. Variation in the thickness dimension of the film portion (peripheral portion) is reduced. Therefore, it is possible to suppress variation in the accuracy of the gas sensor.
なお、本例では、仮想環状形CAは、仮想円としたが、仮想楕円、円形に近似した仮想多角形であってもかまわない。 In this example, the virtual annular shape CA is a virtual circle, but it may be a virtual ellipse or a virtual polygon approximate to a circle.
また、本例では、本発明のガスセンサに適用した例を示したが、本発明を湿度センサ等の他の感応センサに適用できるのは勿論である。また、本例では、未硬化感応膜を加熱硬化させたが、例えば、湿度センサに用いる場合のように、自然放置により未硬化感応膜を硬化させてもかまわない。 Moreover, although the example applied to the gas sensor of this invention was shown in this example, of course, this invention is applicable to other sensitive sensors, such as a humidity sensor. Further, in this example, the uncured sensitive film is cured by heating. However, the uncured sensitive film may be cured by being left to stand, for example, when used for a humidity sensor.
次に、他方の薄膜対向電極5に形成した孔部5bの効果を調べた試験の結果について説明する。まず、本例の感応センサ(実施例1)と、他方の薄膜対向電極5に孔部5bを形成せず、その他は本例の感応センサと同じ構造の感応センサ(実施例2)を製造した。そして、25℃の雰囲気温度中において、実施例1及び実施例2の感応センサのヒータに2.5mVの電圧を印可し、印可後0.015ms(ミリセカンド)後の各感応センサの絶縁性基体上の温度及び絶縁性基体の上下方向の変位量を測定した。図4は、その測定結果を示している。図4において、横軸は、感応センサの一方の端部から中心部を経由して他方の端部に至る過程における一方端部からの寸法を示している。寸法が1000μmの位置が他方の薄膜対向電極5の中心となる。図4より、実施例1の感応センサ(孔有)と実施例2の感応センサ(孔無)とでは、温度においては大きな差異はないが、絶縁性基体の上下方向の変位量においては、実施例1の感応センサ(孔有)は、実施例2の感応センサ(孔無)に比べて感応センサの中心部での変位量を約30%抑えられるのが分かる。 Next, the results of a test examining the effect of the hole 5b formed in the other thin film counter electrode 5 will be described. First, a sensitive sensor (Example 2) having the same structure as the sensitive sensor of this example was manufactured without forming the hole 5b in the sensitive sensor (Example 1) of this example and the other thin film counter electrode 5. . Then, in an ambient temperature of 25 ° C., a voltage of 2.5 mV is applied to the heaters of the sensitive sensors of Example 1 and Example 2, and the insulative substrate of each sensitive sensor after 0.015 ms (milliseconds) after application. The upper temperature and the amount of vertical displacement of the insulating substrate were measured. FIG. 4 shows the measurement results. In FIG. 4, the horizontal axis indicates the dimension from one end in the process from one end of the sensitive sensor to the other end via the center. The position where the dimension is 1000 μm is the center of the other thin film counter electrode 5. From FIG. 4, there is no significant difference in temperature between the sensitive sensor of Example 1 (with holes) and the sensitive sensor of Example 2 (without holes). It can be seen that the sensitive sensor of Example 1 (with holes) can suppress the displacement amount at the center of the sensitive sensor by about 30% compared to the sensitive sensor of Example 2 (without holes).
図5は、ガスセンサに適用した本発明の他の実施の形態の感応センサを模式的に表した断面図であり、図6は、ガスセンサに適用した本発明の他の実施の形態の感応センサの中央部を上方から見た部分平面図であり、図7は、図6のVII−VII線断面図である。各図に示すように、本例のガスセンサは、絶縁性基体101と一対の薄膜対向電極103,105と一対の薄膜配線パターン107A,107Bと感応膜109とを有している。なお、理解を容易にするため、図6においては、感応膜109を透明なものとして描いている。本例では、絶縁性基体101は薄板部111により構成されている。薄板部111は、シリコン単結晶からなる筒状の支持部113上に配置されている。このため、支持部113に周縁部が支持されている薄板部111の一部分は、いわゆるダイヤフラム状に形成されることになる。薄板部111は、図7の上方から下方に向かってSiO0.7N0.7層111aとSi3N4層111bとSiO2層111cとが積層されて構成されている。本例では、SiO0.7N0.7層111a内のSi3N4層111bの上方に位置する部分には、白金からなり蛇行して配置されるヒータ115が内蔵されている。FIG. 5 is a cross-sectional view schematically showing a sensitive sensor according to another embodiment of the present invention applied to a gas sensor, and FIG. 6 shows a sensitivity sensor according to another embodiment of the present invention applied to a gas sensor. FIG. 7 is a partial plan view of the central portion as viewed from above, and FIG. 7 is a sectional view taken along line VII-VII in FIG. As shown in each drawing, the gas sensor of this example includes an insulating substrate 101, a pair of thin film counter electrodes 103, 105, a pair of thin film wiring patterns 107A, 107B, and a sensitive film 109. In order to facilitate understanding, in FIG. 6, the sensitive film 109 is depicted as being transparent. In this example, the insulating base 101 is composed of a thin plate portion 111. The thin plate portion 111 is disposed on a cylindrical support portion 113 made of silicon single crystal. For this reason, a part of the thin plate part 111 whose peripheral part is supported by the support part 113 is formed in a so-called diaphragm shape. The thin plate portion 111 is configured by laminating a SiO 0.7 N 0.7 layer 111a, a Si 3 N 4 layer 111b, and a SiO 2 layer 111c from the top to the bottom of FIG. In this example, a heater 115 which is made of platinum and is arranged in a meandering manner is incorporated in a portion of the SiO 0.7 N 0.7 layer 111 a located above the Si 3 N 4 layer 111 b.
