[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4900619B2 - Method and apparatus for continuously producing fine carbon fiber twisted yarn - Google Patents

Method and apparatus for continuously producing fine carbon fiber twisted yarn Download PDF

Info

Publication number
JP4900619B2
JP4900619B2 JP2008510965A JP2008510965A JP4900619B2 JP 4900619 B2 JP4900619 B2 JP 4900619B2 JP 2008510965 A JP2008510965 A JP 2008510965A JP 2008510965 A JP2008510965 A JP 2008510965A JP 4900619 B2 JP4900619 B2 JP 4900619B2
Authority
JP
Japan
Prior art keywords
fine carbon
substrate
carbon fiber
bobbin
twisted yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008510965A
Other languages
Japanese (ja)
Other versions
JPWO2007119747A1 (en
Inventor
信志 谷口
学 内藤
康雄 大田
幸浩 阿部
久人 小林
幸司 喜多
正樹 西村
智幸 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKAPREFECTURAL GOVERNMENT
Toyobo Co Ltd
Original Assignee
OSAKAPREFECTURAL GOVERNMENT
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKAPREFECTURAL GOVERNMENT, Toyobo Co Ltd filed Critical OSAKAPREFECTURAL GOVERNMENT
Priority to JP2008510965A priority Critical patent/JP4900619B2/en
Publication of JPWO2007119747A1 publication Critical patent/JPWO2007119747A1/en
Application granted granted Critical
Publication of JP4900619B2 publication Critical patent/JP4900619B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/16Yarns or threads made from mineral substances
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)
  • Treatment Of Fiber Materials (AREA)

Description

本発明は、化学気相成長によって得られる微細炭素繊維から連続的に撚糸を製造する方法、及び装置に関する。 The present invention relates to a method and an apparatus for continuously producing twisted yarn from fine carbon fibers obtained by chemical vapor deposition.

微細炭素繊維は、電気特性、力学特性等に優れており、電解放出型ディスプレイ、導電性フィラー等をはじめ、様々な産業への利用および応用が期待されている。   Fine carbon fibers are excellent in electrical characteristics, mechanical characteristics, and the like, and are expected to be used and applied in various industries such as field emission displays and conductive fillers.

近年、カーボンナノチューブからなる微細炭素繊維およびそれを使ったカーボンナノチューブシートが提案されている(特許文献1及び非特許文献1、2、)。   In recent years, fine carbon fibers made of carbon nanotubes and carbon nanotube sheets using the same have been proposed (Patent Document 1 and Non-Patent Documents 1 and 2).

非特許文献1においては、化学気相成長法で基板上に高密度・高配向に成長させた微細炭素繊維の集合体から微細炭素繊維撚糸を形成する方法が開示されている。   Non-Patent Document 1 discloses a method of forming fine carbon fiber twisted yarns from an aggregate of fine carbon fibers grown in a high density and high orientation on a substrate by chemical vapor deposition.

特許文献1,非特許文献2においては、化学気相成長法で基板上に高密度・高配向に成長させた微細炭素繊維の集合体から微細炭素繊維シートや微細炭素繊維ロープを形成し得ることが開示されている。   In Patent Document 1 and Non-Patent Document 2, a fine carbon fiber sheet or a fine carbon fiber rope can be formed from an aggregate of fine carbon fibers grown on a substrate with high density and high orientation by a chemical vapor deposition method. Is disclosed.

前記の微細炭素繊維撚糸およびシートは、その既存にない形態から、新たな用途への使用が予想され、種々の産業への応用が期待されている。   The above-mentioned fine carbon fiber twisted yarn and sheet are expected to be used for new applications because of their non-existing forms, and are expected to be applied to various industries.

産業への応用に際しては、上記のような微細炭素繊維撚糸やシートを連続的に、かつ均質に作製して巻き取れることが必須である。微細炭素材料繊維を基板から引き出す時の張力は、通常0.05〜0.5mNと極めて小さい。何らかの原因でこの値を超えると容易に糸切れが起こってしまう。この繊細さが微細炭素材料撚糸を製造する上での最大の克服すべき課題である。   In industrial applications, it is essential that the fine carbon fiber twisted yarns and sheets as described above are continuously and uniformly produced and wound. The tension when pulling out the fine carbon material fiber from the substrate is usually as small as 0.05 to 0.5 mN. If this value is exceeded for some reason, thread breakage easily occurs. This fineness is the greatest problem to be overcome in producing fine carbon material twisted yarn.

非特許文献1では、モーターの回転軸の先に爪楊枝製のスピンドルを装着し、該スピンドルの先端に複数本の微細炭素繊維を接続した状態で、該スピンドルを回転させながら該スピンドルの先端が微細炭素繊維の集合体基板から離れることで、微細炭素繊維撚糸を製造している。しかしこの方式では、作製可能な微細炭素繊維撚糸の長さはモーターの移動可能距離と等しいため、一度に作製できる微細炭素繊維撚糸の長さは根本的に制限されてしまう。そのため、撚りをかけるスピンドルと、微細炭素繊維の基板との間の距離が大きくなると、引き出した微細炭素繊維撚糸の不安定な揺動が工程の不安定さを誘発して糸切れが多発したり、撚りの伝達具合が変化することによる斑が撚糸に発生してしまう、といった懸念点がある。   In Non-Patent Document 1, a spindle made by a toothpick is attached to the tip of a rotating shaft of a motor, and a plurality of fine carbon fibers are connected to the tip of the spindle. Fine carbon fiber twisted yarn is manufactured by separating from the carbon fiber aggregate substrate. However, in this method, since the length of the fine carbon fiber twisted yarn that can be produced is equal to the movable distance of the motor, the length of the fine carbon fiber twisted yarn that can be produced at one time is fundamentally limited. For this reason, when the distance between the spindle for twisting and the substrate of the fine carbon fiber becomes large, unstable swinging of the drawn fine carbon fiber twisted yarn induces instability in the process, resulting in frequent yarn breakage. There is a concern that spots due to changes in the twist transmission state may occur in the twisted yarn.

一方で通常の天然繊維の紡績に用いられる方法として、リング紡績方式、フライヤ精紡方式等が挙げられる。これらの方法は連続的に撚糸を生産可能であるが、本発明で扱う微細炭素繊維は非常に微細なため摩擦に弱く、工程で摩擦を受ける従来の手法を用いることは困難であった。従ってこのような方法を用いる限り、産業への応用は難しい状況であった。(非特許文献3参照)
国際公開WO2005/102924号パンフレット チャン等、「古代技術を小型化することによる多機能カーボンナノチューブ繊維」、サイエンス誌、米国、米国科学振興協会発行、2004年11月19日、第306巻、1358〜1361頁(Zhang et al., ,Science, AAAS, “Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology”,VOL 306,1358-1361, 19 November 2004) チャン等、「強靱で透明な多機能カーボンナノチューブシート」、サイエンス誌、米国、米国科学振興協会発行、2005年8月19日、第309巻、1215〜1219頁(Zhang et al.,Science, AAAS, “Strong, Trasnsparent, Multifunctional, Carbon Nanotube sheets”, 309,1215-1219, 19 August 2005) 著者名:熨斗秀夫他、基礎繊維工学[II]、日本繊維機械学会、昭和41年12月20日発行、249頁
On the other hand, examples of the method used for spinning natural fibers include a ring spinning method and a flyer spinning method. Although these methods can continuously produce twisted yarns, the fine carbon fibers handled in the present invention are very fine and thus are vulnerable to friction, and it has been difficult to use a conventional method of receiving friction in the process. Therefore, as long as such a method is used, it has been difficult to apply to the industry. (See Non-Patent Document 3)
International Publication WO2005 / 102924 Pamphlet Chang et al., “Multifunctional carbon nanotube fibers by miniaturizing ancient technology”, Science magazine, USA, published by the American Association for the Advancement of Science, November 19, 2004, 306, 1358-1361 (Zhang et al. ,, Science, AAAS, “Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology”, VOL 306, 1358-1361, 19 November 2004) Chang et al., “Tough and Transparent Multifunctional Carbon Nanotube Sheet”, Science Magazine, USA, American Society for the Advancement of Science, August 19, 2005, 309, 1215-1219 (Zhang et al., Science, AAAS , “Strong, Trasnsparent, Multifunctional, Carbon Nanotube sheets”, 309, 1215-1219, 19 August 2005) Authors: Hideo Tsujito et al., Basic Textile Engineering [II], Japan Textile Machinery Society, issued December 20, 1966, 249 pages

本発明は、上記事情に鑑みなされたものであり、微細炭素繊維の撚糸を連続的に製造するのに適した方法、及び装置を提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the method and apparatus suitable for manufacturing the twisted yarn of a fine carbon fiber continuously.

上記目的を達成するため、本発明に係る微細炭素繊維撚糸の製造方法は、基板上に微細炭素繊維の集合体を化学気相成長させる成長工程と、前記基板上の集合体から微細炭素繊維を連続的に引き出してボビンに巻き取る、巻取工程と、前記基板及びボビンの少なくとも一方を回転させることによって、前記基板上の微細炭素繊維の集合体から連続的に引き出されて前記ボビンに巻き取られる微細炭素繊維に撚りをかけ、微細炭素繊維撚糸を形成する、撚り合わせ工程と、を有し、前記撚り合わせ工程と巻取工程とを同時に行うことを特徴とする。   In order to achieve the above object, a method for producing a fine carbon fiber twisted yarn according to the present invention includes a growth step of chemical vapor deposition of an aggregate of fine carbon fibers on a substrate, and the fine carbon fibers from the aggregate on the substrate. A winding step of continuously pulling out and winding on a bobbin, and rotating at least one of the substrate and the bobbin to continuously pull out from the aggregate of fine carbon fibers on the substrate and wind up on the bobbin. A twisting step of twisting the fine carbon fiber to be formed to form a fine carbon fiber twisted yarn, wherein the twisting step and the winding step are performed simultaneously.

前記撚り合わせ工程において微細炭素繊維に撚りをかける方法が、前記基板を回転させることによるものであり、前記撚り合わせ工程は、前記微細炭素繊維の集合体を有する基板を複数用意し、各基板を通る回転軸線回りに各々の基板を回転させることによって前記集合体から引き出した微細炭素繊維を撚って微細炭素繊維撚糸を形成しつつ、前記複数の基板を共通の回転軸線回りに更に回転させることによって前記微細炭素繊維撚糸どうしをさらに撚合わせても良い。   The method of twisting the fine carbon fibers in the twisting step is by rotating the substrate, and the twisting step prepares a plurality of substrates having the fine carbon fiber aggregate, The plurality of substrates are further rotated around a common rotation axis while twisting the fine carbon fibers drawn from the aggregate by rotating each substrate around a rotation axis passing therethrough to form a fine carbon fiber twisted yarn. The fine carbon fiber twisted yarns may be further twisted together.

また、微細炭素繊維撚糸の糸切れをリカバリーするリカバリー工程を更に有し、該リカバリー工程は、前記微細炭素繊維の集合体の側面に極細軸状部を有する引出具の該極細軸状部を突き刺した後、該極細軸状部に前記微細炭素繊維を付着させ、基板から微細炭素繊維を無撚りのまま引き出し、または基板または引出具を回転させて微細炭素繊維の撚糸にして引き出し、引き出した撚糸の端部を、既にボビン上に巻き取った微細炭素繊維撚糸の一端に重ね合わせた後、その重ね合わせた部分に撚りを掛けて両撚糸を接続し、前記引出具の極細軸状部に繋がっている微細炭素繊維撚糸を該引出具から切り離すことにより、2本の撚糸を接続するようにしても良い。   In addition, the method further includes a recovery step of recovering the breakage of the fine carbon fiber twisted yarn, and the recovery step pierces the ultrafine shaft-shaped portion of the drawing tool having the ultrafine shaft-shaped portion on the side surface of the aggregate of the fine carbon fibers. After that, the fine carbon fiber is attached to the ultra-thin shaft portion, and the fine carbon fiber is pulled out from the substrate without being twisted, or the substrate or the drawing tool is rotated to be drawn out as a twisted yarn of the fine carbon fiber and drawn out. The ends of the carbon fiber are superposed on one end of the fine carbon fiber twisted yarn already wound on the bobbin, and then the twisted portion is twisted to connect the two twisted yarns, which are connected to the ultra-thin shaft portion of the drawing tool. The two twisted yarns may be connected by separating the fine carbon fiber twisted yarn from the drawing tool.

1対のボビンに巻き取られた各々の微細炭素繊維撚糸を繋げる接続工程を更に含み、前記接続工程は、一端が第1のボビンに捲きつけられている第1の撚糸の他端を引き出し、一端が第2のボビンに捲きつけられている第2の撚糸の他端に前記第1の撚糸の他端を重ね合わせ、重ね合わせた部分に撚りを掛けて両撚糸を接続することにより、2本の微細炭素繊維の撚糸を接続するようにしても良い。   A connection step of connecting each fine carbon fiber twisted yarn wound around a pair of bobbins, wherein the connecting step pulls out the other end of the first twisted yarn, one end of which is wound around the first bobbin; By overlapping the other end of the first twisted yarn on the other end of the second twisted yarn, one end of which is wound around the second bobbin, twisting the overlapped portion and connecting the two twisted yarns, 2 You may make it connect the twisted yarn of a fine carbon fiber of a book.

接続すべき2本の撚糸の重ね合わせ部分に、微細炭素材繊維の集合体を化学気相成長させた基板から引き出した幅広のシート状の微細炭素繊維で覆った後、該重ね合わせ部分に撚りを掛けて接続しても良い。   The overlap portion of the two twisted yarns to be connected is covered with a wide sheet-like fine carbon fiber drawn from a substrate subjected to chemical vapor deposition, and then twisted on the overlap portion. You may connect by multiplying.

前記重ね合わせた部分に炭素数1〜5のアルコール、アセトン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、酢酸エチル、アセトニトリル、又は、水の中から選ばれた液体を付与した後、該重ね合わせ部分に撚りを掛けることが好ましい。   After applying a liquid selected from alcohol having 1 to 5 carbon atoms, acetone, tetrahydrofuran, dimethylformamide, dimethylacetamide, ethyl acetate, acetonitrile, or water to the overlapped portion, the overlapped portion is twisted. It is preferable to multiply.

また、前記成長工程において、微細炭素繊維を平均長さ(L)が0.02mm以上となるように成長させ、前記撚り合わせ工程は、直径(D)がD<(L/π)に設定された極細軸状部を有する引出具を回転させながら、または該引出具を回転させずに、基板上に成長させられた微細炭素繊維の集合体の側面に前記極細軸状部を突き刺して所定距離進入させ、前記引出具を所定回転数で回転させながら微細炭素繊維を引き出す工程を含んでも良い。   Further, in the growth step, fine carbon fibers are grown so that the average length (L) is 0.02 mm or more, and in the twisting step, the diameter (D) is set to D <(L / π). The ultrathin shaft portion is pierced into the side surface of the aggregate of the fine carbon fibers grown on the substrate while rotating the extraction tool having the extra fine shaft portion or without rotating the extraction tool. You may include the process of making it approach and drawing out fine carbon fiber, rotating the said drawing tool by predetermined rotation speed.

さらに、本発明に係る微細炭素繊維撚糸の製造方法は、基板上に微細炭素繊維の集合体を化学気相成長させる成長工程と、前記基板上の微細炭素繊維の集合体から微細炭素繊維を連続的に引き出しつつ、ボビンを回転させることによって該微細炭素繊維に撚りをかけて微細炭素繊維撚糸を形成する、引き出し撚り合わせ工程と、引き出されて撚りをかけられた微細炭素繊維撚糸をボビンに巻き取る巻取工程と、を有し、前記引き出し撚り合わせ工程では、前記微細炭素繊維が引き出される方向に巻取回転軸線が沿う第1の配置と、前記微細炭素繊維が引き出される方向と巻取回転軸線が交差する第2の配置とを配置転換可能なボビンを用い、前記第1の配置において該ボビンの一端に前記微細炭素繊維を接続した状態で該ボビンを巻取軸線回りに回転させつつ、前記基板及び前記ボビンの少なくとも一方を互いに離れる方向に移動させることにより、前記基板上の微細炭素繊維の集合体から微細炭素繊維を引き出しつつ撚りをかけ、前記巻取工程では、前記ボビンの回転を停止させた状態で前記第2の配置に配置転換させた後、該ボビンを前記巻取回転軸線回りに回転させるとともに、該ボビンの回転と同期して前記基板と前記ボビンとの距離が縮まるように前記基板及び前記ボビンの少なくとも一方を移動させることにより、第2工程において引き出されて撚りをかけられた微細炭素繊維撚糸を前記ボビンに巻き取り、前記引き出し撚り合わせ工程と前記巻取工程とが、交互に行われることを特徴とする。   Furthermore, the method for producing a fine carbon fiber twisted yarn according to the present invention includes a growth step of chemical vapor deposition of an aggregate of fine carbon fibers on a substrate, and continuous fine carbon fibers from the aggregate of fine carbon fibers on the substrate. The fine carbon fiber is twisted to form a fine carbon fiber twisted yarn by rotating the bobbin while rotating the bobbin, and the fine carbon fiber twisted yarn drawn and twisted is wound around the bobbin A winding step, and in the pulling and twisting step, a first arrangement along which a winding rotation axis extends in a direction in which the fine carbon fibers are pulled out, and a direction in which the fine carbon fibers are pulled out and a winding rotation A bobbin capable of changing the arrangement between the second arrangement where the axes intersect is used, and the bobbin is wound around the winding axis while the fine carbon fiber is connected to one end of the bobbin in the first arrangement. , While moving the at least one of the substrate and the bobbin away from each other, twisting while pulling out the fine carbon fibers from the aggregate of fine carbon fibers on the substrate, in the winding step, After the bobbin is stopped and rotated to the second arrangement, the bobbin is rotated around the winding rotation axis, and the substrate and the bobbin are synchronized with the bobbin rotation. By moving at least one of the substrate and the bobbin so as to reduce the distance, the fine carbon fiber twisted yarn drawn and twisted in the second step is wound around the bobbin, and the draw-twisting step and the The winding process is performed alternately.

また、本発明は、上記の何れかの方法によって製造された直径1〜100nmの微細炭素繊維から成る微細炭素繊維撚糸であって、表面撚り角度が10〜50°であり、引張強度が200MPa以上を有する微細炭素繊維撚糸を提供する。   Further, the present invention is a fine carbon fiber twisted yarn comprising fine carbon fibers having a diameter of 1 to 100 nm produced by any one of the above methods, the surface twist angle is 10 to 50 °, and the tensile strength is 200 MPa or more. A fine carbon fiber twisted yarn is provided.

さらに、上記目的を達成するため、本発明は、基板上に化学気相成長させた微細炭素繊維の集合体から微細炭素繊維の撚糸を連続的に製造する装置であって、前記基板を保持する基板保持部と、前記微細炭素繊維撚糸を巻取駆動するボビンと、前記基板保持部によって保持された基板上の前記集合体から引き出されてボビンに巻き取られる微細炭素繊維に撚りをかけるように、ボビンの巻取駆動と連動し、前記基板保持部及び前記ボビンの少なくとも一方を回転駆動させる、撚り合わせ機構と、を備えることを特徴とする前記装置を提供する。   Furthermore, in order to achieve the above object, the present invention is an apparatus for continuously producing twisted yarns of fine carbon fibers from an aggregate of fine carbon fibers grown on a substrate by chemical vapor deposition, which holds the substrate. A substrate holding unit, a bobbin for driving the fine carbon fiber twisted yarn, and a fine carbon fiber drawn from the assembly on the substrate held by the substrate holding unit and wound on the bobbin is twisted. And a twisting mechanism for rotating at least one of the substrate holding portion and the bobbin in conjunction with a bobbin winding drive.

前記基板保持部は、前記基板上の前記集合体から引き出される微細炭素繊維と該基板との干渉を避けるように、該保持部の回転軸線が前記ボビンの周縁部に向けられ、且つ、前記基板を前記保持部の回転軸線と非平行に保持するように構成されていることが好ましい。   The substrate holding portion has a rotation axis of the holding portion directed toward a peripheral edge of the bobbin so as to avoid interference between the fine carbon fibers drawn from the aggregate on the substrate and the substrate, and the substrate Is preferably configured to be held non-parallel to the rotation axis of the holding portion.

また、本発明に係る微細炭素繊維撚糸の製造装置は、複数の前記基板保持部を支持する支持体と、各基板保持部に保持された基板上の前記集合体の各々から引き出される微細炭素繊維に撚りをかけるために前記複数の基板保持部の各々を回転駆動する複数の第1駆動部と、前記微細炭素繊維撚糸どうしをさらに撚合わせるために前記支持体を回転駆動する第2駆動部と、を有することが好ましい。   The apparatus for producing a fine carbon fiber twisted yarn according to the present invention includes a support that supports a plurality of the substrate holders, and a fine carbon fiber drawn from each of the aggregates on the substrate held by each substrate holder. A plurality of first driving units that rotationally drive each of the plurality of substrate holding units to twist the substrate, and a second driving unit that rotationally drives the support to further twist the fine carbon fiber twisted yarns. It is preferable to have.

さらに、本発明に係る微細炭素繊維撚糸の製造装置は、前記前記基板上からの微細炭素繊維の引出位置付近に風防を備えることが好ましい。   Furthermore, it is preferable that the apparatus for producing fine carbon fiber twisted yarn according to the present invention includes a windshield in the vicinity of the drawing position of the fine carbon fiber from the substrate.

また、本発明に係る微細炭素繊維撚糸の製造装置は、基板上の微細炭素繊維切れ又は、基板からの微細炭素繊維の引き出し状態を監視する監視装置を更に備え、該監視装置は、微細炭素繊維を化学気相成長させた基板とボビンとの間に存在する撚りを掛けながら基板から引き出された微細炭素繊維撚糸を撮影する撮像装置と、該撮像装置によって得られた画像データを画面上に拡大して映し出すディスプレイと、該ディスプレイに映し出された映像の画像データを走査し撚糸を構成する画素数が減少した時に糸切れと判定する判定手段と、を有することが好ましい。   The apparatus for producing fine carbon fiber twisted yarn according to the present invention further includes a monitoring device that monitors whether the fine carbon fibers on the substrate are broken or the fine carbon fibers are pulled out from the substrate, and the monitoring device includes the fine carbon fibers. An imaging device for photographing fine carbon fiber twisted yarn pulled out from a substrate while applying a twist existing between a substrate subjected to chemical vapor deposition and a bobbin, and enlarges image data obtained by the imaging device on a screen It is preferable to include a display that displays the image and a determination unit that scans the image data of the image displayed on the display and determines that the yarn is broken when the number of pixels constituting the twisted yarn decreases.

