[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4973081B2 - Method for producing polylactic acid molded product - Google Patents

Method for producing polylactic acid molded product Download PDF

Info

Publication number
JP4973081B2
JP4973081B2 JP2006249118A JP2006249118A JP4973081B2 JP 4973081 B2 JP4973081 B2 JP 4973081B2 JP 2006249118 A JP2006249118 A JP 2006249118A JP 2006249118 A JP2006249118 A JP 2006249118A JP 4973081 B2 JP4973081 B2 JP 4973081B2
Authority
JP
Japan
Prior art keywords
film
polylactic acid
vapor deposition
gas
bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006249118A
Other languages
Japanese (ja)
Other versions
JP2008069407A (en
Inventor
卓郎 伊藤
宏明 杉岡
拓己 森
浩 中尾
和彦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2006249118A priority Critical patent/JP4973081B2/en
Publication of JP2008069407A publication Critical patent/JP2008069407A/en
Application granted granted Critical
Publication of JP4973081B2 publication Critical patent/JP4973081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、プラズマCVD法により蒸着膜が表面に形成されているポリ乳酸成形品の製造方法に関する。   The present invention relates to a method for producing a polylactic acid molded article having a deposited film formed on the surface by a plasma CVD method.

従来、各種基材の特性を改善するために、その表面にプラズマCVD法による蒸着膜を形成することが行われており、包装材料の分野では、容器などのプラスチック基材に対して、プラズマCVD法により蒸着膜を形成させて、ガス遮断性を向上させることが公知である。例えば、有機ケイ素化合物と酸素との混合ガスを反応ガスとして用い、プラズマCVD法によりPETボトルなどのプラスチック容器の表面に、酸化ケイ素の蒸着膜を形成させることによってガスバリア性を高めることが行われている。   Conventionally, in order to improve the characteristics of various base materials, it has been performed to form a deposited film by plasma CVD on the surface. In the field of packaging materials, plasma CVD is applied to plastic base materials such as containers. It is known to improve gas barrier properties by forming a deposited film by the method. For example, gas barrier properties are improved by using a mixed gas of an organosilicon compound and oxygen as a reaction gas and forming a silicon oxide vapor deposition film on the surface of a plastic container such as a PET bottle by plasma CVD. Yes.

ところで、上記のような酸化ケイ素膜は、プラスチック基板に対する密着性に乏しいという欠点があるため、プラスチック基板の表面に密着層を形成した後にケイ素酸化物の蒸着膜を形成することが必要である。例えば、特許文献1には、ケイ素酸化物の蒸着膜を形成するに先立って、有機ケイ素化合物濃度の高い反応ガスを使用して或いは低出力条件を採用してプラズマCVDを行うことにより、炭素元素(C)成分に富んだ密着層をプラスチック基板の表面に形成することが提案されている。   By the way, since the silicon oxide film as described above has a drawback of poor adhesion to a plastic substrate, it is necessary to form a silicon oxide vapor deposition film after forming an adhesion layer on the surface of the plastic substrate. For example, in Patent Document 1, prior to the formation of a silicon oxide vapor deposition film, a carbon element is formed by performing plasma CVD using a reactive gas having a high organosilicon compound concentration or adopting a low output condition. It has been proposed to form an adhesion layer rich in component (C) on the surface of a plastic substrate.

また、ケイ素酸化物の蒸着膜は水分に対するバリア性が低いという欠点もある。このため、特許文献2には、非晶質のダイヤモンド状炭素膜(DLC膜)を形成した後にケイ素酸化物の膜を形成することが提案されている。
特開2005−97678号 特開2005−88452号
In addition, the silicon oxide vapor-deposited film has a drawback that it has a low barrier property against moisture. For this reason, Patent Document 2 proposes forming a silicon oxide film after forming an amorphous diamond-like carbon film (DLC film).
JP 2005-97678 A Japanese Patent Application Laid-Open No. 2005-88452

ところで、最近では、各種分野で生分解性プラスチックとして代表的なポリ乳酸が環境問題などの観点から注目されており、包装材料の分野でも、ポリ乳酸製の容器が実用に供されている。従って、ポリ乳酸成形品についても前述した蒸着膜を形成することにより、ガスバリア性等の特性を改善する試みが行われている。   Recently, polylactic acid, which is a representative biodegradable plastic in various fields, has been attracting attention from the viewpoint of environmental problems and the like, and in the field of packaging materials, containers made of polylactic acid have been put to practical use. Therefore, an attempt has been made to improve characteristics such as gas barrier properties by forming the above-described vapor deposition film for a polylactic acid molded article.

しかしながら、ポリ乳酸は、ガラス転移点(Tg)が58℃、融点(Tm)が170℃であり、ポリエチレンテレフタレート(PET)と比較すると熱的特性が劣っている(PETのTgは70℃、Tmは170℃)。また、ポリ乳酸は、PETに比して水に対する親和性が高いという性質を有している。このため、酸化ケイ素膜やDLC膜をポリ乳酸成形品の表面に直接形成するのが困難となっているのが現状である。   However, polylactic acid has a glass transition point (Tg) of 58 ° C. and a melting point (Tm) of 170 ° C., which is inferior in thermal properties to polyethylene terephthalate (PET) (Tg of PET is 70 ° C., Tm). 170 ° C). Polylactic acid has a property that it has a higher affinity for water than PET. For this reason, it is difficult to form a silicon oxide film or a DLC film directly on the surface of a polylactic acid molded product.

即ち、酸化ケイ素膜は、バリア性を発現するためには、高出力(通常、マイクロ波で600W以上の出力で4sec以上の蒸着)条件で成膜する必要があるが、高出力条件での蒸着では、蒸着過程で発生する熱により、ポリ乳酸基材の熱変形や熱劣化が生じ、特にポリ乳酸容器に蒸着膜を形成した場合には、ボトル内に異臭が発生するなどの問題が発生してしまう。また、ポリ乳酸基材との密着性の問題もある。   That is, the silicon oxide film needs to be deposited under high output conditions (usually, deposition at a power of 600 W or more for 4 seconds or more with microwaves) in order to exhibit barrier properties. However, the heat generated during the vapor deposition process causes thermal deformation and thermal degradation of the polylactic acid base material. In particular, when a vapor deposition film is formed on the polylactic acid container, problems such as the generation of a strange odor in the bottle occur. End up. There is also a problem of adhesion to a polylactic acid substrate.

この場合、特許文献1の技術を適用して、ポリ乳酸基材の表面に低出力で炭素に富んだ密着層を厚く形成し、この密着層により、酸化ケイ素膜(バリア層)の蒸着時に発生する熱を基材に影響させなくするため、密着層を厚くする手段も考えられるが、未だ原因は不明であるものの、バリア層が積層した形態であっても密着層を厚くすればするほどバリア性そのものが急激に低下するという問題があり、このような密着層を厚くすることで酸化ケイ素膜(バリア層)形成時の熱を断熱することは困難である。   In this case, the technique disclosed in Patent Document 1 is applied to form a thick carbon-rich adhesion layer with low output on the surface of the polylactic acid substrate, and this adhesion layer is generated when the silicon oxide film (barrier layer) is deposited. In order to prevent the heat generated from affecting the base material, a means to thicken the adhesion layer is also conceivable, but although the cause is still unknown, the barrier layer becomes thicker even if the barrier layer is laminated. However, it is difficult to insulate the heat when forming the silicon oxide film (barrier layer) by increasing the thickness of the adhesion layer.

一方、特許文献2に開示されているようなDLC膜などの炭化水素系膜は、低出力且つ短時間で成膜することができるため、蒸着に際してのポリ乳酸基材の熱変形、熱劣化等の問題を生じることはない。しかしながら、この場合には、ポリ乳酸の水に対する親和性によって生じる問題がある。即ち、構成原子から、O/C比を算出すると、ポリ乳酸のO/C比は0.7で、PETの0.4よりもより親水性を示す。このため、化学的に油性である炭化水素系蒸着膜は、熱的影響を与えることなく成膜することはできるが、水などの極性物質による膜剥離の問題を生じてしまう。例えば、内表面に炭化水素系蒸着膜を形成したポリ乳酸製容器に水などの極性内容物を充填し保存すると、蒸着膜が剥離して脱離してしまうこととなる。この場合、炭化水素系蒸着膜の上に酸化ケイ素膜を設けた2層構造としても、やはり、水などの極性内容物を充填し保存すると、ポリ乳酸基材表面と炭化水素系蒸着膜間で剥離が生じ、蒸着膜が脱離してしまう。   On the other hand, a hydrocarbon-based film such as a DLC film as disclosed in Patent Document 2 can be formed at a low output and in a short time. Will not cause any problems. However, in this case, there is a problem caused by the affinity of polylactic acid for water. That is, when the O / C ratio is calculated from the constituent atoms, the O / C ratio of polylactic acid is 0.7, which is more hydrophilic than 0.4 of PET. For this reason, a hydrocarbon-based vapor deposition film that is chemically oily can be formed without thermal influence, but causes a problem of film peeling due to a polar substance such as water. For example, if a polylactic acid container having a hydrocarbon-based vapor deposition film formed on the inner surface is filled with a polar content such as water and stored, the vapor deposition film will be detached and detached. In this case, even if it has a two-layer structure in which a silicon oxide film is provided on a hydrocarbon-based vapor deposition film, it is still between the polylactic acid substrate surface and the hydrocarbon vapor-deposition film if filled with polar contents such as water. Peeling occurs and the deposited film is detached.

従って、本発明の目的は、熱的影響をポリ乳酸基材に与えることなく、しかも水分の影響による膜剥離の問題を生じることなく、密着性に優れ、しかもガスバリア性に優れ、水分透過性も低い蒸着膜が表面に形成されたポリ乳酸成形品の製造方法を提供することにある。   Therefore, the object of the present invention is to provide excellent adhesion without causing a thermal effect on the polylactic acid base material and without causing a problem of film peeling due to the influence of moisture, and also has excellent gas barrier properties and moisture permeability. It is providing the manufacturing method of the polylactic acid molded article in which the low vapor deposition film was formed in the surface.

本発明によれば、脂肪族不飽和基を有し且つ分子中に酸素を有していない有機ケイ素化合物と脂肪族不飽和炭化水素または芳香族炭化水素との混合ガスであって、該有機ケイ素化合物を40乃至80モル%の量で含有しているものを反応性ガスとして使用し、該反応性ガスをポリ乳酸基材上に供給してのプラズマCVDにより、ポリ乳酸基材上に蒸着膜を形成することを特徴とするポリ乳酸成形品の製造方法が提供される。 According to the present invention, there is provided a mixed gas of an organic silicon compound having an aliphatic unsaturated group and having no oxygen in the molecule and an aliphatic unsaturated hydrocarbon or aromatic hydrocarbon , A film containing a compound in an amount of 40 to 80 mol% is used as a reactive gas, and a deposited film is formed on the polylactic acid substrate by plasma CVD with the reactive gas supplied onto the polylactic acid substrate. A method for producing a polylactic acid molded article is provided.

本発明においては、
(1)前記有機ケイ素化合物として、トリメチルビニルシランを使用すること、
(2)前記脂肪族不飽和炭化水素として、エチレンまたはアセチレンを使用すること、
(3)プラズマCVDによる蒸着膜の形成を、出力300乃至500Wでのマイクロ波により行うこと、
(4)前記蒸着膜を形成した後に、該蒸着膜の上に酸化ケイ素膜及び/または炭化水素系膜を形成すること、
が好適である。
In the present invention,
(1) using trimethylvinylsilane as the organosilicon compound,
(2) using ethylene or acetylene as the aliphatic unsaturated hydrocarbon,
(3) forming a deposited film by plasma CVD using microwaves with an output of 300 to 500 W;
(4) After forming the deposited film, forming a silicon oxide film and / or a hydrocarbon-based film on the deposited film;
Is preferred.

本発明においては、反応性ガスをポリ乳酸基材上に供給してのプラズマCVDにより、ポリ乳酸基材表面に蒸着膜を形成するに際し、反応性ガスとして、脂肪族不飽和基を有し且つ分子中に酸素を有していない有機ケイ素化合物と、脂肪族不飽和炭化水素または芳香族炭化水素との混合ガスを用いるため、例えば酸化ケイ素膜を成膜する場合に比して、低出力で成膜が可能であり、成膜に際してポリ乳酸基材に与える熱的影響を有効に回避することができ、ポリ乳酸の熱変形、熱劣化を確実に防止することができる。   In the present invention, when a vapor deposition film is formed on the surface of the polylactic acid substrate by plasma CVD with a reactive gas supplied onto the polylactic acid substrate, the reactive gas has an aliphatic unsaturated group and Since a mixed gas of an organosilicon compound that does not have oxygen in the molecule and an aliphatic unsaturated hydrocarbon or aromatic hydrocarbon is used, for example, a lower output than in the case of forming a silicon oxide film. Film formation is possible, and the thermal influence on the polylactic acid base material during film formation can be effectively avoided, and thermal deformation and thermal deterioration of polylactic acid can be reliably prevented.

また、上記のような混合ガスを用いて得られる蒸着膜は、構成元素としてSi及びCの2種を含むものであるが、後述する実施例から明らかな通り、ポリ乳酸基材に対する密着性や水分及び酸素に対するバリア性に優れ、しかも、水分による膜剥離も有効に防止されており、さらにはSiの水中への溶出も有効に抑制されている。即ち、本発明により形成される蒸着膜は、酸化ケイ素膜と炭化水素系膜の両方の利点を併せ持ち、且つ両者の欠点が解消されている。本発明により、このような膜特性が発現する理由は明確に解明されていないが、おそらく、反応性ガスとして使用する有機ケイ素化合物及び炭化水素化合物の何れもがラジカル重合性の不飽和結合を分子中に含んでいるため、反応性ガス(混合ガス)中でこれら化合物の相溶化が分子レベルで向上しており、且つ、有機ケイ素化合物の反応による成分がアンカー材として機能し、このような成分中に水分に対するバリア性の高い炭化水素化合物の反応による成分が導入されているためではないかと考えられる。   Moreover, although the vapor deposition film obtained using the above mixed gas contains 2 types of Si and C as a structural element, as is clear from the Example mentioned later, adhesiveness with respect to a polylactic acid base material, moisture, and The barrier property against oxygen is excellent, and film peeling due to moisture is effectively prevented, and further, elution of Si into water is effectively suppressed. That is, the deposited film formed according to the present invention has the advantages of both the silicon oxide film and the hydrocarbon film, and the disadvantages of both are eliminated. The reason why such film characteristics are manifested by the present invention is not clearly elucidated, but it is likely that both of the organosilicon compound and hydrocarbon compound used as the reactive gas have a radical polymerizable unsaturated bond as a molecule. Because of this, the compatibilization of these compounds in the reactive gas (mixed gas) is improved at the molecular level, and the component due to the reaction of the organosilicon compound functions as an anchor material. It is thought that this is because a component due to the reaction of a hydrocarbon compound having a high barrier property against moisture is introduced therein.

また、本発明においては、反応性ガスとして、酸素の如き酸化性ガスを使用していないばかりか、有機化合物や炭化水素化合物中にも酸素元素は含まれていない。この結果、成膜時における酸化によるポリ乳酸基材の劣化も有効に回避することができる。   In the present invention, not only an oxidizing gas such as oxygen is used as the reactive gas, but also no oxygen element is contained in the organic compound or hydrocarbon compound. As a result, deterioration of the polylactic acid substrate due to oxidation during film formation can be effectively avoided.

<ポリ乳酸基材>
本発明において、蒸着膜を形成するポリ乳酸基材の形態は、特に制限されず、フィルム乃至シートであってもよいし、またボトル、カップ、チューブ等の容器やその他の成形品の形であってよく、その用途に応じて、適宜の形態を有するものであってもよい。勿論、二軸延伸ブロー成形など、その成形手段なども制限されない。また、ポリ乳酸は、ポリ−L−乳酸或いはポリ−D−乳酸の何れであってもよく、ポリ−L−乳酸とポリ−D−乳酸の溶融ブレンド物でもよく、また、これらの共重合体であってもよい。さらには、生分解性が損なわれない限り、グリコール酸などとの共重合体であってもよいし、ポリグリコール酸、酢酸セルロースなどがブレンドされていてもよい。
<Polylactic acid base material>
In the present invention, the form of the polylactic acid base material for forming the vapor deposition film is not particularly limited, and may be a film or a sheet, or may be in the form of a container such as a bottle, a cup or a tube, or other molded products. It may have an appropriate form according to its use. Of course, the forming means such as biaxial stretch blow molding is not limited. The polylactic acid may be either poly-L-lactic acid or poly-D-lactic acid, or a melt blend of poly-L-lactic acid and poly-D-lactic acid, or a copolymer thereof. It may be. Furthermore, as long as biodegradability is not impaired, a copolymer with glycolic acid or the like may be used, or polyglycolic acid, cellulose acetate, or the like may be blended.

<反応性ガス>
本発明においては、反応性ガスとして有機ケイ素化合物と炭化水素化合物との混合ガスを用いてのプラズマCVDによって、上記のポリ乳酸基材の表面に蒸着膜を形成する。
<Reactive gas>
In the present invention, the deposited film is formed on the surface of the polylactic acid substrate by plasma CVD using a mixed gas of an organosilicon compound and a hydrocarbon compound as a reactive gas.

有機ケイ素化合物としては、脂肪族不飽和基を有し且つ分子中に酸素原子を有していないものが使用される。即ち、有機ケイ素化合物であっても、分子中に脂肪族不飽和基を有していないものを用いた場合には、脂肪族不飽和炭化水素または芳香族炭化水素との分子レベルでの相溶性を確保できず、この結果、酸化ケイ素膜と炭化水素系膜の両方の利点を有している蒸着膜を得ることはできない。例えば、得られる蒸着膜は、ポリ乳酸基材との密着性が低く、水分による膜剥離も生じやすくなり、さらには、酸素に対するバリア性や水分に対するバリア性も低いものとなってしまう。また、分子中に酸素原子を有している有機ケイ素化合物(例えばシロキサンなど)を用いた場合には、該有機ケイ素化合物が酸素源となっての酸化反応が生じ、ポリ乳酸基材が酸化劣化してしまい、さらには悪臭の発生などを生じてしまう。これは、反応性ガスとして、酸素等の酸化性ガスを用いた場合も同様である。   As the organosilicon compound, those having an aliphatic unsaturated group and having no oxygen atom in the molecule are used. That is, even when an organosilicon compound having no aliphatic unsaturated group is used in the molecule, it is compatible with an aliphatic unsaturated hydrocarbon or aromatic hydrocarbon at the molecular level. As a result, it is impossible to obtain a deposited film having the advantages of both a silicon oxide film and a hydrocarbon-based film. For example, the obtained deposited film has low adhesion to the polylactic acid base material, easily causes film peeling due to moisture, and has low barrier properties against oxygen and moisture. In addition, when an organosilicon compound having an oxygen atom in the molecule (for example, siloxane) is used, an oxidation reaction occurs using the organosilicon compound as an oxygen source, and the polylactic acid substrate is oxidized and deteriorated. In addition, a bad odor is generated. The same applies to the case where an oxidizing gas such as oxygen is used as the reactive gas.

本発明において、脂肪族不飽和基を有しかつ分子中に酸素原子を有していない有機ケイ素化合物としては、このような条件を満足するガス化が容易なものを使用することができ、例えば、下記式(1):
(R−Si(R4−n (1)
式中、Rは、ビニル基、アリル基などの脂肪族不飽和基を有する基であり、
は、アルキル基、アリール基、アラルキル基などの脂肪族若しくは芳香族の炭化水素基であり、
nは、1乃至4の整数である、
で表されるシラン化合物を使用することができる。このようなシラン化合物としては、ビニルトリメチルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシランなどが挙げられるが、最も好適なものは、ガス化が容易であるという観点から、トリメチルビニルシランである。
In the present invention, as the organosilicon compound having an aliphatic unsaturated group and having no oxygen atom in the molecule, an easily gasable compound satisfying such conditions can be used. The following formula (1):
(R 1 ) n -Si (R 2 ) 4-n (1)
In the formula, R 1 is a group having an aliphatic unsaturated group such as a vinyl group or an allyl group,
R 2 is an aliphatic or aromatic hydrocarbon group such as an alkyl group, an aryl group, or an aralkyl group,
n is an integer of 1 to 4,
The silane compound represented by these can be used. Examples of such a silane compound include vinyltrimethylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, and phenyltrimethoxysilane, and the most preferable one is from the viewpoint of easy gasification. , Trimethylvinylsilane.

また、上記のような有機ケイ素化合物と併用される炭化水素化合物は、分子中に不飽和基を有するものであり、不飽和脂肪族炭化水素や芳香族炭化水素が使用される。例えば、メタン、エタンなどの不飽和基を有していない炭化水素を上記の有機ケイ素化合物と併用した場合には、上記有機得ケイ素化合物との分子レベルでの相溶性を確保できないため、蒸着膜の膜特性は不満足なものとなってしまう。   Moreover, the hydrocarbon compound used together with the organosilicon compound as described above has an unsaturated group in the molecule, and an unsaturated aliphatic hydrocarbon or aromatic hydrocarbon is used. For example, when a hydrocarbon having no unsaturated group such as methane or ethane is used in combination with the above organosilicon compound, the compatibility with the above organic silicon compound cannot be ensured at the molecular level. The film properties are unsatisfactory.

本発明において、不飽和脂肪族炭化水素としては、エチレン、プロピレン、ブテン、ペンテン等のアルケン類、アセチレン、メチルアセチレンなどのアルキン類、ブタジエン、ペンタジエン等のアルカジエン類、シクロペンテン、シクロヘキセンなどのシクロアルケン類を挙げることができ、芳香族炭化水素としては、ベンゼン、トルエン、キシレン、インデン、ナフタレン、フェナントレンなどを例示することができる。本発明においては、膜特性などの観点から、不飽和脂肪族炭化水素が好適であり、特に、エチレン、アセチレンが最も好適である。   In the present invention, unsaturated aliphatic hydrocarbons include alkenes such as ethylene, propylene, butene and pentene, alkynes such as acetylene and methylacetylene, alkadienes such as butadiene and pentadiene, and cycloalkenes such as cyclopentene and cyclohexene. Examples of aromatic hydrocarbons include benzene, toluene, xylene, indene, naphthalene, phenanthrene, and the like. In the present invention, unsaturated aliphatic hydrocarbons are preferable from the viewpoint of film characteristics and the like, and ethylene and acetylene are particularly preferable.

また、上記の有機ケイ素化合物と炭化水素との混合ガス(反応性ガス)中の有機ケイ素化合物濃度は、40乃至80モル%、特に45乃至75モル%の範囲にあるのがよい。有機ケイ素化合物濃度が、上記範囲外であるときには、おそらく両化合物の相溶性のバランスが低下する結果として、酸素に対するバリア性、水分に対するバリア性などの膜特性が低下し、さらにはクラックなどの発生により膜表面があれた状態となりやすく、特に有機ケイ素化合物濃度が上記範囲よりも低いときには、水分の存在下での膜剥離を生じやすくなり、且つ酸素に対するバリア性が低くなる傾向があり、特に有機ケイ素化合物濃度が上記範囲よりも高いときには、低出力で蒸着膜の形成が困難となり、ポリ乳酸基材の熱変形を生じやすくなってしまう。   Further, the concentration of the organosilicon compound in the mixed gas (reactive gas) of the organosilicon compound and the hydrocarbon is preferably in the range of 40 to 80 mol%, particularly 45 to 75 mol%. When the organosilicon compound concentration is outside the above range, film properties such as barrier properties against oxygen and moisture are likely to deteriorate, possibly as a result of a decrease in the compatibility balance between the two compounds. In particular, when the concentration of the organosilicon compound is lower than the above range, film peeling tends to occur in the presence of moisture and the barrier property against oxygen tends to be low. When the silicon compound concentration is higher than the above range, it becomes difficult to form a deposited film at a low output, and the polylactic acid base material is likely to be thermally deformed.

尚、本発明では、上記の有機ケイ素化合物と炭化水素との混合ガスを反応性ガスとして使用するが、このような反応性ガスとともに、希釈剤として各種のキャリアガスを用いることもできる。このようなキャリアガスとしては、例えば、アルゴンガスやヘリウムガスなどの不活性ガスを例示することができる。   In the present invention, a mixed gas of the above-mentioned organosilicon compound and hydrocarbon is used as a reactive gas, but various carrier gases can be used as a diluent together with such a reactive gas. Examples of such a carrier gas include inert gases such as argon gas and helium gas.

<蒸着膜の形成>
上述した混合ガスを反応性ガスとして用いての蒸着は、プラズマCVDにより行われ、例えば、マイクロ波や高周波を利用してのグロー放電によるプラズマCVDにより、ポリ乳酸基材表面に蒸着膜が形成される。尚、高周波による場合には、膜を形成すべきポリ乳酸基材を一対の電極基板で挟持する必要があるため、立体容器形状のポリ乳酸基材に蒸着膜を形成するときには、マイクロ波によるプラズマCVDを実行することが好適である(即ち、一対の電極基板により容器壁を挟持するためには、装置構造が複雑になってしまう)。
<Formation of vapor deposition film>
Vapor deposition using the above mixed gas as a reactive gas is performed by plasma CVD. For example, a vapor deposition film is formed on the surface of the polylactic acid substrate by plasma CVD using glow discharge using microwaves or high frequency. The In the case of high frequency, it is necessary to sandwich a polylactic acid base material on which a film is to be formed between a pair of electrode substrates. Therefore, when forming a deposited film on a three-dimensional container-shaped polylactic acid base material, plasma generated by microwaves is used. It is preferable to perform CVD (that is, the structure of the apparatus becomes complicated in order to sandwich the container wall between the pair of electrode substrates).

このようなプラズマCVDは、例えば、所定の真空度に保持されたチャンバー内に成膜すべきポリ乳酸基材を配置し、該基材の成膜面側に所定の反応ガスを供給し、且つ所定の出力でマイクロ波を供給することにより、成膜することができる。高周波の場合には、ポリ乳酸基材を一対の電極の間に保持し、上記と同様、反応ガスを供給しながら所定の出力で高周波を印加することにより、成膜することとなる。   In such plasma CVD, for example, a polylactic acid base material to be formed is placed in a chamber maintained at a predetermined degree of vacuum, a predetermined reaction gas is supplied to the film forming surface side of the base material, and A film can be formed by supplying microwaves at a predetermined output. In the case of high frequency, the polylactic acid substrate is held between a pair of electrodes, and the film is formed by applying a high frequency with a predetermined output while supplying a reaction gas, as described above.

本発明において、マイクロ波或いは高周波を利用してのグロー放電により蒸着膜を形成する場合には、低出力で成膜を行うべきである。即ち、高出力で成膜を行うと、ポリ乳酸基材の熱変形を生じてしまうこととなるため、低出力で成膜を行うことにより、ポリ乳酸基材の熱変形を防止するのである。従って、マイクロ波によりプラズマCVDを行う場合には、その出力を300乃至500Wの範囲とするのがよく、高周波による場合は、その出力を300乃至600Wの範囲とするのがよい。   In the present invention, when a vapor deposition film is formed by glow discharge using microwaves or high frequency, the film should be formed at a low output. That is, if the film is formed at a high output, the polylactic acid base material is thermally deformed. Therefore, the film is formed at a low output to prevent the polylactic acid base material from being thermally deformed. Therefore, when performing plasma CVD using microwaves, the output is preferably in the range of 300 to 500 W, and in the case of high frequency, the output is preferably in the range of 300 to 600 W.

尚、前述した混合ガスを反応性ガスとして用いて行う場合には、上記のような低出力で成膜した場合にも、酸素に対するバリア性の高い蒸着膜を形成することができるのであり、これが、本発明の大きな利点である。例えば、酸素原子を分子中に有する有機ケイ素化合物と酸化性ガスとの混合ガスを反応性ガスとして用いて酸化ケイ素膜を形成する場合、上記のような低出力では、酸素バリア性の高い蒸着膜を形成することができず、必然的に高出力で成膜を行うことが必要となり、この結果、ポリ乳酸基材の熱変形を生じてしまうこととなる。   In the case where the above mixed gas is used as a reactive gas, a vapor deposition film having a high barrier property against oxygen can be formed even when the film is formed at a low output as described above. This is a great advantage of the present invention. For example, when a silicon oxide film is formed using a mixed gas of an organosilicon compound having an oxygen atom in the molecule and an oxidizing gas as a reactive gas, the deposited film has a high oxygen barrier property at the low output as described above. Therefore, it is necessary to form a film at a high output, and as a result, the polylactic acid base material is thermally deformed.

また、形成される蒸着膜の厚みは蒸着時間に比例し、従って、目的とする酸素等に対するガスバリア性や水分に対するバリア性などの諸特性を確保できる程度の厚みの蒸着膜が形成されるような時間、蒸着を行えばよい。例えば、出力によっても異なるが、通常、蒸着時間を2秒以上とすることにより、5nm以上の厚みの蒸着膜を形成することができ、ポリ乳酸基材の酸素バリア性や水分バリア性を有効に高め、水分中へのSiの溶出も抑制されている。   In addition, the thickness of the deposited film is proportional to the deposition time, and therefore, a deposited film having a thickness sufficient to ensure various characteristics such as a target gas barrier property against oxygen and the like and a barrier property against moisture is formed. Vapor deposition may be performed for a time. For example, although it depends on the output, normally, by setting the deposition time to 2 seconds or more, a deposited film with a thickness of 5 nm or more can be formed, and the oxygen barrier property and moisture barrier property of the polylactic acid base material are made effective. The elution of Si into moisture is suppressed.

本発明においては、上記のようにしてポリ乳酸基材表面に、該基材の熱変形を生じることなく、蒸着膜を形成することができ、該蒸着膜は、構成元素としてSi及びCの2種を含み、さらにはHを含有しており、ポリ乳酸基材に対する密着性が良好であり、既に述べたように、酸素バリア性、水分バリア性に優れ、また水分存在下で膜剥離を生じることもなく、また水分中へのSiの溶出も有効に防止されている。また、このような蒸着膜を形成した場合には、さらに、蒸着を行い、それ自体公知の酸化ケイ素膜やDLC等の炭化水素膜を、本発明に従って形成された蒸着膜の上に形成することもできる。例えば、酸化ケイ素膜を形成する場合、分子中に酸素原子を含む有機ケイ素化合物や該有機ケイ素化合物と酸化性ガスとを反応性ガスを用いて高出力で蒸着を行った場合においても、本発明にしたがって形成された蒸着膜が熱遮断層をして機能するため、ポリ乳酸基材の熱変形を有効に回避し、酸素バリア性をさらに高めることができる。また、エチレンやアセチレン、或いはその他の炭化水素を用いてDLC等の炭化水素系蒸着膜を形成した場合には、水分存在下での膜剥離を生じることなく、水分に対するバリア性をさらに向上させ、また水分中へのSiの溶出を一層有効に防止することもできる。勿論、酸化ケイ素膜及び炭化水素系膜の両方を、任意の順序で、本発明にしたがって形成された蒸着膜の上に形成することも可能である。   In the present invention, a vapor deposition film can be formed on the surface of the polylactic acid base material as described above without causing thermal deformation of the base material. Contains seeds and further contains H, has good adhesion to the polylactic acid substrate, and as described above, has excellent oxygen barrier properties and moisture barrier properties, and causes film peeling in the presence of moisture. In addition, the elution of Si into moisture is effectively prevented. In addition, when such a deposited film is formed, further vapor deposition is performed, and a known hydrocarbon film such as a silicon oxide film or DLC is formed on the deposited film formed according to the present invention. You can also. For example, in the case of forming a silicon oxide film, the present invention can be applied to the case where an organic silicon compound containing oxygen atoms in the molecule or the organic silicon compound and an oxidizing gas are deposited at a high output using a reactive gas. Since the deposited film formed according to the above functions as a heat blocking layer, thermal deformation of the polylactic acid base material can be effectively avoided, and the oxygen barrier property can be further enhanced. In addition, when a hydrocarbon-based vapor deposition film such as DLC is formed using ethylene, acetylene, or other hydrocarbons, the barrier property against moisture is further improved without causing film peeling in the presence of moisture, Moreover, the elution of Si into moisture can be prevented more effectively. Of course, both the silicon oxide film and the hydrocarbon-based film can be formed on the deposited film formed according to the present invention in any order.

上記のようにしてポリ乳酸基材の表面に蒸着膜を形成することにより製造されるポリ乳酸成形品は、ポリ乳酸基材の熱変形が抑制されているばかりか、酸素や水分に対するバリア性が良好であり、しかも水分存在下での膜剥離も防止され、Siの水分中への溶出も抑制されているため、特に、ボトルのような容器、特に水分含有の飲料等の液が充填される容器に、好適に適用される。この場合、蒸着膜は、最も好適には、容器の内面に形成されているのがよい。   The polylactic acid molded product produced by forming a vapor-deposited film on the surface of the polylactic acid base as described above has not only suppressed thermal deformation of the polylactic acid base but also has a barrier property against oxygen and moisture. Since it is good and also prevents film peeling in the presence of moisture and suppresses elution of Si into moisture, it is filled with liquids such as containers such as bottles, especially beverages containing moisture. The container is preferably applied. In this case, the vapor deposition film is most preferably formed on the inner surface of the container.

本発明を次の例で説明するが、本発明はいかなる意味においても、次の例に制
限されるものではない。
尚、実施例及び比較例で作成された蒸着ボトルの各種特性の評価は、以下のようにして行った。
The present invention will be described in the following examples, but the present invention is not limited to the following examples in any way.
In addition, evaluation of the various characteristics of the vapor deposition bottle created by the Example and the comparative example was performed as follows.

(水分バリア性)
蒸着膜を内面に被覆したポリ乳酸ボトルに、イオン交換水400mlを室温充填し、ゴム栓で密栓後、重量測定し、37℃25%RH環境下に7日保存後の全重量から一日当たりの水分透過量を求めた。
(Moisture barrier properties)
A polylactic acid bottle coated with a vapor-deposited film is filled with 400 ml of ion-exchanged water at room temperature, sealed with a rubber stopper, weighed, and weighed per day from the total weight after storage for 7 days in a 37 ° C. and 25% RH environment. The amount of moisture permeation was determined.

(酸素バリア性)
水分バリア性評価後のボトルからイオン交換水を排出後、室温で3日間、倒立静置保存した後、乾燥し、脱気グローボックスに挿入し、窒素置換した。窒素置換後、ゴム栓で密栓し、37℃、25%RH環境下に7日保存した。ガスタイトシリンジでボトル内空気を1ml採取し、酸素測定用ガスタイトクロマトグラフィーにて酸素濃度を測定した。
(Oxygen barrier properties)
After draining ion-exchanged water from the bottle after the evaluation of moisture barrier properties, it was stored in an inverted state at room temperature for 3 days, then dried, inserted into a degassing glow box, and purged with nitrogen. After purging with nitrogen, it was sealed with a rubber stopper and stored in a 37 ° C., 25% RH environment for 7 days. 1 ml of air in the bottle was collected with a gas tight syringe and the oxygen concentration was measured with gas tight chromatography for oxygen measurement.

(蒸着膜の密着性)
蒸着膜を内面に被覆したポリ乳酸ボトルに室温で400mlイオン交換水を充填後 37℃、25%RH環境下に14日間ボトルを保存した後、ボトル外面からボトル内容液を目視検査し、ボトル内にせん光性を示す透明フレークが浮遊していた場合、蒸着膜が剥離したと判断した。
また、上記保存後のボトルから充填水を1ml採取し、原子吸光測定装置(Rigaku 蛍光X線分析装置(XRF))にて充填水に溶出したSi原子濃度を測定した。
(Adhesion of deposited film)
A polylactic acid bottle coated with a vapor deposition film is filled with 400 ml of ion-exchanged water at room temperature. After storing the bottle in an environment of 37 ° C. and 25% RH for 14 days, the bottle contents are visually inspected from the outside of the bottle. When transparent flakes exhibiting flashing properties were floating, it was determined that the deposited film was peeled off.
Moreover, 1 ml of filling water was sampled from the bottle after the storage, and the concentration of Si atoms eluted in the filling water was measured with an atomic absorption spectrometer (Rigaku X-ray fluorescence analyzer (XRF)).

(水保存後の膜状態の観察)
蒸着膜を内面に被覆したポリ乳酸ボトルに室温で400mlのイオン交換水を充填後、37℃、25%RH環境下に14日間保存し、ボトルから充填水を排出させた。水排出後のボトルにつき、ボトル内面に残る水滴の状態を外観観察し、あばた状に水滴が残った場合、不均一な水濡れ性ボトルとした。水滴が残らない濡れ性の良好なボトルを均一濡れ性ボトルとした。また、外観観察から蒸着膜表面があれている場合シルバーと表記した。(シルバーは蒸着膜のクラックやクレイズによる表面粗さに由来している。)
(Observation of membrane state after water storage)
A polylactic acid bottle covered with a vapor deposition film was filled with 400 ml of ion-exchanged water at room temperature, and then stored in a 37 ° C., 25% RH environment for 14 days, and the filled water was discharged from the bottle. The appearance of water droplets remaining on the inner surface of the bottle after water discharge was observed, and when water droplets remained in the shape of a flap, the bottle was made non-uniformly wettable. A bottle with good wettability in which no water droplets remained was used as a uniform wettability bottle. In addition, when the surface of the deposited film was found from the appearance observation, it was written as silver. (Silver is derived from cracks in the deposited film and surface roughness due to craze.)

(ボトルの熱変形性)
蒸着膜形成後のボトルを目視で観察し、蒸着膜形成前のボトル形状の変形の有無を評価した。
(Thermal deformation of the bottle)
The bottle after vapor deposition film formation was observed visually, and the presence or absence of the deformation | transformation of the bottle shape before vapor deposition film formation was evaluated.

<実施例1>
(蒸着試験システム)
周波数2.45GHz、最大出力1.2KWのマイクロ波電源、直径106mm、高さ500mmの金属型筒状プラズマ処理室、処理室を真空にする油回転式ポンプ、マイクロ波を発信器からプラズマ処理室に導入する矩形導波管を有する装置を用いた。
<Example 1>
(Deposition test system)
A microwave power source with a frequency of 2.45 GHz and a maximum output of 1.2 KW, a metal cylindrical plasma processing chamber with a diameter of 106 mm and a height of 500 mm, an oil rotary pump that evacuates the processing chamber, and a microwave from the transmitter to the plasma processing chamber An apparatus having a rectangular waveguide to be introduced into was used.

(蒸着前処理)
上記装置のプラズマ処理室内に、内容積が470mlのポリ乳酸ボトルをセット後、ボトル外部の真空度を4KPa、ボトル内部真空度を10PKaとした。ガス供給管は、外径15mm、長さ150mmの多孔構造を有する焼結性ステンレス供給管を用いた。
(Pre-deposition treatment)
After setting a polylactic acid bottle with an internal volume of 470 ml in the plasma processing chamber of the above apparatus, the degree of vacuum outside the bottle was 4 KPa and the degree of vacuum inside the bottle was 10 PKa. As the gas supply pipe, a sinterable stainless steel supply pipe having a porous structure with an outer diameter of 15 mm and a length of 150 mm was used.

(密着層形成)
トリメチルビニルシラン(TMVS)を80sccm、エチレンガス(ET)を80sccm混合ガスを導入後、マイクロ波発信器より330Wの出力でマイクロ波を発信させ、ポリ乳酸ボトル内にプラズマを発生させ、蒸着時間4.0secのプラズマ処理を行い(熱量換算で1320J相当)、密着層となる蒸着膜をポリ乳酸ボトルの内面に形成し、蒸着膜形成後、ボトルを大気解放し、プラズマ蒸着処理機よりボトルを取り出した。
(Adhesion layer formation)
3. After introducing a mixed gas of 80 sccm of trimethylvinylsilane (TMVS) and 80 sccm of ethylene gas (ET), a microwave is transmitted from the microwave transmitter at an output of 330 W, plasma is generated in the polylactic acid bottle, and the deposition time is 4. Plasma treatment for 0 sec was performed (equivalent to 1320J in terms of calorific value), and a vapor deposition film serving as an adhesion layer was formed on the inner surface of the polylactic acid bottle. .

上記のようにして密着層となる蒸着膜が形成されたポリ乳酸ボトルの各種評価を前述した方法により行い、その結果を表1に示した。   Various evaluations of the polylactic acid bottle on which the deposited film serving as the adhesion layer was formed as described above were performed by the methods described above, and the results are shown in Table 1.

<実施例2>
混合ガス組成を、トリメチルビニルシラン(TMVS)を10sccm、エチレンガス(ET)を10sccmに変更した以外は、実施例1と全く同様にして密着層となる蒸着膜を形成し、そのボトルの各種特性を評価した。結果を表1に示す。
<Example 2>
Except that the mixed gas composition was changed to 10 sccm for trimethylvinylsilane (TMVS) and 10 sccm for ethylene gas (ET), a vapor deposition film serving as an adhesion layer was formed in the same manner as in Example 1, and various characteristics of the bottle were determined. evaluated. The results are shown in Table 1.

<実施例3>
混合ガス組成を、トリメチルビニルシラン(TMVS)を3.0sccm、エチレンガス(ET)を3.0sccmとし、且つ蒸着時間を0.5secに変更してのプラズマ処理(熱量換算で165J相当)を行った以外は、実施例1と全く同様にして密着層となる蒸着膜を、ポリ乳酸ボトルの内面に形成した。
<Example 3>
Plasma treatment (corresponding to 165 J in terms of calorie) was performed by changing the mixed gas composition to triscylvinylsilane (TMVS) of 3.0 sccm, ethylene gas (ET) of 3.0 sccm, and changing the deposition time to 0.5 sec. Except for the above, a vapor deposition film serving as an adhesion layer was formed on the inner surface of the polylactic acid bottle in exactly the same manner as in Example 1.

次いで、ヘキサメチレンジシロキサン(HMDSO)を3.0sccm、酸素ガスを30sccm混合ガスをボトル内部に導入し、マイクロ波発信器より、酸化ケイ素膜表面にクラックやクレイズを発生させない400W出力でマイクロ波を発信させポリ乳酸ボトル内にプラズマを発生させ、蒸着時間3.0secのプラズマ処理を行い(熱量換算で1200J相当)、バリア層となる第2層の蒸着膜を、密着層となる蒸着膜の上に形成した。   Next, a mixed gas of 3.0 sccm of hexamethylenedisiloxane (HMDSO) and 30 sccm of oxygen gas is introduced into the bottle, and a microwave is emitted from the microwave transmitter at 400 W output that does not generate cracks or crazes on the surface of the silicon oxide film. Generate plasma in the polylactic acid bottle, perform plasma treatment for a deposition time of 3.0 sec (equivalent to 1200 J in terms of calorie), and deposit the second layer deposited film as the barrier layer on the deposited film as the adhesion layer Formed.

上記のようにして密着層となる蒸着膜とバリア層となる第2層の蒸着膜とが形成されたポリ乳酸ボトルの各種評価を前述した方法により行い、その結果を表1に示した。   Various evaluations of the polylactic acid bottle in which the vapor-deposited film serving as the adhesion layer and the second-layer vapor-deposited film serving as the barrier layer were formed as described above were performed by the methods described above, and the results are shown in Table 1.

<実施例4>
密着層(第1層)となる蒸着膜形成時のガス組成を、トリメチルビニルシラン(TMVS)を4.0sccm、エチレンガス(ET)を2.0sccmとした以外は実施例3と全く同様にして、密着層となる蒸着膜とバリア層となる第2層の蒸着膜とが形成されたポリ乳酸ボトルを作製し、各種評価を前述した方法により行い、その結果を表1に示した。
<Example 4>
The gas composition at the time of forming the deposited film to be the adhesion layer (first layer) was exactly the same as in Example 3, except that trimethylvinylsilane (TMVS) was 4.0 sccm and ethylene gas (ET) was 2.0 sccm. A polylactic acid bottle in which a vapor-deposited film serving as an adhesion layer and a second-layer vapor-deposited film serving as a barrier layer were produced, and various evaluations were performed by the methods described above. The results are shown in Table 1.

<実施例5>
密着層(第1層)となる蒸着膜形成時のガス組成を、トリメチルビニルシラン(TMVS)を3.0sccm、アセチレンガス(AC)を3.0sccmとした以外は実施例3と全く同様にして、密着層となる蒸着膜とバリア層となる第2層の蒸着膜とが形成されたポリ乳酸ボトルを作製し、各種評価を前述した方法により行い、その結果を表1に示した。
<Example 5>
The gas composition at the time of forming the deposited film serving as the adhesion layer (first layer) was exactly the same as in Example 3, except that trimethylvinylsilane (TMVS) was set to 3.0 sccm and acetylene gas (AC) was set to 3.0 sccm. A polylactic acid bottle in which a vapor-deposited film serving as an adhesion layer and a second-layer vapor-deposited film serving as a barrier layer were produced, and various evaluations were performed by the methods described above. The results are shown in Table 1.

<実施例6>
密着層(第1層)となる蒸着膜形成時のガス組成を、トリメチルビニルシラン(TMVS)を3.0sccm、エチレンガス(AC)を3.0sccmに変更し、且つバリア層(第2層)となる蒸着膜形成時のガス組成をアセチレン80sccmとする以外は、実施例3と全く同様にして、密着層となる蒸着膜とバリア層となる第2層の蒸着膜とが形成されたポリ乳酸ボトルを作製し、各種評価を前述した方法により行い、その結果を表1に示した。
<Example 6>
The gas composition at the time of forming the deposited film to be the adhesion layer (first layer) was changed to 3.0 sccm for trimethylvinylsilane (TMVS) and 3.0 sccm for ethylene gas (AC), and the barrier layer (second layer) A polylactic acid bottle in which a vapor deposition film to be an adhesion layer and a vapor deposition film of a second layer to be a barrier layer were formed in exactly the same manner as in Example 3 except that the gas composition at the time of forming the vapor deposition film was changed to 80 sccm of acetylene And various evaluations were performed by the methods described above, and the results are shown in Table 1.

Figure 0004973081
Figure 0004973081

<比較例1>
実施例1で用いた密着層となる蒸着膜形成前のポリ乳酸ボトルについて、各種評価を前述した方法により行い、その結果を表2に示した。
<Comparative Example 1>
Various evaluations were performed on the polylactic acid bottle before forming the vapor deposition film to be an adhesion layer used in Example 1 by the methods described above, and the results are shown in Table 2.

<比較例2>
密着層となる蒸着膜を形成せず、直ちに、アセチレンガス80sccmガス流量で、マイクロ波発信器の出力400Wマイクロ波を発信させ、蒸着時間3.0secのプラズマ処理(熱量換算で1200J相当)を行った以外は、実施例3と全く同様にして、バリア層となる蒸着膜を形成し、このボトルについて、各種評価を前述した方法により行い、その結果を表2に示した。
<Comparative example 2>
Immediately without forming a vapor deposition film to be an adhesion layer, an output of 400 W microwave of a microwave transmitter is transmitted at an acetylene gas flow rate of 80 sccm, and a plasma treatment (equivalent to 1200 J in terms of calorie) is performed for a deposition time of 3.0 sec. Except for the above, a vapor deposition film serving as a barrier layer was formed in the same manner as in Example 3, and various evaluations were performed on the bottles by the methods described above. The results are shown in Table 2.

<比較例3>
密着層(第1層)となる蒸着膜形成時のガスとして、エチレンガス(ET)6.0sccmを用いた以外は、実施例3と全く同様にして、密着層となる蒸着膜とバリア層となる第2層の蒸着膜とが形成されたポリ乳酸ボトルを作製し、各種評価を前述した方法により行い、その結果を表2に示した。
<Comparative Example 3>
Except for using ethylene gas (ET) 6.0 sccm as the gas for forming the vapor deposition film to be the adhesion layer (first layer), the vapor deposition film to be the adhesion layer and the barrier layer were the same as in Example 3. A polylactic acid bottle formed with a second layer deposited film was prepared, and various evaluations were performed by the methods described above. The results are shown in Table 2.

<比較例4>
密着層(第1層)となる蒸着膜形成時のガス組成を、ヘキサジメチルシロキサン(HMDSO)を3.0sccmとエチレンガス(ET)を3.0sccmに変更した以外は、実施例3と全く同様にして、密着層となる蒸着膜とバリア層となる第2層の蒸着膜とが形成されたポリ乳酸ボトルを作製し、各種評価を前述した方法により行い、その結果を表2に示した。
<Comparative example 4>
Except for changing the gas composition at the time of forming a deposited film to be an adhesion layer (first layer) to 3.0 sccm for hexadimethylsiloxane (HMDSO) and 3.0 sccm for ethylene gas (ET), it is exactly the same as Example 3. Thus, a polylactic acid bottle in which a vapor deposition film serving as an adhesion layer and a second vapor deposition film serving as a barrier layer were formed, and various evaluations were performed by the methods described above. The results are shown in Table 2.

<実施例7>
密着層(第1層)となる蒸着膜形成時のガス組成を、トリメチルビニルシラン(TMVS)を2.0sccm、エチレンガス(ET)を4.0sccmに変更した以外は、実施例3と全く同様にして、密着層となる蒸着膜とバリア層となる第2層の蒸着膜とが形成されたポリ乳酸ボトルを作製し、各種評価を前述した方法により行い、その結果を表2に示した。この実施例7では、水保存時における蒸着膜の剥離がやや生じ且つ膜表面の荒れが認められたが、酸素や水分に対するバリア性は、他の比較例で形成された膜と同等以上であり、特に酸素に対するバリア性はかなり高いレベルにあった。
<Example 7>
The gas composition at the time of forming the deposited film to be the adhesion layer (first layer) was exactly the same as Example 3 except that trimethylvinylsilane (TMVS) was changed to 2.0 sccm and ethylene gas (ET) was changed to 4.0 sccm. Thus, a polylactic acid bottle in which a vapor deposition film serving as an adhesion layer and a second vapor deposition film serving as a barrier layer were formed, and various evaluations were performed by the methods described above. The results are shown in Table 2. In this Example 7, peeling of the deposited film occurred slightly during water storage and the film surface was found to be rough, but the barrier property against oxygen and moisture was equal to or higher than the film formed in other comparative examples. In particular, the barrier property against oxygen was at a considerably high level.

<実施例8>
密着層(第1層)となる蒸着膜形成時のガス組成を、トリメチルビニルシラン(TMVS)を5.0sccm、エチレンガス(ET)を1.0sccmと変更した以外は、実施例3と全く同様にして、密着層となる蒸着膜とバリア層となる第2層の蒸着膜とが形成されたポリ乳酸ボトルを作製し、各種評価を前述した方法により行い、その結果を表2に示した。この実施例8では、膜表面の荒れが認められたが、水保存時における膜剥離は生ぜず、また、酸素や水分に対するバリア性も、他の比較例で形成された膜よりも高いレベルにあった。
<Example 8>
Except for changing the gas composition during the formation of the deposited film to be the adhesion layer (first layer) to 5.0 sccm for trimethylvinylsilane (TMVS) and 1.0 sccm for ethylene gas (ET), the same as in Example 3. Thus, a polylactic acid bottle in which a vapor deposition film serving as an adhesion layer and a second vapor deposition film serving as a barrier layer were formed, and various evaluations were performed by the methods described above. The results are shown in Table 2. In Example 8, the film surface was found to be rough, but the film was not peeled off during water storage, and the barrier property against oxygen and moisture was higher than that of the film formed in the other comparative examples. there were.

<比較例5>
密着層(第1層)となる蒸着膜形成時のガス組成を、ヘキサジメチルシロキサン(HMDSO)を3.0sccm、アセチレンガス(AC)を3.0sccmに変更した以外は、実施例3と全く同様にして、密着層となる蒸着膜とバリア層となる第2層の蒸着膜とが形成されたポリ乳酸ボトルを作製し、各種評価を前述した方法により行い、その結果を表2に示した。
<Comparative Example 5>
Except for changing the gas composition at the time of forming the deposited film to be the adhesion layer (first layer) to 3.0 sccm for hexadimethylsiloxane (HMDSO) and 3.0 sccm for acetylene gas (AC), the same as in Example 3. Thus, a polylactic acid bottle in which a vapor deposition film serving as an adhesion layer and a second vapor deposition film serving as a barrier layer were formed, and various evaluations were performed by the methods described above. The results are shown in Table 2.

<比較例6>
密着層(第1層)となる蒸着膜形成時のガス組成を、ヘキサメチルジシロキサン(HMDSO)を6.0sccmとし且つマイクロ波出力510Wで0.5secのプラズマ処理(熱量換算で255J相当)に変更して密着層を形成し、次に、バリア層(第2層)となる蒸着膜形成時のガス組成を、ヘキサメチレンジシロキサン(HMDSO)を3.0sccm、酸素ガスを30sccmの混合ガスとし且つマイクロ波出力580Wで3.0secのプラズマ処理(熱量換算で1740J相当のプラズマ処理)に変更して、バリア層となる第2層の蒸着膜を形成した以外は、実施例3と全く同様にして、密着層となる蒸着膜とバリア層となる第2層の蒸着膜とが形成されたポリ乳酸ボトルを作製し、各種評価を前述した方法により行い、その結果を表2に示した。
<Comparative Example 6>
The gas composition at the time of formation of the vapor deposition film to be the adhesion layer (first layer) is set to 6.0 sccm of hexamethyldisiloxane (HMDSO) and 0.5 sec plasma treatment (corresponding to 255 J in terms of heat) at a microwave output of 510 W. The adhesion layer is formed by changing, and then the gas composition at the time of forming the deposited film that becomes the barrier layer (second layer) is a mixed gas of 3.0 sccm of hexamethylenedisiloxane (HMDSO) and 30 sccm of oxygen gas. In addition, the same procedure as in Example 3 was performed, except that the plasma processing was changed to a plasma processing of 3.0 sec at a microwave output of 580 W (plasma processing equivalent to 1740 J in terms of calorie), and a second layer deposited film serving as a barrier layer was formed. Then, a polylactic acid bottle in which a vapor deposition film serving as an adhesion layer and a second vapor deposition film serving as a barrier layer are formed, and various evaluations are performed by the methods described above. Results are shown in Table 2.

尚、この例では、密着層となる蒸着膜形成時に、ポリ乳酸ボトルの変形が生じていた。   In this example, the polylactic acid bottle was deformed during the formation of the deposited film serving as the adhesion layer.

Figure 0004973081
Figure 0004973081

Claims (5)

脂肪族不飽和基を有し且つ分子中に酸素を有していない有機ケイ素化合物と脂肪族不飽和炭化水素または芳香族炭化水素との混合ガスであって、該有機ケイ素化合物を40乃至80モル%の量で含有しているものを反応性ガスとして使用し、該反応性ガスをポリ乳酸基材上に供給してのプラズマCVDにより、ポリ乳酸基材上に蒸着膜を形成することを特徴とするポリ乳酸成形品の製造方法。 A mixed gas of an organic silicon compound having an aliphatic unsaturated group and having no oxygen in the molecule, and an aliphatic unsaturated hydrocarbon or aromatic hydrocarbon , the organic silicon compound being 40 to 80 mol % Is used as a reactive gas, and a deposited film is formed on the polylactic acid substrate by plasma CVD with the reactive gas supplied onto the polylactic acid substrate. A method for producing a polylactic acid molded product. 前記有機ケイ素化合物として、トリメチルビニルシランを使用する請求項1に記載のポリ乳酸成形品の製造方法。 The method for producing a polylactic acid molded product according to claim 1 , wherein trimethylvinylsilane is used as the organosilicon compound. 前記脂肪族不飽和炭化水素として、エチレンまたはアセチレンを使用する請求項1または2に記載のポリ乳酸成形品の製造方法。 The method for producing a polylactic acid molded article according to claim 1 or 2 , wherein ethylene or acetylene is used as the aliphatic unsaturated hydrocarbon. プラズマCVDによる蒸着膜の形成を、出力300乃至500Wでのマイクロ波により行う請求項1乃至3の何れかに記載の製造方法。 4. The manufacturing method according to claim 1 , wherein the deposited film is formed by plasma CVD using microwaves with an output of 300 to 500W. 前記蒸着膜を形成した後に、該蒸着膜の上に酸化ケイ素膜及び/または炭化水素系膜を形成する請求項1乃至4の何れかに記載の製造方法 The manufacturing method according to any one of claims 1 to 4, wherein after the vapor deposition film is formed, a silicon oxide film and / or a hydrocarbon film is formed on the vapor deposition film .
JP2006249118A 2006-09-14 2006-09-14 Method for producing polylactic acid molded product Active JP4973081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006249118A JP4973081B2 (en) 2006-09-14 2006-09-14 Method for producing polylactic acid molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006249118A JP4973081B2 (en) 2006-09-14 2006-09-14 Method for producing polylactic acid molded product

Publications (2)

Publication Number Publication Date
JP2008069407A JP2008069407A (en) 2008-03-27
JP4973081B2 true JP4973081B2 (en) 2012-07-11

Family

ID=39291252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006249118A Active JP4973081B2 (en) 2006-09-14 2006-09-14 Method for producing polylactic acid molded product

Country Status (1)

Country Link
JP (1) JP4973081B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4420052B2 (en) * 2007-04-06 2010-02-24 東洋製罐株式会社 Method for producing plastic molded article with vapor deposition film
JP5961994B2 (en) * 2011-12-12 2016-08-03 大日本印刷株式会社 High moisture-proof film and manufacturing method thereof
JP5961993B2 (en) * 2011-12-12 2016-08-03 大日本印刷株式会社 High moisture-proof film and manufacturing method thereof
JP5794184B2 (en) * 2012-03-21 2015-10-14 東洋製罐株式会社 POLYLACTIC ACID FORMED BODY HAVING DEPOSIBLE FILM AND PROCESS FOR PRODUCING THE SAME
JP7163041B2 (en) * 2018-03-13 2022-10-31 東レエンジニアリング株式会社 Barrier film and light conversion material
JP6607279B2 (en) * 2018-05-01 2019-11-20 大日本印刷株式会社 High moisture-proof film and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4105600B2 (en) * 2003-06-25 2008-06-25 株式会社資生堂 Manufacturing method of resin container
JP4432423B2 (en) * 2003-09-25 2010-03-17 東洋製罐株式会社 Chemical vapor deposition film by plasma CVD method
JP2005256061A (en) * 2004-03-10 2005-09-22 Dainippon Printing Co Ltd Laminate
JP4566719B2 (en) * 2004-12-02 2010-10-20 麒麟麦酒株式会社 Carbon film coated plastic container manufacturing method, plasma CVD film forming apparatus and plastic container
JP4936764B2 (en) * 2006-03-28 2012-05-23 麒麟麦酒株式会社 DLC film coated biodegradable plastic container or film and method for producing the same
JP4420052B2 (en) * 2007-04-06 2010-02-24 東洋製罐株式会社 Method for producing plastic molded article with vapor deposition film

Also Published As

Publication number Publication date
JP2008069407A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4420052B2 (en) Method for producing plastic molded article with vapor deposition film
JP5109975B2 (en) Biodegradable plastic container with deposited film by plasma CVD
JP4973081B2 (en) Method for producing polylactic acid molded product
JP5012762B2 (en) Manufacturing method for plastic containers
JP5083200B2 (en) Plastic molded product with vapor deposition film
KR101162377B1 (en) Chemical vapor deposition film formed by plasma cvd process and method for forming same
JP5012761B2 (en) Manufacturing method for plastic containers
WO2006090602A1 (en) Vapor deposited film by plasma cvd method
EP2597175B1 (en) Method for producing coated polymer
JP4936764B2 (en) DLC film coated biodegradable plastic container or film and method for producing the same
JP2004169087A (en) High frequency plasma cvd system, and plastic vessel
JP2006111967A (en) Gas barrier coating and vessel
JP2008094447A (en) Plastic container coated with thin film
JP2000117881A (en) Container made of plastic with gas barrier property
JP5273760B2 (en) Plastic container
JP5250958B2 (en) Plastic container and method for manufacturing plastic container
JP4268545B2 (en) Plastic container
JP2009190747A (en) Plastic container coated with thin film
JP2005200043A (en) Plastic container
JP5286478B2 (en) Polyester container and method for producing the same
JP5090081B2 (en) Polylactic acid resin container with gas barrier properties
JP2006082818A (en) Plastic container with gas barrier property, and its manufacturing method
DK1893788T3 (en) POLYMER ARTICLE WITH A THIN COATING MADE ON AT LEAST ITS PLASMA SIDE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R150 Certificate of patent or registration of utility model

Ref document number: 4973081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350