一対の薄膜対向電極103,105は、白金からなり、薄板部111の中央部表面上にスパッタリングにより形成されている。本例では、一対の薄膜対向電極103,105は、4000Åの厚み寸法を有している。一対の薄膜対向電極103,105は、図6に示すように、仮想環状形(仮想円)CAに沿い且つ互いに対向するように形成された円弧形状をそれぞれ呈している。言い換えるならば、一対の薄膜対向電極103,105の一方の薄膜対向電極103は、仮想環状形に沿うように形成された弧状を呈しており、他方の薄膜対向電極105は、仮想円CAに沿い且つ一方の薄膜対向電極103に対向するように形成された弧状を呈している。一対の薄膜対向電極103,105の間には、一対の薄膜対向電極103,105との間に等しい間隔をあけることができる円形形状の薄膜導電部116が形成されている。この薄膜導電部116の平面輪郭形状は、仮想円CAと同心の相似形状を有している。薄膜導電部116は、白金からなり、一対の薄膜対向電極103,105と共にスパッタリングにより形成されている。一対の薄膜対向電極103,105には、複数の凹部117がそれぞれ形成されている。本例では、複数の凹部117は、上面に開口する矩形の貫通孔からなり、一対の薄膜対向電極103,105がそれぞれ円弧状に延びる方向に並んで形成されている。これにより、複数の凹部117は、一対の薄膜対向電極103,105にそれぞれ分散して形成されることになる。また、一対の薄膜対向電極103,105上には、堰部119がそれぞれ形成されている。堰部119は、後述する引出電極と同材質の金からなり、スパッタリングにより形成されている。本例では、堰部119は、6000Åの厚み寸法を有している。この堰部119は、一対の薄膜対向電極103,105の上面に固定されて絶縁性基体101から離れる方向に突出しており、一対の薄膜対向電極103,105が対向する方向とは逆の方向に位置する一対の薄膜対向電極103,105の縁部にそれぞれ沿って連続して延びる薄膜により形成されている。本例では、複数の凹部117及び堰部119により後述する未硬化感応膜の広がりに対して抵抗となる抵抗発生構造が構成されている。抵抗発生構造(117,119)の作用については、後に詳細に説明する。 The pair of thin film counter electrodes 103 and 105 is made of platinum, and is formed on the surface of the central portion of the thin plate portion 111 by sputtering. In this example, the pair of thin film counter electrodes 103 and 105 has a thickness dimension of 4000 mm. As shown in FIG. 6, the pair of thin-film counter electrodes 103 and 105 each have an arc shape formed along a virtual annular shape (virtual circle) CA and facing each other. In other words, one thin film counter electrode 103 of the pair of thin film counter electrodes 103 and 105 has an arc shape formed along a virtual annular shape, and the other thin film counter electrode 105 extends along a virtual circle CA. In addition, it has an arc shape formed so as to face one thin film counter electrode 103. Between the pair of thin film counter electrodes 103 and 105, a circular thin film conductive portion 116 is formed that can be equally spaced from the pair of thin film counter electrodes 103 and 105. The planar contour shape of the thin film conductive portion 116 has a similar shape concentric with the virtual circle CA. The thin film conductive portion 116 is made of platinum and is formed by sputtering together with a pair of thin film counter electrodes 103 and 105. A plurality of concave portions 117 are formed in the pair of thin film counter electrodes 103 and 105, respectively. In this example, the plurality of recesses 117 are formed of rectangular through holes opened on the upper surface, and the pair of thin film counter electrodes 103 and 105 are formed side by side in a direction extending in an arc shape. As a result, the plurality of recesses 117 are formed in a distributed manner on the pair of thin film counter electrodes 103 and 105. In addition, dam portions 119 are formed on the pair of thin film counter electrodes 103 and 105, respectively. The dam portion 119 is made of gold of the same material as an extraction electrode described later, and is formed by sputtering. In this example, the dam portion 119 has a thickness dimension of 6000 mm. The dam portion 119 is fixed to the upper surface of the pair of thin film counter electrodes 103 and 105 and protrudes in a direction away from the insulating substrate 101, and is in a direction opposite to the direction in which the pair of thin film counter electrodes 103 and 105 face each other. The thin film is formed by a thin film continuously extending along the edges of the pair of thin film counter electrodes 103 and 105 positioned. In this example, a plurality of concave portions 117 and dam portions 119 form a resistance generating structure that provides resistance to the spread of an uncured sensitive film described later. The operation of the resistance generating structure (117, 119) will be described in detail later.
一対の薄膜配線パターン107A,107Bは、白金からなり、一対の薄膜対向電極103,105及び薄膜導電部116と共にスパッタリングにより形成されている。一対の薄膜配線パターン107A,107Bは、一対の薄膜対向電極103,105に一端が接続されて絶縁性基体101の縁部に向けてそれぞれ延びている。一対の薄膜配線パターン107A,107Bの縁部近傍の表面上には、引出電極121がそれぞれ形成されている(図5)。引出電極121は、外部への出力取出用の電極であり、金からなり、スパッタリングにより形成されている。 The pair of thin film wiring patterns 107A and 107B is made of platinum, and is formed by sputtering together with the pair of thin film counter electrodes 103 and 105 and the thin film conductive portion 116. The pair of thin film wiring patterns 107 </ b> A and 107 </ b> B have ends connected to the pair of thin film counter electrodes 103 and 105 and extend toward the edge of the insulating substrate 101. On the surface in the vicinity of the edge of the pair of thin film wiring patterns 107A and 107B, extraction electrodes 121 are respectively formed (FIG. 5). The extraction electrode 121 is an electrode for extracting output to the outside, is made of gold, and is formed by sputtering.
感応膜109は、SnO2を主成分とする金属酸化物半導体からなり、一対の薄膜対向電極103,105に跨るように感応液を滴下して形成した未硬化感応膜が加熱により硬化されて形成されている。この感応膜109は、中心部が盛り上がった円板形状を有しており、一対の薄膜対向電極103,105上のそれぞれの堰部119に接触した状態で一対の薄膜対向電極103,105に跨って形成されている。The sensitive film 109 is made of a metal oxide semiconductor containing SnO 2 as a main component, and an uncured sensitive film formed by dropping a sensitive liquid so as to straddle the pair of thin film counter electrodes 103 and 105 is cured by heating. Has been. The sensitive film 109 has a disk shape with a raised center part, and straddles the pair of thin film counter electrodes 103 and 105 in a state of contacting the respective dam portions 119 on the pair of thin film counter electrodes 103 and 105. Is formed.
本例のガスセンサは、以下のようにして製造した。まず、一対の薄膜対向電極103,105と一対の薄膜配線パターン107A,107Bと薄膜導電部116とを白金を用いてスパッタリングにより絶縁性基体101上に形成した。一対の薄膜対向電極103,105には、複数の凹部117を同時に形成した。 The gas sensor of this example was manufactured as follows. First, a pair of thin film counter electrodes 103 and 105, a pair of thin film wiring patterns 107A and 107B, and a thin film conductive portion 116 were formed on the insulating substrate 101 by sputtering using platinum. In the pair of thin film counter electrodes 103 and 105, a plurality of recesses 117 were simultaneously formed.
次に、引出電極121と堰部119を金を用いてスパッタリングにより一対の薄膜配線パターン107A,107B上と一対の薄膜対向電極103,105上とに同時に形成した。 Next, the extraction electrode 121 and the weir portion 119 were simultaneously formed on the pair of thin film wiring patterns 107A and 107B and the pair of thin film counter electrodes 103 and 105 by sputtering using gold.
次に、一対の薄膜対向電極103,105に跨るように感応液をデスペンサにより滴下して未硬化感応膜を形成した。未硬化感応膜は、複数の凹部117及び堰部119により、一対の薄膜対向電極103,105が対向する方向とは逆の方向に広がるのが抑制され、堰部119に接触した状態で中心部が盛り上がった円板形状となる。そして、未硬化感応膜を約600℃で加熱により硬化(焼成)させて感応膜109を形成してガスセンサを完成した。 Next, the sensitive liquid was dropped with a dispenser so as to straddle the pair of thin film counter electrodes 103 and 105 to form an uncured sensitive film. The uncured sensitive film is prevented from spreading in a direction opposite to the direction in which the pair of thin film counter electrodes 103 and 105 face each other by the plurality of concave portions 117 and the dam portions 119, and is in the center portion while being in contact with the dam portions 119. Becomes a raised disk shape. The uncured sensitive film was cured (baked) by heating at about 600 ° C. to form a sensitive film 109 to complete the gas sensor.
本例のガスセンサでは、一対の薄膜対向電極103,105に跨るように感応液を滴下して未硬化感応膜を形成するので、感応液が滴下後に同心円的に広がって未硬化感応膜が形成される。そのため、一対の薄膜対向電極103,105の平面輪郭形状が、仮想円CAに沿い且つ互いに対向するように形成された弧状を呈しているので、一対の薄膜対向電極103,105が占める占有部分の輪郭形状と感応膜109が占める占有部分の輪郭形状との差を少なくできる。また、本例では、仮想円CAの中心部(未硬化感応膜の中心部)に、一対の薄膜対向電極103,105との間に間隔をあけて薄膜導電部116を形成したので、一対の薄膜対向電極103,105の一方の薄膜対向電極103から他方の薄膜対向電極105に流れる電流は、一方の薄膜対向電極103→感応膜109の一部分→薄膜導電部116→感応膜109の一部分→他方の薄膜対向電極105という経路で流れる。薄膜対向電極103,105と薄膜導電部116との間に位置する感応膜109の部分(周縁部分)は、薄膜導電部116の上に位置する感応膜109の部分(中央部分)よりも、厚み寸法のばらつきが小さい。そして薄膜導電部116上に位置する感応膜109の部分は、実質的に計測には寄与しない。そのため、本例のように構成すると、感応センサの精度にばらつきが生じるのを抑制することができる。 In the gas sensor of this example, since the sensitive liquid is dropped so as to straddle the pair of thin film counter electrodes 103 and 105 to form the uncured sensitive film, the sensitive liquid spreads concentrically after the dripping and the uncured sensitive film is formed. The Therefore, the planar outline shape of the pair of thin film counter electrodes 103 and 105 has an arc shape formed so as to be opposed to each other along the virtual circle CA. The difference between the contour shape and the contour shape of the occupied portion occupied by the sensitive film 109 can be reduced. Further, in this example, since the thin film conductive portion 116 is formed in the center of the virtual circle CA (the center of the uncured sensitive film) with a space between the pair of thin film counter electrodes 103 and 105, a pair of The current flowing from one thin film counter electrode 103 to the other thin film counter electrode 105 of the thin film counter electrodes 103 and 105 is: one thin film counter electrode 103 → part of the sensitive film 109 → thin film conductive portion 116 → part of the sensitive film 109 → the other The thin film counter electrode 105 flows through the path. The part (peripheral part) of the sensitive film 109 located between the thin film counter electrodes 103 and 105 and the thin film conductive part 116 is thicker than the part (center part) of the sensitive film 109 located on the thin film conductive part 116. Small variation in dimensions. The portion of the sensitive film 109 located on the thin film conductive portion 116 does not substantially contribute to measurement. Therefore, when configured as in this example, variations in the accuracy of the sensitive sensor can be suppressed.
さらに本例のガスセンサでは、未硬化感応膜を形成するために感応液を滴下する際に、複数の凹部117により、一対の薄膜対向電極103,105上を流れる感応液と一対の薄膜対向電極103,105との抵抗が大きくなる。また、堰部119により、未硬化感応膜が一対の薄膜対向電極103,105が対向する方向とは逆の方向に広がるのが抑制される。このように、複数の凹部117及び堰部119はいずれも、未硬化感応膜の広がりに対して抵抗となる。そのため、感応膜の面積が小さく設計されていても、寸法及び形状を正確に感応膜を形成することができる。その結果、ガスセンサを量産した場合、ガスの感応精度にばらつきが生じるのを抑制できる。 Further, in the gas sensor of this example, when the sensitive liquid is dropped to form an uncured sensitive film, the sensitive liquid flowing on the pair of thin film counter electrodes 103 and 105 and the pair of thin film counter electrodes 103 are caused by the plurality of recesses 117. , 105 increases in resistance. Further, the dam portion 119 prevents the uncured sensitive film from spreading in the direction opposite to the direction in which the pair of thin film counter electrodes 103 and 105 face each other. Thus, all of the plurality of recesses 117 and dam portions 119 are resistant to the spread of the uncured sensitive film. Therefore, even if the area of the sensitive film is designed to be small, the sensitive film can be formed accurately in size and shape. As a result, when the gas sensor is mass-produced, it is possible to suppress variation in the gas sensitivity accuracy.