また、本発明に係る微細炭素繊維撚糸の製造装置は、前記基板上に成長させられた微細炭素繊維の集合体の側面に突き刺して微細炭素繊維を引き出すための極細軸状部を有する引出具と、該引出具を軸線回りに回転させる回転駆動装置と、を備え、該引出具の極細軸状部の直径(D)は、前記基板上に成長させられた微細炭素繊維の平均長さ(L)に対し、D<(L/π)に設定されていることが好ましい。   In addition, the apparatus for producing fine carbon fiber twisted yarn according to the present invention includes an extraction tool having an ultra-thin shaft-like portion for piercing the side surface of the aggregate of fine carbon fibers grown on the substrate and pulling out the fine carbon fibers. A rotation drive device that rotates the drawing tool about an axis, and the diameter (D) of the ultrafine shaft-shaped portion of the drawing tool is the average length (L of the fine carbon fibers grown on the substrate) ) Is preferably set to D <(L / π).

前記引出具は、前記極細軸状部の外周面に周溝、螺旋溝、及び突起の少なくとも何れかを有することが好ましい。   It is preferable that the drawing tool has at least one of a circumferential groove, a spiral groove, and a protrusion on the outer peripheral surface of the ultrafine shaft-like portion.

また、本発明は、基板上に化学気相成長させた微細炭素繊維の集合体から微細炭素繊維の撚糸を連続的に製造する装置であって、前記基板を保持する基板保持部と、前記微細炭素繊維撚糸を巻取駆動するボビンと、を有し、前記ボビンは、前記微細炭素繊維を接続するための先細端部が巻取回転軸線方向一端に形成されるとともに、該先細端部が前記基板保持部の側を向き前記微細炭素繊維が引き出される方向に巻取回転軸線が沿う第1の配置と、前記微細炭素繊維が引き出される方向と巻取回転軸線が交差する第2の配置とを配置転換可能とされ、前記ボビン及び基板保持部の少なくとも一方が、互いに接近又は離反するように往復動自在に設けられていることを特徴とする前記装置を提供する。   Further, the present invention is an apparatus for continuously producing a fine carbon fiber twisted yarn from an assembly of fine carbon fibers chemically vapor-deposited on a substrate, the substrate holding unit holding the substrate, and the fine A bobbin for winding and driving a carbon fiber twisted yarn, and the bobbin has a tapered end portion for connecting the fine carbon fiber formed at one end in the winding rotation axis direction, and the tapered end portion is A first arrangement in which the winding rotation axis is directed in the direction in which the fine carbon fibers are drawn out toward the substrate holding portion, and a second arrangement in which the winding carbon rotation axis intersects with the direction in which the fine carbon fibers are drawn out. It is possible to change the arrangement, and at least one of the bobbin and the substrate holding part is provided so as to reciprocate so as to approach or separate from each other.

本発明によれば、微細炭素繊維の集合体が形成された基板、及びボビンの少なくとも一方を回転させて前記集合体から引き出される微細炭素繊維に撚りをかけ、ボビンに巻き取ることにより、微細炭素繊維撚糸を連続的に製造することができる。   According to the present invention, by rotating at least one of the substrate on which the aggregate of fine carbon fibers is formed and the bobbin, twisting the fine carbon fiber drawn from the aggregate and winding the fine carbon fiber on the bobbin, A fiber twist yarn can be manufactured continuously.

カーボンナノチューブを高密度・高配向で成長させたシリコン基板を500倍に拡大して示すSEM写真である。It is a SEM photograph which expands and enlarges 500 times the silicon substrate which grew the carbon nanotube with high density and high orientation. 本発明に係る微細炭素繊維撚糸の製造装置の第1実施形態を示す側面図である。It is a side view which shows 1st Embodiment of the manufacturing apparatus of the fine carbon fiber twisted yarn which concerns on this invention. 図2の装置の正面図である。FIG. 3 is a front view of the apparatus of FIG. 2. 図2の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of FIG. 図2の装置によって製造されたカーボンナノチューブの撚糸を1000倍に拡大して示すSEM写真である。It is a SEM photograph which expands 1000 times the twisted yarn of the carbon nanotube manufactured by the apparatus of FIG. 簡略化した図1の装置と、糸切れをリカバリーする引出具とを示す平面図である。It is a top view which shows the apparatus of FIG. 1 simplified, and the drawing tool which recovers a thread break. 図6の一部を拡大して示す側面図である。It is a side view which expands and shows a part of FIG. 微細炭素繊維撚糸の糸切れをリカバリーする方法を説明するための説明図である。It is explanatory drawing for demonstrating the method to recover the thread breakage of a fine carbon fiber twisted yarn. 2つのボビン上の微細炭素繊維撚糸の接続方法を説明するための説明図である。It is explanatory drawing for demonstrating the connection method of the fine carbon fiber twisted yarn on two bobbins. シート状微細炭素繊維の引き出し状態を拡大して示す平面図である。It is a top view which expands and shows the drawing-out state of a sheet-like fine carbon fiber. 本発明に係る微細炭素繊維撚糸の製造装置の第2実施形態を概念的に示す斜視図である。It is a perspective view which shows notionally 2nd Embodiment of the manufacturing apparatus of the fine carbon fiber twisted yarn which concerns on this invention. 図11に示す装置において、微細炭素繊維の集合体を成長させた基板を縦置きに配置した態様を示す斜視図である。In the apparatus shown in FIG. 11, it is a perspective view which shows the aspect which has arrange | positioned the board | substrate with which the aggregate | assembly of the fine carbon fiber was grown vertically. 図11に示した装置によって4つの基板から微細炭素繊維を引き出して製造した撚糸を5000倍に拡大して示すSEM写真である。It is a SEM photograph which expands 5000 times and shows the twisted yarn manufactured by pulling out fine carbon fiber from four substrates with the apparatus shown in FIG. 本発明に係る微細炭素繊維撚り糸の製造装置の第3実施形態を示す側面図である。It is a side view which shows 3rd Embodiment of the manufacturing apparatus of the fine carbon fiber twisted yarn which concerns on this invention. 図14の装置のXV−XV視図である。It is a XV-XV view of the apparatus of FIG. 図15のXVI−XVI断面図である。It is XVI-XVI sectional drawing of FIG. 本発明に係る微細炭素繊維撚り糸の製造装置の第4実施形態を示す平面図である。It is a top view which shows 4th Embodiment of the manufacturing apparatus of the fine carbon fiber twisted yarn which concerns on this invention. 図17の装置の側面図である。FIG. 18 is a side view of the apparatus of FIG. 17. 図17の装置の他の作動状態を示す平面図である。It is a top view which shows the other operating state of the apparatus of FIG. 図17の装置の側面図である。FIG. 18 is a side view of the apparatus of FIG. 17.

符号の説明Explanation of symbols

1A,1B,1C,1D…微細炭素繊維撚糸の製造装置
2 基板保持装置
3 ボビン
4 巻取装置
5 基板
6 基板保持部
7 第1駆動部
18 風防
19 撚糸ガイド
20 支持体
21 引出具
21a 極細軸状部
30 基板保持装置
31 先細端部
32 ボビン
33 巻き取り装置
34 第1駆動部
C 微細炭素繊維の集合体
DESCRIPTION OF SYMBOLS 1A, 1B, 1C, 1D ... Manufacturing apparatus of fine carbon fiber twisted yarn 2 Substrate holding device 3 Bobbin 4 Winding device 5 Substrate 6 Substrate holding portion 7 First driving portion 18 Windshield 19 Twist yarn guide 20 Support 21 Extractor 21a Extra fine shaft Shaped portion 30 Substrate holding device 31 Tapered end portion 32 Bobbin 33 Winding device 34 First drive portion C Aggregation of fine carbon fibers

本発明を実施するための最良の実施形態について、以下、図面を参照しつつ説明する。なお、全図、及び全実施形態を通じ、同様の構成部分に同符号を付した。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below with reference to the drawings. In addition, the same code | symbol was attached | subjected to the same component through all the drawings and all the embodiments.

本発明は、基板上に化学気相成長させた微細炭素繊維の集合体から微細炭素繊維の撚糸を連続的に製造する方法及び装置に関する。   The present invention relates to a method and an apparatus for continuously producing a fine carbon fiber twisted yarn from an aggregate of fine carbon fibers grown on a substrate by chemical vapor deposition.

基板上に形成される微細炭素繊維の集合体について、以下に詳細に説明する。   The aggregate | assembly of the fine carbon fiber formed on a board | substrate is demonstrated in detail below.

基板は、限定的でなく、公知又は市販のものを使用することができる。例えば、プラスチック基板;ガラス基板;シリコン基板;鉄、銅等の金属又はこれらの合金を含む金属基板;などを用いることができる。これらの基板の表面には二酸化ケイ素膜が積層されていてもよい。本発明では、特に、熱酸化あるいは蒸着による二酸化ケイ素膜の着いたシリコン基板上に鉄を蒸着又はスパッタリング等することにより得られる鉄皮膜積層シリコン基板を用いることが好ましい。これにより、高密度かつ高配向で形成されたカーボンナノチューブ集合体を製造できる。   The substrate is not limited, and a known or commercially available substrate can be used. For example, a plastic substrate; a glass substrate; a silicon substrate; a metal substrate containing a metal such as iron or copper or an alloy thereof can be used. A silicon dioxide film may be laminated on the surface of these substrates. In the present invention, it is particularly preferable to use an iron-coated laminated silicon substrate obtained by evaporating or sputtering iron on a silicon substrate on which a silicon dioxide film is deposited by thermal oxidation or vapor deposition. Thereby, a carbon nanotube aggregate formed with high density and high orientation can be produced.

基板上に化学気相成長させる微細炭素繊維は、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブ、カーボンファイバー等の気相成長炭素繊維である。   The fine carbon fibers to be chemically vapor-grown on the substrate are vapor-grown carbon fibers such as single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and carbon fibers.

これら微細炭素繊維の形態は特に限定されるものではないが、容易に微細炭素繊維撚糸を形成しやすいことなどの理由から、好ましくは、基板上に高密度かつ高配向で形成された集合体であることが望ましい。   The form of these fine carbon fibers is not particularly limited, but for reasons such as easy formation of fine carbon fiber twisted yarns, it is preferably an aggregate formed with high density and high orientation on the substrate. It is desirable to be.

高密度とは、基板上のカーボンナノチューブの嵩密度が1〜1000mg/cm、好ましくは10〜500mg/cm、さらに好ましくは10〜100mg/cmである。この範囲より嵩密度が小さいと隣接するカーボンナノチューブの分子間の相互作用が弱くなり、引き出し特性が悪くなるおそれがある。この範囲より嵩密度が大きいと、後述する引き出し時に、一度に多量のカーボンナノチューブが引き出されてしまい、均一な太さでかつ長尺な繊維が得られないおそれがある。The high density means that the bulk density of the carbon nanotubes on the substrate is 1-1000 mg / cm 3 , preferably 10-500 mg / cm 3 , more preferably 10-100 mg / cm 3 . If the bulk density is smaller than this range, the interaction between adjacent carbon nanotube molecules is weakened, and the pull-out property may be deteriorated. When the bulk density is larger than this range, a large amount of carbon nanotubes are pulled out at the time of pulling out, which will be described later, and there is a possibility that long fibers having a uniform thickness cannot be obtained.

高配向とは、微細炭素繊維同士が隣接しながら基板平面に対して垂直状に林立していることを意味する。具体的には、下記式(1)で示される秩序パラメータ(OP)が0.70〜1.0(好ましくは0.90〜0.99)の範囲内である。   High orientation means that fine carbon fibers are adjacent to each other and stand perpendicular to the substrate plane. Specifically, the order parameter (OP) represented by the following formula (1) is in the range of 0.70 to 1.0 (preferably 0.90 to 0.99).

式1Formula 1

Figure 0004900619
Figure 0004900619

(但し、θjは、基板上に形成されている任意のカーボンナノチューブの分子軸と、基板とのなす角度を示す。<cos2(90-θj)>は、基板上に形成されている全てのカーボンナノチューブにおける平均値を示す。)
このように化学気相成長によって高密度で垂直配向させた微細炭素繊維の集合体は、カーボンナノチューブフォレスト(carbon nanotube forest)、或いは、カーボンナノチューブの垂直配向構造体等と呼ばれる。化学気相成長によって形成される微細炭素繊維の長さは、平均で0.02mm以上であればよく、好ましくは、0.03mm以上、より好ましくは、0.05mm以上である。微細炭素繊維材料の平均直径は限定的でなく、通常0.5〜100nm、好ましくは1nm〜100nm程度、より好ましくは5〜50nm程度とすればよい。
(However, θj represents an angle formed between the molecular axis of an arbitrary carbon nanotube formed on the substrate and the substrate. <Cos 2 (90-θj)> represents all the angles formed on the substrate. (The average value for carbon nanotubes is shown.)
Such an assembly of fine carbon fibers that are vertically aligned at a high density by chemical vapor deposition is called a carbon nanotube forest or a vertically aligned structure of carbon nanotubes. The length of the fine carbon fiber formed by chemical vapor deposition may be 0.02 mm or more on average, preferably 0.03 mm or more, and more preferably 0.05 mm or more. The average diameter of the fine carbon fiber material is not limited, and is usually 0.5 to 100 nm, preferably about 1 nm to 100 nm, and more preferably about 5 to 50 nm.

気相成長時の温度はいずれの温度で行ってもよいが、特に高温で行うことが好ましく、例えば600〜1000℃程度で行うことが好ましい。気相成長時の圧力は限定的でないが、通常、大気圧で行えばよい。気相成長に用いるガスは、炭素を含んでいればよいが、通常はアセチレン等の炭化水素を使用すればよい。なお、ヘリウム等の希ガスをキャリアガスとして用いてもよい。反応時間は、製造条件により応じて適宜設定できるが、例えば、3分〜2時間程度とすればよい。   The temperature at the time of vapor phase growth may be any temperature, but it is particularly preferably high temperature, for example, about 600 to 1000 ° C. The pressure at the time of vapor phase growth is not limited, but usually it may be performed at atmospheric pressure. The gas used for vapor phase growth may contain carbon, but usually a hydrocarbon such as acetylene may be used. A rare gas such as helium may be used as the carrier gas. Although reaction time can be suitably set according to manufacturing conditions, it should just be about 3 minutes-2 hours, for example.

上記のようにして基板上に形成された微細炭素繊維であるカーボンナノチューブの集合体の写真を図1に示す。図1は、倍率500倍のSEM写真であり、微細炭素繊維が基板上に高密度で垂直配向している様子が示されている。基板上に高密度・高配向で成長したカーボンナノチューブの集合体の一部、即ち複数本の微細炭素繊維をピンセット等で把持又は細い針状の物の先に接続する等してカーボンナノチューブの集合体から引き離すことにより、カーボンナノチューブは基板上から、ある程度連続した糸状となって引き出される現象を生じる。このような現象が生じるメカニズムは必ずしも明らかではないが、こうして引き出される糸状のカーボンナノチューブに適切に撚りをかけることで、糸切れせずに連続的に引き出すことが可能となる。   A photograph of the aggregate of carbon nanotubes, which are fine carbon fibers formed on the substrate as described above, is shown in FIG. FIG. 1 is an SEM photograph at a magnification of 500 times, showing that fine carbon fibers are vertically aligned at high density on a substrate. A part of an aggregate of carbon nanotubes grown with high density and high orientation on a substrate, that is, an aggregate of carbon nanotubes by holding multiple fine carbon fibers with tweezers or connecting them to the tip of a thin needle-like object By pulling away from the body, the carbon nanotubes are pulled out from the substrate as a continuous filament. Although the mechanism by which such a phenomenon occurs is not always clear, by properly twisting the filamentary carbon nanotubes drawn out in this way, it becomes possible to continuously draw out without breaking the yarn.

次に、本発明に係る微細炭素繊維撚糸の製造装置の第1実施形態について、図2〜4を参照して説明する。第1実施形態の微細炭素繊維撚糸の製造装置1Aは、図2〜4に示すように、基板5を保持する基板保持部6と、微細炭素繊維撚糸を巻取駆動するボビン3と、を備える。   Next, 1st Embodiment of the manufacturing apparatus of the fine carbon fiber twisted yarn which concerns on this invention is described with reference to FIGS. The fine carbon fiber twisted yarn manufacturing apparatus 1A according to the first embodiment includes a substrate holding unit 6 that holds the substrate 5 and a bobbin 3 that winds and drives the fine carbon fiber twisted yarn as shown in FIGS. .

更に、基板保持部6を備える基板保持装置2は、基板保持部6を回転駆動させる第1駆動部7を備える。第1駆動部7は、ボビン3の巻取駆動と連動する。このように、ボビン3の巻取駆動に連動させて第1駆動部7を回転駆動することにより、基板5上の集合体Cから引き出されてボビン3に巻き取られる微細炭素繊維に撚りをかける撚り合わせ機構が構成される。   Furthermore, the substrate holding device 2 including the substrate holding unit 6 includes a first drive unit 7 that rotates the substrate holding unit 6. The first drive unit 7 is interlocked with the winding drive of the bobbin 3. In this way, the fine carbon fiber drawn from the assembly C on the substrate 5 and wound on the bobbin 3 is twisted by rotating the first drive unit 7 in conjunction with the winding drive of the bobbin 3. A twisting mechanism is configured.

基板保持部6は、図4に示すように、一対の保持片6a,6bをボルト8によって連結した構成とすることができる。保持片6a、6bは、基板5を回転軸線Xと非平行に保持するように、保持面が所定の傾斜角度α(図4)を持つように形成されている。   As shown in FIG. 4, the substrate holding unit 6 can be configured by connecting a pair of holding pieces 6 a and 6 b with bolts 8. The holding pieces 6a and 6b are formed so that the holding surface has a predetermined inclination angle α (FIG. 4) so as to hold the substrate 5 non-parallel to the rotation axis X.

基板5を回転軸線Xと非平行に保持することによって、基板5上の微細炭素繊維の集合体Cから引き出した微細炭素繊維撚糸と基板5とが干渉することを防止し、微細炭素繊維撚糸を安定して作製することができる。また、斯かる干渉を防止するために、基板保持部6が回転軸線Xに対して基板を傾斜させて保持する場合、基板保持部6は、図2に示すように、基板保持部6の回転軸線Xがボビン3の周縁部に向けられていることが好ましい。保持片6a,6bは、複数の保持面傾斜角度のものを用意しておけば、必要に応じて、保持片6a、6bを交換することによって、基板5の取付け角度を変更可能である。   By holding the substrate 5 non-parallel to the rotation axis X, the fine carbon fiber twisted yarn drawn from the fine carbon fiber aggregate C on the substrate 5 and the substrate 5 are prevented from interfering with each other. It can be produced stably. Further, in order to prevent such interference, when the substrate holding unit 6 holds the substrate with an inclination with respect to the rotation axis X, the substrate holding unit 6 rotates the substrate holding unit 6 as shown in FIG. The axis X is preferably directed toward the peripheral edge of the bobbin 3. If the holding pieces 6a and 6b have a plurality of holding surface inclination angles, the mounting angle of the substrate 5 can be changed by replacing the holding pieces 6a and 6b as necessary.

ボビン3を備える巻取装置4は、ボビン3を回転駆動する駆動モーター10がスライダー11に支持されている。スライダー11は、基板保持部6の回転軸線Xと垂直方向に延びるレール12上に摺動自在に支持されるとともに、リニアアクチュエータ13と連結板14によって連結されている。リニアアクチュエータ13は、駆動モーター15、伝動ベルト16、軸受け17a、17bに支持された螺子軸17、及び、螺子軸17に螺入されたナット体(不図示)と、を有し、このナット体が連結板14と連結されている。そして、駆動モーター15を正逆回転させることにより、螺子軸17が正逆回転するのに伴って、スライダー11がレール12上を往復動する。このようにして、ボビン3は、トラバース駆動できるようになっている。   In the winding device 4 including the bobbin 3, a drive motor 10 that rotationally drives the bobbin 3 is supported by the slider 11. The slider 11 is slidably supported on a rail 12 extending in a direction perpendicular to the rotation axis X of the substrate holding unit 6 and is connected to a linear actuator 13 and a connecting plate 14. The linear actuator 13 includes a drive motor 15, a transmission belt 16, a screw shaft 17 supported by bearings 17 a and 17 b, and a nut body (not shown) screwed into the screw shaft 17. Are connected to the connecting plate 14. Then, by rotating the drive motor 15 forward and backward, the slider 11 reciprocates on the rail 12 as the screw shaft 17 rotates forward and backward. In this way, the bobbin 3 can be traversed.

上記のように、基板5上の微細炭素繊維の集合体から連続的に引き出される糸状の微細炭素繊維を回転させながら糸を引き出すことで、撚りの掛かった微細炭素繊維撚糸をボビン3で引き出して巻き取る方式とする。これにより、引き出された微細炭素繊維撚糸は摩擦を受けることなく、ボビン3に安定して連続的に巻き取ることが可能となった。   As described above, the twisted fine carbon fiber twisted yarn is pulled out by the bobbin 3 by pulling out the yarn while rotating the fine carbon fiber continuously drawn from the aggregate of the fine carbon fibers on the substrate 5. The winding method is used. As a result, the drawn fine carbon fiber twisted yarn can be stably and continuously wound around the bobbin 3 without receiving friction.

微細炭素繊維撚糸の製造装置1Aは、基板5上の微細炭素繊維の引き出し位置からボビン3への進入位置までの距離が、10mm〜1000mmの範囲内にあることが好ましい。この距離が短すぎると、回転する送り出し部分と巻き取り部分が干渉してしまうため巻き取ることができない。一方この距離が長すぎると、送り出し部分と巻き取り部分の間に存在する微細炭素繊維撚糸自身の揺動によって、工程安定性が乏しくなるので好ましくない。   In the fine carbon fiber twisted yarn manufacturing apparatus 1A, it is preferable that the distance from the drawing position of the fine carbon fiber on the substrate 5 to the entry position to the bobbin 3 is in the range of 10 mm to 1000 mm. If this distance is too short, the rotating delivery part and the take-up part interfere with each other so that it cannot be taken up. On the other hand, if this distance is too long, the process stability becomes poor due to the oscillation of the fine carbon fiber twisted yarn existing between the delivery part and the take-up part, which is not preferable.

なお、本発明においては微細炭素繊維に撚りを掛けるために、微細炭素繊維の集合体を形成した基板5を高速で回転させる。基板5が外れないように基板5の角部の微細炭素繊維を少し削り取って基板を露出させ、その露出した基板の部位を保持することで、確実に固定することが肝要である。   In the present invention, in order to twist the fine carbon fibers, the substrate 5 on which the aggregate of fine carbon fibers is formed is rotated at a high speed. It is important that the fine carbon fibers at the corners of the substrate 5 are slightly scraped so that the substrate 5 does not come off, the substrate is exposed, and the exposed portion of the substrate is held and fixed securely.

基板5を高速で回転させるため、第1駆動部7は、高速回転可能な高周波モーターが好ましく、1〜60000rpmのものが好ましい。回転数が小さすぎると、微細炭素繊維撚糸に印加できる撚り数が少なすぎることによって、微細炭素繊維撚糸の糸強度が不足してしまうため好ましくない。一方回転数が大きすぎると、微細炭素繊維の集合体からの微細炭素繊維撚糸の引出安定性が低下するため、好ましくない。   In order to rotate the substrate 5 at a high speed, the first drive unit 7 is preferably a high-frequency motor capable of rotating at a high speed, preferably 1 to 60000 rpm. If the rotational speed is too small, the number of twists that can be applied to the fine carbon fiber twisted yarn is too small, and the yarn strength of the fine carbon fiber twisted yarn is insufficient, which is not preferable. On the other hand, when the rotational speed is too large, the drawing stability of the fine carbon fiber twisted yarn from the aggregate of fine carbon fibers is lowered, which is not preferable.

微細炭素繊維撚糸の製造装置1Aは、好ましい態様としては、微細炭素繊維の送り出し口付近に、風防18が設けられる。本発明の製造装置においては、送り出し側で微細炭素繊維が形成された基板が高速回転するため、空気抵抗による微細炭素繊維へのダメージが大きい。そこで風防を設けることにより、微細炭素繊維が高速回転する際、風防18の中で空気が供回りすることで、微細炭素繊維へのダメージを抑えることができる。なおこの風防18は、ストロボスコープ等による微細炭素繊維撚糸の糸切れ、又は微細炭素繊維撚糸の引き出し状態を監視するために、透明な部品を用いると好適である。   In a preferred embodiment of the fine carbon fiber twisted yarn manufacturing apparatus 1A, a windshield 18 is provided in the vicinity of the fine carbon fiber delivery port. In the manufacturing apparatus of the present invention, the substrate on which the fine carbon fibers are formed on the delivery side rotates at a high speed, so that damage to the fine carbon fibers due to air resistance is large. Therefore, by providing a windshield, when the fine carbon fiber rotates at a high speed, the air is provided in the windshield 18 so that damage to the fine carbon fiber can be suppressed. The windshield 18 is preferably a transparent part in order to monitor the breakage of the fine carbon fiber twisted yarn or the pulled state of the fine carbon fiber twisted yarn by a stroboscope or the like.

巻取装置4は、ボビン3の巻き取り速度を0.005〜30m/分とすることが好ましい。巻き取り速度が小さすぎては生産性が乏しく、実用的でない。一方巻き取り速度が大きすぎると、微細炭素繊維撚糸に印加できる撚り数が少なすぎることによって、微細炭素繊維撚糸の糸強度が不足してしまうため好ましくない。   The winding device 4 preferably has a winding speed of the bobbin 3 of 0.005 to 30 m / min. If the winding speed is too low, productivity is poor and it is not practical. On the other hand, if the winding speed is too high, the number of twists that can be applied to the fine carbon fiber twisted yarn is too small, which is not preferable because the yarn strength of the fine carbon fiber twisted yarn is insufficient.

微細炭素繊維撚糸の製造装置1Aは、図2に示すように、基板保持装置2に固定された撚糸ガイド19を設ける一方、ボビン3をトラバースさせることができる。通常、糸をボビンに巻き取る場合は、巻取装置側に備え付けられたトラバースガイドが左右往復動(トラバース)することにより、糸をボビンに均質に巻き取っている。しかしこの方法ではガイドと糸との摩擦が大きいため、本発明で得られるような、極細の微細炭素繊維撚糸の場合には、より摩擦の少ない方法が望まれる。そこで、この実施形態においては、撚糸ガイド19を移動しないように固定しておいて、巻取装置のボビン3をトラバースさせることにより、微細炭素繊維撚糸と撚糸ガイド19との摩擦を小さくすることができる。尚、撚糸ガイド19は、摩擦をできるだけ低減させるために、梨地仕様のものが好ましい。もしくは、撚糸ガイドとしてプーリーを用いれば、より一層、糸と撚糸ガイドとの摩擦を低減させることができる。   As shown in FIG. 2, the fine carbon fiber twisted yarn manufacturing apparatus 1 </ b> A can traverse the bobbin 3 while providing the twisted yarn guide 19 fixed to the substrate holding device 2. Normally, when winding a yarn around a bobbin, a traverse guide provided on the winding device side reciprocates left and right (traverse), thereby winding the yarn uniformly around the bobbin. However, in this method, since the friction between the guide and the yarn is large, in the case of an ultrafine fine carbon fiber twisted yarn as obtained in the present invention, a method with less friction is desired. Therefore, in this embodiment, the friction between the fine carbon fiber twisted yarn and the twisted yarn guide 19 can be reduced by traversing the bobbin 3 of the winding device while fixing the twisted yarn guide 19 so as not to move. it can. The twisted yarn guide 19 is preferably a satin specification in order to reduce friction as much as possible. Or if a pulley is used as a twisted yarn guide, the friction between the yarn and the twisted yarn guide can be further reduced.

微細炭素繊維撚糸の製造装置1Aは、ボビン3の表面に、巻き取り時の滑りを防止するための表面加工が施されていることが好ましい。これにより、より一層の工程安定性を実現することができる。尚、ボビンへの表面加工方法は特に限定されるものではなく、鏡面加工やゴムライニングを施す方法等が挙げられる。   In the fine carbon fiber twisted yarn manufacturing apparatus 1 </ b> A, it is preferable that the surface of the bobbin 3 is subjected to surface processing for preventing slipping during winding. Thereby, further process stability can be realized. In addition, the surface processing method to a bobbin is not specifically limited, The method of giving a mirror surface process, rubber lining, etc. are mentioned.

上記の装置により製造された微細炭素繊維撚糸のSEM写真(1000倍)を図5に示す。撚糸の撚り角度は、単位長さ当たりの撚り数によって決まる。撚糸の撚り角度は、微細炭素背に撚糸の製造装置1Aにおいて基板5を保持させた基板保持装置2とボビン3の回転数とにより調整される。本発明者らは、撚り角度と撚糸強度との間に関係があることを見出した。撚り角度が10〜50°の時が良好な強度を示すため、この範囲の撚り角度が好ましい。したがって、撚り角度が10〜50°となるように、基板保持装置2の回転駆動とボビンの巻取駆動とを連動させる。   The SEM photograph (1000 times) of the fine carbon fiber twisted yarn manufactured with said apparatus is shown in FIG. The twist angle of the twisted yarn is determined by the number of twists per unit length. The twist angle of the twisted yarn is adjusted by the substrate holding device 2 that holds the substrate 5 in the twisted yarn manufacturing apparatus 1A on the fine carbon back and the rotational speed of the bobbin 3. The inventors have found that there is a relationship between twist angle and twist strength. A twist angle in this range is preferable because a good strength is exhibited when the twist angle is 10 to 50 °. Therefore, the rotation driving of the substrate holding device 2 and the bobbin winding driving are interlocked so that the twist angle is 10 to 50 °.

微細炭素繊維撚糸の製造装置1Aは、図示省略するが、糸切れ検知器を装備することも可能である。例えば、微細炭素繊維を成長させた基板5とボビン3との間に、撚りを掛けながら基板から引き出された極細炭素材料撚糸をCCD等の撮像装置によって撮影し、撮像した画像データをディスプレイ画面上に拡大して映し出し、映し出された映像の画像データをコンピュータ内に取り込んで走査し、画素数をカウントする。この際、背景と撚糸との色の違い(濃淡)を利用し、撚糸を構成する画素数が減少した時に糸切れを検知することができる。より具体的には、撚糸を拡大してディスプレイの画面上に表示し、15秒毎に画像をコンピュータ内に取り込む。この場合、例えば、微細炭素繊維撚糸は黒褐色、背景は薄茶色に見える。そこでこれをグレースケールに変換する。例えば、256階調で変換した場合、100以下を黒として微細炭素繊維撚糸がある部分とし、101以上を微細炭素繊維撚糸が無い背景部分として画面上の全画素数をスキャンしてカウントする。このような2値化して判定する。画像中に占める撚糸の面積の割合が5%以上になるように拡大することが望ましい。糸切れが生じれば画面内の撚糸面積が通常よりも減少する。2画面連続で撚糸部分の面積が減少していれば撚糸の太さむらと間違えることなく糸切れを検知することが可能である。リアルタイムに画面を見て糸切れを検知できることは勿論のことである。   The fine carbon fiber twisted yarn manufacturing apparatus 1A can be equipped with a yarn breakage detector, although not shown. For example, an ultrafine carbon material twisted yarn pulled out from the substrate 5 while being twisted between the substrate 5 on which the fine carbon fiber is grown and the bobbin 3 is photographed by an imaging device such as a CCD, and the captured image data is displayed on the display screen. The image data of the projected video is captured and scanned in a computer, and the number of pixels is counted. At this time, the difference in color (darkness) between the background and the twisted yarn can be used to detect yarn breakage when the number of pixels constituting the twisted yarn decreases. More specifically, the twisted yarn is enlarged and displayed on the display screen, and an image is taken into the computer every 15 seconds. In this case, for example, the fine carbon fiber twisted yarn appears blackish brown and the background appears light brown. Therefore, this is converted to gray scale. For example, when conversion is performed with 256 gradations, 100 or less is set to black and a portion with fine carbon fiber twisted yarn is used, and 101 or more is set as a background portion without fine carbon fiber twisted yarn and the total number of pixels on the screen is scanned and counted. Such binarization is performed for determination. It is desirable to enlarge the ratio of the area of the twisted yarn in the image to be 5% or more. If thread breakage occurs, the twisted yarn area in the screen will be smaller than usual. If the area of the twisted yarn portion is reduced continuously for two screens, it is possible to detect yarn breakage without making a mistake with uneven thickness of the twisted yarn. Of course, the thread breakage can be detected by looking at the screen in real time.

ここで、基板上の微細炭素繊維の集合体から最初に微細炭素繊維を引き出して、ボビン3に渡すまでの好ましい例について説明する。なお、説明の都合上、図示を簡略化して説明する。   Here, a preferred example from when the fine carbon fibers are first drawn out from the aggregate of fine carbon fibers on the substrate and passed to the bobbin 3 will be described. For convenience of explanation, the illustration is simplified.

微細炭素繊維撚糸の製造装置は、図6および図7に示すように、基板5上の微細炭素繊維の集合体Cの側面から微細炭素繊維を引き出す極細軸状部21aを有する引出具21、引出具21をその軸線21X回りに回転駆動するモーター22を、付属品として備えることができる。   As shown in FIGS. 6 and 7, the apparatus for producing fine carbon fiber twisted yarn includes an extraction tool 21 having an ultrathin shaft portion 21 a that draws out the fine carbon fibers from the side surface of the aggregate C of fine carbon fibers on the substrate 5, and a drawing tool. A motor 22 for rotating the output tool 21 around its axis 21X can be provided as an accessory.

極細軸状部21aを有する引出具21の素材は、鉄、アルミニウム、ステンレス、タングステン−カーバイド等の合金、プラスチック、木材、ガラス等であり、特に制限されるものではない。引出具21は微細炭素繊維に対して適度な摩擦抵抗を有していれば良く、引出具に摩擦を生じさせるために、極細軸状部21aの外周面に周溝や、螺旋溝や、エンボス加工等による微細な突起を有していることが望ましい。   The material of the drawer 21 having the ultrathin shaft portion 21a is iron, aluminum, stainless steel, an alloy such as tungsten-carbide, plastic, wood, glass or the like, and is not particularly limited. The drawing tool 21 only needs to have an appropriate friction resistance with respect to the fine carbon fiber, and in order to cause friction to the drawing tool, a circumferential groove, a spiral groove, an embossing on the outer peripheral surface of the ultrafine shaft portion 21a. It is desirable to have fine protrusions by processing or the like.

極細軸状部21aの直径は、基板上に成長させられた微細炭素繊維の平均長さに依存して決まる。上記したように、本発明に使用される、基板5上に形成される微細炭素繊維集合体Cの微細炭素繊維の平均長さ(L)は、0.02mm以上である。   The diameter of the ultrafine shaft portion 21a is determined depending on the average length of the fine carbon fibers grown on the substrate. As described above, the average length (L) of the fine carbon fibers of the fine carbon fiber aggregate C formed on the substrate 5 used in the present invention is 0.02 mm or more.

基板5上の微細炭素繊維の平均長さ(L)に対し、極細軸状部21aの軸径又は直径(D)がD<(L/π)であることが好ましい。D<(L/π)の直径であれば、基板上の微細炭素繊維の集合体の中で引出具が1回転した時に丁度極細軸状部21aの周りに1周以上捲きついてくる計算になる。高確率で微細炭素繊維を引き出すには1周以上捲きついていることが大事である。刃径0.05mm〜のマイクロドリルが市販されており、これを引出具に用いることもできる。   With respect to the average length (L) of the fine carbon fibers on the substrate 5, the shaft diameter or diameter (D) of the ultrathin shaft portion 21a is preferably D <(L / π). If the diameter is D <(L / π), it is calculated that the drawing tool is tightly wound around the very thin shaft portion 21a when the drawing tool rotates once in the fine carbon fiber aggregate on the substrate. . To pull out fine carbon fiber with high probability, it is important to keep it tight for more than one lap. Micro drills having a blade diameter of 0.05 mm or more are commercially available, and can be used as a drawing tool.

基板5上に成長している微細炭素繊維の集合体Cの側面から引出具21の極細軸状部21aを突き刺し、進入させる。この進入深さは0.01mm以上であることが望ましい。引出具21を突き刺す高さ位置は基板5上に成長している微細炭素繊維の平均長さの1/2以下の高さが好ましい。この進入時に引出具21は回転していても、回転が停止していてもよい。引出具21の極細軸状部21aが0.01mm以上進入したところで進入を停止させる。この場所に引出具21が留置した状態で引出具21の極細軸状部21aをその軸線回りに回転させる。引出具21を1秒間〜5分間、1〜1000rpmで回転させた後、引出具21を1〜1000rpmで回転させながら基板5から離反させて微細炭素繊維を集合体Cから引き出す。そしてボビン3上まで引出具21を移動させた後、引出具21の移動と回転を止めて静止させる。   The ultrathin shaft portion 21a of the drawing tool 21 is pierced from the side surface of the aggregate C of fine carbon fibers growing on the substrate 5, and is made to enter. The depth of entry is preferably 0.01 mm or more. The height position at which the extraction tool 21 is pierced is preferably a height of ½ or less of the average length of fine carbon fibers growing on the substrate 5. At the time of this entry, the drawing tool 21 may be rotating, or the rotation may be stopped. The entry is stopped when the ultra-thin shaft portion 21a of the extraction tool 21 enters 0.01 mm or more. With the drawing tool 21 indwelled at this location, the ultrathin shaft portion 21a of the drawing tool 21 is rotated about its axis. After the extractor 21 is rotated at 1 to 1000 rpm for 1 second to 5 minutes, the extractor 21 is separated from the substrate 5 while being rotated at 1 to 1000 rpm, and the fine carbon fibers are pulled out from the aggregate C. Then, after the drawing tool 21 is moved onto the bobbin 3, the movement and rotation of the drawing tool 21 are stopped and stopped.

上記のようにして基板5上の集合体から引き出した微細炭素繊維の撚糸をボビン3に接触させた後、ボビン3の回転を起動し、基板を回転させて撚りをかけて紡糸を始めることができる。   After contacting the bobbin 3 with the fine carbon fiber twisted yarn drawn from the aggregate on the substrate 5 as described above, the bobbin 3 is started to rotate, and the substrate is rotated to twist and start spinning. it can.

微細炭素材料繊維を基板から引き出す時の張力は、通常0.05〜0.5mNである。この値を超えると容易に糸切れが起こってしまう。そのため、防止中に糸切れが発生すると、糸切れした2本の微細炭素材料撚糸の両端を、通常の方法、例えば木綿繊維の扱いと同様にして手で結んで接続することは極めて困難である。そこで、次に、微細炭素繊維撚糸の紡糸の最中に糸切れが発生した場合の撚糸の接続方法について、図8を参照しつつ説明する。   The tension when pulling out the fine carbon material fiber from the substrate is usually 0.05 to 0.5 mN. When this value is exceeded, thread breakage easily occurs. Therefore, if yarn breakage occurs during prevention, it is extremely difficult to connect both ends of the two fine carbon material twisted yarns broken by hand in the same manner as usual, for example, handling cotton fibers. . Then, next, the connection method of the twisted yarn when the yarn breakage occurs during the spinning of the fine carbon fiber twisted yarn will be described with reference to FIG.

先ず、図8(a)に示すように、基板5の上に成長している微細炭素繊維の集合体Cの中へ引出具21の極細軸状部21aを進入させて、上述の要領で再び微細炭素繊維T1を無撚りのまま引き出し、または引出具21を回転させて微細炭素繊維T1の撚糸をボビン3の上部まで持ってくる。また、引出具21の回転を停止し基板5を回転させて微細炭素繊維の撚糸を引き出すこともできる。このようにして引出具21により基板5上の微細炭素繊維の集合体から引き出された微細炭素繊維撚糸を、ボビン3の上方位置まで引き出してぴんと張っておく。   First, as shown in FIG. 8 (a), the ultrathin shaft portion 21a of the drawing tool 21 is inserted into the aggregate C of fine carbon fibers growing on the substrate 5, and again in the above-described manner. The fine carbon fiber T1 is pulled out without being twisted, or the drawing tool 21 is rotated to bring the twisted yarn of the fine carbon fiber T1 to the top of the bobbin 3. It is also possible to stop the rotation of the drawing tool 21 and rotate the substrate 5 to draw out the twisted yarn of the fine carbon fiber. In this way, the fine carbon fiber twisted yarn drawn from the aggregate of the fine carbon fibers on the substrate 5 by the drawing tool 21 is drawn to the upper position of the bobbin 3 and tensioned tightly.

次に、図8(b)に示すように、ボビン3上に残っている微細炭素繊維撚糸T2の切れ端を先細のピンセット等で静かに手繰り出し、引出具21に接続されてぴんと張っている微細炭素繊維撚糸T1の上に静かに置く。   Next, as shown in FIG. 8 (b), the fine carbon fiber twisted yarn T2 remaining on the bobbin 3 is gently pulled out with a tapered tweezers or the like, and is finely connected to the drawing tool 21 and tightened. Gently place on the carbon fiber twisted yarn T1.

引出具21および基板5が静止している場合は、どちらかをここで静かに回転させることにより、図8(c)に示すように、ボビン上から手繰り出されてきた微細炭素繊維撚糸T2の一端を巻き込み繋げる。この時の引出具21または基板5の回転数は1〜1000rpmであり、回転が速すぎるとボビン3から手繰り寄せてきた微細炭素繊維撚糸T2の切れ端をはじいてしまう。初めはゆっくりと回転させて徐々に高速回転させるのがよい。   When the drawing tool 21 and the substrate 5 are stationary, by rotating either of them gently here, as shown in FIG. 8C, the fine carbon fiber twisted yarn T2 that has been hand-drawn from the top of the bobbin. Engage one end and connect. The number of rotations of the drawing tool 21 or the substrate 5 at this time is 1 to 1000 rpm, and if the rotation is too fast, the broken ends of the fine carbon fiber twisted yarn T <b> 2 drawn from the bobbin 3 will be repelled. It is better to rotate slowly at the beginning and gradually rotate at a higher speed.

この後、引出具21が回転している場合、この回転を止め、基板5を所望の回転数で回転させる。これと同時に引出具21に繋がっている微細炭素繊維撚糸T1を切断して引出具から切り離し(図8(d))、ボビン3を回転させることにより紡糸を再開し、長尺の微細炭素繊維撚糸を製造することができる。   Thereafter, when the drawing tool 21 is rotating, the rotation is stopped and the substrate 5 is rotated at a desired number of rotations. At the same time, the fine carbon fiber twisted yarn T1 connected to the drawing tool 21 is cut and separated from the drawing tool (FIG. 8 (d)), and the spinning is resumed by rotating the bobbin 3 to make a long fine carbon fiber twisted yarn. Can be manufactured.

次に、2本のボビンに巻き取った微細炭素繊維撚糸を接続して1本の長尺撚糸にする方法について、図9を参照して説明する。   Next, a method of connecting the fine carbon fiber twisted yarn wound around two bobbins to form one long twisted yarn will be described with reference to FIG.

図9に示すように、一端がボビン3aに捲きつけられている撚糸Taの他端を引き出し、引き出した先に紙製の軽量の錘11aを接続し、ガイド10aを介してぴんと張る。一方、一端が別のボビン3bに捲きつけられている撚糸Tbの他端も同様に引き出し、引き出した先に紙製の軽量の錘11bを接続し、ガイド10bを介してぴんと張る。撚糸Taと撚糸Tbとをガイド10a、10b間で重ね合わせ、ボビン3bを、撚糸を回転中心として回転させ、撚糸Ta,Tbの重ね合わせ部に撚りを掛けて1本の長尺の微細炭素繊維の撚糸を製造することができる。   As shown in FIG. 9, the other end of the twisted yarn Ta, one end of which is wound around the bobbin 3a, is pulled out, and a light weight 11a made of paper is connected to the pulled-out tip and tensioned tightly through the guide 10a. On the other hand, the other end of the twisted yarn Tb, one end of which is wound around another bobbin 3b, is similarly pulled out, and a light weight 11b made of paper is connected to the pulled-out tip, and is tensioned through the guide 10b. The twisted yarn Ta and the twisted yarn Tb are overlapped between the guides 10a and 10b, the bobbin 3b is rotated around the twisted yarn, and the overlapping portion of the twisted yarns Ta and Tb is twisted to form one long fine carbon fiber. Can be produced.

この時のボビン3bの回転数は1〜1000rpm程度が好適であり、初めはゆっくり回転させることが望ましい。撚糸Ta,Tbの重ね合わせ部に撚りを掛けた後、ボビン3aの巻き戻し回転とボビン3bの巻き取り回転とを同期させ、ボビン3aからボビン3bへ微細炭素繊維撚糸を送り、ボビン3bで巻き取る。   The rotation speed of the bobbin 3b at this time is preferably about 1 to 1000 rpm, and it is desirable to rotate slowly at the beginning. After twisting the overlapping portion of the twisted yarns Ta and Tb, the unwinding rotation of the bobbin 3a and the winding rotation of the bobbin 3b are synchronized, and the fine carbon fiber twisted yarn is sent from the bobbin 3a to the bobbin 3b and wound by the bobbin 3b. take.

撚糸Ta,Tbの重ね合わせ部での2本の微細炭素繊維撚糸の接合をより強固にするため、図10に示すように、幅広先端部を有する引出具21を用いて、基板に成長している微細炭素繊維TSを幅広のシート状に引き出し、この引き出したシートを前記撚糸Ta,Tbの重ね合わせ部に捲きつけることも非常に有効である。微細炭素繊維のシートの寸法は幅1mm×長さ1mm以上が好ましい。   In order to further strengthen the joining of the two fine carbon fiber twisted yarns at the overlapping portion of the twisted yarns Ta and Tb, as shown in FIG. It is also very effective to draw out the fine carbon fiber TS that is in the form of a wide sheet and squeeze the drawn sheet against the overlapping portion of the twisted yarns Ta and Tb. The dimension of the fine carbon fiber sheet is preferably 1 mm wide x 1 mm long.

また、2本の微細炭素繊維撚糸Ta,Tbの重ね合わせ部に液体を付与することも重ね合わせ部の接続強度向上に非常に効果がある。撚糸Ta,Tbの前記重ね合わせ部に液体を付与すると、ばらけていた微細炭素繊維の単糸が凝集して引き締まり、結着力が大きくなる。その後、上述のようにして微細炭素繊維の重ね合わせ部に撚りを掛けて巻き取る。用いられる液体としては、極性を有していることが好ましく、誘電率が5以上の液体を用いるのがよい。炭素数1〜5のアルコール、アセトン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、水、酢酸エチル、アセトニトリル等が上げられる。これらの中でもメタノール、エタノール、イソプロパノール、アセトン、テトラヒドロフラン、酢酸エチル、アセトニトリルが好ましい。   Also, applying a liquid to the overlapping portion of the two fine carbon fiber twisted yarns Ta and Tb is very effective in improving the connection strength of the overlapping portion. When a liquid is applied to the overlapped portion of the twisted yarns Ta and Tb, the separated single yarns of fine carbon fibers are aggregated and tightened to increase the binding force. Thereafter, the overlapping portion of the fine carbon fibers is twisted and wound as described above. The liquid to be used preferably has polarity, and a liquid having a dielectric constant of 5 or more is preferably used. Examples thereof include alcohols having 1 to 5 carbon atoms, acetone, tetrahydrofuran, dimethylformamide, dimethylacetamide, water, ethyl acetate, and acetonitrile. Among these, methanol, ethanol, isopropanol, acetone, tetrahydrofuran, ethyl acetate, and acetonitrile are preferable.

次に、本発明に係る微細炭素繊維撚糸の製造装置の第2実施形態を、図11〜12を参照して説明する。   Next, 2nd Embodiment of the manufacturing apparatus of the fine carbon fiber twisted yarn which concerns on this invention is described with reference to FIGS.

第2実施形態の微細炭素繊維撚糸の製造装置1Bは、図11に概念的に示すように、基板保持装置2は、複数の基板保持部6を支持する支持体20と、複数の保持部6の各々を回転駆動する第1駆動部(不図示)と、支持体20を回転駆動する第2駆動部(不図示)と、を有し、2本以上の微細炭素繊維撚糸同士を、さらに撚り合わせることができる。   In the fine carbon fiber twisted yarn manufacturing apparatus 1B of the second embodiment, as schematically shown in FIG. 11, the substrate holding device 2 includes a support body 20 that supports a plurality of substrate holding portions 6, and a plurality of holding portions 6. A first drive unit (not shown) that rotationally drives each of the two and a second drive unit (not shown) that rotationally drives the support 20, and further twist two or more fine carbon fiber twisted yarns together Can be matched.

通常、2本以上の糸をさらに撚り合わせた糸を作製する場合、一旦撚糸をボビンに巻き取ったものを2本以上用意し、そこから糸を巻き出しながら外力を加えて撚りを付加する。しかしこの方法では、一旦糸をボビンに巻き取るために生産性が思わしくないばかりか、撚りを付加するために糸に摩擦力を印加するため、本発明で得られるような極細の微細炭素繊維撚には適用できないという問題がある。   Usually, when producing a yarn in which two or more yarns are further twisted, two or more yarns once wound on a bobbin are prepared, and an external force is applied while unwinding the yarn to add a twist. However, in this method, since the yarn is wound around the bobbin once, the productivity is not expected, and a frictional force is applied to the yarn to add twist. There is a problem that cannot be applied.

このような問題を克服するため、本発明の装置においては、支持体20の同一面上に配置された2個以上の基板5を、第1駆動軸6c回りに各々回転させると同時に、支持体20を回転駆動することにより各基板5に共通の回転に軸線G回りに回転させる。これにより、一旦糸をボビンに巻き取ってそれらを複数本用意して後から撚り合わせる場合に比べて、効率良く、かつ糸へのダメージを最小限にとどめながら、2本以上の微細炭素繊維撚糸同士を撚り合わせた糸を作製することができる。   In order to overcome such a problem, in the apparatus of the present invention, two or more substrates 5 arranged on the same surface of the support 20 are respectively rotated about the first drive shaft 6c, and at the same time, the support By rotating and driving 20, the substrate 5 is rotated around the axis G in a rotation common to the substrates 5. As a result, two or more fine carbon fiber twisted yarns are more efficient and minimize damage to the yarn compared to the case where the yarn is wound around a bobbin and then a plurality of them are prepared and twisted later. Yarns twisted together can be produced.

また、第2実施形態に示されているように、微細炭素繊維撚糸同士を撚り合わせるまで、微細炭素繊維撚糸を下方から上方へ引き出す構成とすることにより、微細炭素繊維撚糸のたるみを少なくし、かつ送り出し部と巻き取り部の間における微細炭素繊維撚糸に加わる張力を常に一定に保つことができるので、さらなる工程安定性を実現できる。なお、微細炭素繊維撚糸を上方から下方へ引き出すようにしても良い。また、基板5は、図12に示すように、支持体20に対し、縦置きに配置することもできる。   In addition, as shown in the second embodiment, until the fine carbon fiber twisted yarns are twisted together, by configuring the fine carbon fiber twisted yarn to be drawn upward from below, the sag of the fine carbon fiber twisted yarn is reduced, And since the tension | tensile_strength added to the fine carbon fiber twist yarn between a sending-out part and a winding-up part can always be kept constant, the further process stability is realizable. The fine carbon fiber twisted yarn may be pulled out from above. Moreover, the board | substrate 5 can also be arrange | positioned vertically with respect to the support body 20, as shown in FIG.

第2実施形態の微細炭素繊維撚糸の製造装置1Bによって製作された微細炭素繊維撚糸のSEM写真(5000倍)を図13に示す。   FIG. 13 shows an SEM photograph (5,000 times) of the fine carbon fiber twisted yarn produced by the fine carbon fiber twisted yarn manufacturing apparatus 1B of the second embodiment.

次に、本発明に係る微細炭素繊維撚糸の製造装置の第3の実施形態について、図14〜16を参照して説明する。上記第1、第2実施形態は、基板保持部を回転させることによって微細炭素繊維を撚り合わせる装置の例を示したが、以下に説明する第3実施形態及び第4実施形態では、ボビンを回転させることにより微細炭素繊維を撚り合わせる装置の例を示す。   Next, 3rd Embodiment of the manufacturing apparatus of the fine carbon fiber twisted yarn which concerns on this invention is described with reference to FIGS. Although the said 1st, 2nd embodiment showed the example of the apparatus which twists a fine carbon fiber by rotating a board | substrate holding part, in 3rd Embodiment and 4th Embodiment which are demonstrated below, a bobbin is rotated. The example of the apparatus which twists a fine carbon fiber by making it show is shown.

第3実施形態の微細炭素繊維撚糸の製造装置1Cは、図14〜16に示すように、基板保持部6を有する基板保持装置2と、ボビン3を有する巻取装置4Cとを備えている。   A fine carbon fiber twisted yarn manufacturing apparatus 1C according to the third embodiment includes a substrate holding device 2 having a substrate holding portion 6 and a winding device 4C having a bobbin 3 as shown in FIGS.

巻取装置4Cは、ボビン3を巻取回転軸線回りに回動自在に支持し、外周面に歯を有するリングギア23と、リングギア23の外周歯と噛み合い、リングギア23を回転駆動させる駆動ギア24と、ボビン3の回転軸3aに固定されたピニオンギア25と、ピニオンギア25と噛み合い、ボビン3に巻取回転を付与するためのフェースギア26とを有している。図示例において、リングギア23は、図16に示すように、巻取装置4Cの本体部分41にベアリング等を介して回転自在に支持されている。   The winding device 4C supports the bobbin 3 so as to be rotatable around the winding rotation axis, engages with the ring gear 23 having teeth on the outer peripheral surface, and the outer peripheral teeth of the ring gear 23, and drives the ring gear 23 to rotate. A gear 24, a pinion gear 25 fixed to the rotating shaft 3 a of the bobbin 3, and a face gear 26 that meshes with the pinion gear 25 and imparts winding rotation to the bobbin 3. In the illustrated example, the ring gear 23 is rotatably supported by a main body portion 41 of the winding device 4C via a bearing or the like, as shown in FIG.

上記第3実施形態では、モーター24aを起動させて駆動ギア24を駆動させると、リングギア23が図15の時計回りに回転し、リングギア23の回転によって、ボビン3がリングギア23と共に図15の時計回り(矢印X方向)に回転すると、ピニオンギア25とフェースギア26との噛み合いによって、ボビン3にボビン3の回転軸3a回りに矢印Y方向の回転が付与される。ボビン3は、矢印Y方向の回転によって巻取回転が与えられると同時に、矢印X方向の回転によって撚りをかける回転が与えられる。このようにして、ボビン3の矢印Y方向の巻取駆動と連動し、ボビン3を矢印X方向へ回転駆動させて撚りをかける、撚り合わせ機構が構成されている。この場合も、撚り角度が10〜50°となるように、ボビン3の矢印Y方向の巻取駆動と、ボビン3の矢印X方向の回転駆動とを連動させる。   In the third embodiment, when the motor 24 a is activated to drive the drive gear 24, the ring gear 23 rotates clockwise in FIG. 15, and the bobbin 3 together with the ring gear 23 is rotated by the rotation of the ring gear 23. When the pinion gear 25 and the face gear 26 mesh with each other, the bobbin 3 is rotated in the direction of the arrow Y around the rotation axis 3a of the bobbin 3. The bobbin 3 is provided with a winding rotation by the rotation in the arrow Y direction, and at the same time, a rotation for twisting by the rotation in the arrow X direction. In this way, a twisting mechanism is configured in which the bobbin 3 is rotationally driven in the direction of the arrow X and twisted in conjunction with the winding drive of the bobbin 3 in the direction of the arrow Y. Also in this case, the winding drive of the bobbin 3 in the arrow Y direction and the rotational drive of the bobbin 3 in the arrow X direction are interlocked so that the twist angle becomes 10 to 50 °.

次に、本発明に係る微細炭素繊維撚糸の製造装置の第4実施形態について、図17〜20を参照して説明する。   Next, 4th Embodiment of the manufacturing apparatus of the fine carbon fiber twisted yarn which concerns on this invention is described with reference to FIGS.

第4実施形態の微細炭素繊維の製造装置1Dは、基板保持部30aを備える基板保持装置30と、ボビン32を備えた巻取装置33と、を有している。   The fine carbon fiber manufacturing apparatus 1D of the fourth embodiment includes a substrate holding device 30 including a substrate holding portion 30a and a winding device 33 including a bobbin 32.

巻取装置33は、ボビン32を巻き取り回転駆動するための第1駆動部34を有している。また、巻取装置33は、ボビン32の巻取回転軸A方向の先端に微細炭素繊維を接続するための先細端部31を備えている。さらに、ボビン32は、回転軸線Aと略直交する軸線B(図18)回りに回転自在に配設されて、先細端部31が基板保持部30aの側を向き微細炭素繊維が引き出される方向に巻取回転軸線Aが沿う第1の配置(図17,18)と、微細炭素繊維が引き出される方向と巻取回転軸線Aが交差する第2の配置(図19,20)とを配置転換可能となっている。   The winding device 33 has a first drive unit 34 for winding and rotating the bobbin 32. Further, the winding device 33 includes a tapered end portion 31 for connecting a fine carbon fiber to the tip of the bobbin 32 in the winding rotation axis A direction. Further, the bobbin 32 is rotatably arranged around an axis B (FIG. 18) substantially orthogonal to the rotation axis A, and the tapered end portion 31 faces the substrate holding portion 30a so that the fine carbon fiber is drawn out. The first arrangement (FIGS. 17 and 18) along the winding rotation axis A and the second arrangement (FIGS. 19 and 20) in which the direction in which the fine carbon fiber is drawn out and the winding rotation axis A intersect can be changed. It has become.

基板保持装置30は、リニアアクチュエータ等によって基板保持部30aを往復動自在に支持し、それによって、基板保持部30aが巻取装置33に接近し又は巻取装置33から離反するようになっている。なお、巻取装置33を、基板保持部30aと接近又は離反するように往復動自在とすることもできる。   The substrate holding device 30 supports the substrate holding portion 30a by a linear actuator or the like so as to reciprocate, whereby the substrate holding portion 30a approaches the winding device 33 or moves away from the winding device 33. . The winding device 33 can be reciprocally movable so as to approach or separate from the substrate holding portion 30a.

第4実施形態の微細炭素繊維撚糸の製造装置1Dは、図17,18に示す第1の配置において、ボビン32の一端に微細炭素繊維を接続した状態でボビン32を巻取軸線A回りに回転させつつ、基板5をボビン32から離れる方向に移動させることにより、基板5上の微細炭素繊維の集合体から微細炭素繊維Tを引き出しつつ撚りをかける。   In the first arrangement shown in FIGS. 17 and 18, the fine carbon fiber twisted yarn manufacturing apparatus 1 </ b> D of the fourth embodiment rotates the bobbin 32 around the winding axis A with the fine carbon fiber connected to one end of the bobbin 32. Then, the substrate 5 is moved in a direction away from the bobbin 32 to twist the fine carbon fiber T while pulling out the fine carbon fiber T from the aggregate of the fine carbon fibers on the substrate 5.

次に、ボビン32の回転を停止させた状態で、ボビン32を図19,20に示す第2の配置に配置転換させた後、ボビン32を再び巻取回転軸線A回りに回転させるとともに、ボビン32の回転と同期して基板5とボビン32との距離が縮まるように基板5を移動させることにより、引き出されて撚りをかけられた微細炭素繊維撚糸をボビン32に巻き取る。   Next, in a state where the rotation of the bobbin 32 is stopped, the bobbin 32 is rearranged to the second arrangement shown in FIGS. 19 and 20, and then the bobbin 32 is rotated again around the winding rotation axis A and the bobbin The fine carbon fiber twisted yarn drawn out and twisted is wound around the bobbin 32 by moving the substrate 5 so that the distance between the substrate 5 and the bobbin 32 is shortened in synchronization with the rotation of the bobbin 32.

上記のように、引き出して撚り合わせる工程と巻取る工程とを交互に行うことにより、長尺の微細炭素繊維撚糸をボビン32に巻取ることができる。   As described above, a long fine carbon fiber twisted yarn can be wound on the bobbin 32 by alternately performing the step of drawing and twisting and the step of winding.

微細炭素繊維の製造装置1Dにおいて、基板5上の微細炭素繊維の集合体の引き出し位置から先芯31までの距離は、1mm〜1000mmの範囲内となるように、基板保持部3aの往復動距離が設定されていることが好ましい。この距離が短すぎると実質的に生産性が悪い。一方この距離が長すぎると、先細端部31と基板5上の微細炭素繊維との間に存在する微細炭素繊維撚糸自身の揺動によって、工程安定性が乏しくなるので好ましくない。   In the fine carbon fiber manufacturing apparatus 1D, the reciprocating distance of the substrate holding portion 3a is such that the distance from the drawing position of the aggregate of fine carbon fibers on the substrate 5 to the tip 31 is in the range of 1 mm to 1000 mm. Is preferably set. If this distance is too short, the productivity is substantially poor. On the other hand, if this distance is too long, the process stability becomes poor due to the swinging of the fine carbon fiber twisted yarn itself existing between the tapered end portion 31 and the fine carbon fiber on the substrate 5, which is not preferable.

また、上記の第1実施形態と同様、上記第4実施形態において、第1駆動部34の回転数は1〜60000rpmであることが好ましく、巻取装置33の巻き取り速度は0.005〜30m/分であることが好ましい。   Similarly to the first embodiment, in the fourth embodiment, the rotation speed of the first drive unit 34 is preferably 1 to 60000 rpm, and the winding speed of the winding device 33 is 0.005 to 30 m. / Min is preferred.

さらに、第4実施形態の場合において、第1駆動部34を下側とし、基板保持装置30を上側として、微細炭素繊維の引き出される方向が上下方向となるように、微細炭素繊維撚糸の製造装置1Dを配置することができる。これにより、微細炭素繊維撚糸のたるみを生じることなく、かつ送り出し部と巻き取り部の間における微細炭素繊維撚糸に加わる張力を常に一定に保つことができるので、さらなる工程安定性を実現できる。   Furthermore, in the case of the fourth embodiment, the fine carbon fiber twisted yarn manufacturing apparatus is such that the first drive unit 34 is on the lower side, the substrate holding device 30 is on the upper side, and the direction in which the fine carbon fibers are drawn out is the vertical direction. 1D can be placed. Thereby, since the tension | tensile_strength added to the fine carbon fiber twisted yarn between a sending-out part and a winding-up part can always be kept constant, without producing sagging of fine carbon fiber twisted yarn, the further process stability is realizable.

本発明にて得られる微細炭素繊維撚糸は、そのまま用いても良いし、あるいはバインダー等が含まれていてもよい。バインダー等を含むことにより、微細炭素繊維撚糸をより一層丈夫なものとすることができる。なお、バインダーは、微細炭素材料撚糸を結着するものであれば限定されず、ポリビニルアルコール等が挙げられる。また、本発明の微細炭素繊維撚糸あるいはそれらにバインダーが含まれたものは、結ってロープにしても良いし、あるいは織物や編物への加工を行ってもよい。本バインダーを付与することによりボビン上に巻き取った微細炭素材料撚糸が複数段に重なって巻き取られていても上段と下段の撚糸が絡みついて糸切れすることなく巻き返すことができるようになる。   The fine carbon fiber twisted yarn obtained in the present invention may be used as it is or may contain a binder or the like. By including a binder or the like, the fine carbon fiber twisted yarn can be made even stronger. The binder is not limited as long as it binds the fine carbon material twisted yarn, and examples thereof include polyvinyl alcohol. In addition, the fine carbon fiber twisted yarn of the present invention or those containing a binder may be tied into a rope, or may be processed into a woven fabric or a knitted fabric. By providing this binder, even if the fine carbon material twisted yarn wound on the bobbin is wound in a plurality of stages, the upper and lower twisted yarns are entangled and can be rewound without breaking.

本発明は、上記実施形態に限定されるものではなく、種々の変更が可能である。例えば、上記実施形態では、基板保持部かボビンの何れか一方が回転することにより微細炭素繊維に撚りをかける装置を例示したが、第1実施形態と第3実施形態を組み合わせる等して、基板保持部とボビンの双方を回転させて微細炭素繊維撚糸に撚りをかけることも可能である。また、第4実施形態において、ボビン32の端部を、先細端部31に代えて極細軸状部21aとすることもできる。   The present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above embodiment, the apparatus for twisting the fine carbon fiber by rotating either the substrate holding part or the bobbin is exemplified, but the substrate may be combined by combining the first embodiment and the third embodiment. It is also possible to twist the fine carbon fiber twisted yarn by rotating both the holding portion and the bobbin. In the fourth embodiment, the end of the bobbin 32 can be replaced with the tapered end portion 31 to be a very thin shaft portion 21a.

以下に実施例を用いて本発明を詳細に説明する。なお、本発明は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail using examples. In addition, this invention is not limited to the following Example.

実施例1
シリコン基板(市販品、1cm)に鉄をスパッタリングすることにより、厚さ4nmの鉄皮膜が積層されたシリコン基板を製造した。
Example 1
By sputtering iron on a silicon substrate (commercial product, 1 cm 2 ), a silicon substrate on which an iron film having a thickness of 4 nm was laminated was manufactured.

この基板を熱CVD装置内に設置し、熱CVD法を行うことにより基板状にカーボンナノチューブ集合体を形成させた。熱CVD内に供給したガスは、アセチレンガス及びヘリウムガスの混合ガス(アセチレンガス5.77vol%)とした。熱CVD条件としては、温度:700℃、圧力:大気圧下、初期段階におけるアセチレンガス濃度の上昇速度:0.10vol%/秒、反応時間:10分とした。   This substrate was placed in a thermal CVD apparatus, and a carbon nanotube aggregate was formed in a substrate shape by performing a thermal CVD method. The gas supplied into the thermal CVD was a mixed gas of acetylene gas and helium gas (acetylene gas 5.77 vol%). The thermal CVD conditions were temperature: 700 ° C., pressure: atmospheric pressure, acetylene gas concentration increase rate in the initial stage: 0.10 vol% / second, and reaction time: 10 minutes.

この基板を用い、アセチレンガス及びヘリウムガスを熱CVD装置内に供給させ、化学気相成長法により、当該基板上に実施例1のカーボンナノチューブを成長させた。成長させたカーボンナノチューブの平均長さは190μm、太さは15.3nm程度であり、基板上のカーボンナノチューブ集合体は嵩密度40mg/cm、秩序パラメータ0.94の高密度かつ高配向で形成されたカーボンナノチューブ集合体の状態となっていた。Using this substrate, acetylene gas and helium gas were supplied into a thermal CVD apparatus, and the carbon nanotubes of Example 1 were grown on the substrate by chemical vapor deposition. The grown carbon nanotubes have an average length of 190 μm and a thickness of about 15.3 nm, and the aggregate of carbon nanotubes on the substrate is formed with a high density and high orientation with a bulk density of 40 mg / cm 2 and an order parameter of 0.94. It was in the state of a carbon nanotube aggregate.

上記のようにして得られたカーボンナノチューブ基板から、一部のカーボンナノチューブを削り取り、基板の保持に必要なシリコン部分を露出させ、上記第1実施形態の微細炭素繊維撚糸製造装置(図2,3)の基板保持装置2に基板を保持させた。この時、シリコン基板と基板保持部の回転軸線とのなす角(α)は15°とした。また、引き出し位置から巻き取りボビンへの進入位置までの距離は50mmとした。   A part of the carbon nanotubes are scraped from the carbon nanotube substrate obtained as described above, and a silicon portion necessary for holding the substrate is exposed, and the fine carbon fiber twisted yarn manufacturing apparatus of the first embodiment (FIGS. 2 and 3). The substrate was held by the substrate holding device 2 of FIG. At this time, the angle (α) formed between the silicon substrate and the rotation axis of the substrate holding portion was 15 °. Further, the distance from the drawing position to the entry position to the winding bobbin was 50 mm.

上記のようにして取り付けた基板を、8000rpmで回転させながら、巻取り速度0.1m/分で巻き取り、25mに渡って1mあたりの撚数が80000T/mの連続した撚糸の巻糸体を作製することができた。この時、巻き取りボビンの長さ15cm、直径6cmで15cmの範囲でゆっくりトラバースさせ、巻き糸が重ならないようにした。巻糸体の撚角度を測定した。撚角度の平均値は48°であり、引っ張り強度は203MPaであった。この基板を用いて紡糸製造をさらに2回繰り返したところ、引っ張り強度は235、310MPaであった。   The substrate attached as described above is wound at a winding speed of 0.1 m / min while rotating at 8000 rpm, and a continuous twisted wound body having a twist number of 80000 T / m over 25 m is obtained. We were able to make it. At this time, the winding bobbin was slowly traversed within a range of 15 cm with a length of 15 cm and a diameter of 6 cm so that the wound yarns did not overlap. The twist angle of the wound body was measured. The average value of the twist angle was 48 °, and the tensile strength was 203 MPa. Spinning production was repeated twice more using this substrate, and the tensile strength was 235 and 310 MPa.

実施例2
実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。第1実施形態の微細炭素繊維撚糸製造装置(図2,3)の基板保持装置2に基板を保持させ、シリコン基板と基板保持部の回転軸線とのなす角(α)は15°とした。また、引き出し位置から巻き取りボビンへの進入位置までの距離は50mmとした。基板を、8000rpmで回転させながら、巻取り速度0.2m/分で巻き取り、18.2mに渡って1mあたりの撚数が40000T/mの連続した撚糸の巻糸体を作製することができた。巻糸体の撚角度を測定した。撚角度の平均値は25°であり、引っ張り強度は305MPaであった。この基板を用いて紡糸製造をさらに3回繰り返したところ、引っ張り強度は560、410、265MPaであった。
Example 2
A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The substrate was held by the substrate holding device 2 of the fine carbon fiber twisted yarn manufacturing apparatus (FIGS. 2 and 3) of the first embodiment, and the angle (α) formed by the silicon substrate and the rotation axis of the substrate holding portion was 15 °. Further, the distance from the drawing position to the entry position to the winding bobbin was 50 mm. The substrate can be wound at a winding speed of 0.2 m / min while rotating at 8000 rpm, and a continuous twisted wound body having a twist number of 40000 T / m over 18.2 m can be produced. It was. The twist angle of the wound body was measured. The average value of the twist angle was 25 °, and the tensile strength was 305 MPa. The spinning production was repeated three more times using this substrate, and the tensile strength was 560, 410, 265 MPa.

実施例3
実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。第1実施形態の微細炭素繊維撚糸製造装置(図2,3)の基板保持装置2に基板を保持させ、シリコン基板と基板保持部の回転軸線とのなす角(α)は15°とした。また、引き出し位置から巻き取りボビンへの進入位置までの距離は50mmとした。基板を、2000rpmで回転させながら、巻取り速度0.1m/分で巻き取り、20.5mに渡って1mあたりの撚数が20000T/mの連続した撚糸の巻糸体を作製することができた。撚角度の平均値は15°であり、引っ張り強度は320MPaであった。この基板を用いて紡糸製造をさらに1回繰り返したところ、引っ張り強度は295MPaであった。
Example 3
A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The substrate was held by the substrate holding device 2 of the fine carbon fiber twisted yarn manufacturing apparatus (FIGS. 2 and 3) of the first embodiment, and the angle (α) formed by the silicon substrate and the rotation axis of the substrate holding portion was 15 °. Further, the distance from the drawing position to the entry position to the winding bobbin was 50 mm. While rotating the substrate at 2000 rpm, the substrate can be wound at a winding speed of 0.1 m / min to produce a continuous twisted wound body having a twist number of 20000 T / m over 20.5 m. It was. The average value of the twist angle was 15 °, and the tensile strength was 320 MPa. When the spinning production was repeated once more using this substrate, the tensile strength was 295 MPa.

比較例1
実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。第1実施形態の微細炭素繊維撚糸製造装置(図2,3)の基板保持装置2に基板を保持させ、シリコン基板と基板保持部の回転軸線とのなす角(α)は15°とした。また、引き出し位置から巻き取りボビンへの進入位置までの距離は50mmとした。基板を、10000rpmで回転させながら、巻取り速度1m/分で巻き取り、16.6mに渡って1mあたりの撚数が10000T/mの連続した撚糸の巻糸体を作製することができた。撚角度の平均値は8°であり、引っ張り強度は135MPaであった。この基板を用いて紡糸製造をさらに2回繰り返したところ、引っ張り強度は60MPaであった。
Comparative Example 1
A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The substrate was held by the substrate holding device 2 of the fine carbon fiber twisted yarn manufacturing apparatus (FIGS. 2 and 3) of the first embodiment, and the angle (α) formed by the silicon substrate and the rotation axis of the substrate holding portion was 15 °. Further, the distance from the drawing position to the entry position to the winding bobbin was 50 mm. The substrate was wound at a winding speed of 1 m / min while rotating at 10000 rpm, and a continuous twisted wound body having a twist number of 10,000 T / m over 16.6 m could be produced. The average value of the twist angle was 8 °, and the tensile strength was 135 MPa. Spinning production was repeated twice more using this substrate, and the tensile strength was 60 MPa.

比較例2
実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。第1実施形態の微細炭素繊維撚糸製造装置(図2,3)の基板保持装置2に基板を保持させ、シリコン基板と基板保持部の回転軸線とのなす角(α)は15°とした。また、引き出し位置から巻き取りボビンへの進入位置までの距離は50mmとした。基板を、10000rpmで回転させながら、巻取り速度0.1m/分で巻き取り、15.3mに渡って1mあたりの撚数が100000T/mの連続した撚糸の巻糸体を作製することができた。撚角度の平均値は70°であり、引っ張り強度は90MPaであった。この基板を用いて紡糸製造をさらに4回繰り返したところ、引っ張り強度は40、50、100、130MPaであった。
Comparative Example 2
A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The substrate was held by the substrate holding device 2 of the fine carbon fiber twisted yarn manufacturing apparatus (FIGS. 2 and 3) of the first embodiment, and the angle (α) formed by the silicon substrate and the rotation axis of the substrate holding portion was 15 °. Further, the distance from the drawing position to the entry position to the winding bobbin was 50 mm. The substrate is wound at a winding speed of 0.1 m / min while rotating at 10000 rpm, and a wound body of continuous twisted yarns having a twist number of 100,000 T / m over 15.3 m can be produced. It was. The average value of the twist angle was 70 °, and the tensile strength was 90 MPa. The spinning production was repeated four more times using this substrate, and the tensile strength was 40, 50, 100, and 130 MPa.

実施例4
実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは180μm、太さは16.6nm程度であり、基板上のカーボンナノチューブ集合体は嵩密度20mg/cm、秩序パラメータ0.88の高密度かつ高配向で形成されたカーボンナノチューブ集合体の状態となっていた。第1実施形態の微細炭素繊維撚糸製造装置(図2,3)の基板保持装置2に基板を保持させ、シリコン基板と基板保持部の回転軸線とのなす角(α)は15°とした。また、引き出し位置から巻き取りボビンへの進入位置までの距離は50mmとした。基板を、20000rpmで回転させながら、巻取り速度0.5m/分で巻き取り、18.8mに渡って1mあたりの撚数が40000T/mの連続した撚糸の巻糸体を作製することができた。撚角度の平均値は24°であり、引っ張り強度は360MPaであった。
Example 4
A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The average length of the grown carbon nanotubes is 180 μm and the thickness is about 16.6 nm, and the aggregate of carbon nanotubes on the substrate is formed with a high density and high orientation with a bulk density of 20 mg / cm 2 and an order parameter of 0.88. It was in the state of a carbon nanotube aggregate. The substrate was held by the substrate holding device 2 of the fine carbon fiber twisted yarn manufacturing apparatus (FIGS. 2 and 3) of the first embodiment, and the angle (α) formed by the silicon substrate and the rotation axis of the substrate holding portion was 15 °. Further, the distance from the drawing position to the entry position to the winding bobbin was 50 mm. The substrate can be wound at a winding speed of 0.5 m / min while rotating at 20000 rpm, and a continuous twisted wound body having a twist number of 40000 T / m over 18.8 m can be produced. It was. The average value of the twist angle was 24 °, and the tensile strength was 360 MPa.

実施例5
実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは160μm、太さは19.0nm程度であり、基板上のカーボンナノチューブ集合体は嵩密度60mg/cm、秩序パラメータ0.96の高密度かつ高配向で形成されたカーボンナノチューブ集合体の状態となっていた。第1実施形態の微細炭素繊維撚糸製造装置(図2,3)の基板保持装置2に基板を保持させ、シリコン基板と基板保持部の回転軸線とのなす角(α)は15°とした。また、引き出し位置から巻き取りボビンへの進入位置までの距離は50mmとした。基板を、40000rpmで回転させながら、巻取り速度1m/分で巻き取り、28.1mに渡って1mあたりの撚数が40000T/mの連続した撚糸の巻糸体を作製することができた。撚角度の平均値は23°であり、引っ張り強度は325MPaであった。
Example 5
A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes have an average length of about 160 μm and a thickness of about 19.0 nm, and the aggregate of carbon nanotubes on the substrate is formed with a high density and high orientation with a bulk density of 60 mg / cm 2 and an order parameter of 0.96. It was in the state of a carbon nanotube aggregate. The substrate was held by the substrate holding device 2 of the fine carbon fiber twisted yarn manufacturing apparatus (FIGS. 2 and 3) of the first embodiment, and the angle (α) formed by the silicon substrate and the rotation axis of the substrate holding portion was 15 °. Further, the distance from the drawing position to the entry position to the winding bobbin was 50 mm. The substrate was wound at a winding speed of 1 m / min while rotating at 40000 rpm, and a continuous twisted wound body having a twist number of 40000 T / m over 28.1 m could be produced. The average value of the twist angle was 23 °, and the tensile strength was 325 MPa.

実施例6
実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは175μm、太さは10.0nm程度であり、基板上のカーボンナノチューブ集合体は嵩密度50mg/cm、秩序パラメータ0.95の高密度かつ高配向で形成されたカーボンナノチューブ集合体の状態となっていた。第1実施形態の微細炭素繊維撚糸製造装置(図2,3)の基板保持装置2に基板を保持させ、シリコン基板と基板保持部6の回転軸線とのなす角(α)は15°とした。また、引き出し位置から巻き取りボビンへの進入位置までの距離は50mmとした。基板を、4000rpmで回転させながら、巻取り速度0.1m/分で巻き取り、18.5mに渡って1mあたりの撚数が40000T/mの連続した撚糸の巻糸体を作製することができた。撚角度の平均値は26°であり、引っ張り強度は405MPaであった。
Example 6
A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes have an average length of 175 μm and a thickness of about 10.0 nm, and the aggregate of carbon nanotubes on the substrate is formed with a high density and high orientation with a bulk density of 50 mg / cm 2 and an order parameter of 0.95. It was in the state of a carbon nanotube aggregate. The substrate is held by the substrate holding device 2 of the fine carbon fiber twisted yarn manufacturing apparatus (FIGS. 2 and 3) of the first embodiment, and the angle (α) between the silicon substrate and the rotation axis of the substrate holding portion 6 is 15 °. . Further, the distance from the drawing position to the entry position to the winding bobbin was 50 mm. While the substrate is rotated at 4000 rpm, the substrate can be wound at a winding speed of 0.1 m / min, and a wound body of continuous twisted yarns having a twist number of 40000 T / m over 18.5 m can be produced. It was. The average value of the twist angle was 26 °, and the tensile strength was 405 MPa.

実施例7
実施例1と同様にして製造した基板上に成長させたカーボンナノチューブを用いて撚糸を作製した。成長させたカーボンナノチューブの平均長さは185μm、太さは50.0nm程度であり、基板上のカーボンナノチューブ集合体は嵩密度25mg/cm、秩序パラメータ0.95の高密度かつ高配向で形成されたカーボンナノチューブ集合体の状態となっていた。第1実施形態の微細炭素繊維撚糸製造装置(図2,3)の基板保持装置2に基板を保持させ、シリコン基板と基板保持部の回転軸線とのなす角は15°とした。また、引き出し位置から巻き取りボビンへの進入位置までの距離は50mmとした。基板を、400rpmで回転させながら、巻取り速度0.01m/分で巻き取り、19.8mに渡って1mあたりの撚数が40000T/mの連続した撚糸の巻糸体を作製することができた。撚角度の平均値は24°であり、引っ張り強度は345MPaであった。
Example 7
A twisted yarn was produced using carbon nanotubes grown on a substrate produced in the same manner as in Example 1. The grown carbon nanotubes have an average length of 185 μm and a thickness of about 50.0 nm, and the aggregate of carbon nanotubes on the substrate is formed with a high density and high orientation with a bulk density of 25 mg / cm 2 and an order parameter of 0.95. It was in the state of a carbon nanotube aggregate. The substrate was held by the substrate holding device 2 of the fine carbon fiber twisted yarn manufacturing apparatus (FIGS. 2 and 3) of the first embodiment, and the angle formed by the silicon substrate and the rotation axis of the substrate holding portion was 15 °. Further, the distance from the drawing position to the entry position to the winding bobbin was 50 mm. While the substrate is rotated at 400 rpm, the substrate is wound at a winding speed of 0.01 m / min, and a wound body of continuous twisted yarn having a twist number of 40000 T / m over 19.8 m can be produced. It was. The average value of the twist angle was 24 °, and the tensile strength was 345 MPa.

実施例8
実施例1と同様にして作製したカーボンナノチューブの平均長さ190μm、太さ6.3nm程度であり、基板上のカーボンナノチューブ集合体は嵩密度40mg/cm、秩序パラメータ0.94である基板を、上記第4実施形態の微細炭素繊維製造装置1D(図17〜図20)の基板保持装置30に基板を保持させた。カーボンナノチューブの一部を回転先芯31に取り付け、次いで、以下の単位操作1および2を、交互に2回繰り返して、1mあたりの撚数が40000T/mの撚糸を作製した。
Example 8
A carbon nanotube produced in the same manner as in Example 1 has an average length of 190 μm and a thickness of about 6.3 nm, and the aggregate of carbon nanotubes on the substrate has a bulk density of 40 mg / cm 2 and an order parameter of 0.94. The substrate was held by the substrate holding device 30 of the fine carbon fiber manufacturing apparatus 1D (FIGS. 17 to 20) of the fourth embodiment. A part of the carbon nanotube was attached to the rotating tip 31 and then the following unit operations 1 and 2 were alternately repeated twice to produce a twisted yarn having a twist number of 40000 T / m per meter.

単位操作1:図17,18のように、回転先芯31の回転軸線Aをカーボンナノチューブ基板の移動方向に向けた状態で、第1駆動部34であるモーターを4000rpmで回転させながら、基板を0.1m/分の速度で回転先芯から離れる方向に50cm移動させた。モーターの回転および基板の移動を一旦停止させた後、回転先芯をモーターごと回転軸線B回りに90°回転させて、図19、20に示すような配置とした。   Unit operation 1: As shown in FIGS. 17 and 18, in the state where the rotation axis A of the rotation tip 31 is directed in the moving direction of the carbon nanotube substrate, the motor as the first drive unit 34 is rotated at 4000 rpm while the substrate is rotated. It was moved 50 cm in a direction away from the rotation tip at a speed of 0.1 m / min. After stopping the rotation of the motor and the movement of the substrate, the rotation tip was rotated by 90 ° around the rotation axis B together with the motor, and the arrangement as shown in FIGS.

単位操作2:ボビン32をゆっくり回転させながら、カーボンナノチューブ基板に近づける方向に50cm移動させて、単位操作1によって引き出したカーボンナノチューブ撚糸を巻き取りボビン32に巻き取った。巻き取ったらモーターの回転および基板の移動を停止させ、回転先芯31をモーター34ごと90°回転させ、再び図17、18に示す状態に配置した。   Unit operation 2: While rotating the bobbin 32 slowly, the bobbin 32 was moved 50 cm in a direction approaching the carbon nanotube substrate, and the carbon nanotube twisted yarn pulled out by the unit operation 1 was wound around the winding bobbin 32. After winding, the rotation of the motor and the movement of the substrate were stopped, and the rotation tip 31 was rotated by 90 ° together with the motor 34, and was again placed in the state shown in FIGS.

上記単位操作1、2の操作を交互に繰り返して、18.7mに渡って1mあたりの撚数が40000T/mの連続した撚糸の巻糸体を作製することができた。作製した巻糸体のSEM観察を行い、撚角度を測定した(但し、上記単位操作1、2が切り替わった部分の撚糸を含む)。撚角度の平均値は27°であり、引張り強度は304MPaであった。   By repeating the operations of the unit operations 1 and 2 alternately, it was possible to produce a wound body of continuous twisted yarn having a twist number of 40000 T / m over 18.7 m. SEM observation of the produced wound body was performed and the twist angle was measured (however, including the twisted yarn of the portion where the unit operations 1 and 2 were switched). The average value of the twist angle was 27 °, and the tensile strength was 304 MPa.

実施例9
第1実施形態の微細炭素繊維撚糸製造装置(図2,3)において、基板保持装置2から5mm離れた所で基板から引き出したカーボンナノチューブ撚糸に連続的にポバールの0.0001wt%の水溶液を1ml/minの割合で付与した事意外は、実施例1と同様にして撚糸を作製した。基板上に成長させたカーボンナノチューブの平均長さは185μm、太さは60.7nm程度であり、基板上のカーボンナノチューブ集合体は嵩密度25mg/cm、秩序パラメータ0.95の高密度かつ高配向で形成されたカーボンナノチューブ集合体の状態となっていた。基板保持装置2に基板を保持させ、シリコン基板と基板保持部の回転軸線とのなす角(α)は15°とした。また、引き出し位置から巻き取りボビンへの進入位置までの距離は50mmとした。基板を、8000rpmで回転させながら、巻取り速度0.2m/分で巻き取り、25.3mに渡って1mあたりの撚数が40000T/mの連続した撚糸の巻糸体を作製することができた。撚角度の平均値は24°であった。この時、巻き取りボビンの直径は3cmでトラバース運動をさせながら巻き取ったが、糸が最大3段に重なって巻き取られた。この糸をほぐす時に問題無くほぐれた。
Example 9
In the fine carbon fiber twisted yarn manufacturing apparatus (FIGS. 2 and 3) of the first embodiment, 1 ml of an aqueous solution of 0.0001 wt% of poval is continuously applied to the carbon nanotube twisted yarn drawn from the substrate at a distance of 5 mm from the substrate holding device 2. A twisted yarn was produced in the same manner as in Example 1 except that it was given at a rate of / min. The carbon nanotubes grown on the substrate have an average length of 185 μm and a thickness of about 60.7 nm. The aggregate of carbon nanotubes on the substrate has a bulk density of 25 mg / cm 2 and a high density and high order parameter of 0.95. It was in the state of the carbon nanotube aggregate formed by orientation. The substrate is held by the substrate holding device 2, and the angle (α) between the silicon substrate and the rotation axis of the substrate holding part is 15 °. Further, the distance from the drawing position to the entry position to the winding bobbin was 50 mm. The substrate can be wound at a winding speed of 0.2 m / min while rotating at 8000 rpm, and a continuous twisted wound body having a twist number of 40000 T / m over 25.3 m can be produced. It was. The average value of the twist angle was 24 °. At this time, the winding bobbin had a diameter of 3 cm and was wound while being traversed, but the yarn was wound up in a maximum of three stages. When I loosened this thread, it was unraveled without problems.

比較例3
ポバール水溶液を付与することが無い以外は実施例9と全く同様にして撚糸を製造した。製造後糸をほぐすときに糸が巻き取りボビン表面上で重なってしまったところでばらけてくっついてしまい、うまく巻き取りをほぐせないところがあった。
Comparative Example 3
A twisted yarn was produced in exactly the same manner as in Example 9 except that no poval aqueous solution was applied. When the yarn was loosened after production, the yarn was loosened and stuck where it overlapped on the surface of the take-up bobbin, and it was not possible to unwind it well.

実施例10
第2実施形態の微細炭素繊維撚糸製造装置(図11)において、基板保持装置2上に1.5cm×1.5cm角の実施例1と同じカーボンナノチューブが成長した基板4枚を基板台に対して垂直に固定した。各基板を基板台の中心を回転の中心軸として右周りに5000rpmで回転させ、さらに4枚の基板を乗せた台その中心を回転軸として左周りに5000rpmで回転させた。巻取り速度0.1m/分で巻き取り、15.3mに渡って連続した撚糸の巻糸体を作製することができた。製作された撚糸が、図13のSEM写真(5000倍)に示されている。
Example 10
In the fine carbon fiber twisted yarn manufacturing apparatus (FIG. 11) of the second embodiment, four substrates on which the same carbon nanotubes as in Example 1 of 1.5 cm × 1.5 cm square are grown on the substrate holding device 2 are placed on the substrate base And fixed vertically. Each substrate was rotated clockwise at 5000 rpm with the center of the substrate platform as the central axis of rotation, and further rotated at 5000 rpm counterclockwise with the center of the platform on which the four substrates were placed as the rotational axis. The wound body was wound at a winding speed of 0.1 m / min, and a continuous wound thread body over 15.3 m could be produced. The produced twisted yarn is shown in the SEM photograph (5,000 times) in FIG.

実施例11
実施例1と同様にして微細炭素繊維が成長している基板5から微細炭素繊維から撚りを掛けながら微細炭素繊維の撚糸を紡糸し巻き取りボビン3に巻き取った。この時、基板5と巻き取りボビンの間にCCDカメラを設置して微細炭素繊維の撚糸を倍率5000で拡大して画面上に映した。紡糸している画像を15秒毎にパーソナルコンピュータ上に取り込み、背景と撚糸を構成する画素数を数え上げることにより面積比を求めた。順調に紡糸できているときの画面中に占める撚糸の面積の割合は17.5〜20.1%であった。紡糸開始1.8時間後に糸切れが生じた。この時、画面中に占める撚糸の割合は急速に減少し、45秒後には0%になった。
Example 11
In the same manner as in Example 1, while twisting from the fine carbon fiber from the substrate 5 on which the fine carbon fiber is growing, the fine carbon fiber twisted yarn was spun and wound around the take-up bobbin 3. At this time, a CCD camera was installed between the substrate 5 and the winding bobbin, and the fine carbon fiber twisted yarn was magnified at a magnification of 5000 and displayed on the screen. The spinning image was taken into a personal computer every 15 seconds, and the area ratio was determined by counting the number of pixels constituting the background and the twisted yarn. The ratio of the area of the twisted yarn in the screen when spinning was smoothly performed was 17.5 to 20.1%. The yarn breakage occurred 1.8 hours after the start of spinning. At this time, the ratio of the twisted yarn in the screen rapidly decreased and became 0% after 45 seconds.

実施例12
実施例8において第4実施形態の微細炭素繊維製造装置1D(図17〜図20)を基板保持部が上側になり、回転先芯が下側へ移動するように装置を縦方向配置で組みつけた。回転先芯が1mほど下側へ撚糸を引き出した後、この撚糸を巻き取るために上側へ移動させたこと意外は実施例8と同様にして撚糸を製造した。巻き取った撚糸の長さは16mであった。作製した巻糸体のSEM観察を行い、撚角度を測定した(但し、上記単位操作1、2が切り替わった部分の撚糸を含む)。撚角度の平均値は28°であり、引張り強度は253MPaであった。
Example 12
In Example 8, the fine carbon fiber manufacturing apparatus 1D (FIGS. 17 to 20) of the fourth embodiment is assembled in a vertical arrangement so that the substrate holding part is on the upper side and the rotation tip is moved to the lower side. It was. A twisted yarn was produced in the same manner as in Example 8 except that the twisted yarn was pulled downward by about 1 m and then moved upward to wind up the twisted yarn. The length of the wound twisted yarn was 16 m. SEM observation of the produced wound body was performed and the twist angle was measured (however, including the twisted yarn of the portion where the unit operations 1 and 2 were switched). The average value of the twist angle was 28 °, and the tensile strength was 253 MPa.

比較例4
実施例1と同様にしてカーボンナノチューブの集合体を形成した基板から、カーボンナノチューブの一部を、上記第4実施形態の微細炭素繊維製造装置の先細端部31に取り付け、先細端部31の回転軸線Aを基板5の移動方向に向けた状態で、第1駆動部34であるモーターを10000rpmで回転させながら、基板を手で先細端部から離れる方向に移動させた。1mの撚糸を引き出すことはできたが、引き出した撚糸の揺動で撚糸が切れてしまい、1m以上の撚糸を作製することができなかった。
Comparative Example 4
A part of the carbon nanotubes is attached to the tapered end portion 31 of the apparatus for producing fine carbon fibers of the fourth embodiment from the substrate on which the aggregate of carbon nanotubes is formed in the same manner as in Example 1, and the rotation of the tapered end portion 31 is performed. With the axis A directed in the direction of movement of the substrate 5, the substrate was moved by hand in the direction away from the tapered end while rotating the motor as the first drive unit 34 at 10000 rpm. Although a 1 m twisted yarn could be pulled out, the twisted yarn was cut by the swinging of the pulled twisted yarn, and a 1 m or longer twisted yarn could not be produced.

実施例13
第1実施例と同様にして製造されたカーボンナノチューブ基板5を微細炭素繊維撚糸製造装置(図6,7)の基板保持部6に保持させて固定した。直径(刃径)が0.06mm、長さ(刃長)が1mmのドリル刃を有するタングステン−カーバイド製のマイクロドリル(シャンクを除くドリル刃の部分が極細軸状部21aに相当する。)を引出具21として用い、この引出具を回転させずに、極細軸状部21aを基板5上のカーボンナノチューブ集合体Cの側面に突き刺し、1mm進入させて停止した。この場所で引出具を20rpmで10秒間回転させた後、引出具21を0.1mm/秒で後退させ基板から離反させた。引出具が基板から1mm離れたところで基板5を10000rpmで回転させ引出具21の回転を停止し、これを0.1m/分で巻き取りボビン3の上まで移動させた。カーボンナノチューブ撚糸を巻き取りボビン3上に固定した後、カーボンナノチューブ撚糸を引出具から解放した。巻取り速度0.1m/分で巻き取り、1m以上に渡って1mあたりの撚数が100000T/mの連続した撚糸の巻糸体を作製することができた。
Example 13
The carbon nanotube substrate 5 manufactured in the same manner as in the first example was held and fixed on the substrate holding unit 6 of the fine carbon fiber twisted yarn manufacturing apparatus (FIGS. 6 and 7). A tungsten carbide micro drill having a drill blade having a diameter (blade diameter) of 0.06 mm and a length (blade length) of 1 mm (the portion of the drill blade excluding the shank corresponds to the ultrathin shaft portion 21a). Used as the drawing tool 21, without rotating the drawing tool, the ultrathin shaft portion 21a was pierced into the side surface of the carbon nanotube aggregate C on the substrate 5, and stopped by entering 1 mm. In this place, the extraction tool was rotated at 20 rpm for 10 seconds, and then the extraction tool 21 was moved backward at 0.1 mm / second to be separated from the substrate. When the drawing tool was 1 mm away from the substrate, the substrate 5 was rotated at 10,000 rpm to stop the rotation of the drawing tool 21, and this was moved onto the take-up bobbin 3 at 0.1 m / min. After the carbon nanotube twisted yarn was wound and fixed on the bobbin 3, the carbon nanotube twisted yarn was released from the drawing tool. Winding was performed at a winding speed of 0.1 m / min, and a continuous twisted wound body having a twist number of 100,000 T / m over 1 m or more could be produced.

この紡糸操作を10回繰り返したところ、7回ほど巻き取りボビン3へのカーボンナノチューブ撚糸の巻き取り工程へ移行することができた。   When this spinning operation was repeated 10 times, it was possible to shift to the winding process of the carbon nanotube twisted yarn around the winding bobbin 3 about 7 times.

実施例14
長さ(刃長)が5mm、直径(刃径)が0.03mmのドリル刃を有するマイクロドリルを引出具として用い、この引出具21の極細軸状部21aを基板5上のカーボンナノチューブの集合体Cへ進入させる深さを2mmにした以外は、実施例13と同様にして基板5上のカーボンナノチューブの集合体Cからカーボンナノチューブを引き出した。10回試みて8回カーボンナノチューブを引き出すことができ、巻き取りボビン3へのカーボンナノチューブ撚糸の巻き取り工程へ移行することができた。
Example 14
A micro drill having a drill blade having a length (blade length) of 5 mm and a diameter (blade diameter) of 0.03 mm is used as an extraction tool, and the ultra-thin shaft portion 21a of the extraction tool 21 is an assembly of carbon nanotubes on the substrate 5. Carbon nanotubes were drawn from the carbon nanotube aggregate C on the substrate 5 in the same manner as in Example 13 except that the depth of entry into the body C was 2 mm. It was possible to pull out the carbon nanotubes 8 times after trying 10 times, and to shift to the winding process of the carbon nanotube twisted yarn on the winding bobbin 3.

実施例15
長さが1mm、直径が0.03mmであって、2周期の螺旋上の溝を有するドリル刃を備えたマイクロドリルを引出具として用い、この引出具21の極細軸状部21aを基板5上のカーボンナノチューブの集合体Cへの進入深さを2mmにした以外は、実施例13と同様にして基板5上のカーボンナノチューブの集合体からカーボンナノチューブを引き出した。10回試みて9回カーボンナノチューブを引き出すことができ、巻き取りボビン3へのカーボンナノチューブ撚糸の巻き取り工程へ移行することができた。
Example 15
A micro drill having a length of 1 mm and a diameter of 0.03 mm and provided with a drill blade having a spiral groove of two cycles is used as an extraction tool, and the ultrathin shaft portion 21 a of the extraction tool 21 is formed on the substrate 5. The carbon nanotubes were drawn from the aggregate of carbon nanotubes on the substrate 5 in the same manner as in Example 13 except that the depth of penetration of the carbon nanotubes into the aggregate C was 2 mm. The carbon nanotubes could be pulled out 9 times after trying 10 times, and the process could be shifted to the process of winding the twisted carbon nanotubes on the winding bobbin 3.

実施例16
長さが1mm、直径が0.03mmであって、微小な突起を多数有する極細軸状部を有する引出具を用い、この引出具21の極細軸状部21aを基板5上のカーボンナノチューブの集合体Cへ進入する深さを2mmにした以外は、実施例13と同様にして基板5上のカーボンナノチューブの集合体からカーボンナノチューブを引き出した。10回試みて9回カーボンナノチューブを引き出すことができ、巻き取りボビン3へのカーボンナノチューブ撚糸の巻き取り工程へ移行することができた。
Example 16
A drawing tool having a length of 1 mm and a diameter of 0.03 mm and having a very thin shaft portion having a large number of minute protrusions is used. Carbon nanotubes were drawn from the aggregate of carbon nanotubes on the substrate 5 in the same manner as in Example 13 except that the depth of entering the body C was 2 mm. The carbon nanotubes could be pulled out 9 times after trying 10 times, and the process could be shifted to the process of winding the twisted carbon nanotubes on the winding bobbin 3.

実施例17
長さが5mm、直径が0.03mmのドリル刃を有するマイクロドリルを引出具として用い、この引出具21の極細軸状部21aを基板5上のカーボンナノチューブの集合体Cへ進入する深さを0.2mmにした以外は、実施例13と同様にして基板5上のカーボンナノチューブの集合体からカーボンナノチューブを引き出した。10回試みて6回カーボンナノチューブを引き出すことができ、巻き取りボビン3へのカーボンナノチューブ撚糸の巻き取り工程へ移行することができた。
Example 17
A micro drill having a drill blade having a length of 5 mm and a diameter of 0.03 mm is used as an extraction tool, and the depth at which the ultrathin shaft portion 21a of the extraction tool 21 enters the aggregate C of carbon nanotubes on the substrate 5 is set. Carbon nanotubes were drawn from the aggregate of carbon nanotubes on the substrate 5 in the same manner as in Example 13 except that the thickness was 0.2 mm. It was possible to pull out the carbon nanotube 6 times after trying 10 times, and to move to the winding process of the carbon nanotube twisted yarn on the winding bobbin 3.

実施例18
長さが3mm、直径が0.03mmであって、先端部から根元に向かって螺旋上の溝刃を有する引出具を用い、この引出具21の極細軸状部21aを基板5上のカーボンナノチューブの集合体Cへ進入する深さを2mmにした以外は、実施例13と同様にして基板5上のカーボンナノチューブの集合体からカーボンナノチューブを引き出した。10回試みて9回カーボンナノチューブを引き出すことができ、巻き取りボビン3へのカーボンナノチューブ撚糸の巻き取り工程へ移行することができた。
Example 18
A drawing tool having a length of 3 mm and a diameter of 0.03 mm and having a spiral groove blade from the tip portion toward the root is used. The ultrathin shaft portion 21 a of the drawing tool 21 is used as a carbon nanotube on the substrate 5. Carbon nanotubes were drawn from the aggregate of carbon nanotubes on the substrate 5 in the same manner as in Example 13 except that the depth of entering the aggregate C was 2 mm. The carbon nanotubes could be pulled out 9 times after trying 10 times, and the process could be shifted to the process of winding the twisted carbon nanotubes on the winding bobbin 3.

比較例5
直径が0.08mmの極細軸状部21aを有する引出具21を用いた以外は実施例13と同様にして基板5上のカーボンナノチューブの集合体Cからカーボンナノチューブを引き出そうとした。5回試みて1回だけカーボンナノチューブを引き出すことができたが、4回は引き出すことができなかった。
Comparative Example 5
The carbon nanotubes were extracted from the carbon nanotube aggregate C on the substrate 5 in the same manner as in Example 13 except that the extraction tool 21 having the ultrathin shaft portion 21a having a diameter of 0.08 mm was used. The carbon nanotubes could be pulled out only once after five attempts, but could not be pulled out four times.

比較例6
直径が0.1mmの極細軸状部21aを有する引出具21を用いた以外は実施例13と同様にして基板5上のカーボンナノチューブの集合体Cからカーボンナノチューブを引き出そうとした。5回試みて5回ともカーボンナノチューブを引き出すことができなかった。
Comparative Example 6
Carbon nanotubes were extracted from the carbon nanotube aggregate C on the substrate 5 in the same manner as in Example 13 except that the extraction tool 21 having an ultrathin shaft portion 21a having a diameter of 0.1 mm was used. The carbon nanotube could not be pulled out after 5 attempts.

比較例7
長さが1mm、直径が0.03mmであって、鏡面仕上げを施した極細軸状部21aを有する引出具21を、基板5上のカーボンナノチューブの集合体Cへの進入深さを2mmにした以外は、実施例13と同様にして基板5上のカーボンナノチューブの集合体からカーボンナノチューブを引き出した。5回試みて1回だけカーボンナノチューブを引き出すことができた。
Comparative Example 7
The drawing tool 21 having a length of 1 mm and a diameter of 0.03 mm and having a mirror-finished ultra-thin shaft portion 21 a has an entry depth of 2 mm into the aggregate C of carbon nanotubes on the substrate 5. Except for the above, carbon nanotubes were drawn from the aggregate of carbon nanotubes on the substrate 5 in the same manner as in Example 13. The carbon nanotube could be pulled out only once after 5 attempts.

実施例19
上記第1実施例と同様にして製造したカーボンナノチューブ基板を図6、7に示す微細炭素繊維撚糸製造装置の基板保持部6に保持させて固定した。直径が0.03mm、長さが1mmの極細軸状部21aを備えた引出具21(市販のマイクロドリルを使用した。)を回転させずに、基板5上のカーボンナノチューブ集合体の側面に引出具21の極細軸状部21aを突き刺し、1mm進入させて停止した。この状態で引出具をその軸線回りに20rpmで10秒間回転させた後、引出具21を0.1mm/秒で後退させ基板から離反させた。引出具21が基板から1mm離れたところで基板を10000rpmで回転させ引出具21の回転を停止し、これを0.1m/分で巻き取りボビン3の上まで移動させた。カーボンナノチューブ撚糸を巻き取りボビン3上に固定した後、カーボンナノチューブ撚糸を引出具21から解放した。巻取り速度0.1m/分で巻き取り、3.1mに渡って1mあたりの撚数が100000T/mの連続した撚糸の巻糸体を作製したところで糸切れが発生したため、巻き取りボビン3および基板の回転を止めた。
Example 19
The carbon nanotube substrate manufactured in the same manner as in the first example was held and fixed on the substrate holding unit 6 of the fine carbon fiber twisted yarn manufacturing apparatus shown in FIGS. Without rotating the drawing tool 21 (commercially available micro-drill) having an ultrathin shaft portion 21a having a diameter of 0.03 mm and a length of 1 mm, it is pulled on the side surface of the carbon nanotube aggregate on the substrate 5. The ultra-thin shaft portion 21a of the exit tool 21 was pierced and stopped by entering 1 mm. In this state, the extraction tool was rotated around its axis at 20 rpm for 10 seconds, and then the extraction tool 21 was retracted at 0.1 mm / second to separate from the substrate. When the drawing tool 21 was 1 mm away from the substrate, the substrate was rotated at 10000 rpm to stop the rotation of the drawing tool 21, and this was moved onto the take-up bobbin 3 at 0.1 m / min. After the carbon nanotube twisted yarn was wound and fixed on the bobbin 3, the carbon nanotube twisted yarn was released from the drawing tool 21. Winding was performed at a winding speed of 0.1 m / min, and breakage occurred when a continuous twisted wound body having a twist number of 100,000 T / m over 3.1 m was produced. The rotation of the substrate was stopped.

図8(a)に示すように、再び基板5の上に成長している微細炭素繊維の集合体Cの中へ引出具の極細軸状部21aを進入させて、上述の要領で再度微細炭素繊維T1を引き出し、引出具21をその軸線回りに回転させながら微細炭素繊維の撚糸を巻き取りボビン3の上部まで持ってきた。ここで引出具の回転を停止した。次に、図8(b)に示すように、巻き取りボビン3上に残っている微細炭素繊維撚糸T2の切れ端を静かに手繰り出し、引出具側の撚糸T1とボビン側の撚糸T2の切れ端との「重ね合わせしろ」を1cmとって、ぴんと張っている微細炭素繊維撚糸の上に静かに置いた。この時の引き出し時の張力は、0.2〜0.4mNであった。図8(c)に示すように、引出具をその回転軸回りに10rpmで回転させて、引出具側の撚糸にボビン側の撚糸の切れ端を巻き込んで、両撚糸を撚りをかけて接続した。この後、図8(c)に示すように、引出具の回転を止め、基板5を10000rpmで回転させると同時に引出具に繋がっているカーボンナノチューブ撚糸を切断し、図8(d)に示すように、巻き取りボビン3を回転させて巻取り速度0.1m/分で紡糸を再開した。こうして長尺の微細炭素繊維撚糸を製造することができた。合計2回の接続作業を行い平均径3μmで10mの長さを有するカーボンナノチューブ撚糸を得た。   As shown in FIG. 8 (a), the fine shaft-like portion 21a of the extraction tool is made to enter the aggregate C of fine carbon fibers grown on the substrate 5 again, and again the fine carbon is retreated as described above. The fiber T1 was pulled out, and the twisted yarn of the fine carbon fiber was taken up to the upper part of the bobbin 3 while rotating the drawing tool 21 around its axis. Here, the rotation of the drawer was stopped. Next, as shown in FIG. 8 (b), the broken ends of the fine carbon fiber twisted yarn T2 remaining on the take-up bobbin 3 are gently pulled out, and the drawn tool-side twisted yarn T1 and the bobbin-side twisted yarn T2 Was placed on a tightly stretched fine carbon fiber twisted yarn. The tension at the time of pulling out was 0.2 to 0.4 mN. As shown in FIG. 8 (c), the drawing tool was rotated around its rotation axis at 10 rpm, the broken end of the bobbin side twisted yarn was wound around the drawing tool side twisted yarn, and both twisted yarns were twisted and connected. Thereafter, as shown in FIG. 8 (c), the rotation of the drawing tool is stopped, the substrate 5 is rotated at 10,000 rpm, and at the same time, the carbon nanotube twisted yarn connected to the drawing tool is cut, as shown in FIG. 8 (d). Then, the winding bobbin 3 was rotated to resume spinning at a winding speed of 0.1 m / min. Thus, a long fine carbon fiber twisted yarn could be manufactured. A total of two connection operations were performed to obtain a carbon nanotube twisted yarn having an average diameter of 3 μm and a length of 10 m.

実施例20
実施例19に示した方法で製造した長さ1mのカーボンナノチューブ撚糸の巻き糸体2つを図9のような装置にセットした。巻き取りボビン3aからカーボンナノチューブ撚糸Taの一端を引き出し、引き出した先に5mm×5mm(1.9×10−3mg)の紙製の錘11aを接続し、巻き取りボビン3bからもカーボンナノチューブ撚糸Tbの一端を引き出し、その引き出した先に同様の錘11bを接続し、ガイド10a,10bを介してぴんと張り、ガイド間の「重なりしろ」1cmで重ね合わせた。その後、巻き取りボビン3aを、張られた撚糸Taを中心軸とした方向に回転させて重なり部分に撚りを掛けた。巻き取りボビン3aを10rpmで10分間回転させて2本のカーボンナノチューブ撚糸Ta,Tbを接続した。巻き取りボビン3aと3bと0.1m/分で回転させてボビン3aからボビン3bへ撚糸を送りボビン3bで巻き取って、長さ2mのカーボンナノチューブ撚糸を製造した。この方法で2本のカーボンナノチューブ撚糸の接続を10回行い、6回は最初の1回目の接続作業で問題なく接続できた。残りの4回は複数回の接続作業を試みて接続に成功した。
Example 20
Two wound bodies of twisted carbon nanotubes having a length of 1 m manufactured by the method shown in Example 19 were set in an apparatus as shown in FIG. One end of the carbon nanotube twisted yarn Ta is pulled out from the take-up bobbin 3a, a paper weight 11a of 5 mm × 5 mm (1.9 × 10 −3 mg) is connected to the drawn end, and the carbon nanotube twisted yarn is also taken from the take-up bobbin 3b. One end of Tb was pulled out, and a similar weight 11b was connected to the tip of the Tb, and it was tightened through the guides 10a and 10b. Thereafter, the take-up bobbin 3a was rotated in the direction with the stretched twisted yarn Ta as the central axis to twist the overlapping portion. The winding bobbin 3a was rotated at 10 rpm for 10 minutes to connect the two carbon nanotube twisted yarns Ta and Tb. The winding bobbins 3a and 3b were rotated at a speed of 0.1 m / min, and the twisted yarn was fed from the bobbin 3a to the bobbin 3b and wound around the bobbin 3b to produce a carbon nanotube twisted yarn having a length of 2 m. By this method, the two carbon nanotube twisted yarns were connected 10 times, and 6 times, the first connection operation was successful without any problems. The remaining 4 times tried to connect several times and succeeded.

実施例21
実施例20に示した接続操作において重ね合わせ部の「重なりしろ」にエタノールを0.5ml付与した。風乾後、実施例20と同様にして重ね合わせ部に撚りを掛けた後、巻き取りボビン3bにカーボンナノチューブ撚糸を巻き取った。この方法で2本のカーボンナノチューブ撚糸の接続を10回行い、8回は最初の1回目の接続作業で問題なく接続できた。
Example 21
In the connection operation shown in Example 20, 0.5 ml of ethanol was added to the “overlap” of the overlapping portion. After air drying, the overlap portion was twisted in the same manner as in Example 20, and then the carbon nanotube twisted yarn was wound around the winding bobbin 3b. The two carbon nanotube twisted yarns were connected 10 times by this method, and 8 times, the first connection work could be connected without any problems.

実施例22
エタノールの代わりにメタノールを用いた以外は実施例21と同様にして巻き取りボビン3bにカーボンナノチューブ撚糸を巻き取った。
Example 22
A carbon nanotube twisted yarn was wound around the winding bobbin 3b in the same manner as in Example 21 except that methanol was used instead of ethanol.

実施例23
エタノールの代わりにイソプロパノールを用いた以外は実施例21と同様にして巻き取りボビン3bにカーボンナノチューブ撚糸を巻き取った。
Example 23
A carbon nanotube twisted yarn was wound around the winding bobbin 3b in the same manner as in Example 21 except that isopropanol was used instead of ethanol.

実施例24
エタノールの代わりにペンタノールを用いた以外は実施例21と同様にして巻き取りボビン3bにカーボンナノチューブ撚糸を巻き取った。
Example 24
A carbon nanotube twisted yarn was wound around the winding bobbin 3b in the same manner as in Example 21 except that pentanol was used instead of ethanol.

実施例25
エタノールの代わりにアセトンを用いた以外は実施例21と同様にして巻き取りボビン3bにカーボンナノチューブ撚糸を巻き取った。
Example 25
The carbon nanotube twisted yarn was wound around the winding bobbin 3b in the same manner as in Example 21 except that acetone was used instead of ethanol.

実施例26
エタノールの代わりにメタノールを用いた以外は実施例21と同様にして巻き取りボビン3bにカーボンナノチューブ撚糸を巻き取った。
Example 26
A carbon nanotube twisted yarn was wound around the winding bobbin 3b in the same manner as in Example 21 except that methanol was used instead of ethanol.

実施例27
エタノールの代わりにテトラヒドロフランを用いた以外は実施例21と同様にして巻き取りボビン3bにカーボンナノチューブ撚糸を巻き取った。
Example 27
The carbon nanotube twisted yarn was wound around the winding bobbin 3b in the same manner as in Example 21 except that tetrahydrofuran was used instead of ethanol.

実施例28
エタノールの代わりにジメチルホルムアルデヒドを付与し、100℃の温風を1時間送って乾燥した以外は実施例21と同様にして巻き取りボビン3bにカーボンナノチューブ撚糸を巻き取った。
Example 28
The carbon nanotube twisted yarn was wound around the winding bobbin 3b in the same manner as in Example 21 except that dimethylformaldehyde was applied instead of ethanol, and warm air at 100 ° C. was sent for 1 hour and dried.

実施例29
エタノールの代わりにジメチルアセトアミドを付与し、100℃の温風を1時間送って乾燥した以外は実施例21と同様にして巻き取りボビン3bにカーボンナノチューブ撚糸を巻き取った。
Example 29
The carbon nanotube twisted yarn was wound around the winding bobbin 3b in the same manner as in Example 21 except that dimethylacetamide was added instead of ethanol, and warm air at 100 ° C. was sent for 1 hour and dried.

実施例30
エタノールの代わりに水を付与し、100℃の温風を5分間送って乾燥した以外は実施例21と同様にして巻き取りボビン3bにカーボンナノチューブ撚糸を巻き取った。
Example 30
The carbon nanotube twisted yarn was wound around the winding bobbin 3b in the same manner as in Example 21 except that water was applied instead of ethanol and hot air at 100 ° C. was sent for 5 minutes to dry.

実施例31
図10に示すように、粘着剤を塗布した広幅部を先端に備えた引出具21を用いて2mm幅でカーボンナノチューブを1cmほど引き出した。これをピンセットですくい取った。このすくい取った2mm×8mmのカーボンナノチューブのシートを実施例20に示した接続操作において重ね合わせ部の「重なりしろ」の上に静かに置き、重ね合わせ部を被った。この後、実施例20と同様にしてこの重ね合わせ部に撚りを掛けて接続した後、巻き取りボビン3bにカーボンナノチューブ撚糸を巻き取った。この方法で2本のカーボンナノチューブ撚糸の接続を10回行い、8回は最初の1回目の接続作業で問題なく接続できた。
Example 31
As shown in FIG. 10, the carbon nanotubes were pulled out by about 1 cm with a width of 2 mm using a drawing tool 21 having a wide-width portion coated with an adhesive at the tip. I scooped this up with tweezers. The scooped 2 mm × 8 mm carbon nanotube sheet was gently placed on the “overlap” of the overlapping portion in the connection operation shown in Example 20 to cover the overlapping portion. Thereafter, in the same manner as in Example 20, the overlapping portions were twisted and connected, and then the carbon nanotube twisted yarn was wound around the winding bobbin 3b. The two carbon nanotube twisted yarns were connected 10 times by this method, and 8 times, the first connection work could be connected without any problems.

実施例32
実施例1と同様にして得られたカーボンナノチューブ基板を微細炭素繊維撚糸製造装置(図6,7)の基板保持装部6に保持させて固定した。直径が0.03mm、長さが1mmの極細軸状部を有する引出具21を回転させずに、基板上のカーボンナノチューブ集合体Cの側面に極細軸状部21aを突き刺し、1mm進入させて停止させた。この状態で引出具21を20rpmで10秒間回転させた後、引出具21を0.1mm/秒で後退させ基板から離反させた。引出具21が基板5から1mm離れたところで基板を10000rpmで回転させ引出具21の回転を停止し、これを0.1m/分で巻き取りボビン3の上まで移動させた。カーボンナノチューブ撚糸を巻き取りボビン3上に固定した後、カーボンナノチューブ撚糸を引出具21から解放した。巻取り速度0.1m/分で巻き取り、2.3mに渡って1mあたりの撚数が100000T/mの連続した撚糸の巻糸体を作製したところで糸切れが発生したため、巻き取りボビン3および基板の回転を止めた。再び基板の上に成長している微細炭素繊維の集合体の中へ引出具21の極細軸状部を進入させて、上述の要領で再度微細炭素繊維を引き出し、引出具の回転を止めると同時に基板を500rpmで回転させてカーボンナノチューブの撚糸を巻き取りボビン3の上部まで持ってきた。次に、巻き取りボビン上に残っている微細炭素繊維撚糸の切れ端を静かに手繰り出して「重ね合わせしろ」を1cmとって、ぴんと張っている微細炭素繊維撚糸の上に静かに置いた。引出具をその回転軸回りに10rpmで回転させて、ボビン側の撚糸の切れ端を引出具側の撚糸に巻き込んだ。この後、引出具の回転を止め、基板を10000rpmで回転させると同時に引出具に繋がっているカーボンナノチューブ撚糸を切断し、巻き取りボビン3を回転させて巻取り速度0.1m/分で紡糸を再開した。こうして長尺の微細炭素繊維撚糸を製造することができた。合計2回の接続作業を行い平均径3μmで10mの長さを有するカーボンナノチューブ撚糸を得た。
Example 32
The carbon nanotube substrate obtained in the same manner as in Example 1 was held and fixed on the substrate holder 6 of the fine carbon fiber twisted yarn manufacturing apparatus (FIGS. 6 and 7). Without rotating the drawing tool 21 having an ultrathin shaft portion having a diameter of 0.03 mm and a length of 1 mm, the ultrathin shaft portion 21a is pierced into the side surface of the carbon nanotube aggregate C on the substrate and stopped by entering 1 mm. I let you. In this state, the extraction tool 21 was rotated at 20 rpm for 10 seconds, and then the extraction tool 21 was moved backward at 0.1 mm / second to be separated from the substrate. When the drawing tool 21 was separated from the substrate 5 by 1 mm, the substrate was rotated at 10000 rpm to stop the rotation of the drawing tool 21, and this was moved onto the take-up bobbin 3 at 0.1 m / min. After the carbon nanotube twisted yarn was wound and fixed on the bobbin 3, the carbon nanotube twisted yarn was released from the drawing tool 21. Winding was performed at a winding speed of 0.1 m / min. When a continuous twisted wound body having a twist number of 100,000 T / m over 2.3 m was produced, yarn breakage occurred. The rotation of the substrate was stopped. The ultrafine shaft-like portion of the drawing tool 21 is again entered into the aggregate of fine carbon fibers growing on the substrate, and the fine carbon fiber is drawn again in the manner described above, and at the same time the rotation of the drawing tool is stopped. The substrate was rotated at 500 rpm to wind up the carbon nanotube twisted yarn and brought it to the top of the bobbin 3. Next, the piece of fine carbon fiber twisted yarn remaining on the take-up bobbin was gently handed out to take 1 cm of “overlap” and placed gently on the tight carbon fiber twisted yarn. The drawing tool was rotated around its rotation axis at 10 rpm, and the bobbin-side twisted yarn was wound around the drawing-tool-side twisted yarn. Thereafter, the rotation of the drawing tool is stopped, the substrate is rotated at 10000 rpm, and at the same time, the carbon nanotube twisted yarn connected to the drawing tool is cut, and the winding bobbin 3 is rotated to perform spinning at a winding speed of 0.1 m / min. Resumed. Thus, a long fine carbon fiber twisted yarn could be manufactured. A total of two connection operations were performed to obtain a carbon nanotube twisted yarn having an average diameter of 3 μm and a length of 10 m.

実施例33
実施例1と同様にして得られたカーボンナノチューブ基板を微細炭素繊維撚糸製造装置(図6,7)の基板保持部6に保持させて固定した。直径が0.03mm、長さが1mmの極細軸状部21aを備える引出具21を回転させずに、基板上のカーボンナノチューブ集合体Cの側面に極細軸状部を突き刺し、1mm進入させて停止した。この状態で引出具21を20rpmで10秒間回転させた後、引出具21を0.1mm/秒で後退させ基板から離反させた。引出具21が基板から1mm離れたところで基板を10000rpmで回転させ引出具21の回転を停止し、これを0.1m/分で巻き取りボビン3の上まで移動させた。カーボンナノチューブ撚糸を巻き取りボビン3上に固定した後、カーボンナノチューブ撚糸を引出具21から解放した。巻取り速度0.1m/分で巻き取り、1.5mに渡って1mあたりの撚数が100000T/mの連続した撚糸の巻糸体を作製したところで糸切れが発生したため、巻き取りボビン3および基板の回転を止めた。再び基板の上に成長している微細炭素繊維の集合体の中へ引出具21の極細軸状部21aを進入させて、上述の要領で再度微細炭素繊維を引き出し、引出具の回転を止めると同時に基板を500rpmで回転させてカーボンナノチューブの撚糸を巻き取りボビン3の上部まで持ってきた。次に、巻き取りボビン上に残っている微細炭素繊維撚糸の切れ端を静かに手繰り出して「重ね合わせしろ」を1cmとって、ぴんと張っている微細炭素繊維撚糸の上に静かに置いた。引出具を10rpmで回転させて、ボビン3側の撚糸の切れ端を引出具側の撚糸に巻き込んだ。この後、引出具の回転を止め、基板を10000rpmで回転させると同時に引出具に繋がっているカーボンナノチューブ撚糸を切断し、巻き取りボビン3を回転させて巻取り速度0.1m/分で紡糸を再開した。こうして長尺の微細炭素繊維撚糸を製造することができた。合計2回の接続作業を行い平均径3μmで10mの長さを有するカーボンナノチューブ撚糸を得た。
Example 33
The carbon nanotube substrate obtained in the same manner as in Example 1 was held and fixed on the substrate holding part 6 of the fine carbon fiber twisted yarn manufacturing apparatus (FIGS. 6 and 7). Without rotating the drawing tool 21 having the ultrathin shaft portion 21a having a diameter of 0.03 mm and a length of 1 mm, the ultrathin shaft portion is stabbed into the side surface of the carbon nanotube aggregate C on the substrate and stopped by entering 1 mm. did. In this state, the extraction tool 21 was rotated at 20 rpm for 10 seconds, and then the extraction tool 21 was moved backward at 0.1 mm / second to be separated from the substrate. When the drawing tool 21 was 1 mm away from the substrate, the substrate was rotated at 10000 rpm to stop the rotation of the drawing tool 21, and this was moved onto the take-up bobbin 3 at 0.1 m / min. After the carbon nanotube twisted yarn was wound and fixed on the bobbin 3, the carbon nanotube twisted yarn was released from the drawing tool 21. Winding was performed at a winding speed of 0.1 m / min, and thread breakage occurred when a continuous twisted wound body having a twist number of 100000 T / m over 1 m over 1.5 m was produced. The rotation of the substrate was stopped. When the ultra-thin shaft portion 21a of the drawing tool 21 is again entered into the aggregate of fine carbon fibers growing on the substrate, the fine carbon fiber is drawn again as described above, and rotation of the drawing tool is stopped. At the same time, the substrate was rotated at 500 rpm to wind up the carbon nanotube twisted yarn and brought it to the top of the bobbin 3. Next, the piece of fine carbon fiber twisted yarn remaining on the take-up bobbin was gently handed out to take 1 cm of “overlap” and placed gently on the tight carbon fiber twisted yarn. The drawing tool was rotated at 10 rpm, and the piece of the twisted yarn on the bobbin 3 side was wound on the twisted yarn on the drawing tool side. Thereafter, the rotation of the drawing tool is stopped, the substrate is rotated at 10000 rpm, and at the same time, the carbon nanotube twisted yarn connected to the drawing tool is cut, and the winding bobbin 3 is rotated to perform spinning at a winding speed of 0.1 m / min. Resumed. Thus, a long fine carbon fiber twisted yarn could be manufactured. A total of two connection operations were performed to obtain a carbon nanotube twisted yarn having an average diameter of 3 μm and a length of 10 m.

実施例34
実施例31と同様にして基板上のカーボンナノチューブから引き出した微細炭素材料繊維と巻き取りボビン上の微細炭素材料撚糸とを接続する際に、図7に示すように粘着剤を塗布した広幅部を先端に備えた引出具用いて2mm幅でカーボンナノチューブを1cmほど引き出してピンセットですくい取った2mm×8mmのカーボンナノチューブのシートを「重ね合わしろ」部分に静かに置き、重ね合わせ部を被った。このシートで覆った部分に酢酸エチルを0.5ml付与した。以降実施例31と同様にして巻き取りボビン3bにカーボンナノチューブ撚糸を巻き取った。この方法で2本のカーボンナノチューブ撚糸の接続を10回行い、9回は最初の1回目の接続作業で問題なく接続できた。
Example 34
In the same manner as in Example 31, when connecting the fine carbon material fiber drawn from the carbon nanotube on the substrate and the fine carbon material twisted yarn on the take-up bobbin, as shown in FIG. A carbon nanotube sheet of 2 mm × 8 mm, which was pulled out about 1 cm in width by 2 mm using a drawing tool provided at the tip and scooped with tweezers, was gently placed on the “overlapping” portion, and the overlapped portion was covered. 0.5 ml of ethyl acetate was given to the part covered with this sheet. Thereafter, the carbon nanotube twisted yarn was wound around the winding bobbin 3b in the same manner as in Example 31. The two carbon nanotube twisted yarns were connected 10 times by this method, and 9 times, the connection was possible without any problems in the first connection work.

実施例35
酢酸エチルの代わりにアセトニトリルを付与し、風乾した以外は実施例34と同様にして巻き取りボビン3bにカーボンナノチューブ撚糸を巻き取った。
Example 35
A carbon nanotube twisted yarn was wound around the winding bobbin 3b in the same manner as in Example 34 except that acetonitrile was applied instead of ethyl acetate and air-dried.

本発明によれば、微細炭素繊維撚糸を、連続的にかつ均質に製造することが可能になり、得られる微細炭素繊維撚糸は、高強度を必要とする防護材料、防弾・防護衣料、産業用資材向けの繊維材料、およびスポーツ向け各種繊維製品や導電性を必要とする電線、各種電気製品の配線・部材等の用途に用いることができる。   According to the present invention, it becomes possible to produce a fine carbon fiber twisted yarn continuously and homogeneously. The resulting fine carbon fiber twisted yarn is a protective material, bulletproof / protective clothing, industrial use that requires high strength. It can be used for fiber materials for materials, various textile products for sports, electric wires that require electrical conductivity, wiring / members of various electrical products, and the like.

Claims (14)

微細炭素繊維の撚糸を連続的に製造する方法であって、
基板上に微細炭素繊維の集合体を化学気相成長させる成長工程と、
前記基板上の集合体から微細炭素繊維を連続的に引き出してボビンに巻き取る巻取工程と、
前記基板及びボビンの少なくとも一方を回転させることによって、前記基板上の微細炭素繊維の集合体から連続的に引き出されて前記ボビンに巻き取られる微細炭素繊維に撚りをかけ、微細炭素繊維撚糸を形成する撚り合わせ工程と、を有し、
前記撚り合わせ工程と前記巻取工程とが同時に行われ、
前記成長工程において、微細炭素繊維を平均長さ(L)が0.02mm以上となるように成長させ、
前記撚り合わせ工程は、前記基板と前記ホビンとの間を移動可能であり、直径(D)がD<(L/π)に設定された極細軸状部を有する引出具を回転させながら、または該引出具を回転させずに、基板上に成長させられた微細炭素繊維の集合体の側面に前記極細軸状部を突き刺して所定距離進入させ、前記引出具を所定回転数で回転させながら微細炭素繊維を引き出す工程を含むことを特徴とする微細炭素繊維撚糸の製造方法。
A method for continuously producing twisted yarns of fine carbon fibers,
A growth step of chemical vapor deposition of an aggregate of fine carbon fibers on a substrate;
A winding step of continuously drawing out fine carbon fibers from the aggregate on the substrate and winding them on a bobbin;
By rotating at least one of the substrate and the bobbin, the fine carbon fiber continuously drawn from the aggregate of fine carbon fibers on the substrate and wound on the bobbin is twisted to form a fine carbon fiber twisted yarn. And a twisting process to
The twisting step and the winding step are performed simultaneously,
In the growth step, the fine carbon fibers are grown so that the average length (L) is 0.02 mm or more,
The twisting step is capable of moving between the substrate and the hobbin, while rotating an extraction tool having an ultra-thin shaft portion whose diameter (D) is set to D <(L / π), or Without rotating the extraction tool, the fine shaft-like portion is stabbed into the side surface of the aggregate of fine carbon fibers grown on the substrate to enter a predetermined distance, and the extraction tool is rotated while rotating at a predetermined rotation speed. A method for producing fine carbon fiber twisted yarn, comprising a step of drawing out carbon fiber.
微細炭素繊維の撚糸を連続的に製造する方法であって、
基板上に微細炭素繊維の集合体を化学気相成長させる成長工程と、
前記基板上の微細炭素繊維の集合体から微細炭素繊維を連続的に引き出しつつ、ボビンを回転させることによって該微細炭素繊維に撚りをかけて微細炭素繊維撚糸を形成する引き出し撚り合わせ工程と、
引き出されて撚りをかけられた微細炭素繊維撚糸をボビンに巻き取る巻取工程と、を有し、
前記引き出し撚り合わせ工程では、前記微細炭素繊維が引き出される方向に巻取回転軸線が沿う第1の配置と、前記微細炭素繊維が引き出される方向と巻取回転軸線が交差する第2の配置とを配置転換可能なボビンを用い、前記第1の配置において該ボビンの一端に前記微細炭素繊維を接続した状態で該ボビンを巻取軸線回りに回転させつつ、前記基板及び前記ボビンの少なくとも一方を互いに離れる方向に移動させることにより、前記基板上の微細炭素繊維の集合体から微細炭素繊維を引き出しつつ撚りをかけ、
前記巻取工程では、前記ボビンの回転を停止させた状態で前記第2の配置に配置転換させた後、該ボビンを前記巻取回転軸線回りに回転させるとともに、該ボビンの回転と同期して前記基板と前記ボビンとの距離が縮まるように前記基板及び前記ボビンの少なくとも一方を移動させることにより、第2工程において引き出されて撚りをかけられた微細炭素繊維撚糸を前記ボビンに巻き取り、
前記引き出し撚り合わせ工程と前記巻取工程とが、交互に行われることを特徴とする微細炭素繊維撚糸の製造方法。
A method for continuously producing twisted yarns of fine carbon fibers,
A growth step of chemical vapor deposition of an aggregate of fine carbon fibers on a substrate;
A drawing and twisting step of forming a fine carbon fiber twisted yarn by twisting the fine carbon fiber by rotating the bobbin while continuously drawing out the fine carbon fiber from the aggregate of fine carbon fibers on the substrate,
A winding step of winding the drawn and twisted fine carbon fiber twisted yarn on a bobbin,
In the pulling and twisting step, a first arrangement in which the winding rotation axis extends in a direction in which the fine carbon fiber is drawn out, and a second arrangement in which the winding carbon rotation axis intersects with the direction in which the fine carbon fiber is drawn out. Using a repositionable bobbin, while rotating the bobbin around a winding axis while the fine carbon fiber is connected to one end of the bobbin in the first arrangement, at least one of the substrate and the bobbin is mutually connected By moving in a direction away from the substrate, twisting while pulling out the fine carbon fibers from the aggregate of fine carbon fibers on the substrate,
In the winding step, after the bobbin is stopped rotating, the bobbin is relocated to the second arrangement, and then the bobbin is rotated around the winding rotation axis and in synchronization with the bobbin rotation. By winding at least one of the substrate and the bobbin so that the distance between the substrate and the bobbin is reduced, the fine carbon fiber twisted yarn drawn and twisted in the second step is wound around the bobbin,
The method for producing a fine carbon fiber twisted yarn, wherein the draw-twisting step and the winding step are alternately performed.
前記撚り合わせ工程において微細炭素繊維に撚りをかける方法が、前記基板を回転させることによるものであり、
前記撚り合わせ工程は、前記微細炭素繊維の集合体を有する基板を複数用意し、各基板を通る回転軸線回りに各々の基板を回転させることによって前記集合体から引き出した微細炭素繊維を撚って微細炭素繊維撚糸を形成しつつ、前記複数の基板を共通の回転軸線回りに更に回転させることによって前記微細炭素繊維撚糸どうしをさらに撚合わせることを特徴とする請求項1に記載の微細炭素繊維撚糸の製造方法。
The method of twisting the fine carbon fiber in the twisting step is by rotating the substrate,
The twisting step prepares a plurality of substrates having the aggregate of the fine carbon fibers, and twists the fine carbon fibers drawn from the aggregate by rotating each substrate around a rotation axis passing through each substrate. 2. The fine carbon fiber twisted yarn according to claim 1, wherein the fine carbon fiber twisted yarn is further twisted by further rotating the plurality of substrates around a common rotation axis while forming the fine carbon fiber twisted yarn. Manufacturing method.
微細炭素繊維撚糸の糸切れをリカバリーするリカバリー工程を更に有し、
前記リカバリー工程は、前記微細炭素繊維の集合体の側面に極細軸状部を有する引出具の該極細軸状部を突き刺した後、該極細軸状部に前記微細炭素繊維を付着させ、基板から微細炭素繊維を無撚りのまま引き出し、または基板または引出具を回転させて微細炭素繊維の撚糸にして引き出し、引き出した撚糸の端部を、既にボビン上に巻き取った微細炭素繊維撚糸の一端に重ね合わせた後、その重ね合わせた部分に撚りを掛けて両撚糸を接続し、前記引出具の極細軸状部に繋がっている微細炭素繊維撚糸を該引出具から切り離すことにより、2本の撚糸を接続することを特徴とする請求項1に記載の微細炭素繊維撚糸の製造方法。
It further has a recovery process for recovering the breakage of the fine carbon fiber twisted yarn,
In the recovery step, the fine carbon fiber is attached to the ultrafine shaft-shaped portion after piercing the ultrafine shaft-shaped portion of the drawing tool having the ultrafine shaft-shaped portion on the side surface of the aggregate of the fine carbon fibers, and from the substrate. Pull out the fine carbon fiber without twisting, or rotate the substrate or drawing tool to draw out the fine carbon fiber twisted yarn, and pull the end of the drawn twisted yarn on one end of the fine carbon fiber twisted yarn already wound on the bobbin After the overlapping, the twisted portion is twisted to connect both twisted yarns, and the fine carbon fiber twisted yarn connected to the ultra-thin shaft-like portion of the drawing tool is separated from the drawing tool, so that two twisted yarns The method for producing fine carbon fiber twisted yarn according to claim 1, wherein:
1対のボビンに巻き取られた各々の微細炭素繊維撚糸を繋げる接続工程を更に含み、
前記接続工程は、一端が第1のボビンに捲きつけられている第1の撚糸の他端を引き出し、一端が第2のボビンに捲きつけられている第2の撚糸の他端に前記第1の撚糸の他端を重ね合わせ、重ね合わせた部分に撚りを掛けて両撚糸を接続することにより、2本の微細炭素繊維の撚糸を接続することを特徴とする請求項1に記載の微細炭素材繊維撚糸の製造方法。
And further comprising a connecting step of connecting the fine carbon fiber twisted yarns wound around the pair of bobbins,
In the connecting step, the other end of the first twisted yarn, one end of which is wound around the first bobbin, is pulled out, and the other end of the second twisted yarn, whose one end is wound around the second bobbin, 2. The fine carbon according to claim 1, wherein two twisted yarns of fine carbon fibers are connected by overlapping the other ends of the twisted yarns, twisting the overlapped portions and connecting the two twisted yarns. A manufacturing method of material fiber twisted yarn.
接続すべき2本の撚糸の重ね合わせ部分に、微細炭素材繊維の集合体を化学気相成長させた基板から引き出した幅広のシート状の微細炭素繊維で覆った後、該重ね合わせ部分に撚りを掛けて接続することを特徴とする請求項4又は5に記載の微細炭素繊維撚糸の製造方法。  The overlap portion of the two twisted yarns to be connected is covered with a wide sheet-like fine carbon fiber drawn from a substrate subjected to chemical vapor deposition, and then twisted on the overlap portion. 6. The method for producing fine carbon fiber twisted yarn according to claim 4, wherein connection is made by applying 前記重ね合わせた部分に炭素数1〜5のアルコール、アセトン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、酢酸エチル、アセトニトリル、又は、水の中から選ばれた液体を付与した後、該重ね合わせ部分に撚りを掛けることを特徴とする請求項4〜6のいずれかに記載の微細炭素繊維撚糸の製造方法。  After applying a liquid selected from alcohol having 1 to 5 carbon atoms, acetone, tetrahydrofuran, dimethylformamide, dimethylacetamide, ethyl acetate, acetonitrile, or water to the overlapped portion, the overlapped portion is twisted. The method for producing a fine carbon fiber twisted yarn according to any one of claims 4 to 6, wherein 基板上に化学気相成長させた微細炭素繊維の集合体から微細炭素繊維の撚糸を連続的に製造する装置であって、
前記基板を保持する基板保持部と、
前記微細炭素繊維撚糸を巻取駆動するボビンと、
前記基板保持部によって保持された基板上の前記集合体から引き出されてボビンに巻き取られる微細炭素繊維に撚りをかけるように、ボビンの巻取駆動と連動し、前記基板保持部及び前記ボビンの少なくとも一方を回転駆動させる撚り合わせ機構と
前記基板と前記ホビンとの間を移動可能であり、前記基板上に成長させられた微細炭素繊維の集合体の側面に突き刺して微細炭素繊維を引き出すための極細軸状部を有する引出具と、
前記引出具を軸線回りに回転させる回転駆動装置と、を備え、
前記引出具の極細軸状部の直径(D)は、前記基板上に成長させられた微細炭素繊維の平均長さ(L)に対し、D<(L/π)に設定されていることを特徴とする前記装置。
An apparatus for continuously producing twisted yarns of fine carbon fibers from an aggregate of fine carbon fibers grown by chemical vapor deposition on a substrate,
A substrate holder for holding the substrate;
A bobbin for winding and driving the fine carbon fiber twisted yarn;
Interlocking with the bobbin winding drive so as to twist the fine carbon fiber drawn from the aggregate on the substrate held by the substrate holding unit and wound on the bobbin, the substrate holding unit and the bobbin A twisting mechanism that rotationally drives at least one ;
An extraction tool that is movable between the substrate and the hobbin, and has an ultra-thin shaft-like portion for piercing a side surface of a collection of fine carbon fibers grown on the substrate and pulling out the fine carbon fibers;
A rotation drive device that rotates the drawing tool about an axis, and
The diameter (D) of the ultrathin shaft portion of the drawing tool is set to D <(L / π) with respect to the average length (L) of the fine carbon fibers grown on the substrate. Said device characterized .
基板上に化学気相成長させた微細炭素繊維の集合体から微細炭素繊維の撚糸を連続的に製造する装置であって、
前記基板を保持する基板保持部と、
前記微細炭素繊維撚糸を巻取駆動するボビンと、を有し、
前記ボビンは、前記微細炭素繊維を接続するための先細端部が巻取回転軸線方向一端に形成されるとともに、該先細端部が前記基板保持部の側を向き前記微細炭素繊維が引き出される方向に巻取回転軸線が沿う第1の配置と、前記微細炭素繊維が引き出される方向と巻取回転軸線が交差する第2の配置とを配置転換可能とされ、
前記ボビン及び基板保持部の少なくとも一方が、互いに接近又は離反するように往復動自在に設けられていることを特徴とする前記装置。
An apparatus for continuously producing twisted yarns of fine carbon fibers from an aggregate of fine carbon fibers grown by chemical vapor deposition on a substrate,
A substrate holder for holding the substrate;
A bobbin for winding and driving the fine carbon fiber twisted yarn,
In the bobbin, a tapered end portion for connecting the fine carbon fibers is formed at one end in the winding rotation axis direction, and the tapered end portion faces the substrate holding portion and the fine carbon fibers are drawn out. The first arrangement along the winding rotation axis and the second arrangement in which the direction in which the fine carbon fiber is drawn out and the winding rotation axis intersect can be changed.
The apparatus according to claim 1, wherein at least one of the bobbin and the substrate holding part is provided so as to reciprocate so as to approach or separate from each other.
前記基板保持部は、前記基板上の前記集合体から引き出される微細炭素繊維と該基板との干渉を避けるように、該保持部の回転軸線が前記ボビンの周縁部に向けられ、且つ、前記基板を前記保持部の回転軸線と非平行に保持するように構成されていることを特徴とする請求項に記載の装置。The substrate holding portion has a rotation axis of the holding portion directed toward a peripheral edge of the bobbin so as to avoid interference between the fine carbon fibers drawn from the aggregate on the substrate and the substrate, and the substrate The apparatus according to claim 8 , wherein the apparatus is configured to hold the non-parallel to the rotation axis of the holding unit. 複数の前記基板保持部を支持する支持体と、各基板保持部に保持された基板上の前記集合体の各々から引き出される微細炭素繊維に撚りをかけるために前記複数の基板保持部の各々を回転駆動する複数の第1駆動部と、前記微細炭素繊維撚糸どうしをさらに撚合わせるために前記支持体を回転駆動する第2駆動部と、を有することを特徴とする請求項に記載の装置。Each of the plurality of substrate holders is twisted to twist a fine carbon fiber drawn from each of the aggregates on the substrate held on each substrate holder and the substrate that supports the plurality of substrate holders. The apparatus according to claim 8 , further comprising: a plurality of first driving units that are rotationally driven, and a second driving unit that rotationally drives the support to further twist the fine carbon fiber twisted yarns. . 前記基板上からの微細炭素繊維の引出位置付近に風防を備えることを特徴とする請求項に記載の装置。The apparatus according to claim 8 , further comprising a windshield near a position where the fine carbon fiber is drawn from the substrate. 基板上の微細炭素繊維切れ又は、基板からの微細炭素繊維の引き出し状態を監視する監視装置を更に備え、
前記監視装置は、微細炭素繊維を化学気相成長させた基板とボビンとの間に存在する撚りを掛けながら基板から引き出された微細炭素繊維撚糸を撮影する撮像装置と、前記撮像装置によって得られた画像データを画面上に拡大して映し出すディスプレイと、前記ディスプレイに映し出された映像の画像データを走査し撚糸を構成する画素数が減少した時に糸切れと判定する判定手段と、を有することを特徴とする請求項に記載の微細炭素繊維撚糸の製造装置。
Further comprising a monitoring device for monitoring whether the fine carbon fibers are cut on the substrate or the fine carbon fibers are pulled out of the substrate,
The monitoring device is obtained by an imaging device that photographs the fine carbon fiber twisted yarn pulled out from the substrate while applying a twist existing between a bobbin and a substrate obtained by chemical vapor deposition of fine carbon fibers, and the imaging device. A display that displays the enlarged image data on the screen, and a determination unit that scans the image data of the image displayed on the display and determines that the yarn is broken when the number of pixels constituting the twisted yarn decreases. The apparatus for producing fine carbon fiber twisted yarn according to claim 8 ,
前記引出具は、前記極細軸状部の外周面に周溝、螺旋溝、及び突起の少なくとも何れかを有することを特徴とする請求項に記載の装置。The apparatus according to claim 8 , wherein the drawing tool has at least one of a circumferential groove, a spiral groove, and a protrusion on an outer peripheral surface of the ultrathin shaft-like portion.
JP2008510965A 2006-04-13 2007-04-11 Method and apparatus for continuously producing fine carbon fiber twisted yarn Expired - Fee Related JP4900619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008510965A JP4900619B2 (en) 2006-04-13 2007-04-11 Method and apparatus for continuously producing fine carbon fiber twisted yarn

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2006110752 2006-04-13
JP2006110752 2006-04-13
JP2007009611 2007-01-18
JP2007009611 2007-01-18
JP2007009612 2007-01-18
JP2007009641 2007-01-18
JP2007009612 2007-01-18
JP2007009641 2007-01-18
PCT/JP2007/057974 WO2007119747A1 (en) 2006-04-13 2007-04-11 Process for continuously producing fine carbon fiber twine, apparatus therefor and fine carbon fiber twine produced by the process
JP2008510965A JP4900619B2 (en) 2006-04-13 2007-04-11 Method and apparatus for continuously producing fine carbon fiber twisted yarn

Publications (2)

Publication Number Publication Date
JPWO2007119747A1 JPWO2007119747A1 (en) 2009-08-27
JP4900619B2 true JP4900619B2 (en) 2012-03-21

Family

ID=38609507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008510965A Expired - Fee Related JP4900619B2 (en) 2006-04-13 2007-04-11 Method and apparatus for continuously producing fine carbon fiber twisted yarn

Country Status (2)

Country Link
JP (1) JP4900619B2 (en)
WO (1) WO2007119747A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101742112B1 (en) * 2013-07-22 2017-05-31 무라다기카이가부시끼가이샤 Yarn manufacturing device
KR101742111B1 (en) * 2013-07-22 2017-05-31 무라다기카이가부시끼가이샤 Yarn manufacturing device
KR101742109B1 (en) * 2013-07-22 2017-05-31 무라다기카이가부시끼가이샤 Yarn manufacturing device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873413B2 (en) * 2006-11-15 2012-02-08 ニッタ株式会社 Aggregate structure of multi-walled carbon nanotubes
JP5299884B2 (en) * 2007-10-23 2013-09-25 地方独立行政法人大阪府立産業技術総合研究所 Method for producing fine carbon fiber yarn, fine carbon fiber-forming substrate used in the production method, and fine carbon fiber yarn produced by the production method
JP5229732B2 (en) * 2008-11-11 2013-07-03 地方独立行政法人大阪府立産業技術総合研究所 Apparatus and method for producing fine carbon fiber twisted yarn
CN101734646B (en) 2008-11-14 2012-03-28 清华大学 Carbon nano-tube film
US8758540B2 (en) 2008-11-14 2014-06-24 Tsinghua University Method for laying carbon nanotube film
CN101734644B (en) * 2008-11-14 2012-01-25 清华大学 Method for stretching carbon nano-tube films
CN101734645B (en) 2008-11-14 2015-09-30 清华大学 carbon nano-tube film
CN101905878A (en) * 2009-06-04 2010-12-08 清华大学 Liner structure of carbon nano tube and preparation method thereof
CN102001641B (en) * 2009-08-28 2013-06-05 清华大学 Method for preparing carbon nanotube linear structure
JP5429751B2 (en) * 2010-01-28 2014-02-26 地方独立行政法人大阪府立産業技術総合研究所 Carbon nanotube twisted yarn and method for producing the same
JP5699387B2 (en) * 2010-03-29 2015-04-08 地方独立行政法人大阪府立産業技術総合研究所 Carbon nanotube twisted yarn and method for producing the same
US20140363669A1 (en) * 2011-09-07 2014-12-11 William Marsh Rice University Carbon nanotubes fiber having low resistivity, high modulus and/or high thermal conductivity and a method of preparing such fibers by spinning using a fiber spin-dope
CN103896241B (en) * 2012-12-27 2016-03-09 北京富纳特创新科技有限公司 Carbon nano tube line installation apparatus
JP6325195B2 (en) * 2013-03-08 2018-05-16 大明化学工業株式会社 Method for manufacturing brush-like grindstone, linear abrasive and brush-like grindstone
WO2015011770A1 (en) * 2013-07-22 2015-01-29 村田機械株式会社 Thread production device
JP6649100B2 (en) * 2016-02-04 2020-02-19 日立造船株式会社 Method for producing CNT laminate and method for producing carbon nanotube twisted yarn
WO2019083039A1 (en) * 2017-10-26 2019-05-02 古河電気工業株式会社 Carbon nanotube composite wire, carbon nanotube-coated electric wire, and wire harness
JP7214645B2 (en) * 2017-10-26 2023-01-30 古河電気工業株式会社 Carbon nanotube composite wire, carbon nanotube coated wire and wire harness
CN113532981B (en) * 2021-06-17 2022-03-29 北京工业大学 Fiber balance twisting auxiliary device with adjustable balance weight and related experimental method
CN114572765B (en) * 2022-02-23 2023-11-21 武汉市碳翁科技有限公司 Carbon nano tube twisting and collecting device and using method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115348A (en) * 1999-10-13 2001-04-24 Nikkiso Co Ltd Sliver yarn-like yarn of carbon nanofiber and method for producing the same
JP2004149996A (en) * 2002-11-01 2004-05-27 Bridgestone Corp Carbon fiber yarn and method for producing the same
JP2004190166A (en) * 2002-12-10 2004-07-08 Carbon Nanotech Research Institute Method and apparatus for collecting carbon nanotube and carbon nanotube roll
WO2005102924A1 (en) * 2004-04-19 2005-11-03 Japan Science And Technology Agency Carbon-based fine structure group, aggregate of carbon based fine structures, use thereof and method for preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115348A (en) * 1999-10-13 2001-04-24 Nikkiso Co Ltd Sliver yarn-like yarn of carbon nanofiber and method for producing the same
JP2004149996A (en) * 2002-11-01 2004-05-27 Bridgestone Corp Carbon fiber yarn and method for producing the same
JP2004190166A (en) * 2002-12-10 2004-07-08 Carbon Nanotech Research Institute Method and apparatus for collecting carbon nanotube and carbon nanotube roll
WO2005102924A1 (en) * 2004-04-19 2005-11-03 Japan Science And Technology Agency Carbon-based fine structure group, aggregate of carbon based fine structures, use thereof and method for preparation thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101742112B1 (en) * 2013-07-22 2017-05-31 무라다기카이가부시끼가이샤 Yarn manufacturing device
KR101742111B1 (en) * 2013-07-22 2017-05-31 무라다기카이가부시끼가이샤 Yarn manufacturing device
KR101742109B1 (en) * 2013-07-22 2017-05-31 무라다기카이가부시끼가이샤 Yarn manufacturing device
US10179959B2 (en) 2013-07-22 2019-01-15 Murata Machinery, Ltd. Yarn manufacturing device
US10450678B2 (en) 2013-07-22 2019-10-22 Murata Machinery, Ltd. Yarn manufacturing device
US10472739B2 (en) 2013-07-22 2019-11-12 Murata Machinery Ltd. Yarn manufacturing device

Also Published As

Publication number Publication date
WO2007119747A1 (en) 2007-10-25
JPWO2007119747A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP4900619B2 (en) Method and apparatus for continuously producing fine carbon fiber twisted yarn
JP5699387B2 (en) Carbon nanotube twisted yarn and method for producing the same
JP5229732B2 (en) Apparatus and method for producing fine carbon fiber twisted yarn
JP6482966B2 (en) Carbon nanotube web manufacturing method, carbon nanotube aggregate manufacturing method, and carbon nanotube web manufacturing apparatus
US10138580B2 (en) Nanofiber yarns, thread, rope, cables, fabric, articles and methods of making the same
US20190233986A1 (en) System and method for textile positioning
US20110020210A1 (en) Method for making twisted carbon nanotube wire
US8286413B2 (en) Nanofibre yarns
EP2365117A1 (en) Apparatus and method for formation and collection of nanofibrous non-woven sheet
JPWO2007099975A1 (en) Carbon nanotube aggregate, carbon nanotube fiber, and method for producing carbon nanotube fiber
US8563840B2 (en) Apparatus for making carbon nanotube composite wire structure
JP5994087B2 (en) Carbon nanotube twisted yarn and method for producing the same
TW201139258A (en) Polyester monofilament package
CN211283251U (en) Textile yarn conveying and waxing mechanism
TW202045578A (en) Liquid-crystal polyester multifilament, and high-level processed product comprising same
JP7372092B2 (en) Manufacturing method of carbon nanotube twisted yarn
JPS61124479A (en) Method and device for containing yarn into container
TWI855155B (en) Method for manufacturing carbon nanotube twisted yarn and device for manufacturing carbon nanotube twisted yarn
JP5081884B2 (en) Manufacturing method of multiple carbon fiber bundle wound body
AU2012201641A1 (en) Systems and methods for formation and harvesting of nanofibrous materials
JP4397820B2 (en) Fiber bundle winding device
AU2012205268B2 (en) Systems and methods for formation and harvesting of nanofibrous materials
Mallik et al. Fabrication of Threads from Carbon Nanotube Arrays
JP2006151690A (en) Carbon fiber package
Mottaghitalab et al. FABRICATION OF HIGHLY ORIENTED PAN NANOFIBER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Ref document number: 4900619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees