【0001】
【発明の属する技術分野】
本発明は、単層カーボンナノチューブ、複層カーボンナノチューブ、多層カーボンナノチューブ、カーボンナノコイル、気相成長炭素繊維などの針状微細炭素材料を紡績又は紡糸してなる炭素繊維糸及びその製造方法に関する。
【0002】
【従来の技術】
ゴムタイヤには、その補強用として種々の補強用コードが用いられており、補強部位により、スチールコード、有機繊維コード又はスチール−有機繊維複合コードなどがその補強目的に合わせて選択されて用いられている。近年、環境への負荷低減の要請から、使用済みタイヤのリサイクルが進められているが、主に有機物であるゴム材料からなるタイヤ中に含まれるスチールコードやスチール−有機繊維複合コードは、特に、使用済みタイヤを再原料化リサイクルする場合に、その分離が簡単ではないためリサイクルの大きな障害となっている。これは、ゴムタイヤに限らず、ゴム製品や樹脂製品の補強材としてスチールコードのような金属線を用いた場合に共通の問題である。
【0003】
また、ゴムタイヤには、同じく環境負荷の低減を目的として、軽量化、薄肉化が進められているが、例えば、軽量化するためにはスチール製コードを減らす必要があるが、タイヤに必要とされる強度の下限を下回るような補強材の低減はできない。また、薄肉化しつつ強度を維持するためには逆にスチール製コードを多くする必要があり、これは、軽量化や上述したようなタイヤの再原料化リサイクルに逆行する。従って、従来の補強材では、軽量化、薄肉化には限界があり、更に容易に再原料化リサイクルできるものにもなっていない。
【0004】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みなされたものであり、タイヤの補強材に用いるスチールコードやスチール−有機繊維複合コードのようなゴムや樹脂の補強材として用いられる金属製補強材や金属−有機繊維複合補強材と同等又はそれ以上の補強性を与えることができ、ゴムや樹脂等の再原料化リサイクルの障害とならない補強材となる炭素繊維糸を提供することを目的とする。
【0005】
【課題を解決するための手段及び発明の実施の形態】
カーボンナノチューブ、カーボンナノコイル、気相成長炭素繊維などの針状微細炭素材料は、素材としてスチールの数十倍もの高強度(単位断面積当たりの強度)を有することが知られており、従来のスチール等の金属を用いた各種補強材の代替となり得るものとして期待されている。しかしながらのこのような針状微細炭素材料は、高い強度を有するものであるが、これら材料自体は微細なため、そのまま用いても金属製補強材のような補強性能を得ることはできない。
【0006】
本発明者は、上記目的を達成するため鋭意検討を重ねた結果、針状微細炭素材料、特に、単層カーボンナノチューブ、複層カーボンナノチューブ、多層カーボンナノチューブ、カーボンナノコイル及び気相成長炭素繊維から選ばれる1種又は2種以上の針状微細炭素材料を紡績又は紡糸してなる炭素繊維糸が、上記したような従来、金属製補強材や金属−有機繊維複合補強材が用いられているゴム製品や樹脂製品の補強材として適用することができ、これが同等又はそれ以上の強度を与えることができること、特に、タイヤ等のゴム製品や樹脂製品の補強材として用いれば、炭素繊維糸はスチール線等の金属線に比べ比重が小さいので、軽量化が可能であると共に、このタイヤは補強材として再原料化リサイクルの障害となる金属線含まないので、使用済みタイヤの再原料化リサイクルが容易になること、更に、このような炭素繊維糸が、
針状微細炭素材料を単独で又は結着剤と共に紡績又は紡糸すること、
針状微細炭素材料同士を融着させて接合して紡績又は紡糸すること、
針状微細炭素材料を化学処理することによりその表面部の炭素原子を親溶媒性の官能基で修飾して溶媒可溶化し、この針状微細炭素材料を溶媒に溶解させ、この溶液から溶液紡糸すること、又は
針状微細炭素材料を化学処理することによりその表面部の炭素原子を反応活性を有する官能基で修飾し、この官能基同士を直接結合又は架橋剤を介して架橋させることにより連結して紡績又は紡糸すること
により製造できることを見出し、本発明をなすに至った。
【0007】
即ち、本発明は、
(1)針状微細炭素材料を紡績又は紡糸してなることを特徴とする炭素繊維糸、
(2)上記針状微細炭素材料の径が0.4〜500nm、長さが50nm〜100μmであることを特徴とする請求項1記載の炭素繊維糸、
(3)上記針状微細炭素材料が、単層カーボンナノチューブ、複層カーボンナノチューブ、多層カーボンナノチューブ、カーボンナノコイル及び気相成長炭素繊維から選ばれる1種又は2種以上であることを特徴とする(1)又は(2)記載の炭素繊維糸、
(4)針状微細炭素材料を単独で又は結着剤と共に紡績又は紡糸することを特徴とする炭素繊維糸の製造方法、
(5)更に、上記針状微細炭素材料を撚り合わせることを特徴とする(4)記載の炭素繊維糸の製造方法、
(6)針状微細炭素材料同士を融着させて接合して紡績又は紡糸することを特徴とする炭素繊維糸の製造方法、
(7)上記接合部分に放射線、電子線又はレーザー光線を照射することにより融着させることを特徴とする(6)記載の炭素繊維糸の製造方法、
(8)針状微細炭素材料を化学処理することによりその表面部の炭素原子を親溶媒性の官能基で修飾して溶媒可溶化し、この針状微細炭素材料を溶媒に溶解させ、この溶液から溶液紡糸することを特徴とする炭素繊維糸の製造方法、
(9)針状微細炭素材料を化学処理することによりその表面部の炭素原子を反応活性を有する官能基で修飾し、この官能基同士を直接結合又は架橋剤を介して架橋させることにより連結して紡績又は紡糸することを特徴とする炭素繊維糸の製造方法、
(10)上記針状微細炭素材料の径が0.4〜500nm、長さが50nm〜100μmであることを特徴とする(4)乃至(9)のいずれか1項記載の炭素繊維糸の製造方法、又は
(11)上記針状微細炭素材料が、単層カーボンナノチューブ、複層カーボンナノチューブ、多層カーボンナノチューブ、カーボンナノコイル及び気相成長炭素繊維から選ばれる1種又は2種以上であることを特徴とする(4)乃至(10)のいずれか1項記載の炭素繊維糸の製造方法を提供する。
【0008】
以下、本発明につき更に詳述する。
本発明の炭素繊維糸は、針状微細炭素材料を紡績又は紡糸してなるものである。ここで、上記針状微細炭素材料としては、骨格が炭素原子により形成されたチューブ構造、中実構造、コイル構造などの針状微細炭素材料が好ましく、特に径が0.4〜500nm、長さが50nm〜100μmのものが好ましく挙げられる。このようなものとして、具体的には、単層カーボンナノチューブ、複層カーボンナノチューブ、多層カーボンナノチューブ、カーボンナノコイル、気相成長炭素繊維(VGCF)などが挙げられる。これらは1種単独で用いたものでも、2種以上を混合して用いたものでもよい。
【0009】
特に、カーボンナノチューブの場合、単層カーボンナノチューブであれば、径が0.4〜10nm、長さが50nm〜10μmのもの、複層カーボンナノチューブであれば、径が0.7〜30nm、長さが50nm〜10μmのもの、多層カーボンナノチューブであれば、径が2〜100nm、長さが1〜100μmのものが好ましい。また、気相成長炭素繊維の場合は、径が20〜500nm、長さが1〜100μmものが好ましい。
【0010】
本発明の炭素繊維糸は、以下に詳述する第1〜第4の製造方法により製造することができる。
【0011】
本発明の炭素繊維糸の第1の製造方法は、針状微細炭素材料を単独で又は結着剤と共に紡績又は紡糸することにより炭素繊維糸を製造する方法である。この方法は、針状微細炭素材料を長さ方向にある程度配向させながらこれら針状微細炭素材料同士を絡み合わせて束ねながら紡績又は紡糸するものである。この第1の製造方法においては、長さ/径が大きい針状微細炭素材料を用いることが好ましく、針状微細炭素材料は分岐の少ないものが好ましい。また、針状微細炭素材料としては、その表面に突起、溝等の凹凸が適度に存在するものの方が、紡績又は紡糸したときに隣接する針状微細炭素材料同士が絡みやすいため好ましい。
【0012】
また、この第1の製造方法においては、針状微細炭素材料に撚りをかけることが好ましい、撚りをかけることで、針状微細炭素材料同士がより強固に絡み合うことになり、炭素繊維糸がより高い強度を有するものになる。
【0013】
更に、この第1の製造方法において、針状微細炭素材料を結着剤と共に紡績又は紡糸する場合、結着剤としては、熱硬化性樹脂、熱可塑性樹脂、液状ポリマーなどを用いることができ、針状微細炭素材料と結着剤を混合し、必要に応じて加熱することにより炭素繊維糸を製造することができる。
【0014】
本発明の炭素繊維糸の第2の製造方法は、針状微細炭素材料同士を融着させて接合して紡績又は紡糸することにより炭素繊維糸を製造する方法である。この方法は、針状微細炭素材料を長さ方向にある程度配向させながら放射線、電子線又はレーザー光線などを照射して、これら針状微細炭素材料同士が接触する部分に高エネルギーを与え、この接触部分を融着させて接合することにより、針状微細炭素材料同士を連結させて紡績又は紡糸するものである。この第2の製造方法においては、長さ/径が大きい針状微細炭素材料を用いることが好ましく、針状微細炭素材料は分岐の多いものが好ましい。また、針状微細炭素材料としては、その表面に突起、溝等の凹凸が適度に存在するものの方が、融着部分を多数形成することができるため好ましい。
【0015】
本発明の炭素繊維糸の第3の製造方法は、針状微細炭素材料を化学処理することによりその表面部の炭素原子を親溶媒性の官能基で修飾して溶媒可溶化し、この針状微細炭素材料を溶媒に溶解させ、この溶液から溶液紡糸することにより炭素繊維糸を製造する方法である。この方法は、そのままの状態では溶媒不溶性である針状微細炭素材料を溶媒に溶解可能な状態にすることにより、溶媒紡糸可能にして、これを溶媒紡糸するものである。
【0016】
この第3の製造方法においては、針状微細炭素材料の表面部の炭素原子を親水性の官能基で修飾し、溶媒として水を用いることが好ましい。また、溶液粘度を高くして紡糸する方が、得られる炭素繊維糸の強度を高くできることから好ましい。なお、この第3の製造方法においては、特に単層カーボンナノチューブを用いることが好ましく、長さ/径が小さい単層カーボンナノチューブを用いることが更に好ましい。
【0017】
本発明の炭素繊維糸の第4の製造方法は、針状微細炭素材料を化学処理することによりその表面部の炭素原子を反応活性を有する官能基で修飾し、この官能基同士を直接結合又は架橋剤を介して架橋させることにより連結して紡績又は紡糸することにより炭素繊維糸を製造する方法である。この方法は、そのままでは反応性に乏しい針状微細炭素材料を化学処理することにより、その表面部の炭素原子を反応活性を有する官能基で修飾して反応性を高め、この官能基を介して針状微細炭素材料を連結して紡績又は紡糸するものである。
【0018】
この第4の製造方法においては、修飾する官能基を選択することにより、官能基同士を水素結合させることも可能である。また架橋剤を用いて官能基同士を架橋する場合は、パーオキサイド等の架橋剤を使用することができる。また、架橋の際に、放射線、電子線又はレーザー光線などを照射することも可能である。なお、この第4の製造方法においては、特に、針状微細炭素材料は両末端部分の炭素原子の活性が比較的高いため、この部分の炭素原子を官能基で修飾することが好ましく、これにより架橋の効率が向上すると共に、強固な結合が形成されるため炭素繊維糸の強度も向上させることができる。
【0019】
本発明の炭素繊維糸は、ゴム製品、樹脂製品の補強材、特にゴムタイヤに用いられる補強材に好適に用いることができる。特に、図1に示されるようなゴムタイヤのカーカスプライ1、ベルト2、ビードコア3、インサート4、チェーファ5、キャンバスチェーファ6、キャップ71、レイヤー72などのベルト補強層7として用いられる補強材として好適である。この場合、従来、金属製補強材や金属−有機繊維複合補強材が用いられている部分に本発明の炭素繊維糸を用いれば、この炭素繊維糸は金属線に比べ比重が小さいので、軽量化が可能であると共に、このタイヤは補強材として再原料化リサイクルの障害となる金属線を含まないので、使用済みタイヤの再原料化リサイクルが容易になるため好適である。また、コンベヤベルト、クローラ、ホース等のゴム製品、ウレタンフォーム用の一体成形ワイヤなどの補強材、その他ゴム製、樹脂製の工業用品の補強材としても好適である。
【0020】
【発明の効果】
以上のように、本発明によれば、タイヤの補強材に用いるスチールコードやスチール−有機繊維複合コードのようなゴムや樹脂の補強材として用いられる金属製補強材や金属−有機繊維複合補強材と同等又はそれ以上の補強性を与えることができ、ゴムや樹脂等の再原料化リサイクルの障害とならない補強材となる炭素繊維糸を提供することができる。
【図面の簡単な説明】
【図1】本発明の炭素繊維糸を補強材として適用したタイヤの一例を示す概略断面図である。
【符号の説明】
1 カーカスプライ
2 ベルト
3 ビードコア
4 インサート
5 チェーファ
6 キャンバスチェーファ
7 ベルト補強層
71 キャップ
72 レイヤー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbon fiber yarn obtained by spinning or spinning an acicular fine carbon material such as a single-walled carbon nanotube, a multi-walled carbon nanotube, a multi-walled carbon nanotube, a carbon nanocoil, and a vapor-grown carbon fiber, and a method for producing the same.
[0002]
[Prior art]
For rubber tires, various reinforcing cords are used for the reinforcement, and depending on the reinforcing portion, a steel cord, an organic fiber cord or a steel-organic fiber composite cord is selected and used according to the reinforcing purpose. I have. In recent years, the recycling of used tires has been promoted due to the demand for reducing the burden on the environment.Steel cords and steel-organic fiber composite cords mainly contained in tires made of rubber materials, which are organic substances, When used tires are recycled as raw materials, their separation is not easy, which is a major obstacle to recycling. This is a common problem when not only rubber tires but also metal wires such as steel cords are used as reinforcing materials for rubber products and resin products.
[0003]
In addition, rubber tires are also being reduced in weight and thickness for the purpose of reducing the environmental load.For example, it is necessary to reduce the number of steel cords to reduce weight, but tires are required. It is not possible to reduce the reinforcing material below the lower limit of strength. On the other hand, in order to maintain the strength while reducing the thickness, it is necessary to increase the number of steel cords, which goes against the reduction in weight and the recycling of the tire as described above. Therefore, with the conventional reinforcing material, there is a limit to weight reduction and thickness reduction, and it is not easy to recycle as a raw material.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and has been made of a metal reinforcing material or a metal-organic fiber used as a rubber or resin reinforcing material such as a steel cord or a steel-organic fiber composite cord used as a tire reinforcing material. It is an object of the present invention to provide a carbon fiber yarn that can provide a reinforcing property equal to or higher than that of a composite reinforcing material and is a reinforcing material that does not hinder recycling of recycled materials such as rubber and resin.
[0005]
Means for Solving the Problems and Embodiments of the Invention
It is known that needle-like fine carbon materials such as carbon nanotubes, carbon nanocoils, and vapor-grown carbon fibers have a high strength (strength per unit cross-sectional area) several tens of times higher than that of steel. It is expected that it can be used as a substitute for various reinforcing materials using metals such as steel. However, such needle-like fine carbon materials have high strength, but since these materials themselves are fine, even if they are used as they are, it is not possible to obtain a reinforcing performance like a metal reinforcing material.
[0006]
The present inventors have conducted intensive studies to achieve the above object, and as a result, obtained from acicular fine carbon materials, particularly, single-walled carbon nanotubes, multiple-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanocoils, and vapor-grown carbon fibers. A carbon fiber yarn obtained by spinning or spinning one or two or more selected needle-like fine carbon materials, a rubber in which a metal reinforcing material or a metal-organic fiber composite reinforcing material is conventionally used as described above. It can be applied as a reinforcing material for products and resin products, and it can give equal or higher strength, especially when used as a reinforcing material for rubber products and resin products such as tires, carbon fiber yarn is a steel wire Since the specific gravity is smaller than that of metal wires such as, it is possible to reduce the weight, and this tire does not include metal wires that are obstacles to recycle as a reinforcing material In, that the re-starting material of recycling of used tires is facilitated, further, carbon fibers such that,
Spinning or spinning the needle-like fine carbon material alone or with a binder,
Spinning or spinning by fusing and joining needle-like fine carbon materials together,
The needle-like fine carbon material is chemically treated to modify the carbon atoms on the surface thereof with a solvent-philic functional group to solubilize the solvent, and the needle-like fine carbon material is dissolved in a solvent. Or by chemically treating the needle-shaped fine carbon material to modify the carbon atoms on its surface with a functional group having a reactive activity, and linking these functional groups by direct bonding or cross-linking via a cross-linking agent. The present invention was found to be able to be manufactured by spinning or spinning, and the present invention was accomplished.
[0007]
That is, the present invention
(1) A carbon fiber yarn obtained by spinning or spinning a needle-like fine carbon material,
(2) The carbon fiber yarn according to (1), wherein the fine needle-like carbon material has a diameter of 0.4 to 500 nm and a length of 50 nm to 100 μm.
(3) The needle-like fine carbon material is one or more selected from single-walled carbon nanotubes, multi-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanocoils, and vapor-grown carbon fibers. (1) or the carbon fiber yarn according to (2),
(4) A method for producing a carbon fiber yarn, comprising spinning or spinning a needle-like fine carbon material alone or together with a binder,
(5) The method for producing a carbon fiber yarn according to (4), wherein the needle-like fine carbon material is twisted.
(6) A method for producing a carbon fiber yarn, which comprises spinning or spinning by fusing and joining needle-like fine carbon materials together,
(7) The method for producing a carbon fiber yarn according to (6), wherein the bonding portion is fused by irradiating a radiation, an electron beam or a laser beam.
(8) By chemically treating the needle-shaped fine carbon material, carbon atoms on the surface thereof are modified with a solvophilic functional group to solubilize the solvent, and the needle-shaped fine carbon material is dissolved in a solvent. A method for producing a carbon fiber yarn, which comprises solution spinning from
(9) By chemically treating the needle-shaped fine carbon material, carbon atoms on the surface thereof are modified with a functional group having a reactive activity, and the functional groups are linked by direct bonding or cross-linking via a cross-linking agent. A method for producing a carbon fiber yarn, characterized by spinning or spinning,
(10) The carbon fiber yarn according to any one of (4) to (9), wherein the needle-shaped fine carbon material has a diameter of 0.4 to 500 nm and a length of 50 nm to 100 μm. Or (11) the needle-like fine carbon material is one or more selected from single-walled carbon nanotubes, multi-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanocoils, and vapor-grown carbon fibers. A method for producing a carbon fiber yarn according to any one of (4) to (10) is provided.
[0008]
Hereinafter, the present invention will be described in more detail.
The carbon fiber yarn of the present invention is obtained by spinning or spinning a needle-like fine carbon material. Here, as the needle-like fine carbon material, a needle-like fine carbon material having a skeleton formed of carbon atoms, such as a tube structure, a solid structure, and a coil structure, is preferable, and particularly has a diameter of 0.4 to 500 nm and a length. Is preferably 50 nm to 100 μm. Specific examples of such a material include a single-walled carbon nanotube, a multi-walled carbon nanotube, a multi-walled carbon nanotube, a carbon nanocoil, and a vapor grown carbon fiber (VGCF). These may be used alone or as a mixture of two or more.
[0009]
In particular, in the case of a carbon nanotube, a single-walled carbon nanotube has a diameter of 0.4 to 10 nm and a length of 50 nm to 10 μm, and a multi-walled carbon nanotube has a diameter of 0.7 to 30 nm and a length of Is 50 nm to 10 μm, and a multi-walled carbon nanotube having a diameter of 2 to 100 nm and a length of 1 to 100 μm is preferable. In the case of vapor grown carbon fiber, the diameter is preferably 20 to 500 nm and the length is preferably 1 to 100 μm.
[0010]
The carbon fiber yarn of the present invention can be manufactured by first to fourth manufacturing methods described in detail below.
[0011]
The first method for producing a carbon fiber yarn of the present invention is a method for producing a carbon fiber yarn by spinning or spinning an acicular fine carbon material alone or together with a binder. In this method, the needle-like fine carbon material is spun or spun while being entangled and bundled while orienting the needle-like fine carbon material to some extent in the length direction. In the first manufacturing method, it is preferable to use a needle-like fine carbon material having a large length / diameter, and it is preferable that the needle-like fine carbon material has few branches. Further, as the acicular fine carbon material, one having moderate surface irregularities such as projections and grooves is preferable because adjacent acicular fine carbon materials are easily entangled with each other when spinning or spinning.
[0012]
Further, in the first production method, it is preferable to twist the needle-like fine carbon material. By twisting, the needle-like fine carbon material becomes more entangled with each other, and the carbon fiber yarn becomes more tangled. It has high strength.
[0013]
Further, in the first production method, when spinning or spinning the needle-like fine carbon material together with a binder, the binder may be a thermosetting resin, a thermoplastic resin, a liquid polymer, or the like, A carbon fiber yarn can be manufactured by mixing a needle-like fine carbon material and a binder and heating as necessary.
[0014]
The second method for producing a carbon fiber yarn of the present invention is a method for producing a carbon fiber yarn by fusing and joining needle-like fine carbon materials together and spinning or spinning. This method irradiates radiation, an electron beam, a laser beam, or the like while orienting the needle-shaped fine carbon material to some extent in the length direction to give high energy to a portion where these needle-shaped fine carbon materials come into contact with each other. Are fused and joined, thereby connecting and spinning or spinning the acicular fine carbon materials. In the second manufacturing method, it is preferable to use a needle-like fine carbon material having a large length / diameter, and it is preferable that the needle-like fine carbon material has many branches. Further, as the needle-like fine carbon material, a material having moderate protrusions and recesses such as protrusions and grooves on its surface is preferable because a large number of fused portions can be formed.
[0015]
In a third method for producing a carbon fiber yarn of the present invention, a needle-like fine carbon material is chemically treated to modify the carbon atoms on the surface thereof with a solvophilic functional group and solubilize the solvent. This is a method of producing a carbon fiber yarn by dissolving a fine carbon material in a solvent and spinning the solution from this solution. In this method, the needle-like fine carbon material, which is insoluble in the solvent as it is, is made soluble in a solvent so that the solvent can be spun and the solvent is spun.
[0016]
In the third production method, it is preferable to modify the carbon atom on the surface of the needle-like fine carbon material with a hydrophilic functional group and use water as a solvent. Further, it is preferable to spin the solution with a high solution viscosity because the strength of the obtained carbon fiber yarn can be increased. In the third manufacturing method, it is particularly preferable to use single-walled carbon nanotubes, and it is more preferable to use single-walled carbon nanotubes having a small length / diameter.
[0017]
In the fourth method for producing a carbon fiber yarn of the present invention, a needle-like fine carbon material is chemically treated to modify the carbon atoms on the surface thereof with a functional group having a reactive activity, and the functional groups are directly bonded or This is a method of producing a carbon fiber yarn by spinning or spinning by linking by crosslinking via a crosslinking agent. In this method, the fine carbon material having low reactivity as it is is chemically treated, and the carbon atom on the surface is modified with a functional group having a reactive activity to enhance the reactivity, and through this functional group, It spins or spins by connecting needle-like fine carbon materials.
[0018]
In the fourth production method, the functional groups can be hydrogen-bonded by selecting the functional group to be modified. When the functional groups are crosslinked with each other using a crosslinking agent, a crosslinking agent such as a peroxide can be used. At the time of crosslinking, it is also possible to irradiate radiation, an electron beam, a laser beam, or the like. In the fourth production method, particularly, since the activity of the carbon atoms at both ends of the needle-shaped fine carbon material is relatively high, it is preferable to modify the carbon atoms at these portions with a functional group. The crosslinking efficiency is improved, and a strong bond is formed, so that the strength of the carbon fiber yarn can be improved.
[0019]
The carbon fiber yarn of the present invention can be suitably used as a reinforcing material for rubber products and resin products, particularly, a reinforcing material used for rubber tires. In particular, it is suitable as a reinforcing material used as a belt reinforcing layer 7 such as a carcass ply 1, a belt 2, a bead core 3, an insert 4, a chafer 5, a canvas chafer 6, a cap 71, and a layer 72 of a rubber tire as shown in FIG. It is. In this case, if the carbon fiber yarn of the present invention is used in a portion where a metal reinforcing material or a metal-organic fiber composite reinforcing material is conventionally used, the specific gravity of the carbon fiber yarn is smaller than that of a metal wire. This is preferable because the tire does not include a metal wire which is an obstacle to recycle as a reinforcing material, so that the recycle of used tires is facilitated. It is also suitable as a reinforcing material for rubber products such as conveyor belts, crawlers, hoses and the like, a reinforcing material such as an integrally formed wire for urethane foam, and a reinforcing material for rubber and resin industrial products.
[0020]
【The invention's effect】
As described above, according to the present invention, a metal reinforcement or a metal-organic fiber composite reinforcement used as a rubber or resin reinforcement such as a steel cord or a steel-organic fiber composite cord used as a tire reinforcement. It is possible to provide a carbon fiber yarn that can provide a reinforcing property equal to or higher than that of the present invention and can be used as a reinforcing material that does not hinder the recycling of raw materials such as rubber and resin.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of a tire to which the carbon fiber yarn of the present invention is applied as a reinforcing material.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 carcass ply 2 belt 3 bead core 4 insert 5 chafer 6 canvas chafer 7 belt reinforcing layer 71 cap 72 layer