図8は、ガスセンサに適用した本発明のさらに他の実施の形態の感応センサの中央部を上方から見た部分平面図であり、図9は、図8のXI−XI線断面図である。本例のガスセンサは、抵抗発生構造を除いて図6及び図7に示すガスセンサと同じ構造を有している。そのため、図6及び図7に示すガスセンサと同じ部材には、図6及び図7に付した符号に100を加えた数の符号を付してその説明を省略する。本例のガスセンサの一対の薄膜対向電極203,205は、堰部の代わりに1以上の突部(不連続突部)219を形成している。不連続突部219は、一対の薄膜対向電極203,205の上面に固定されて絶縁性基体201から離れる方向に突出し、一対の薄膜対向電極203,205が対向する方向とは逆の方向に位置する薄膜対向電極203,205の縁部に沿って不連続に延びる薄膜によって形成されている。このような不連続突部219を形成すれば、未硬化感応膜を形成するために感応液を滴下する際に、感応液の表面張力により、未硬化感応膜の外周は、不連続突部219に沿うことになる。そのため、抵抗発生構造を形成する材料の量を少なくすることができる。 FIG. 8 is a partial plan view of the center of a sensitive sensor according to still another embodiment of the present invention applied to a gas sensor, as viewed from above, and FIG. 9 is a cross-sectional view taken along the line XI-XI in FIG. The gas sensor of this example has the same structure as the gas sensor shown in FIGS. 6 and 7 except for the resistance generating structure. Therefore, the same members as those of the gas sensor shown in FIGS. 6 and 7 are given the same reference numerals as those shown in FIGS. The pair of thin film counter electrodes 203 and 205 of the gas sensor of this example form one or more protrusions (discontinuous protrusions) 219 instead of the dam portions. The discontinuous protrusion 219 is fixed to the upper surface of the pair of thin film counter electrodes 203 and 205 and protrudes in a direction away from the insulating base 201, and is positioned in a direction opposite to the direction in which the pair of thin film counter electrodes 203 and 205 are opposed to each other. The thin film counter electrodes 203 and 205 are formed by a thin film extending discontinuously along the edges. If such a discontinuous protrusion 219 is formed, when the sensitive liquid is dropped to form the uncured sensitive film, the outer periphery of the uncured sensitive film is discontinuous by the surface tension of the sensitive liquid. Will be along. Therefore, the amount of material forming the resistance generating structure can be reduced.
図10は、ガスセンサに適用した本発明のさらに別の実施の形態の感応センサの中央部を上方から見た部分平面図であり、図11は、図10のXI−XI線断面図である。本例のガスセンサも、抵抗発生構造を除いて図6及び図7に示すガスセンサと同じ構造を有している。そのため、図6及び図7に示すガスセンサと同じ部材には、図6及び図7に付した符号に200を加えた数の符号を付してその説明を省略する。本例のガスセンサの一対の薄膜対向電極303,305には、堰部及び複数の凹部を形成せずに、複数の突部319を形成している。複数の突部319は、一対の薄膜対向電極303,305の上面に固定されて絶縁性基体301から離れる方向に突出し、薄膜対向電極303,305上に分散して薄膜によって形成されている。このように複数の突部319を形成すれば、一対の薄膜対向電極303,305と複数の突部319との段差により、未硬化感応膜を形成するために感応液を滴下した際に、一対の薄膜対向電極303,305上を流れる感応液と一対の薄膜対向電極303,305との抵抗が大きくなる。 FIG. 10 is a partial plan view of a central portion of a sensitive sensor according to still another embodiment of the present invention applied to a gas sensor as viewed from above, and FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG. The gas sensor of this example also has the same structure as the gas sensor shown in FIGS. 6 and 7 except for the resistance generating structure. Therefore, the same members as those of the gas sensor shown in FIGS. 6 and 7 are given the same reference numerals as those shown in FIGS. A plurality of protrusions 319 are formed on the pair of thin film counter electrodes 303 and 305 of the gas sensor of this example without forming the weir portion and the plurality of recesses. The plurality of protrusions 319 are fixed to the upper surfaces of the pair of thin film counter electrodes 303 and 305, protrude in a direction away from the insulating base 301, and are dispersed on the thin film counter electrodes 303 and 305 and formed by a thin film. If a plurality of protrusions 319 are formed in this way, a pair of thin film counter electrodes 303, 305 and a plurality of protrusions 319 cause a pair of sensitive liquids to drop when a sensitive liquid is dropped to form an uncured sensitive film. The resistance between the sensitive liquid flowing on the thin film counter electrodes 303 and 305 and the pair of thin film counter electrodes 303 and 305 increases.
なお、本例では、本発明のガスセンサに適用した例を示したが、本発明を湿度センサ等の他の感応センサに適用できるのは勿論である。 In this example, an example is shown in which the present invention is applied to the gas sensor of the present invention. However, the present invention can of course be applied to other sensitive sensors such as a humidity sensor.
また、本例では、未硬化感応膜を加熱硬化させたが、例えば、湿度センサに用いる場合のように、自然放置により未硬化感応膜を硬化させてもかまわない。 Further, in this example, the uncured sensitive film is cured by heating. However, the uncured sensitive film may be cured by being left to stand, for example, when used for a humidity sensor.
以下、本願の明細書に記載した発明を付記する。 Hereinafter, the invention described in the specification of the present application will be added.
(1) 絶縁性基体と、
前記絶縁性基体上に形成され、相互間に間隔をあけて対向する一対の薄膜対向電極と、
前記一対の薄膜対向電極に一端が接続された一対の薄膜配線パターンと、
前記一対の対向電極に跨って形成された感応膜とを有し、
前記感応膜が前記一対の薄膜対向電極に跨るように感応液を滴下して形成した未硬化感応膜を硬化させて形成されている感応センサであって、
前記一対の薄膜対向電極の平面輪郭形状は、仮想環状形に沿い且つ互いに対向するように形成された弧状を呈しており、
前記仮想環状形の中心部には、前記一対の薄膜対向電極との間に間隔をあけて薄膜導電部が形成されており、
前記一対の薄膜対向電極には、前記未硬化感応膜が前記一対の薄膜対向電極が対向する方向とは逆の方向に広がるのを抑制するように、前記未硬化感応膜の広がりに対して抵抗となる抵抗発生構造が形成されていることを特徴とする感応センサ。(1) an insulating substrate;
A pair of thin film counter electrodes formed on the insulating substrate and facing each other with a gap between them;
A pair of thin film wiring patterns having one end connected to the pair of thin film counter electrodes;
A sensitive film formed across the pair of counter electrodes,
A sensitive sensor formed by curing an uncured sensitive film formed by dropping a sensitive liquid so that the sensitive film straddles the pair of thin film counter electrodes,
The planar contour shape of the pair of thin film counter electrodes has an arc shape formed along a virtual annular shape and facing each other,
A thin film conductive portion is formed at the center of the virtual annular shape with a space between the pair of thin film counter electrodes,
The pair of thin film counter electrodes is resistant to spreading of the uncured sensitive film so as to prevent the uncured sensitive film from spreading in a direction opposite to the direction in which the pair of thin film counter electrodes are opposed. A sensitive sensor characterized in that a resistance generating structure is formed.
(2) 前記抵抗発生構造が、前記一対の薄膜対向電極の上面に固定されて前記絶縁性基体から離れる方向に突出し、前記一対の薄膜対向電極が対向する方向とは逆の方向に位置する前記薄膜対向電極の縁部に沿って連続して延びる薄膜によって形成された1以上の堰部からなることを特徴とする上記(1)に記載の感応センサ。 (2) The resistance generating structure is fixed to an upper surface of the pair of thin film counter electrodes and protrudes in a direction away from the insulating base, and is positioned in a direction opposite to a direction in which the pair of thin film counter electrodes are opposed to each other. The sensitive sensor according to (1) above, comprising one or more weir portions formed by a thin film continuously extending along the edge of the thin film counter electrode.
(3) 前記抵抗発生構造が、前記一対の薄膜対向電極の上面に固定されて前記絶縁性基体から離れる方向に突出し、前記一対の薄膜対向電極が対向する方向とは逆の方向に位置する前記薄膜対向電極の縁部に沿って不連続に延びる薄膜によって形成された1以上の突部からなることを特徴とする上記(1)に記載の感応センサ。 (3) The resistance generating structure is fixed to an upper surface of the pair of thin film counter electrodes and protrudes in a direction away from the insulating substrate, and is positioned in a direction opposite to a direction in which the pair of thin film counter electrodes are opposed to each other. The sensitive sensor according to (1) above, comprising one or more protrusions formed by a thin film extending discontinuously along the edge of the thin film counter electrode.
(4) 前記抵抗発生構造が、前記一対の薄膜対向電極の上面に固定されて前記絶縁性基体から離れる方向に突出し、前記薄膜対向電極上に分散して薄膜によって形成された複数の突部からなることを特徴とする上記(1)に記載の感応センサ。 (4) The resistance generating structure is fixed to the upper surfaces of the pair of thin film counter electrodes, protrudes in a direction away from the insulating substrate, and is distributed from the plurality of protrusions formed by the thin films dispersed on the thin film counter electrode. The sensitive sensor according to (1) above, wherein
(5) 前記一対の薄膜配線パターンの一部の上には、出力取出用の引出電極がそれぞれ形成されており、
前記引出電極と前記抵抗発生構造とが、同じ材質で形成されていることを特徴とする上記(2),(3)または(4)に記載の感応センサ。(5) An extraction electrode for output extraction is formed on a part of the pair of thin film wiring patterns,
The sensitive sensor according to (2), (3) or (4), wherein the extraction electrode and the resistance generating structure are formed of the same material.
(6) 前記一対の薄膜対向電極は白金から形成され、前記引出電極と前記抵抗発生構造は金から形成されていることを特徴とする上記(4)に記載の感応センサ。 (6) The sensitive sensor according to (4), wherein the pair of thin film counter electrodes are made of platinum, and the extraction electrode and the resistance generating structure are made of gold.
(7) 前記抵抗発生構造は、前記一対の薄膜対向電極の上面に開口し且つ前記薄膜対向電極に分散して形成された複数の凹部をさらに備えていることを特徴とする上記(2),(3)または(4)に記載の感応センサ。 (7) The resistance generating structure further includes a plurality of recesses that are open on the upper surfaces of the pair of thin film counter electrodes and are formed dispersed in the thin film counter electrodes. The sensitive sensor according to (3) or (4).
(8) スパッタリングにより、相互間に間隔をあけて対向する一対の薄膜対向電極と、前記一対の薄膜対向電極に一端がそれぞれ接続された一対の薄膜配線パターンとを絶縁性基体上に形成し、
前記一対の薄膜配線パターンの一部の上に出力取出用の引出電極をそれぞれ形成し、
前記一対の薄膜対向電極に跨るように感応液を滴下して形成した未硬化感応膜を硬化させて感応膜を形成する感応センサの製造方法において、
前記一対の薄膜対向電極の上面に固定されて前記絶縁性基体から離れる方向に突出し、前記未硬化感応膜が前記一対の薄膜対向電極が対向する方向とは逆の方向に広がるのを抑制するように、前記未硬化感応膜の広がりに対して抵抗となる抵抗発生構造を、前記引出電極と同じ材質で同時にスパッタリングにより形成し、
前記抵抗発生構造は、前記一対の薄膜対向電極が対向する方向とは逆の方向に位置する前記薄膜対向電極の縁部に沿って連続して延びる薄膜によって形成された1以上の堰部、前記薄膜対向電極に沿って不連続に延びる薄膜によって形成された1以上の突部、または、前記薄膜対向電極上に分散して薄膜によって形成された複数の突部からなることを特徴とする感応センサの製造方法。(8) By sputtering, a pair of thin film counter electrodes opposed to each other with a space between each other and a pair of thin film wiring patterns each having one end connected to the pair of thin film counter electrodes are formed on an insulating substrate,
Forming an output electrode for extraction on part of the pair of thin film wiring patterns,
In the method of manufacturing a sensitive sensor, the uncured sensitive film formed by dropping the sensitive liquid so as to straddle the pair of thin film counter electrodes is cured to form a sensitive film.
Fixed to the upper surfaces of the pair of thin film counter electrodes and protruding in a direction away from the insulating substrate, so that the uncured sensitive film is prevented from spreading in a direction opposite to the direction in which the pair of thin film counter electrodes are opposed. In addition, a resistance generating structure that becomes resistance to the spread of the uncured sensitive film is formed by sputtering simultaneously with the same material as the extraction electrode,
The resistance generating structure includes at least one dam portion formed of a thin film continuously extending along an edge of the thin film counter electrode located in a direction opposite to a direction in which the pair of thin film counter electrodes are opposed to each other; A sensitive sensor comprising one or more protrusions formed of a thin film extending discontinuously along a thin film counter electrode, or a plurality of protrusions formed of a thin film dispersed on the thin film counter electrode Manufacturing method.
(9) スパッタリングにより、相互間に間隔をあけて対向する一対の薄膜対向電極と、前記一対の薄膜対向電極に一端がそれぞれ接続された一対の薄膜配線パターンとを絶縁性基体上に形成し、
前記一対の薄膜対向電極に跨るように感応液を滴下して形成した未硬化感応膜を硬化させて感応膜を形成する感応センサの製造方法において、
前記一対の薄膜対向電極の上面に開口し且つ前記薄膜対向電極に沿って分散し、前記未硬化感応膜が前記一対の薄膜対向電極が対向する方向とは逆の方向に広がるのを抑制するように、前記未硬化感応膜の広がりに対して抵抗となる複数の凹部からなる抵抗発生構造を、前記一対の薄膜対向電極を形成するときに同時に形成することを特徴とする感応センサの製造方法。(9) By sputtering, a pair of thin film counter electrodes opposed to each other with a space therebetween and a pair of thin film wiring patterns each having one end connected to the pair of thin film counter electrodes are formed on an insulating substrate,
In the method of manufacturing a sensitive sensor, the uncured sensitive film formed by dropping the sensitive liquid so as to straddle the pair of thin film counter electrodes is cured to form a sensitive film.
An opening is formed on the upper surface of the pair of thin film counter electrodes and dispersed along the thin film counter electrode, so that the uncured sensitive film is prevented from spreading in a direction opposite to the direction in which the pair of thin film counter electrodes face each other. In addition, a method for producing a sensitive sensor is characterized in that a resistance generating structure composed of a plurality of recesses that resists the spread of the uncured sensitive film is formed simultaneously with the pair of thin film counter electrodes.
(10) スパッタリングにより、相互間に間隔をあけて対向する一対の薄膜対向電極と、前記一対の薄膜対向電極に一端がそれぞれ接続された一対の薄膜配線パターンとを絶縁性基体上に形成し、
前記一対の薄膜配線パターンの一部の上に出力取出用の引出電極をそれぞれ形成し、
前記一対の薄膜対向電極に跨るように感応液を滴下して形成した未硬化感応膜を硬化させて感応膜を形成する感応センサの製造方法において、
前記一対の薄膜対向電極の上面に開口し且つ前記薄膜対向電極に沿って分散し、前記未硬化感応膜が前記一対の薄膜対向電極が対向する方向とは逆の方向に広がるのを抑制するように、前記未硬化感応膜の広がりに対して抵抗となる複数の凹部を前記一対の薄膜対向電極を形成するときに同時に形成し、
前記一対の薄膜対向電極が対向する方向とは逆の方向に位置する前記薄膜対向電極の縁部に沿って連続して延びる薄膜によって形成された1以上の堰部を、前記引出電極と同じ材質で同時にスパッタリングにより形成することを特徴とする感応センサの製造方法。(10) By sputtering, a pair of thin film counter electrodes opposed to each other with a space therebetween and a pair of thin film wiring patterns each having one end connected to the pair of thin film counter electrodes are formed on an insulating substrate,
Forming an output electrode for extraction on part of the pair of thin film wiring patterns,
In the method of manufacturing a sensitive sensor, the uncured sensitive film formed by dropping the sensitive liquid so as to straddle the pair of thin film counter electrodes is cured to form a sensitive film.
An opening is formed on the upper surface of the pair of thin film counter electrodes and dispersed along the thin film counter electrode, so that the uncured sensitive film is prevented from spreading in a direction opposite to the direction in which the pair of thin film counter electrodes face each other. And simultaneously forming a plurality of recesses that are resistant to the spread of the uncured sensitive film when forming the pair of thin film counter electrodes,
One or more weir portions formed by a thin film continuously extending along an edge of the thin film counter electrode positioned in a direction opposite to the direction in which the pair of thin film counter electrodes are opposed to each other, are made of the same material as the extraction electrode A method for producing a sensitive sensor, characterized by being formed simultaneously by sputtering.
本発明によれば、一対の薄膜対向電極の一方の薄膜対向電極が仮想環状形に沿うように形成された弧状を呈しているので、一対の薄膜対向電極の占有部分の輪郭形状と、感応膜が占める占有部分の輪郭形状とが、ともに環状形に近い形になるため、両者の大きさに大きな差は生じない。そのため、一対の薄膜対向電極の占有面積を小さくできる。また、他方の薄膜対向電極が一方の薄膜対向電極に囲まれて仮想環状形の中心部に位置するため、一方の薄膜対向電極と他方の薄膜対向電極との間に位置する感応膜の部分(周縁部分)の厚み寸法のばらつきを小さくできる。そのため、感応センサの精度にばらつきが生じるのを抑制することができる。 According to the present invention, since one thin film counter electrode of the pair of thin film counter electrodes has an arc shape formed so as to follow the virtual annular shape, the contour shape of the occupied portion of the pair of thin film counter electrodes, and the sensitive film Since the contour shape of the occupied portion occupied by each becomes a shape close to an annular shape, there is no great difference in size between the two. Therefore, the area occupied by the pair of thin film counter electrodes can be reduced. In addition, since the other thin film counter electrode is surrounded by one thin film counter electrode and is located at the center of the virtual annular shape, the portion of the sensitive film positioned between the one thin film counter electrode and the other thin film counter electrode ( Variation in the thickness dimension of the peripheral edge portion can be reduced. For this reason, it is possible to suppress variations in the accuracy of the sensitive sensor.
Claims (10)
前記絶縁性基体上に形成され、相互間に間隔をあけて対向する一対の薄膜対向電極と、
前記一対の薄膜対向電極に一端が接続された一対の薄膜配線パターンと、
前記一対の対向電極に跨って形成された感応膜とを有し、
前記感応膜が前記一対の薄膜対向電極に跨るように感応液を滴下して形成した未硬化感応膜を硬化させて形成されている感応センサであって、
前記絶縁性基体の内部には、前記感応膜を加熱するためのヒータが内蔵されており、
前記一対の薄膜対向電極の一方の薄膜対向電極は、仮想環状形に沿うように形成された弧状を呈しており、
前記一対の薄膜対向電極の他方の薄膜対向電極は、前記一方の薄膜対向電極に囲まれて前記仮想環状形の中心部に位置しており、
前記他方の薄膜対向電極の中央には、前記他方の薄膜対向電極を貫通する孔部が形成されており、
前記他方の薄膜対向電極及び前記孔部の平面輪郭形状は、前記仮想環状形と同心の環状形状を有していることを特徴とする感応センサ。An insulating substrate;
A pair of thin film counter electrodes formed on the insulating substrate and facing each other with a gap between them;
A pair of thin film wiring patterns having one end connected to the pair of thin film counter electrodes;
A sensitive film formed across the pair of counter electrodes,
A sensitive sensor formed by curing an uncured sensitive film formed by dropping a sensitive liquid so that the sensitive film straddles the pair of thin film counter electrodes,
A heater for heating the sensitive film is built in the insulating base,
One thin film counter electrode of the pair of thin film counter electrodes has an arc shape formed along a virtual annular shape,
The other thin film counter electrode of the pair of thin film counter electrodes is surrounded by the one thin film counter electrode and is located at the center of the virtual annular shape,
In the center of the other thin film counter electrode, a hole that penetrates the other thin film counter electrode is formed,
The other thin film counter electrode and the planar contour shape of the hole have an annular shape concentric with the virtual annular shape.
前記他方の薄膜対向電極及び前記孔部の平面輪郭形状は前記仮想円と同心の相似形状を有しており、
前記孔部の半径R1は、前記他方の薄膜対向電極の半径R2の30〜90%であることを特徴とする請求項2に記載の感応センサ。The virtual annular shape consists of a virtual circle,
The other thin-film counter electrode and the planar contour shape of the hole have a similar shape concentric with the virtual circle,
The sensitive sensor according to claim 2, wherein a radius R1 of the hole is 30 to 90% of a radius R2 of the other thin film counter electrode.
前記絶縁性基体上に形成され、相互間に間隔をあけて対向する一対の薄膜対向電極と、
前記一対の薄膜対向電極に一端が接続された一対の薄膜配線パターンと、
前記一対の対向電極に跨って形成された感応膜とを有し、
前記感応膜が前記一対の薄膜対向電極に跨るように感応液を滴下して形成した未硬化感応膜を硬化させて形成されている感応センサであって、
前記一対の薄膜対向電極の一方の薄膜対向電極は、仮想環状形に沿うように形成された弧状を呈しており、
前記一対の薄膜対向電極の他方の薄膜対向電極は、前記一方の薄膜対向電極に囲まれて前記仮想環状形の中心部に位置していることを特徴とする感応センサ。An insulating substrate;
A pair of thin film counter electrodes formed on the insulating substrate and facing each other with a gap between them;
A pair of thin film wiring patterns having one end connected to the pair of thin film counter electrodes;
A sensitive film formed across the pair of counter electrodes,
A sensitive sensor formed by curing an uncured sensitive film formed by dropping a sensitive liquid so that the sensitive film straddles the pair of thin film counter electrodes,
One thin film counter electrode of the pair of thin film counter electrodes has an arc shape formed along a virtual annular shape,
The other thin film counter electrode of the pair of thin film counter electrodes is surrounded by the one thin film counter electrode and is located at the center of the virtual annular shape.
前記絶縁性基体上に形成され、相互間に間隔をあけて対向する一対の薄膜対向電極と、
前記一対の薄膜対向電極に一端が接続された一対の薄膜配線パターンと、
前記一対の対向電極に跨って形成された感応膜とを有し、
前記感応膜が前記一対の薄膜対向電極に跨るように感応液を滴下して形成した未硬化感応膜を硬化させて形成されている感応センサであって、
前記一対の薄膜対向電極の一方の薄膜対向電極は、仮想環状形に沿うように形成された弧状を呈しており、
前記一対の薄膜対向電極の他方の薄膜対向電極は、仮想環状形に沿い且つ前記一方の薄膜対向電極と対向するように形成された弧状を呈しており、
前記仮想環状形の中心部には、前記一対の薄膜対向電極との間に間隔をあけて薄膜導電部が形成されていることを特徴とする感応センサ。An insulating substrate;
A pair of thin film counter electrodes formed on the insulating substrate and facing each other with a gap between them;
A pair of thin film wiring patterns having one end connected to the pair of thin film counter electrodes;
A sensitive film formed across the pair of counter electrodes,
A sensitive sensor formed by curing an uncured sensitive film formed by dropping a sensitive liquid so that the sensitive film straddles the pair of thin film counter electrodes,
One thin film counter electrode of the pair of thin film counter electrodes has an arc shape formed along a virtual annular shape,
The other thin film counter electrode of the pair of thin film counter electrodes has an arc shape formed so as to be along the virtual annular shape and to face the one thin film counter electrode,
A sensitive sensor, wherein a thin film conductive portion is formed at a central portion of the virtual annular shape with a space between the pair of thin film counter electrodes.
前記薄膜導電部の平面輪郭形状は、前記仮想円または仮想楕円と同心の相似形状を有していることを特徴とする請求項6に記載の感応センサ。The virtual annular shape is a virtual circle or a virtual ellipse,
7. The sensitive sensor according to claim 6, wherein a planar contour shape of the thin film conductive portion has a similar shape concentric with the virtual circle or virtual ellipse.
前記感応膜が、ガスを吸収すると抵抗値が変化するガス感応膜であることを特徴とする請求項7に記載の感応センサ。A heater for heating the sensitive film is built in the insulating base,
The sensitive sensor according to claim 7, wherein the sensitive film is a gas sensitive film whose resistance value changes when gas is absorbed.
前記一対の薄膜配線パターンの一部の上に出力取出用の引出電極をそれぞれ形成し、
前記一対の薄膜対向電極に跨るように感応液を滴下して形成した未硬化感応膜を硬化させて感応膜を形成する感応センサの製造方法において、
前記一対の薄膜対向電極の上面に固定されて前記絶縁性基体から離れる方向に突出し、前記未硬化感応膜が前記一対の薄膜対向電極が対向する方向とは逆の方向に広がるのを抑制するように、前記未硬化感応膜の広がりに対して抵抗となる抵抗発生構造を、前記引出電極と同じ材質で同時にスパッタリングにより形成することを特徴とする感応センサの製造方法。By sputtering, a pair of thin film counter electrodes facing each other with a space therebetween, and a pair of thin film wiring patterns each having one end connected to the pair of thin film counter electrodes are formed on an insulating substrate,
Forming an output electrode for extraction on part of the pair of thin film wiring patterns,
In the method of manufacturing a sensitive sensor, the uncured sensitive film formed by dropping the sensitive liquid so as to straddle the pair of thin film counter electrodes is cured to form a sensitive film.
Fixed to the upper surfaces of the pair of thin film counter electrodes and protruding in a direction away from the insulating substrate, so that the uncured sensitive film is prevented from spreading in a direction opposite to the direction in which the pair of thin film counter electrodes are opposed. In addition, a method for producing a sensitive sensor is characterized in that a resistance generating structure that is resistant to the spread of the uncured sensitive film is formed simultaneously by sputtering with the same material as the extraction electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009509370A JP4913866B2 (en) | 2007-04-10 | 2008-04-10 | Sensitive sensor and manufacturing method thereof |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007103245 | 2007-04-10 | ||
JP2007103246 | 2007-04-10 | ||
JP2007103245 | 2007-04-10 | ||
JP2007103246 | 2007-04-10 | ||
JP2009509370A JP4913866B2 (en) | 2007-04-10 | 2008-04-10 | Sensitive sensor and manufacturing method thereof |
PCT/JP2008/057087 WO2008126897A1 (en) | 2007-04-10 | 2008-04-10 | Sensing sensor and manufacturing method of the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2008126897A1 JPWO2008126897A1 (en) | 2010-07-22 |
JP4913866B2 true JP4913866B2 (en) | 2012-04-11 |
Family
ID=39863992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009509370A Active JP4913866B2 (en) | 2007-04-10 | 2008-04-10 | Sensitive sensor and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4913866B2 (en) |
WO (1) | WO2008126897A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11371951B2 (en) | 2012-09-27 | 2022-06-28 | Sensirion Ag | Gas sensor comprising a set of one or more sensor cells |
US8802568B2 (en) * | 2012-09-27 | 2014-08-12 | Sensirion Ag | Method for manufacturing chemical sensor with multiple sensor cells |
WO2020203100A1 (en) * | 2019-03-29 | 2020-10-08 | 新コスモス電機株式会社 | Mems-type semiconductor gas detection element |
JP6679787B1 (en) * | 2019-03-29 | 2020-04-15 | 新コスモス電機株式会社 | MEMS type semiconductor gas detector |
JP6679788B1 (en) * | 2019-03-29 | 2020-04-15 | 新コスモス電機株式会社 | MEMS type semiconductor gas detector |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07294474A (en) * | 1994-04-25 | 1995-11-10 | Matsushita Electric Ind Co Ltd | Humidity sensor |
JP2001502060A (en) * | 1996-10-15 | 2001-02-13 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Gas sensor electrode device |
JP2005291186A (en) * | 2004-04-06 | 2005-10-20 | Nissan Motor Co Ltd | Control device for internal combustion engine |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56118658A (en) * | 1980-02-23 | 1981-09-17 | Nec Corp | Gas detecting element |
JP2005291886A (en) * | 2004-03-31 | 2005-10-20 | Tdk Corp | Manufacturing method of humidity sensor element, and the humidity sensor element |
-
2008
- 2008-04-10 WO PCT/JP2008/057087 patent/WO2008126897A1/en active Application Filing
- 2008-04-10 JP JP2009509370A patent/JP4913866B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07294474A (en) * | 1994-04-25 | 1995-11-10 | Matsushita Electric Ind Co Ltd | Humidity sensor |
JP2001502060A (en) * | 1996-10-15 | 2001-02-13 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Gas sensor electrode device |
JP2005291186A (en) * | 2004-04-06 | 2005-10-20 | Nissan Motor Co Ltd | Control device for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
WO2008126897A1 (en) | 2008-10-23 |
JPWO2008126897A1 (en) | 2010-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8024958B2 (en) | Gas sensors with thermally insulating ceramic substrates | |
JP4913866B2 (en) | Sensitive sensor and manufacturing method thereof | |
EP1340067B1 (en) | Thin film ppb oxygen sensor | |
US10942141B2 (en) | Multi-parametric sensor with bridge structure | |
JP2001502060A (en) | Gas sensor electrode device | |
JP6917843B2 (en) | Gas sensor | |
JP2002286673A (en) | Gas sensor and its manufacturing method | |
US10520457B2 (en) | Sensor of volatile substances with integrated heater and process for manufacturing a sensor of volatile substances | |
JP6805084B2 (en) | Semiconductor type gas detection element | |
CN106093138A (en) | By manufacture method and the sensor of the sensor of metal-oxide detected gas | |
JP5419336B2 (en) | Sensitive sensor and manufacturing method thereof | |
US20180156747A1 (en) | Gas sensors | |
JP4798961B2 (en) | HEATER DEVICE AND GAS SENSOR DEVICE USING THE SAME | |
CN104115288B (en) | There is the infrared light transducer[sensor chip of high measurement accuracy and for the method manufacturing infrared light transducer[sensor chip | |
US20190064094A1 (en) | Gas sensor and gas sensor package having the same | |
KR101992022B1 (en) | Semiconductor gas sensor | |
CN106158743A (en) | Utilize the manufacture method of the sensor of many inducing pixels detection multiple gases | |
JP2018205078A (en) | Semiconductor-type gas detection element and method for manufacturing semiconductor-type gas detection element | |
RU2206082C1 (en) | Semiconductor metal-oxide gas sensor | |
KR100773025B1 (en) | Semiconductor gas sensor, its driving method and fabrication method | |
JPH11344457A (en) | Smell sensor | |
JP2006226728A (en) | Capacity type humidity sensor | |
JP2016219365A (en) | Micro heater and sensor | |
JP2021047015A (en) | Humidity detection device | |
JP2984095B2 (en) | Gas sensor manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120110 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120119 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4913866 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150127 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |