[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4992698B2 - 色収差補正装置、撮像装置、色収差算出方法および色収差算出プログラム - Google Patents

色収差補正装置、撮像装置、色収差算出方法および色収差算出プログラム Download PDF

Info

Publication number
JP4992698B2
JP4992698B2 JP2007324236A JP2007324236A JP4992698B2 JP 4992698 B2 JP4992698 B2 JP 4992698B2 JP 2007324236 A JP2007324236 A JP 2007324236A JP 2007324236 A JP2007324236 A JP 2007324236A JP 4992698 B2 JP4992698 B2 JP 4992698B2
Authority
JP
Japan
Prior art keywords
chromatic aberration
pixel
distribution information
image
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007324236A
Other languages
English (en)
Other versions
JP2009147770A (ja
Inventor
薫 諏訪部
賢一 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007324236A priority Critical patent/JP4992698B2/ja
Priority to US12/316,630 priority patent/US8144211B2/en
Publication of JP2009147770A publication Critical patent/JP2009147770A/ja
Application granted granted Critical
Publication of JP4992698B2 publication Critical patent/JP4992698B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • H04N25/615Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4" involving a transfer function modelling the optical system, e.g. optical transfer function [OTF], phase transfer function [PhTF] or modulation transfer function [MTF]
    • H04N25/6153Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4" involving a transfer function modelling the optical system, e.g. optical transfer function [OTF], phase transfer function [PhTF] or modulation transfer function [MTF] for colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • H04N25/611Correction of chromatic aberration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Image Processing (AREA)
  • Color Television Image Signal Generators (AREA)

Description

この発明は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの画像を処理する装置、当該装置において用いられ、画像に含まれる色収差の補正処理に用いて好適な装置、方法およびプログラムに関する。
デジタルスチルカメラやデジタルビデオカメラ、あるいは、携帯電話端末などに搭載されるカメラモジュールなど、種々の電子カメラが広く利用されるようになってきている。そして、近年においては、電子カメラは小型化、高倍率化、多画素化を実現すると共に、撮影した画像がより高画質であることが要求されている。
しかしながら、小型化、高倍率化、かつ多画素化に対応した高いMTF(Modulation Transfer Function)特性をもつレンズを製造することが非常に困難になってきている。例えば、レンズを小型にすることで、画面の位置や波長によって合焦位置がズレる「収差」の問題が発生する。また、画面の端に行くにつれて入射光量が減衰する「シェーディング」の問題や、画面の位置によって歪みが生じる「ディストーション」の問題など様々な問題が発生する。
その中でレンズ特有の問題の1つに挙げられる収差、特に色収差に関して、信号処理で補正を行う技術が、後に記す特許文献1において提案されている。この特許文献1に記載された技術は、輝度信号の信号レベルに基づいて、白とび画素か否かを、画像を構成する画素毎に判定し、その判定結果を白とび情報として保持し、当該白とび情報に基づいて、注目画素に対する周囲の白とび画素の分布を示す白とびマップを作成して保持する。そして、当該技術は、上述したように保持される白とびマップと、予め生成される色収差量の分布を示す色収差マップとを用いて周囲の白とび画素による注目画素の色収差量の積分値を算出し、これを用いて色収差を適切に補正するものである。
なお、上述した特許文献1は以下に示す通りである。
特開2007−133591号公報
ところで、上述した特許文献1では、注目画素の色収差量を以下のようにして求めている。上述したように生成して保持される白とびマップと、予め用意される注目画素周辺の色収差の補正量(色収差量)に関する情報である色収差マップとから、注目画素周囲の探索範囲内に白とび画素がある場合には、その白とび画素の色収差補正値を色収差マップから取り出し、このようにして取り出す白とび画素の色収差補正値を積分して注目画素の色収差量を算出している。
しかしながら、色収差量を求めるための演算量は非常に大きい。例えば、200×150画素の画像の色収差量を求める場合を考える。ここで、注目画素周囲の白とび探索範囲を9×9画素、白とび含有率(全画素中、白とびと判定された画素の割合)を10%とする。
この場合、注目画素1画素の色収差量を演算するためには、注目画素を基準にして決まる白とび探索範囲(9×9画素)の全ての画素が白とびか否かを判定しなければならない。このため、1つの注目画素についての色収差量を算出するためには、81回の白とび判定処理が必要になる。また、9×9画素の内の10%(8.1画素)が白とびであるとすると、1つの注目画素についての色収差量を算出するためには、8.1個の白とび画素の色収差補正値を積分(加算)する必要がある。すなわち、各画素の色収差量を求めるための色収差補正値の加算回数は、8.1回ということになる。
これを画像を構成する全画素(200×150画素)に対して行うことになるので、全画素では81×200×150=2、430、000回の白とび判定処理(比較処理)と、8.1×200×150=243、000回の色収差補正値(色収差量)の加算処理が必要となる。このような計算を、1画面を形成する画像毎に行うのは、大変な計算量になってしまう。
なお、隣接する画素同士では探索範囲が9×8画素重なるため、1画素について色収差量の演算を行えば、その隣の画素については新たに探索する範囲は9画素で済むと考えられる。この場合、1画素の色収差量を演算するのに、9回の比較、及び0.9回の加算となり、全画素(200×150画素)では9×200×150=270,000回の比較、0.9×200×150=27,000回の加算となる。
しかし、「倍率色収差(色によって像の倍率が変わり、異なる場所に結像してしまう現象)」を考慮して、画面内の位置により色収差マップ等を補正するようにした場合、上述した隣接する画素どうしの収差演算結果の共有方法は使えない。つまり、倍率色収差を適切に補正しようとすれば、画像を構成する画素毎に異なる色収差マップが存在することになり、既に行われた計算結果をそのまま用いることができずに、最初から演算する必要が生じる。
このため、倍率色収差についても適切に補正することができるようにするために、隣接する画素どうしの収差演算結果の共有を行うことができなくても、できるだけ少ない計算で、画素毎の色収差量を迅速かつ正確に求めるようにしたいとする要求がある。
以上のことに鑑み、この発明は、少ない計算回数で、迅速かつ正確に、画像を構成する画素毎の色収差量を算出して適切に色収差補正を行うことができるようにすることを目的とする。
上記課題を解決するため、請求項1に記載の発明の色収差補正装置は、
画像データの色信号に基づいて画像の紫色の部分を特定すると共に、前記画像データの輝度信号に基づいて輝度値が飽和した白とび画素を特定し、白とびの画素の周辺に発生する紫色の部分を色収差とみなして、当該色収差を補正する色収差補正装置であって、
特定された前記白とび画素の分布情報と、画像を構成する画素毎に予め設定され、各画素を注目画素とした場合における所定範囲の各画素が白とび画素である場合の当該各画素の色収差に関する補正量である色収差量の分布を示す色収差分布情報とを用いて、画像を構成する各画素の色収差量を算出する色収差量算出手段を備え、
前記色収差量算出手段は、
前記白とび画素の分布情報を記憶保持する白とび分布情報記憶部と、
画像を構成する画素毎に設定され、画像を構成する各画素を注目画素とした場合における前記所定範囲の前記色収差分布情報を記憶保持する色収差分布情報記憶部と、
画像を構成する画素毎の色収差量を記憶保持する色収差量格納部と、
前記白とび分布情報記憶部に記憶保持されている前記白とび画素の分布情報に基づいて、画像を構成する画素毎に白とび画素か否かを判別する判別部と、
前記判別部により白とび画素であると判別された画素について、当該画素を注目画素とした場合の所定範囲の前記色収差分布情報を前記色収差分布情報記憶部から読み出す読み出し部と、
前記読み出し部により読み出された前記色収差分布情報を、前記色収差格納部の対応する記憶領域に加算処理する加算部と
を備えることを特徴とする。
この請求項1に記載の色収差補正装置によれば、処理対象の画像(1フレームの画像)を構成する各画素について、白とび分布情報記憶部の白とび分布情報に基づいて、判別部により白とびの画素か否かが判別され、白とびの画素であると判別された画素については、その画素を注目画素とした場合の色収差分布情報が、読み出し部により色収差分布情報記憶部から読み出され、この読み出された色収差分布情報が加算部により、色収差量格納部の対応する記憶領域に加算するようにされる。
これにより、画像を構成する各画素の色収差量を算出するために、画像を構成する画素毎に白とび画素か否かを判断すればよいので、色収差量を算出するための従来の方法、すなわち、画像を構成する画素毎に探索範囲(例えば9×9画素の範囲)の各画素が白とびか否かを判別する場合に比べて、格段に計算量を減らすことができるようにされる。
また、請求項2に記載の発明の色収差補正装置は、請求項1に記載の色収差補正装置であって、
前記色収差分布情報記憶部に記憶保持される前記色収差分布情報は、色収差の補正を行う注目画素の画面内の位置に応じて、倍率色収差の補正が可能なように設定されたものであることを特徴とする。
この請求項2に記載の発明の色収差補正装置によれば、倍率色収差の補正が可能なように、画像を構成する画素毎に、色収差の補正を行う注目画素の画面内の位置に応じて設定された色収差分布情報が用いられる。
これにより、倍率色収差の補正も適正に補正することができるようにされる。また、画像を構成する画素毎に異なる色収差分布情報を用いるようにしても、色収差量の算出方式には何ら変更無く、少ない計算量で迅速かつ正確に画像を構成する各画素の色収差量を算出することができるようにされる。
この発明によれば、少ない計算回数で、迅速かつ正確に、画像を構成する画素毎の色収差量を算出して適切に色収差補正を行うようにすることができる。
以下、図を参照しながら、この発明による装置、方法、プログラムの一実施の形態について説明する。なお、この発明は、デジタルビデオカメラ、デジタルスチルカメラ、携帯電話端末などの携帯電子機器に搭載されるカメラモジュールなどの種々の撮像装置に適用可能なものである。
しかし、以下に説明する実施の形態においては説明を簡単にするため、動画像データの撮影が可能なデジタルビデオカメラ(撮像装置)に適用した場合を例にして説明する。また、以下に説明する撮像装置は、動画像と共に、音声についても取り込んで記録するなどすることができるものであるが、以下の実施の形態においては、説明を簡単にするため、音声信号の処理系についての説明は省略する。
[撮像装置の構成例について]
図1は、この発明による装置、方法、プログラムの一実施の形態が適用された、この実施の形態の撮像装置100を説明するためのブロック図である。図1に示すように、この実施の形態の撮像装置は、画像信号の処理系として、レンズ部101、撮像素子部102、アナログゲイン調整部(図1においてはアナログゲインと記載。)103、A/D(Analog/Digital)変換器104、検波処理部105、カメラ信号処理部106、表示処理部107、表示部108を備えると共に、制御部110、キー操作部121、外部インターフェース(以下、外部I/Fと略称する。)122、外部入出力端子123、記録再生処理部124、記録媒体125を備えたものである。
制御部110は、この実施の形態の撮像装置100の各部を制御するものであり、CPU(Central Processing Unit)111、ROM(Read Only Memory)112、RAM(Random Access Memory)123、EEPROM(Electrically Erasable and Programmable ROM)114が、CPUバス115を通じて接続されて構成されたマイクロコンピュータである。
ここで、CPU111は、後述もするROM112に記憶保持されているプログラムを読み出して実行し、各部に供給する制御信号を形成して各部に供給したり、各部からの信号を受け付けて、これを処理したりするなど、制御の主体となるものである。ROM112は、上述もしたように、CPU111によって実行されるプログラムや処理に必要になる各種のデータ等が予め記録されたものである。
RAM113は、各種の処理の途中結果を一時記憶するなど、いわゆる作業領域として用いられるものである。EEPROM114は、いわゆる不揮発性メモリであり、例えば、各種の設定パラメータ、機能追加のために新たに提供されたプログラム等のこの実施の形態の撮像装置100の電源が落とされても保持しておくべき種々の情報を記憶保持するものである。
また、キー操作部121は、例えば、録画スタンバイキー、録画開始キー、録画停止キー、望遠機能の調整キー、その他の各種の調整キーやファンクションキーなどを備え、ユーザーからの操作入力を受け付けて、当該操作入力を電気信号に変換し、これを制御部110に供給することができるものである。これにより、制御部110は、キー操作部121を通じて供給を受けたユーザーからの指示入力に応じて、この撮像装置100の各部を制御し、ユーザーの意図する処理を行うことができるようにされる。
外部I/F122及び入出力端子123は、例えば、IEEE(Institute of Electrical and Electronics Engineers,Inc)1394規格やUSB(Universal Serial Bus)規格等に合致したものである。これら外部I/F122及び入出力端子123に対しては、同じ規格のインターフェースを備える例えばパーソナルコンピュータやPVR(Personal Video Recorder)等の外部機器を接続することができるようにされる。
記録再生処理部124は、制御部110の制御に応じて、これに供給された画像データを記録媒体125に記録したり、また、記録媒体125に記録されている画像データを読み出して、制御部110を通じて表示処理部107に供給して再生するようにしたりするなどのことができるものである。
また、記録媒体125は、この実施の形態の撮像装置100においての主記録媒体であり、例えば、内蔵された半導体メモリ、半導体メモリが用いられ着脱可能とされたメモリカード、内蔵された小型のハードディスク、着脱可能とされた光ディスクなどのディスク記録媒体、着脱可能とされた磁気テープなどである。この実施の形態の撮像装置100において、記録媒体125は、例えば、内蔵された小型のハードディスクである。
なお、記録媒体125に記録される画像データは、所定のデータ圧縮方式により圧縮処理されて記録され、また、記録媒体125から読み出された画像データは、当該所定のデータ圧縮方式に従って伸張処理されるが、データの圧縮処理や伸張処理は、図示しない圧縮/伸張処理部において行うようにされる。また、このような、画像データの圧縮/伸張機能を、記録再生処理部124に設けるようにすることも可能である。
そして、この実施の形態の撮像装置100においては、画像信号の処理系を通じて、撮影することにより取り込んだ被写体の画像を表示部108の表示素子の表示画面に表示して確認しながら撮影を行い、撮影することにより得た画像信号(動画像信号)を記録媒体125に記録する記録機能と、記録媒体125に記録されている画像信号を読み出して、これを表示部108の表示素子の表示画面に表示するようにしたり、あるいは、外部I/F122及び入出力端子123を通じて外部機器に供給したりする再生機能とを有するものである。
[記録機能(撮影機能)および再生機能について]
まず、この実施の形態の撮像装置100の記録機能について説明する。図1に示すように、画像信号の処理系を構成する、レンズ部101、撮像素子部102、アナログゲイン調整部103、A/D変換器104、検波処理部105、カメラ信号処理部106、表示処理部107、表示部108のそれぞれは、共通のCPUバス115を通じて接続されている。
そして、画像信号の処理系を構成する各処理部間のデータのやり取りは、基本的には、共通のCPUバス115を通じて行われる。ただし、CPUバス115を経由せず、処理部間で直接データをやり取りする場合もある。処理部同士でCPUバス115を経由せずに直接接続しデータの転送を行う場合は、それをひとつの処理部と見做すこともできる。
そして、キー操作部121を通じて、動画像の撮影を行うことが指示されると、制御部110が各部を制御して動画像の撮影処理を開始する。この場合、レンズ部101を通じて撮像素子部102の固体撮像素子の結像面に結像された被写体の画像は、順次に当該固体撮像素子により電気信号(アナログ動画像信号)に変換されて、アナログゲイン調整部103に供給される。ここで撮像素子部102に設けられている固体撮像素子は、例えばCCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサなどである。
アナログゲイン調整部103供給されたアナログ動画像信号は、ここで当該アナログ動画像信号のゲイン(利得)が所定のレベルとなるようにゲイン調整された後に、A/D変換記104に供給される。そして、A/D変換器104に供給されたアナログ動画像信号は、ここでデジタル動画像信号(デジタルRaw動画像データ)に変換され、検波処理部105に供給される。なお、デジタルRaw動画像データは、現像処理されていないままのデジタル動画像データを意味し、撮像素子部2からのアナログ動画像信号がデジタル信号に変換された状態の画像信号である。
検波処理部105は、これに供給されたRaw動画像データに基づいて、露出調整処理のためのパラメータやホワイトバランス調整処理のためのパラメータなど、後段で行う種々の画像処理のための現像パラメータの集まり(現像パラメータ群)を生成し、この生成した現像パラメータ群を、制御部110を通じてカメラ信号処理部106に供給すると共に、Raw動画像データも、カメラ信号処理部106に供給する。
カメラ信号処理部106では、詳しくは後述するが、黒レベル合わせ処理、ホワイトバランス調整処理、画素毎にRGBデータ(3原色データ)を生成するデモザイク処理(同時化処理)、アパーチャ補正処理、ガンマ(γ)補正処理、輝度信号(Y)と色信号(Cb、Cr)への変換処理(Y/C変換処理)、色収差補正処理、解像度変換処理などを行って、輝度信号Yおよび色信号Cb、Crを形成する。
カメラ信号処理部106で形成された輝度信号Y、色信号Cb、Crは、表示処理部107に供給され、ここで表示部108に供給する形式の動画像信号に変換されて表示部108に供給される。これにより表示部108の表示素子の表示画面には、撮影するようにされた被写体の動画像が表示するようにされる。
同時に、カメラ信号処理部106で形成された輝度信号Y、色信号Cb、Crは、例えば図示しない圧縮/伸張処理部において、圧縮処理された後、記録再生処理部124に供給される。記録再生処理部124は、これに供給された画像データを、自機に搭載されている記録媒体125に読み出し可能なように記録する。
なお、表示部108は、例えば、LCD(Liquid Crystal Display)、有機ELパネル(Organic Electroluminescence Panel)、CRT(Cathode Ray Tube)などの表示素子を備え、上述したように、表示処理部からの動画像信号の供給を受けて、これに応じた動画像を自己の表示素子の表示画面に表示することができるものである。
このように、この実施の形態の撮像装置100は、表示部108に搭載されている表示素子の表示画面に表示される被写体の動画像を確認しながら撮影を行い、撮影することにより得た動画像データを記録媒体125に記録することができるものである。なお、撮影することにより得た動画像データを記録媒体125に記録する場合には、上述もしたように、当該動画像データは、例えば図示しない圧縮/伸張処理部においてデータ圧縮された後に、記録再生処理部124を通じて記録媒体125に記録される。
次に、この実施の形態の撮像装置100の再生機能について説明する。キー操作部121を通じて、記録媒体125に記録された動画像データを再生することの指示入力を受け付けると、制御部110は、記録再生処理部124を制御し、再生するように指示された動画像データ(輝度信号Y、色信号Cb、Cr)を読み出し、例えば図示しない圧縮/伸張処理部に供給する。そして、当該圧縮/伸張処理部において伸張処理することにより、データ圧縮前の元の動画像データを復元し、これを制御部110を通じて表示処理部107に供給する。
そして、表示処理部107においては、伸張処理されて復元された動画像データを、表示部108に供給する形式の動画像信号に変換して表示部108に供給する。これにより表示部108の表示素子の表示画面には、記録媒体125から読み出された動画像データに応じた動画像が表示するようにされる。
また、同時に、圧縮されたままの動画像データは、あるいは、図示しない圧縮/伸張処理部において伸張処理されて、データ圧縮前の元の動画像データに復元された動画像データは、外部I/F122及び入出力端子123を通じて、これに接続された外部機器に供給し、当該外部機器において利用するようにすることもできるようにされる。
このように、この実施の形態の撮像装置100は、撮影することにより得た動画像データを記録媒体125に記録したり、また、記録媒体125に記録した動画像データを再生して利用したりすることができるものである。そして、この実施の形態の撮像装置100は、画像を構成する画素毎に算出する色収差量を少ない演算量により効率よく正確に算出し、色収差補正を迅速かつ適切に行うことができるようにしている。
[カメラ信号処理部106について]
次に、図1に示したこの実施の形態の撮像装置100のカメラ信号処理部106の構成例について説明する。図2は、この実施の形態の撮像装置100に搭載されたカメラ信号処理部106の構成例を説明するためのブロック図である。
図2に示すように、この実施の形態のカメラ信号処理部106は、信号調整部1061、デモザイク処理部1062、信号補正部1063、Y/C変換部1064、色収差補正部1065、解像度変換部1066を備えたものである。
そして、検波処理部105からのRaw動画像データは、カメラ信号処理部106の信号調整部1061に供給される。信号調整部1061は、これに供給されたRaw動画像データに対して、黒レベル合わせやホワイトバランス調整などの種々の調整処理を施すものである。
ここで、撮像装置における黒レベルは、撮像素子の撮像面を完全に遮光した場合の当該撮像素子からの画像出力を意味する。しかし、例えば、撮像素子より後段の回路の影響等により、オフセット成分が混入するなどして、黒レベルが正確に表現できなくなり、画像が適切に形成できなくなる場合がある。このような場合を防止するために、信号調整部1061においては、検波処理部105からのパラメータに基づいて、これに供給されるRaw動画像データの黒レベルの調整処理を行う。
また、撮像装置を用いて被写体を撮影する場合、撮影時における光の種類(例えば、太陽光や蛍光灯など)により同じ被写体であってもその色合いは異なったものとなる。しかし、人間の目には白いものを常に白として認識しようとする習性が有る。そこで、信号調整部1061は、検波処理部105からのパラメータに基づいて、画像全体の色のバランス(具体的には、R(赤)とB(青)のバランス)を調整し、白いものは常に白いものとして表現できるようにしている。
なお、信号調整部1061においては、黒レベル調整やホワイトバランス調整などのほか、その他の各種の補正処理やノイズリダクション処理などを行うようにする場合もある。そして、信号調整部1061において種々の信号調整処理がなされたRaw動画像データは、デモザイク処理部1062に供給される。
デモザイク処理部1062は、撮像素子で用いられている色フィルタに応じて、画素毎に異なる色信号が用いられて形成されたRaw動画像データから、画像を構成する画素毎に必要となる色信号の全部、この実施の形態の撮像装置の場合には、R、G、Bの3原色信号を形成する処理を行うものである。デモザイク処理部1062において形成されたR、G、Bの3原色信号(3原色データ)は、信号補正部1063に供給される。
信号補正部1063は、これに供給された画像データ(3原色データ)に対して、アパーチャ補正やガンマ補正などの補正処理を施す。ここでアパーチャ補正は、供給される3原色データに対して、輪郭強調処理を施すことにより、画像をはっきりとシャープなものとなるようにする処理である。この実施の形態の撮像装置の場合には、例えば操作部121を通じて受け付けるユーザーからの指示入力に応じた制御部110からの制御信号により、輪郭強調の度合い(レベル)を調整することができ、画像をシャープなイメージに形成することも、また、ソフトなイメージに形成することもできるようにしている。
また、ガンマ補正は、供給された動画像データ(3原色データ)と、これが実際に出力される際の信号の相対関係を調節して、より自然に近い色合いの画像を得るようにする処理である。すなわち、ガンマ(γ)値は、画像の明るさの変化に対する電圧換算値の変化の比を意味し、これが値「1」に近づくのが理想であるが、用いられる素子の特性等により変化してしまう場合がある。このため、信号補正部1063においては、これに供給される動画像データ(3原色データ)のガンマ値の誤差を補正し、当該ガンマ値が値「1」に近くなるように補正する処理を行う。そして、信号補正部1063において補正処理された動画像データ(3原色データ)は、Y/C変換部1066に供給される。
Y/C変換部1064は、これに供給された動画像データ(3原色データ)を、所定の計算式に従って、輝度信号(Y)と色信号(Cb、Cr)に変換し、変換後の輝度信号(Y)と色信号(Cb、Cr)とを色収差補正部1065に供給する。なお、Y/C変換部1064においては、所定の計算式にしたがって、3原色データ(R(赤)信号、G(緑)信号、B(青)信号)から、輝度信号Y、色信号Cb、Crを生成する。
この実施の形態の撮像装置100のY/C変換部1064においては、輝度信号Yは、次の(1)式に基づいて算出(生成)し、色信号Crは、次の(2)式に基づいて算出(生成)し、また、色信号Cbは、次の(3)式に基づいて算出(生成)するようにしている。
Y = 0.3R + 0.6G + 0.1B …(1)
Cr= 0.7R − 0.6G − 0.1B …(2)
Cb=−0.3R − 0.6G + 0.9B …(3)
そして、上記の計算式に基づいてY/C変換部1064において生成された輝度信号Y、色信号Cb、Crは、色収差補正部1065に供給される。
色収差補正部1065は、レンズを通じて取り込まれた画像が所定の結像面に結像する場合に、光の波長によって、像にずれが生じる場合があるが、このような色収差現象を補正するものである。そして、色収差補正部1065は、詳しくは後述するが、輝度信号Yに基づいて画像を構成する画素毎に白とび画素か否かを求め、また、色信号Cb、Crから画像を構成する画素毎に紫度(どれだけ紫に近いかを示す値)を求め、これらから色収差の補正信号を形成して、色信号Cb、Crについて色収差補正を行うものである。そして、色収差補正部1065からは、輝度信号Yと、色収差補正された色信号Cb、Crが出力され、これらが解像度変換部1066に供給される。
解像度変換部1066は、これに供給された輝度信号Y、色信号Cb、Crに対して画像のスケーリングを行う。すなわち、解像度変換部1065は、これに供給された輝度信号Y、色信号Cb、Crについて間引き処理や補間処理を施すことにより、所定の解像度の輝度信号Y、色信号Cb、Crを形成し、これを出力する。この解像度変換部1065から出力された輝度信号Y、色信号Cb、Crに応じた画像が、図1に示した表示処理部107を通じて表示部108に表示され、また、データ圧縮処理された後に、記録再生処理部124を通じて記録媒体125に記録されることになる。
このように、カメラ信号処理部106においては、撮像素子部102を通じて撮影するようにした被写体のRaw動画像データに対して、上述したように種々の信号処理を施し、最終的に、表示や記録の対象となる目的とする解像度のYCデータを形成して出力することができるようにしている。そして、この実施の形態のカメラ信号処理部106の色収差補正部1065においては、以下に詳述するように、従来よりも格段に少ない演算量の処理により、画像を構成する各画素の色収差量を求め、迅速かつ適切に色収差補正を行うことができるようにしている。
[色収差補正部1065について]
次に、この実施の形態の撮像装置100のカメラ信号処理部106に設けられる色収差補正部1065の詳細について説明する。図3は、この実施の形態の色収差補正部1065を説明するための図である。
この実施の形態の色収差補正部1065は、上述もしたように、輝度信号Yによって求められる、画像を構成する各画素が白とび画素か否かの情報と、色信号Cb、Crから求められる、画像を構成する各画素の紫度とに基づいて、色信号Cb、Crについて色収差補正を行うものである。
このようにするのは、白とびが無いところでは色収差が発生しても目立たず、その補正の効果も小さい。これに対して、一般的に、緑(G)値が小さい紫色は輝度値(Y)も小さくなるので、紫色の画像付近において白とびが発生する可能性は非常に低い。すなわち、白とびの周辺において、もともと紫色の画像(色収差によるものでない紫色)が存在する可能性は、非常に低い。したがって、色収差補正部1065においては、白とびの画素の周辺(近傍)に発生する紫色の画素を、色収差によるものとみなして補正する。
このように、白とびの発生した画素を考慮して色収差の補正を行うようにすることによって、色収差補正部1065においては、不要な補正を低減し、より適切に色収差の補正を行うことができるようにしている。
なお、色収差の影響により、紫色、緑色などの色が見えることがあるが、一般に、輝度値(Y)が大きい場合、緑(G)値も大きくなるため、白とび周辺にもともと緑色(色収差によるものでない緑色)が存在する可能性が高い。このため、不用意に緑色を補正するようにすると、例えば、木の木漏れ日を撮影したときに木の葉の色を消してしまう恐れがある。したがって、色収差補正部1065は、緑色に関して補正を行わないようにしている。
以下、この実施の形態の色収差補正部1065について詳細に説明する。図3に示すように、この実施の形態の色収差補正部1065は、紫領域算出部651と、白とび判定部652と、白とび情報保持部653と、色収差算定部654と、補正信号生成部655と、補正リミッタ656と、ぼかし部657と、混合処理部658、遅延部659とを備えたものである。
そして、図3に示すように、Y/C変換部1064からの色信号Cb、Crは、色収差補正部1065の紫領域算出部651、補正信号生成部655、混合処理部658に供給される。また、Y/C変換部1064からの輝度信号Yは、白とび判定部652に供給されると共に、遅延部659において、色信号についての色収差補正処理にかかる時間分遅延するようにされた後に、後段の回路に供給するようにされている。
そして、紫領域算出部651は、入力された色信号Cr、Cbから、各画素の紫度(どれだけ紫色に近いかを示す度合い)を算出し、その算出結果を補正信号生成部655に供給する。つまり、紫領域算出部651は、画面内の紫色の部分(紫領域)を特定する。
一方、白とび判定部652は、入力された輝度信号Yの信号レベルが所定の閾値以上である(輝度値が飽和した)か否かを画素毎に判定し、その判定結果(例えば1ビットの情報)を白とび情報保持部653に供給する。例えば、白とび判定部652は、白とびが発生した画素(白とび画素)に対して、値「1」を判定結果として白とび情報保持部653に供給し、白とびが発生しなかった画素に対して、値「0」を判定結果として白とび情報保持部653に供給する。
白とび情報保持部653は、RAM(Random Access Memory)等のメモリ(記憶媒体)を内蔵するものである。そして、白とび情報保持部653は、白とび判定部652から供給される各画素の判定結果(各画素が白とび画素であるか否かを示す情報)を、自己のメモリに一時記憶する。白とび情報保持部653は、その一時記憶した情報に基づいて、次の色収差量算出部654における注目画素に対する周囲の白とび画素の分布を示す白とびマップ(白とび分布情報)を作成し、それを色収差量算出部654に供給する。
色収差量算出部654は、RAMやROM(Read Only Memory)等のメモリ(記憶媒体)を内蔵し、その記憶領域に、注目画素周辺の色収差の補正量(色収差量)に関する情報である色収差モデルを予め記憶している。色収差量算出部654は、その色収差モデルより、色収差量の分布を示す色収差マップ(色収差分布情報)を生成する。色収差量算出部654は、その色収差マップと、白とび情報保持部653より供給される白とびマップとを保持し、これらを用いて、周囲の白とび画素による注目画素の色収差量の積分値を算出し、その算出した色収差量を補正信号生成部655に供給する。
補正信号生成部655は、色収差量算出部654より供給された色収差量、および紫領域算出部651より供給された紫度に基づいて、白とびに応じた色収差量(白とび画素近傍の紫色の画素に対する色収差の補正量)を算出し、その値を用いて、補正前の色信号の色収差補正を行い、補正信号を生成する。補正信号生成部655は、生成した補正信号を補正リミッタ656に供給する。また、補正信号生成部655は、白とびに応じた色収差量を混合処理部658に供給する。
補正リミッタ656は、補正信号生成部655より供給された補正信号について、彩度の低下量の補正を実行する。すなわち、補正リミッタ656は、補正信号生成部655における補正処理により彩度を低下させすぎた部分などを検出し、周辺の画素の彩度を参考にした彩度補正処理を行う。補正リミッタ656は、彩度補正を行った補正済み信号をぼかし部657に供給する。
ぼかし部657は、補正リミッタ656より供給された信号に対して、LPF(Low Pass Filter)を用いて、ぼかし処理を施し、補正ムラの修正を行う。ぼかし部657は、修正した補正信号を混合処理部658に供給する。
このように、補正リミッタ656及びぼかし部657によって補正信号をさらに処理することにより、画像として不自然で目立つ補正を低減させることができるので、より自然な色収差補正結果を得ることができる。
混合処理部658は、入力される補正前色信号と、ぼかし部657より供給される補正信号とを、補正信号生成部655より供給される白とびに応じた色収差量に基づいて混合し、補正後色信号を生成し、それを出力する。つまり、混合処理部658は、色収差量に基づいて2信号(補正信号および無補正信号)の混合比を決定することにより、色収差補正を行った画素に対しては補正信号を強調するように、色収差補正を行っていない画素に対しては無補正信号を強調するように、2信号を混合する。このように2信号の混合を行うことにより、混合処理部658は、色収差補正された信号に、補正前の信号を反映させることができ、より自然な補正後信号を得ることができる。
[色収差算出部654における処理の詳細]
そして、この実施の形態の色収差補正部1065の色収差算出部654においては、白とび判定比較の回数、及び収差量加算の回数を減らすことで、色収差算出部654における演算量を大幅に削減することができるようにしている。
まず、この発明に係るこの実施の形態の色収差算出部654において行われる処理の詳細を説明する前に、この発明の説明を簡単にすると共に、この発明の効果を明確に示すために、注目画素毎に算出すべき色収差量と、当該色収差量を算出するための従来の方法について説明する。
[算出すべき色収差量について]
色収差算出部654においては、従来、注目画素の色収差量を次のようにして求めている。すなわち、白とび情報保持部653から供給される白とびマップ情報と、色収差算出部654が備える注目画素周辺の色収差の補正量(色収差量)に関する情報である色収差マップから、注目画素周囲の探索範囲内に白とび画素がある場合には、その白とび画素の色収差補正値を色収差マップから取り出し、それらを積分して注目画素の色収差量としている。
したがって、色収差量Sは、図4に示す(1)式によって求めることができる。図4は、色収差Sの算出式を示す図である。ここで、図4に示したように、Sは求めるべき注目画素の色収差量であり、x、yは、注目画素周辺の探索範囲をm×n画素とした場合の座標を表すものである。この場合、注目画素はm×n画素の中心となる。したがって、探索範囲を例えば9×9画素の範囲とし、縦、横とも、0〜8の値で画素位置を示すものとすれば、左上端部の画素位置[x,y]=[0,0]となり、注目画素の画素位置[x,y]=[4,4]となる。
また、Mxyは、色収差算出部654に用意されている色収差マップ上の座標[x,y]の色収差補正値である。また、Wxyは、白とび情報保持部653に保持されている白とびマップ上の座標[x,y]の白とび有無情報である。そして、この例の場合、Wxyには、白とびマップ上の座標[x,y]の画素が、白とび画素であれば値「1」が入り、また、白とびマップ上の座標[x,y]の画素が、白とび画素で無ければ値「0」が入る。
図4に示した(1)式にしたがえば、色収差量Sは、注目画素に応じて決まる白とびマップ上の探索範囲において白とびとなっている全ての画素を特定し、この特定した白とびマップ上の全ての白とび画素と、色収差マップ上において同位置となる全ての画素の色収差補正値を全て加算したもの(積分したもの)が、注目画素の色収差量Sとなる。
[色収差量を求めるための従来の色収差算出部の構成と処理内容について]
次に、図3に示したように構成される色収差補正部1065の色収差算出部654の従来の構成例について説明する。図10は、色収差算出部654の従来の構成例について説明するための図である。図10に示すように、従来の色収差算出部654は、白とびマップメモリ654WM、色収差マップメモリ654CM、色収差格納メモリ654M、注目画素色収差量レジスタ654R、演算部654Cを備えたものである。
ここで、白とびマップメモリ654WM、色収差マップメモリ654CM、色収差格納メモリ654Mのそれぞれは、異なるRAMに形成したり、同一のRAMに領域を変えて形成したりすることができる。また、注目画素色収差量レジスタ654Rは、専用のレジスタとして備えるようにしてもよいし、搭載されたメモリの一部を用いて構成するようにしてもよい。また、演算部654Cは、例えば、専用のCPUを用いて構成したり、あるいは、撮像装置100の制御部110のCPU111がその機能を担うようにしたりすることもできる。
そして、白とびマップ654メモリWMは、白とび情報保持部653において生成された例えば1フレーム分の画像の白とびマップを保持するものである。色収差マップメモリ654CMは、色収差算出部654が予め記憶保持するようにしている色収差モデルにしたがって生成される、1フレーム分の画像を構成する画素毎に色収差の探索範囲(例えば9×9画素の範囲)に対応した大きさの色収差マップを保持するものである。
また、注目画素色収差量レジスタ654Rは、注目画素の色収差量を算出するために用いられる加算領域である。また、色収差量格納メモリ6654Mは、1フレームの画像を構成する画素毎に算出された色収差量を保持するものである。そして、演算部654Cは、注目画素毎に、白とびマップメモリ654の白とびマップに基づいて、その注目画素を中心とする探索範囲の白とびマップ上の白とび画素を特定し、その特定した白とび画素の色収差量(色収差補正値)を色収差マップメモリ654CMの当該注目画素についての色収差マップの対応する画素位置から取得し、これを注目画素色収差量レジスタ654Rに加算してく。
この処理を、注目画素を中心とする探索範囲の全ての画素について行うことにより、注目画素色収差量レジスタ654Rに、当該注目画素についての色収差量が算出される。このようにして、注目画素色収差量レジスタ654Rに求められた注目画素についての色収差量は、演算部654Cを通じて色収差格納メモリ654Mの該当領域(該当画素領域)に格納され、最終的に1フレームの画像を構成する各画素についての色収差量が色収差格納メモリ654Mの該当領域に格納される。
次に、図10に示したように構成される従来の色収差算出部654において、画像を構成する全ての画素について色収差量を求める従来の処理について説明する。図11は、画像を構成する全ての画素について色収差量を求める従来の処理について説明するためのフローチャートである。この図11に示す処理は、従来の色収差算出部654において、1枚の画像を構成するフレーム単位に実行される処理である。
すなわち、従来の色収差算出部654においては、フレーム単位に図11に示す処理を実行する。まず、色収差算出部654の演算部654Cは、白とびマップメモリ654WMの白とマップ上の注目画素を更新する(ステップS1)。ステップS1の処理は、一般的には画像の左上から1画素ずつ右にずらし、右端に達した場合は次の行の左端に移るというように、予め決められた順番にしたがって注目画素を更新(特定)する。しかし、1フレームを構成する全画素を注目画素としてスキャニングすることができれば、どの画素から始め、どのようにスキャニングするかについては、特に限定するものではない。
次に、色収差算出部654の演算部654Cは、注目画素色収差量レジスタ654Rの注目画素の色収差量を「0(ゼロ)」に初期化する(ステップS2)。そして、演算部654Cは、白とびマップメモリ654WMの白とびマップ上の注目画素によって決まる探索範囲の探索画素を更新する(ステップS3)。ステップS3の処理は、一般的には注目画素周辺の探索範囲(白とび探索範囲)の左上から1画素ずつ右にずらし、右端に達した場合は次の行の左端に移るというように、予め決められた順番にしたがって探索画素を更新(特定)する。しかし、所定の探索範囲内の全画素を探索画素としてスキャニングすることができれば、どの画素から始め、どのようにスキャニングするかについては、特に限定するものではない。また、探索範囲のサイズ(大きさ)は、色収差マップにより決まるサイズである。
次に、色収差算出部654の演算部654Cは、ステップS3において更新(特定)した探索画素が、白とびの画素であるか否かを判断する(ステップS4)。このステップS4において、色収差算出部654の演算部654Cは、白とび情報保持部653から入力される白とびマップをもとに、探索画素が白とびであるか判定する。
そして、色収差算出部654の演算部654Cは、ステップS4において、探索画素が白とび画素であると判断したときには、色収差マップメモリ654CMの当該注目画素に対する色収差マップの探索画素位置に対応した色収差量を注目画素の色収差量として注目画素色収差量レジスタ654Rの値に加算する色収差量加算処理を行う(ステップS5)。また、ステップS4において、探索画素が白とび画素ではないと判断したときには、ステップS5の色収差加算処理は行わずにステップS6の処理に進む。
ステップS5の色収差量加算処理の後、または、ステップS4で探索画素が白とび画素ではないと判断したときには、色収差算出部654の演算部654Cは、探索範囲内の全ての画素を探索し、色収差量を加算したか否かを判断する(ステップS6)。ステップS6の判断処理において、探索範囲内の全ての画素を探索していない(探索をし終えていない)と判断したときには、ステップS3からの処理を繰り返し、探索範囲内の次の画素を白とびの判断の対象する。すなわち、探索範囲をすべて探索するまで、ステップS3、ステップS4、ステップS5の処理を繰り返すことになる。
ステップS6の判断処理において、探索範囲内の全ての画素を探索した(探索し終えた)と判断したときには、処理対象の画像(1フレーム分の画像)の全ての画素について、色収差量を算出したか否かを判断する(ステップS7)。ステップS7の判断処理において、処理対象の画像の全ての画素について、色収差量を算出し終えていないと判断したときには、ステップS1からの処理を繰り返し、次の注目画素についての色収差量を算出する処理を行う。すなわち、全ての画素の色収差量演算が完了するまでステップS1〜ステップS6の処理を繰り返すことになる。また、ステップS7において、処理対象の画像の全ての画素について、色収差量を算出し終えたと判断したときには、この図11に示す処理を終了する。
図12は、図11のフローチャートを用いて説明した従来の色収差量を求めるための処理について具体例を示して説明するための概念図である。図12では注目画素周囲の白とび画素のお探索範囲(白とび画素探索範囲)を9×9画素とした場合の例である。
そして、図12(A)は、注目画素を中心としてその周囲9×9画素分の白とびマップを切り出したものである。図12(A)においては、塗り潰しの無い画素が白とび無しの画素、塗り潰しの有る画素が白とび有りの画素として示している。また、図12(B)は、注目画素に対応した色収差マップである。図12(B)内のA4、A3、A2…等のアルファベットの大文字と数字とで示したものが、対応する画素の色収差量(色収差補正値)である。また、図12(D)は、注目画素を中心としてその周囲9×9画素分の色収差量格納領域を切り出したものである。
そして、色収差算出部654においては、図11を用いて説明したように、注目画素周囲の9×9画素について、白とびマップ(図12(A))から白とびであるか判定を行い、白とびの場合は色収差モデルを格納した色収差マップ(図12(B))の該当位置の色収差量を注目画素の色収差量として積分(加算)し、結果を色収差量格納領域(図12(D))に保存する。
したがって、図11の例での注目画素(座標[4,4])の色収差量Sは図12(C)より、次の(4)式に示すようになる。すなわち、
色収差量S=A2+B3+C4+C2+D1+D0+E0+E1
+D2+C0+C1+B2+B1+B0+A3 …(4)
となる。この演算結果が、図10に示した注目画素色収差量レジスタ654Rに求められ、これが図12(D)に示すように、色収差格納メモリ654Mの色収差格納領域の対応する画素位置の記憶領域に格納される。
そして、図10、図11、図12を用いて説明した従来の色収差量を算出する方法の場合には、上述もしたように、演算量が非常に大きくなる。すなわち、上述もしたように、例えば、画素数200×150、注目画素周囲の白とび探索範囲を9×9画素、白とび含有率(全画素中、白とびと判定された画素の割合)が10%である場合について考える。
この場合、図11に示したステップS4〜ステップS6からなるループは、白とび探索範囲の画素数分、すなわち9×9=81回、繰り返し行われる処理となる。また、当該ループの中で行われるステップS5の加算処理は、白とび含有率が10%であるので、81回×0.1=8.1回行われることになる。そして、1画面の画素数が、ここでは200×150であるので、1画面における図11に示したステップS4〜ステップS6からなるループは、81×200×150=2,430,000回繰り返され、その中で、8.1×200×150=243,000回の色収差量の加算が行われることになる。
そして、ここで説明した従来の方法の場合、倍率色収差をも適正に補正するために、注目画素毎に異なる色収差マップを用いるようにした場合には、隣接する画素どうしては探索範囲が重なることを利用した計算量の削減は行えない。探索範囲が重なっていても、色収差マップが異なっているのでは、前の画素の演算結果を用いることができないためである。
そこで、この実施の形態の色収差補正部1065の色収差算出部654においては、注目画素毎に異なる色収差マップを使用する場合であっても、図10、図11、図12を用いて説明した従来の色収差量Sを算出する処理に比べて、大幅に演算量を低減するようにしている。
[色収差量を求めるためのこの発明に係る処理について]
この発明は、図3に示した色収差補正部1065の二重線で示した色収差算出部654に適用されるものである。そして、この発明の主な特徴は、色収差算出部654の白とび判定比較の回数、及び収差量の加算回数を減らすことで、従来の色収差算出部で行われていた処理の演算量に比べて、大幅に演算量を抑えた色収差算出処理を行えるようにしている。
図5は、この実施の形態の撮像装置100の色収差補正部1065の色収差算出部654の構成例を説明するためのブロック図である。図5に示すように、この実施の形態の色収差算出部654は、白とびマップメモリ654WM、色収差マップメモリ654CM、色収差格納メモリ654M、演算部654Cを備えたものである。このように、この実施の形態の色収差補正部654は、図10に示した従来の色収差補正部とは異なり、注目画素色収差量レジスタ654Rを備えないものである。
なお、この実施の形態の色収差算出部654においても、白とびマップメモリ654WM、色収差マップメモリ654CM、色収差格納メモリ654Mのそれぞれは、異なるRAMに形成したり、同一のRAMに領域を変えて形成したりすることができる。また、演算部654Cは、例えば、専用のCPUを用いて構成したり、あるいは、撮像装置100の制御部110のCPU111がその機能を担うようにしたりすることもできる。
そして、図5に示すこの実施の形態の色収差補正部654においては、演算部654Cは、白とびマップメモリ654WMの白とびマップに基づいて、注目画素が白とび画素か否かを判断し、白とび画素と判断したときには、その注目画素についての色収差マップを色収差マップメモリ654CMから読み出し、これをそのまま、色収差格納メモリ654Mの対応する領域の各画素に、スタンプを押すようなイメージでそのまま足し込むようにする。
このように、1フレームを構成する各画素について、白とびか否かを判断し、白とびの画素である場合には、対応する色収差マップの全体を、色収差格納メモリ654Mの対応する領域に足し込むようにすることにより、最終的には、上述した従来の方法によって求められた1フレームを構成する画素毎の色収差量を算出することができるようにしている。そして、この実施の形態の色収差算出部654の場合には、注目画素色収差量レジスタ654Rを備えていないので、注目画素毎に色収差量を算出するのではなく、1フレームの画像全体を白とびの探索範囲とすると共に、従来の処理においては白とびの探索範囲となっていた範囲を加算処理の処理単位となるようにしている。
次に、この実施の形態の色収差補正部1065の色収差算出部654において行われる処理について詳細に説明する。図6は、この実施の形態の色収差算出部654において行われる処理について説明するためのフローチャートである。この図6に示す処理は、色収差算出部654において、1枚の画像を構成するフレーム単位に実行される処理である。
すなわち、この実施の形態の撮像装置100に搭載された色収差算出部654においては、フレーム単位に図6に示す処理を実行する。まず、色収差算出部654の演算部654Cは、色収差格納メモリ654Mの色収差格納領域の全体を値「0」で初期化する(ステップS101)。すなわち、ステップS101の処理は、1画面分の色収差格納領域の全体を初期化する処理である。
そして、色収差算出部654の演算部654Cは、白とびマップメモリ654WMの白とびマップ上の注目画素を更新する(ステップS102)。ステップS102の処理は、一般的には画像の左上から1画素ずつ右にずらし、右端に達した場合は次の行の左端に移るというように、予め決められた順番にしたがって注目画素を更新(特定)する。しかし、1フレームを構成する全画素を注目画素としてスキャニングすることができれば、どの画素から始め、どのようにスキャニングするかについては、特に限定するものではない。
次に、色収差算出部654の演算部654Cは、ステップS102において更新(特定)した注目画素が、白とびの画素であるか否かを判断する(ステップS103)。このステップS103において、色収差算出部654の演算部654Cは、白とび情報保持部653から入力され、白とびマップメモリ654WMの白とびマップをもとに、注目画素が白とびであるか判定する。
ステップS103において、注目画素が白とびの画素であると判断したときには、演算部654Cは、当該注目画素に対応する色収差マップを色収差マップメモリ654CMから読み出し、当該色収差マップの探索画素を更新する(ステップS104)。ここで、色収差マップは、従来の処理でも用いた探索範囲と同じ大きさの領域であるので、ここでも探索範囲、探索画素という文言を用いる。しかし、従来の処理では、白とびマップ上の探索範囲であったの対して、この実施の形態の探索範囲は、上述の通り、色収差マップ上の探索範囲である。
なお、ステップS104の処理は、一般的には注目画素周辺の探索範囲の左上から1画素ずつ右にずらし、右端に達した場合は次の行の左端に移るというように、予め決められた順番にしたがって探索画素を更新(特定)する。しかし、所定の探索範囲内の全画素を探索画素としてスキャニングすることができれば、どの画素から始め、どのようにスキャニングするかについては、特に限定するものではない。
そして、色収差算出部654の演算部654Cは、色収差格納領域の探索画素に対応する画素に対して、当該探索画素に対応する色収差量(色収差補正値)を色収差マップから取得して加算する(ステップS105)。このステップS105の加算処理は、探索画素に応じて決まる色収差マップの対応する画素の色収差量を色収差格納領域の該当箇所(該当画素位置の格納領域)に加算する処理である。
そして、色収差算出部654の演算部654Cは、探索範囲内の全ての画素を探索し、その色収差量を加算するようにしたか否かを判断する(ステップS106)。ステップS106の判断処理において、探索範囲内の全ての画素を探索し、その色収差量を加算していないと判断したときには、ステップS104からの処理を繰り返し、探索範囲内の各画素に対応する色収差量を色収差格納メモリの対応する色収差格納領域に加算する処理を行う。このように、このステップS104〜ステップS106までのループは、探索範囲に対応する範囲の色収差マップの各画素の色収差量を、そっくりそのままスタンプを押すようなイメージで、対応する範囲の色収差格納領域の各画素領域に加算する処理である。
ステップS106の判断処理において、探索範囲内の全ての画素を探索した(探索を終えた)と判断した場合、また、ステップS103の判断処理において、注目画素は白とびの画素ではないと判断した場合には、ステップS107の処理に進み、演算部654Cは、処理対象の画像(1フレーム分の画像)の全ての画素について、色収差量を算出したか否かを判断する(ステップS107)。
ステップS107の判断処理において、処理対象の画像の全ての画素について、色収差量を算出し終えていないと判断したときには、ステップS102からの処理を繰り返し、次の注目画素についての色収差量を算出する処理を行う。すなわち、全ての画素の色収差量演算が完了するまでステップS102〜ステップS106の処理を繰り返すことになる。また、ステップS107において、処理対象の画像の全ての画素について、色収差量を算出し終えたと判断したときには、この図6に示す処理を終了する。
図7、図8は、図6のフローチャートを用いて説明した、この実施の形態の撮像装置100で用いられる色収差算出部654で実行される色収差量を求めるための処理について具体例を示して説明するための概念図である。図7、図8では注目画素周囲の探索範囲を9×9画素とした場合の例である。
そして、図7(A)、図8(A)のそれぞれは、注目画素を中心としてその周囲9×9画素分の白とびマップを切り出したものである。図7(A)、図8(A)においては、塗り潰しの無い画素が白とび無しの画素、塗り潰しの有る画素が白とび有りの画素として示している。また、図7(B)、図8(B)のそれぞれは、注目画素に対応した色収差マップである。図7(B)、図8(B)において、A4、A3、A2…等のアルファベットの大文字と数字とで示したものが、対応する画素の色収差量である。また、図7(C)、図8(C)は、注目画素を中心としてその周囲9×9画素分の色収差量格納領域を示すものである。
そして、図6に示したフローチャートのステップS103においては、例えば、図7(A)に示した白とびマップに基づいて、注目画素が白とびであるかの判定を行う。図7(A)に示した例の場合、座標[4,4]の位置にある注目画素は、白とびの画素である。このため、図6に示したフローチャートのステップS104、ステップS105の処理により、色収差モデルを格納した図7(B)に示した色収差マップの各画素の色収差量が、図7(C)に示した色収差量格納領域の該当位置(該当する画素の格納領域)に加算するようにされる。
すなわち、図7に示した例の場合、注目画素[4,4]は、白とび画素であるので、図7(B)に示した色収差マップの色収差量が、そのままスタンプを押すようなイメージで、図7(C)に示すように、色収差格納領域の対応する画素格納領域に加算される。したがって、図7に示した例の場合、注目画素(座標[4,4])の色収差量Sは、次の(5)式に示すように、
S = E0 …(5)
となっている。
図7に示した状態の次には、図6に示したフローチャートにおいては、ステップS102の処理により、注目画素が更新される。図8は、図7の状態から注目画素が更新され、図8(A)に示したように、注目画素が座標[5,4]になった場合について示している。
図8に示した例の場合にも、図8(A)の白とびマップから、注目画素(座標[5,4])は、白とびの画素であるため、図7に示した場合と同様に、図6に示したフローチャートにおけるステップS104〜ステップS106の処理により、図8(B)に示す色収差マップの色収差量が、図8(C)に示すように、色収差量格納領域の対応する領域に加算される。したがって、図8(C)に示したように、最初の注目画素である座標[4,4]の画素に着目すれば、当該座標[4,4]の色収差量格納領域の対応する画素の格納領域には、図7の処理により色収差量E0が加算され、次の図8の処理により色収差量E1が加算される。
このようにして、図7、図8の処理を連続して行った場合、色収差量格納領域の座標[4,4]の画素の色収差量Sは、次の(6)式に示すように、
S = E0 + E1 …(6)
となる。
同様にして、注目画素を左上(座標[0,0])から右下(座標[8,8])にひとつずつずらして、注目画素が白とびの場合には色収差マップの色収差量を色収差格納領域に順次加算していくと、最終的に色収差量格納領域の座標[4,4]の色収差値Sは、以下の(7)式に示すようになる。すなわち、
座標[4,4]の色収差量S
=A2+B3+C4+C2+D0+D2+E0+E1
+D2+C0+C1+B2+B1+B0+A3 …(7)
となる。すなわち、図10、図11、図12を用いて上述した従来の色収差算出方法を用いた場合の座標[4,4]の色収差量Sと同じ結果になる。
[従来の処理のこの発明の処理の比較]
色収差算出部654において行われる処理であって、図11に示した従来の色収差算出処理と、図6に示したこの実施の形態の色収差算出処理とを比較すると、図11に示した従来の処理の場合、ステップS3〜ステップS6において探索範囲内の画素が白とびの場合にその色収差マップ値を積分して注目画素1個の色収差量を求め色収差格納領域に保存している。
これに対して、図6に示したこの実施の形態の処理(この発明)の場合、ステップS103〜ステップS106において注目画素が白とびの場合にのみ探索範囲内の色収差マップ値を該当する色収差格納領域の画素の個々に加算して保存するようにしている。
したがって、図6に示したこの実施の形態の処理の場合には、図6のステップS103〜ステップS106の処理1回では注目画素の色収差量は求められない。しかし、探索範囲内の全画素についてステップS103〜ステップS106の処理を行うことにより、注目画素の色収差量に探索範囲内の全ての色収差量が積分され、結果として図11に示した従来の処理のステップS3〜ステップS6を行うことによって得られる結果と同等の結果が得られる。
そして、図6に示したフローチャートの処理を実行するこの実施の形態の撮像装置100の色収差演算部654における演算回数は、例えば、1フレームの画像の画素数200×150画素、注目画素周囲の白とび探索範囲を9×9画素、白とび含有率(全画素中、白とびと判定された画素の割合)を10%とした場合、白とび判定のための条件判定は、1フレームの画像を構成する画素毎に行えばよいので、1フレームの画像における白とび判定のための条件判定回数は、1×200×150=30,000回となる。
また、同条件において、1フレームの画像における色収差量算出のための加算回数は、図6に示したフローチャートを用いて説明したように、白とびの注目画素毎に、探索範囲を構成する各画素に対応する色収差量(色収差マップの対応する画素の色収差量)を加算
すればよい。したがって、この場合、1フレームの画像における色収差量算出のための加算回数は、9×9×200×150×0.1=243,000回となる。ここで、「9×9」は探索範囲の画素数、「200×150」は1フレーム分の画像の画素数、「0.1」は白とび含有率である。
同条件における図11に示した従来の処理の場合の1フレームの画像における演算回数と図6に示したこの発明に係る処理の場合の1フレームの画像における演算回数とを比較する。
図6に示したこの発明に係る処理の場合には、
白とび判定のための条件判定回数:30,000(1×200×150)
色収差量算出のための加算回数 :243,000(9×9×200×150×0.1)となり、
また、図11に示した従来の処理の場合には、
白とび判定のための条件判定回数:2,430,000回(9×9×200×150)
色収差量算出のための加算回数 :243,000回(9×9×200×150×0.1)となる。したがって、色収差算出のための加算回数は同じであるが、白とび判定のための条件判定回数は1/81(81分の1)に削減されることが分かる。
上述の条件のうち白とび含有率を0〜100%と変化させた場合の、図11に示した従来の処理による演算回数と、図6に示したこの実施の形態の処理による演算回数とをプロットしたグラフを図9に示す。図9において、横軸は白とび含有率を、縦軸は演算回数(白とび判定のための条件判定回数と色収差量算出のための加算回数との合計)を示している。
そして、図9のグラフから分かるように、白とび含有率に関係なく、常に図6を用いて説明したこの実施の形態の処理(この発明に係る処理)の方が、演算回数は大幅に少ないことが分かる。この結果より、図11に示した従来の処理よりも、図6に示したこの発明に係る処理の方が、白とび含有率に関係なく演算回数の削減効果が得られることが分る。
なお、上述した処理条件においては、探索範囲を9×9画素としたが、範囲を11×11や13×13などより大きくした場合には、削減効果はさらに高まる。
この条件判定回数の削減により、回路もしくはプログラムの処理量削減、または回路規模の削減が可能となる。
[その他]
なお、上述した実施の形態の色収差算出部1065においては、図5を用いて説明したように、白とびマップメモリ654WMが、白とびマップ(白とび分布情報)を記憶保持する白とび分布情報記憶部を構成し、色収差マップメモリ654CMが、色収差マップ(色収差分布情報)を記憶保持する色収差分布情報記憶部を構成し、また、色収差量格納メモリ654Mが、各画素毎の色収差量を記憶保持する色収差量格納部を構成している。
また、上述した実施の形態の色収差算出部1065においては、判別部、読み出し部、加算部の格納機能を、図5に示した演算部654Cが実現している。なお、演算部654は、例えば、CPU、ROM、RAMなどを備えたマイクロコンピュータであり、色収差補正部1065に設けられるほか、色収差補正部1065の機能を実現するために設けられるものの場合もあるし、また、図1に示した撮像装置100の制御部110が、その機能を実現するようにすることもできる。すなわち、制御部110が、カメラ信号処理部106の機能、あるいは、色収差補正部1065の機能、あるいは、色収差算出部654の機能を実現するようにすることもできる。
また、図6を用いて上述したように、色収差算出部654の演算部654Cが、判別手段として機能して、白とびマップメモリ654WMの白とびマップに基づいて画像を構成する画素毎に白とび画素か否かを判別し、白とび画素であると判別された画素については、演算部654Cが読み出し手段として機能して、色差マップメモリ654CMから、白とび画素であると判別された画素を注目画素とする所定大きさの探索範囲の色収差マップを読み出し、これを演算部654Cが加算部として機能して、色収差量格納メモリ654Mの対応する領域に加算することにより、この発明の色収差量算出方法を実現することができる。
同様に、色収差算出部654の演算部654Cの機能を実現するマイクロコンピュータにおいて、図6を用いて上述したように、当該コンピュータが、白とびマップメモリ654WMの白とびマップに基づいて画像を構成する画素毎に白とび画素か否かを判別し、白とび画素であると判別された画素については、当該コンピュータが、色差マップメモリ654CMから、白とび画素であると判別された画素を注目画素とする所定大きさの探索範囲の色収差マップを読み出し、これを当該コンピュータが、色収差量格納メモリ654Mの対応する領域に加算することにより、この発明の色収差量算出プログラムを実現することができる。すなわち、この場合には、コンピュータ自身が、判別部、読み出し部、加算部として機能するようにしている。
なお、図3に示した色収差補正部1065について、画像データの色信号に基づいて、各画素について前記色の度合いを示す色度を算出する色度算出部をさらに備え、当該色度算出部により算出された色度を、色収差量算出部1065により算出された色収差量に乗算し、その乗算結果を用いて画像データの色収差補正を行うように構成してもよい。このように、色度をも考慮することにより、より正確な色収差補正を行うことができる。
また、上述した実施の形態の色収差マップメモリ654CMに予め記憶保持される色収差マップは、上述もしたように、倍率色収差をも補正するため、注目画素となる画素の位置に応じて、異なる色収差マップを用いるようにすることができる。また、いくつかの色収差マップを用意しておき、これらを使い分けるようにすることもできる。また、上述もしたように、色収差算出部654が備える色収差モデルと、注目画素の画素位置とから、必要に応じて適切な色収差マップを生成して利用するようにすることもできる。
また、上述した実施の形態においては、この発明を撮像装置に適用した場合を例にして説明したが、この発明に係る色収差補正部1065をIC化して実現し、これを種々の撮像装置に搭載することもできる。
また、図6を用いて説明したように処理を実行するプログラムを形成して、種々の撮像装置に搭載することにより、種々の撮像装置にこの発明を適用することができる。
また、上述した実施の形態においては、撮像装置100はデジタルビデオカメラであり、動画像データを処理するものであり、1フレームの画像単位に上述したように、色収差補正を行うものとして説明した。しかしこれに限るものではない。この発明は、デジタルスチルカメラにも適用可能なものであり、静止画像データについても、1枚の静止画像単位に上述したように色収差補正処理を行うようにすることができる。
また、画像の画素数等に特に左右されることなく、種々の画素数(画サイズ)の画像を処理する場合に、この発明を適用することができる。
この発明による装置、方法、プログラムの一実施の形態が適用された、この実施の形態の撮像装置100を説明するためのブロック図である。 図1に示した撮像装置100に搭載されたカメラ信号処理部106の構成例を説明するためのブロック図である。 図2に示した色収差補正部1065を説明するための図である。 色収差Sの算出式を示す図である。 色収差補正部1065の色収差算出部654の構成例を説明するためのブロック図である。 色収差算出部654において行われる処理について説明するためのフローチャートである。 色収差算出部654で実行される色収差量を求めるための処理について具体例を示して説明するための概念図である。 色収差算出部654で実行される色収差量を求めるための処理について具体例を示して説明するための概念図である。 白とび含有率を0〜100%と変化させた場合の演算回数の変化のグラフを示す図である。 色収差算出部654の従来の構成例について説明するための図である。 画像を構成する全ての画素について色収差量を求める従来の処理について説明するためのフローチャートである。 従来の色収差量を求めるための処理について具体例を示して説明するための概念図である。
符号の説明
100…撮像装置、101…レンズ部、102…撮像素子部、103…アナログゲイン調整部、104…A/D変換器、105…検波処理部、106…カメラ信号処理部、107…表示処理部、108…表示部、110…制御部、121…キー操作部、122…外部I/F、123…外部入出力端子、124…記録再生処理部、125…記録媒体、1061…信号調整部、1062…デモザイク処理部、1063…信号補正部、1064…Y/C変換部、1065…色収差補正部、1066…解像度変換部、651…紫領域算出部、652…白とび判定部、653…白とび情報保持部、654…色収差算定部、655…補正信号生成部、656…補正リミッタ、657…ぼかし部、658…混合処理部、659…遅延部、654WM…白とびマップメモリ、654CM…色収差マップメモリ、654M…色収差格納メモリ、654C…演算部

Claims (8)

  1. 画像データの色信号に基づいて画像の紫色の部分を特定すると共に、前記画像データの輝度信号に基づいて輝度値が飽和した白とび画素を特定し、白とびの画素の周辺に発生する紫色の部分を色収差とみなして、当該色収差を補正する色収差補正装置であって、
    特定された前記白とび画素の分布情報と、画像を構成する画素毎に予め設定され、各画素を注目画素とした場合における所定範囲の各画素が白とび画素である場合の当該各画素の色収差に関する補正量である色収差量の分布を示す色収差分布情報とを用いて、画像を構成する各画素の色収差量を算出する色収差量算出手段を備え、
    前記色収差量算出手段は、
    前記白とび画素の分布情報を記憶保持する白とび分布情報記憶部と、
    画像を構成する画素毎に設定され、画像を構成する各画素を注目画素とした場合における前記所定範囲の前記色収差分布情報を記憶保持する色収差分布情報記憶部と、
    画像を構成する画素毎の色収差量を記憶保持する色収差量格納部と、
    前記白とび分布情報記憶部に記憶保持されている前記白とび画素の分布情報に基づいて、画像を構成する画素毎に白とび画素か否かを判別する判別部と、
    前記判別部により白とび画素であると判別された画素について、当該画素を注目画素とした場合の所定範囲の前記色収差分布情報を前記色収差分布情報記憶部から読み出す読み出し部と、
    前記読み出し部により読み出された前記色収差分布情報を、前記色収差格納部の対応する記憶領域に加算処理する加算部と
    を備えることを特徴とする色収差補正装置。
  2. 請求項1に記載の色収差補正装置であって、
    前記色収差分布情報記憶部に記憶保持される前記色収差分布情報は、色収差の補正を行う注目画素の画面内の位置に応じて、倍率色収差の補正が可能なように設定されたものであることを特徴とする色収差補正装置。
  3. 撮像素子と、
    被写体の画像を前記撮像素子の結像面に結像させるようにするためのレンズと、
    前記撮像素子を通じて取り込まれる画像データの色信号に基づいて画像の紫色の部分を特定すると共に、前記画像データの輝度信号に基づいて輝度値が飽和した白とび画素を特定し、白とびの画素の周辺に発生する紫色の部分を色収差とみなして、当該色収差を補正する色収差補正手段とを備える撮像装置であって、
    前記色収差補正手段は、画像の特定された前記白とび画素の分布情報と、画像を構成する画素毎に予め設定され、各画素を注目画素とした場合における所定範囲の各画素が白とび画素である場合の当該各画素の色収差に関する補正量である色収差量の分布を示す色収差分布情報とを用いて、画像を構成する各画素の色収差量を算出する色収差量算出手段を備えるものであり、
    前記色収差量算出手段は、
    前記白とび画素の分布情報を記憶保持する白とび分布情報記憶部と、
    画像を構成する画素毎に設定され、画像を構成する各画素を注目画素とした場合における前記所定範囲の前記色収差分布情報を記憶保持する色収差分布情報記憶部と、
    画像を構成する画素毎の色収差量を記憶保持する色収差量格納部と、
    前記白とび分布情報記憶部に記憶保持されている前記白とび画素の分布情報に基づいて、画像を構成する画素毎に白とび画素か否かを判別する判別部と、
    前記判別部により白とび画素であると判別された画素について、当該画素を注目画素とした場合の所定範囲の前記色収差分布情報を前記色収差分布情報記憶部から読み出す読み出し部と、
    前記読み出し部により読み出された前記色収差分布情報を、前記色収差格納部の対応する記憶領域に加算処理する加算部と
    を備えることを特徴とする撮像装置。
  4. 請求項3に記載の撮像装置であって、
    前記色収差分布情報記憶部に記憶保持される前記色収差分布情報は、色収差の補正を行う注目画素の画面内の位置に応じて、倍率色収差の補正が可能なように設定されたものであることを特徴とする撮像装置。
  5. 画像データの色信号に基づいて画像の紫色の部分を特定すると共に、前記画像データの輝度信号に基づいて輝度値が飽和した白とび画素を特定し、白とびの画素の周辺に発生する紫色の部分を色収差とみなして、当該色収差を補正する色収差補正装置に設けられ、
    画像の特定された前記白とび画素の分布情報と、画像を構成する画素毎に予め設定され、各画素を注目画素とした場合における所定範囲の各画素が白とび画素である場合の当該各画素の色収差に関する補正量である色収差量の分布を示す色収差分布情報とを用いて、画像を構成する各画素の色収差量を算出する色収差量算出手段において行われる色収差算出方法であって、
    前記色収差量算出手段は、
    前記白とび画素の分布情報を記憶保持する白とび分布情報記憶部と、
    画像を構成する画素毎に設定され、画像を構成する各画素を注目画素とした場合における前記所定範囲の前記色収差分布情報を記憶保持する色収差分布情報記憶部と、
    画像を構成する画素毎の色収差量を記憶保持する色収差量格納部と、
    画像を構成する各画素が白とび画素か否かを判別する判別手段と、
    前記色収差分布情報記憶部から目的とする色収差分布情報を読み出す読み出し手段と、
    色収差分布情報を色収差量格納部に加算処理する加算手段と
    を備えるものであり、
    前記判別手段が、前記白とび分布情報記憶部に記憶保持されている前記白とび画素の分布情報に基づいて、画像を構成する画素毎に白とび画素か否かを判別する判別工程と、
    前記判別工程において白とび画素であると判別した画素について、前記読み出し手段が、前記当該画素を注目画素とした場合の所定範囲の前記色収差分布情報を前記色収差分布情報記憶部から読み出す読み出し工程と、
    前記読み出し工程において読み出した前記色収差分布情報を、前記加算手段が、前記色収差格納部の対応する記憶領域に加算処理する加算工程と
    を有することを特徴とする色収差算出方法。
  6. 請求項5に記載の色収差算出方法であって、
    前記色収差分布情報記憶部に記憶保持される前記色収差分布情報は、色収差の補正を行う注目画素の画面内の位置に応じて、倍率色収差の補正が可能なように設定されたものであることを特徴とする色収差算出方法。
  7. 撮像装置に搭載されたコンピュータが、
    画像データの色信号に基づいて画像の紫色の部分を特定すると共に、前記画像データの輝度信号に基づいて輝度値が飽和した白とび画素を特定し、白とびの画素の周辺に発生する紫色の部分を色収差とみなして、当該色収差を補正する場合において、
    画像の特定された前記白とび画素の分布情報と、画像を構成する画素毎に予め設定され、各画素を注目画素とした場合における所定範囲の各画素が白とび画素である場合の当該各画素の色収差に関する補正量である色収差量の分布を示す色収差分布情報とを用いて、画像を構成する各画素の色収差量を算出する場合に実行する色収差算出プログラムであって、
    前記撮像装置は、
    前記白とび画素の分布情報を記憶保持する白とび分布情報記憶部と、
    画像を構成する画素毎に設定され、画像を構成する各画素を注目画素とした場合における前記所定範囲の前記色収差分布情報を記憶保持する色収差分布情報記憶部と、
    画像を構成する画素毎の色収差量を記憶保持する色収差量格納部と、
    画像を構成する各画素が白とび画素か否かを判別する判別手段と、
    前記色収差分布情報記憶部から目的とする色収差分布情報を読み出す読み出し手段と、
    色収差分布情報を色収差量格納部に加算処理する加算手段と
    を備えるものであり、
    前記判別手段が、前記白とび分布情報記憶部に記憶保持されている前記白とび画素の分布情報に基づいて、画像を構成する画素毎に白とび画素か否かを判別する判別ステップと、
    前記判別ステップにおいて白とび画素であると判別した画素について、前記読み出し手段が、前記当該画素を注目画素とした場合の所定範囲の前記色収差分布情報を前記色収差分布情報記憶部から読み出す読み出しステップと、
    前記読み出しステップにおいて読み出した前記色収差分布情報を、前記加算手段が、前記色収差格納部の対応する記憶領域に加算処理する加算ステップと
    を前記撮像装置に搭載された前記コンピュータが実行することを特徴とする色収差算出プログラム。
  8. 請求項7に記載の色収差算出プログラムであって、
    前記色収差分布情報記憶部に記憶保持される前記色収差分布情報は、色収差の補正を行う注目画素の画面内の位置に応じて、倍率色収差の補正が可能なように設定されたものであることを特徴とする色収差算出プログラム。
JP2007324236A 2007-12-17 2007-12-17 色収差補正装置、撮像装置、色収差算出方法および色収差算出プログラム Expired - Fee Related JP4992698B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007324236A JP4992698B2 (ja) 2007-12-17 2007-12-17 色収差補正装置、撮像装置、色収差算出方法および色収差算出プログラム
US12/316,630 US8144211B2 (en) 2007-12-17 2008-12-15 Chromatic aberration correction apparatus, image pickup apparatus, chromatic aberration amount calculation method, and chromatic aberration amount calculation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007324236A JP4992698B2 (ja) 2007-12-17 2007-12-17 色収差補正装置、撮像装置、色収差算出方法および色収差算出プログラム

Publications (2)

Publication Number Publication Date
JP2009147770A JP2009147770A (ja) 2009-07-02
JP4992698B2 true JP4992698B2 (ja) 2012-08-08

Family

ID=40752684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007324236A Expired - Fee Related JP4992698B2 (ja) 2007-12-17 2007-12-17 色収差補正装置、撮像装置、色収差算出方法および色収差算出プログラム

Country Status (2)

Country Link
US (1) US8144211B2 (ja)
JP (1) JP4992698B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325703B2 (ja) * 2007-05-24 2009-09-02 ソニー株式会社 固体撮像装置、固体撮像装置の信号処理装置および信号処理方法、ならびに撮像装置
US8237823B2 (en) 2008-11-06 2012-08-07 Samsung Electronics Co., Ltd. Method and apparatus for canceling chromatic aberration
JP5523141B2 (ja) * 2009-05-28 2014-06-18 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
JP5326943B2 (ja) * 2009-08-31 2013-10-30 ソニー株式会社 画像処理装置、および画像処理方法、並びにプログラム
KR101034755B1 (ko) * 2009-11-12 2011-05-17 삼성모바일디스플레이주식회사 휘도보정시스템 및 이를 이용한 휘도보정방법
WO2011118071A1 (ja) * 2010-03-25 2011-09-29 富士フイルム株式会社 画像処理方法および装置,ならびに画像処理プログラムおよびこのプログラムを記録した媒体
JP5278421B2 (ja) * 2010-12-21 2013-09-04 株式会社Jvcケンウッド 撮像装置
JP5907590B2 (ja) * 2011-06-10 2016-04-26 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
TW201407579A (zh) * 2012-08-09 2014-02-16 Sony Corp 色信號處理電路、色信號處理方法、顯示裝置及電子機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060983A (ja) * 2001-08-10 2003-02-28 Olympus Optical Co Ltd 撮像装置
US8634014B2 (en) * 2004-04-05 2014-01-21 Hewlett-Packard Development Company, L.P. Imaging device analysis systems and imaging device analysis methods
JP4770154B2 (ja) * 2004-11-08 2011-09-14 ソニー株式会社 画像処理装置、および画像処理方法、並びにコンピュータ・プログラム
JP4469324B2 (ja) * 2005-11-01 2010-05-26 イーストマン コダック カンパニー 色収差抑圧回路及び色収差抑圧プログラム
JP4487902B2 (ja) * 2005-11-09 2010-06-23 ソニー株式会社 画像処理装置および方法、並びにプログラム
US7577292B2 (en) * 2005-12-30 2009-08-18 Microsoft Corporation Automatic removal of purple fringing from images
US7714997B2 (en) * 2006-11-07 2010-05-11 Hitachi High-Technologies Corporation Apparatus for inspecting defects
US8144984B2 (en) * 2006-12-08 2012-03-27 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and program for color fringing estimation and compensation
KR100866490B1 (ko) * 2007-01-17 2008-11-03 삼성전자주식회사 영상의 색 수차를 보정하기 위한 장치 및 방법
KR101340518B1 (ko) * 2007-08-23 2013-12-11 삼성전기주식회사 영상의 색수차 보정 방법 및 장치
JP5349790B2 (ja) * 2007-11-16 2013-11-20 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム

Also Published As

Publication number Publication date
US20090153696A1 (en) 2009-06-18
JP2009147770A (ja) 2009-07-02
US8144211B2 (en) 2012-03-27

Similar Documents

Publication Publication Date Title
JP5045421B2 (ja) 撮像装置、色ノイズ低減方法および色ノイズ低減プログラム
JP4992698B2 (ja) 色収差補正装置、撮像装置、色収差算出方法および色収差算出プログラム
JP5053724B2 (ja) 画像表示装置、撮像装置、画像再生装置、及び画像表示方法
JP5660711B2 (ja) 復元ゲインデータ生成方法
JP2001275029A (ja) デジタルカメラ、その画像信号処理方法及び記録媒体
JP2010081002A (ja) 撮像装置
JP4433883B2 (ja) ホワイトバランス補正装置及びホワイトバランス補正方法、プログラム、電子カメラ装置
US7944487B2 (en) Image pickup apparatus and image pickup method
JP5589660B2 (ja) 画像処理装置、撮像装置及び画像処理プログラム
JP3997786B2 (ja) 撮像装置、表示装置、画像記録装置および画質補正方法
US20090128650A1 (en) Imaging Device
US8537244B2 (en) Image processing apparatus and method, and computer-readable medium having stored thereon computer program for executing the method
JP2011091753A (ja) 撮像装置、画像処理装置およびプログラム
JP4985180B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム及び撮像装置
JP5299159B2 (ja) 撮像装置およびプログラム
JP2009055415A (ja) カメラ
JP2005277618A (ja) 撮像装置、シェーディング補正装置、及びシェーディング補正方法
JP2010021908A (ja) 画像処理装置、画像処理方法および画像処理プログラム
US12010436B2 (en) Imaging apparatus, method for controlling imaging apparatus, and storage medium
JP2006333113A (ja) 撮像装置
JP6247513B2 (ja) 撮像装置、制御方法およびプログラム
JP4735820B2 (ja) 撮像装置の信号処理方法及び撮像装置
JP2002209138A (ja) デジタルカメラ
JP4481846B2 (ja) 色変換装置及び方法及び撮像装置
JP6624895B2 (ja) 画像処理装置、撮像装置、制御方法及びプログラム

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090824

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees