[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4945878B2 - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
JP4945878B2
JP4945878B2 JP2003004477A JP2003004477A JP4945878B2 JP 4945878 B2 JP4945878 B2 JP 4945878B2 JP 2003004477 A JP2003004477 A JP 2003004477A JP 2003004477 A JP2003004477 A JP 2003004477A JP 4945878 B2 JP4945878 B2 JP 4945878B2
Authority
JP
Japan
Prior art keywords
reforming
unit
water
temperature
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003004477A
Other languages
Japanese (ja)
Other versions
JP2003238112A (en
JP2003238112A5 (en
Inventor
邦弘 鵜飼
猛 富澤
清 田口
敏之 庄野
浩一郎 北河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003004477A priority Critical patent/JP4945878B2/en
Publication of JP2003238112A publication Critical patent/JP2003238112A/en
Publication of JP2003238112A5 publication Critical patent/JP2003238112A5/ja
Application granted granted Critical
Publication of JP4945878B2 publication Critical patent/JP4945878B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素系の燃料を水で改質する水素生成装置に関する。
【0002】
【従来の技術】
水素の生成方法のひとつに、水蒸気改質法がある。天然ガス、LPG等の炭化水素成分、メタノール等のアルコール、あるいはナフサ成分等の有機化合物原料と水とを改質触媒を設けた改質部で水蒸気改質反応させ、水素を発生させる方法である。この水蒸気改質反応では一酸化炭素が副成分として生成するため、水と一酸化炭素をシフト反応させる変成部を併用する。また、高分子電解質型燃料電池用の水素供給方法として水蒸気改質法を用いる場合、一酸化炭素をさらに除去するため、変成部の後段にさらに、一酸化炭素酸化法あるいはメタン化法等を用いた浄化部を設ける。
【0003】
上記の改質部、変成部および浄化部にはそれぞれの反応に対応した触媒を設ける。それぞれの触媒で反応温度が相違するため、安定した水素供給を行うためには、触媒を反応温度まで加熱する必要がある。反応温度は、原料の流れの上流に位置する改質部が最も高く、変成部、浄化部の順で温度が低下する。従って、従来の水蒸気改質法を用いた水素生成装置では、改質部からの熱、例えば、改質後ガスの保有する熱、あるいは改質部に設けた加熱部の余剰熱で、変成部および浄化部を順次加熱する構成が用いられることが多い。
【0004】
【発明が解決しようとする課題】
改質部、変成部、浄化部の各反応部温度が適切でない場合、水素生成が効果的に進行しない。例えば、水蒸気改質法では、原料中の炭素原子が反応し二酸化炭素となる当量よりも酸素が不足しないように水を供給する。原料と水が反応するためには、少なくとも水が水蒸気の状態で存在することが必要となる。しかし、改質部が低温の場合、水を供給しても反応は進行せず装置内に滞留する。また、改質部を高温にした後原料および水を供給した場合、加熱過程で熱により触媒体が劣化し反応性が低下する可能性が有る。そこで、適切な温度で原料および水を供給する必要がある。
【0005】
また、改質部より下流のガスは、変成部触媒の耐熱温度よりも高い温度となる。耐熱温度以上のガスを供給した場合、触媒が劣化し特性が低下するため、改質部から変成部に至るまでに冷却する必要がある。また、浄化部で一酸化炭素濃度を十分に低減し、水素を供給することが、水素生成装置の目的である。しかし、毎回の装置起動時に一酸化炭素濃度を測定し、水素供給開始の判断を行うことは煩雑であるため、正常運転状態であることを検知するための簡便で正確な方法が望まれている。
【0006】
【課題を解決するための手段】
上述の課題を解決するため本発明の水素生成装置の運転方法は、原料供給部と、水供給部と、前記原料と水とを反応させる改質触媒体を具備した改質部と、前記改質触媒体を加熱する加熱部と、一酸化炭素と水とを反応させる変成触媒体を具備した変成部と、前記改質部と前記変成部とを連通するガス通気経路と、前記ガス通気経路に第一温度検出部とを備える水素生成装置の運転方法であって、前記加熱部の動作を開始したのち、前記第一温度検出部により検出された温度が予め定めた下限値に到達した場合、前記原料供給部及び前記水供給部より前記改質部に原料と水との供給を開始し、前記下限値は、100℃以上400℃以下であることを特徴とする。
【0008】
また、本発明の水素生成装置の運転方法は、前記改質部と前記変成部とを連通するガス通気経路と前記ガス通気経路に水注入口と、前記水注入口と前記変成部との間の前記ガス通気経路に第二温度検出部とを備え、前記第二温度検出部により検出される温度が上限値を越さないように、前記水注入口より水を供給することを特徴とする。
【0009】
また、本発明の水素生成装置の運転方法は前記上限値は、500℃以下250℃以上であることが望ましい。これは、この温度より低いと、下流側に水が溜まり、触媒を劣化させるためである。
【0010】
【発明の実施の形態】
本発明は、従来の水素生成装置の課題を解決するもので、改質部、変成部、浄化部からのガス温度をもとに、原料、水および空気の供給を制御し、各反応部における触媒体を効果的に動作させ、水素の安定供給に対応できる水素装置を提供するものである。以下、本発明実施形態について図面とともに説明する。
【0011】
(実施形態1)
図1は、本発明の水素発生装置の要部の縦断面を示した図である。図1において、1は水蒸気改質反応の改質触媒部1aを設けた改質部である。改質触媒部1aには、白金属系貴金属を調製して作成した触媒を用いた。2は、改質部の加熱部で、本構成では火炎バーナーを加熱手段とした。3は、変成触媒体3aを納めた変成部である。変成触媒体3aには、少なくとも銅を成分として含む触媒を用いた。4は一酸化炭素の浄化部で、浄化触媒として白金属系酸化触媒4aを設ける構成とした。5は水蒸気改質反応のための炭化水素を主成分とする原料供給部、6は水供給部である7は、改質部1、変成部2および浄化部3で構成するガス通気経路で、改質部1、変成部2、浄化部3の順でガスを流し浄化部3に出口を有する。また、8は空気供給部で、変成部2と浄化部3との間のガス通気経路7に空気を供給する。9は改質部1後のガス温度を検出する第一温度検出部で、改質部1と変成部3との間のガス通気経路7に設けた。
【0012】
次に本実施形態の水素発生装置において、水素供給時の装置動作について説明する。加熱部2を作動させ、改質部1の改質触媒体1aを加熱する。原料である炭化水素成分を原料供給部5から、水を水供給部6から改質触媒部2aに供給し、水蒸気改質反応を進行させる。9の第一温度検出部で改質部2後のガス温度を測定し、その温度に下限値を設け、測定温度が下限値を超すことにより改質部2への原料および水の供給を開始する。改質部後のガスは、ガス通気経路7を通して変成部3に通気する。変成部3後のガスは、ガス通気経路7より浄化部4に通気する。浄化部4後のガスは、ガス通気経路7より外部に供給する。この時、空気供給部8より変成部3と浄化部4の間のガス通気経路7から変成部後のガスに空気を供給する。
【0013】
本水素生成装置の目的は、水素を安定して発生させることである。そのためには、改質部、変成部、浄化部の各反応部を適切な温度で動作させることが必要となる。特に改質部は、水素生成の基本反応を進める部分であり、原料および水の供給量、温度制御が重要となる。そこで、原料中の炭素原子が反応し二酸化炭素となる当量よりも酸素が不足しないように水を供給する。
【0014】
また、原料と水が反応するためには、少なくとも水が水蒸気の状態で存在することが必要となる。しかし、装置起動直後で改質部が低温の場合、水を供給しても十分に水蒸気として存在しないため反応は進行せず、かつ装置内に水が滞留する事態となる。仮に水が大量に滞留した場合、ガス通気経路を閉塞させる可能性もある。そこで、本発明では、改質部後のガス温度を測定し、その温度に基づき原料および水を供給する。この構成により、水を十分に蒸発させ改質部の反応を効果的に行うものである。
【0015】
次に、本実施形態における、水素発生装置の一動作例を示す。まず、装置起動時の動作を示す。加熱部を作動し改質部の加熱を開始した。加熱部により改質部改質触媒体を加熱することで、改質触媒体内のガス体が体積膨張し、加熱されたガス体がガス通気経路へと流れ込む。第一温度検出部では、改質部改質触媒部後のこのガス体温度を測定する。本実施の形態では、第一温度検出部で改質部1後のガス温度測定値をもとに、その温度が100℃を超すことにより改質部1への原料および水の供給を開始した。
【0016】
原料である炭化水素成分としてメタンガスを用い、メタンガス1モルに対して2モル以上の水を付加して、改質部1の改質触媒部1aに供給した。本形態では第一温度検出部温度が100℃を超す値の場合、改質触媒部温度も100℃以上となり、供給した水が十分に蒸発できることは確認した。なお定常運転時は、第一温度測定部温度が約700℃となるように加熱部2の加熱熱量を制御し、水蒸気改質反応を進行させた。
【0017】
なお、原料と水を供給する前に、窒素ガスなどの不活性ガス等を改質部に供給し改質部の加熱を開始することで、改質部触媒体温度をより正確に把握することができる。また、水供給の前に原料供給を開始し、加熱により原料を気化させるガス体とすることで、窒素ガス等の代用もできる。しかし、原料のみを改質部に送った場合、改質部温度により炭素析出が生じるため、なるべく速やかに水も供給する必要がある。
【0018】
また、改質部後のガス温度を測定し、原料および水の供給開始の判断基準としたが、直接改質部改質触媒部の温度を測定し、その温度を判断基準としてもよい。本実施例では、第一温度検出部温度100℃を基準としたが、装置構成、原料種、原料と水の供給割合等の運転条件の違いにより、その温度にも違いがでることはいうまでもない。また、酸素を含む気体として空気を供給したが、酸素を含む気体であれば空気に限られるものではない。また、加熱部として火炎バーナーを用いたが、改質触媒を加熱できる構成であれば、これに限るものではない。
【0019】
(実施形態2)
図2に、本発明での第二の実施形態を示した。図1に示した実施形態1と、ほぼ同一構成であり、実施の形態1とほぼ同様の動作を行う。同一の部分の説明は省略し、相違点のみを説明する。相違点は、水供給部6より改質部1および変成部3の間のガス通気経路7に水の供給経路6aを設けるとともに、水の供給経路後のガス通気経路7に第二温度検出部を設けた点である。
【0020】
次に、本実施の形態の動作について示す。実施形態1とほぼ同じ動作をする。相違点は、第二温度検出部温度に上限値を設け、上限値を超さないように水供給部6より改質部1および変成部3の間のガス通気経路7に水を供給する点である。
【0021】
水素生成装置は一般的に、原料流れ上流に位置する改質部の温度が最も高く、変成部、浄化部の順で各反応部温度は低下する。そこで、改質部からの熱、例えば、改質後ガスの保有する熱、あるいは改質部に設けた加熱部の余剰熱で、変成部および浄化部を順次加熱する。しかし、各反応部の最適反応温度が相違するため、最終的には各反応部の触媒反応に適した温度に制御する必要がある。本実施の形態では、変成部に入るガス温度を制御する構成を示すもので、改質部後のガスに水を供給しガス温度を制御する。水を直接供給しその蒸発潜熱、顕熱により冷却することで、空冷でガス温度を冷却する場合と比較して、冷却に必要な装置構成が小さくできるメリットがある。また、改質後ガスに水を添加することになるため、一酸化炭素と水の変成反応の反応性をより向上させることができる。
【0022】
次に、本実施の形態における、水素発生装置の一動作例を示す。変成部触媒体として、銅と亜鉛を主成分とする触媒を用いた。この触媒の耐熱温度は300℃であることから、第二温度検出部温度の上限値を300℃とした。水を改質部後ガスに直接供給するため、空冷による温度調節構成と比較して、温度調整の応答性が格段に向上させることができた。また、温度制御構成に必要な容積も約1/10とすることができた。
【0023】
なお、鉄とクロムを主成分とする触媒体ならば、500℃が上限となる。触媒体の種類および耐熱性等の特性によりこの上限値は決める必要がある。また、第二温度検出部は、改質部後ガスの温度を測定したが、変成部変成触媒の温度を直接測定し、その温度をもとに水を供給してもよい。
【0024】
(実施形態3)
図3に、本発明での第三の実施形態を示した。図1に示す実施の形態1とほぼ同一構成であり、実施の形態1とほぼ同様の動作を行う。同一の部分の説明は省略し相違点のみを説明する。相違点は、浄化部4後のガス通気経路7に第三温度検出部11を設けた点である。
【0025】
次に、本実施の形態の動作について示す。装置起動時は実施の形態1と同じ動作をする。相違点は、第三温度検出部温度に下限値を設け、第三温度検出部温度が下限値を超したことで、装置から水素供給を開始することを判断するものである。
【0026】
本発明の水素生成装置を、燃料電池、特に固体高分子型燃料電池に水素を供給する装置として用いる場合、水素中の一酸化炭素を低減して供給する必要がある。水素中の一酸化炭素の濃度は、赤外線を用いた分析機器等で測定することができる。しかし、分析機器により一酸化炭素濃度を測定し、装置の起動状態を判断することは、コストの上昇、および装置の大型化等の観点から好ましいものではない。
【0027】
本発明では、浄化部下流のガス温度を測定するとともに下限値を設け、その温度が下限値を超すことで、供給すべき水素ガス中の一酸化炭素濃度が所定値以下に下がった、いわゆる正常運転状態であり、外部機器に水素の供給が可能である構成を提供するものである。そして、この正常運転状態であることを示す表示手段、または、正常運転時に開通する生成ガス排出経路を生成ガス排出部に設けることで、水素ガスの被供給機器との燃料の連結を安全に制御することができる。
【0028】
基本的に浄化部を効果的に動作させた場合、一酸化炭素は低減できる。その浄化部の触媒体の一酸化炭素の浄化性は、温度依存性がある。そこで、一酸化炭素の低減状況を、浄化部下流のガス温度から判断するものである。浄化部の触媒として白金属系触媒を用いた場合、その触媒の一酸化炭素酸化特性は、入口の一酸化炭素濃度に依存し、一酸化炭素濃度が高い場合、反応性は低下する。また、一酸化炭素および水素の酸化時に発生する熱量は、基本的にどれだけ酸素と反応したかによって決まる。入口の一酸化炭素濃度が高い場合反応性が低下するため、発熱量は少なくなり、浄化部後のガス温度はあまり上昇しない。
【0029】
次に、変成部での変成反応が進行し、入口の一酸化炭素濃度が低くなった場合、反応性が向上するため、浄化部後のガス温度は上昇する。その温度上昇割合は、浄化部に供給する空気量が一定の場合ほぼ一定となるため、そのガス温度を測定することで、一酸化炭素の減少量は想定できる。従って、浄化部後のガス温度に下限値を設け、その温度を基に装置の運転状態が正常か否かを判断することができる。
【0030】
次に、本実施の形態における、水素発生装置の一動作例を示す。浄化部の浄化触媒には、白金触媒を用いた。本実施の形態の装置構成では、第三温度測定部温度が100℃以上となった場合、浄化部後ガス中の一酸化炭素濃度は、20ppm以下に安定的に低減できた。従って、100℃を下限値として水素生成装置の起動状態を判断することが可能といえる。なお、浄化部後ガスの温度は、使用する触媒種、触媒の使用条件、装置構成で基本的に相違するため、条件に見合って決める必要がある。
【0031】
また、浄化部触媒に酸化性を有する触媒だけでなく、少なくとも一酸化炭素をメタン化する触媒性を示す触媒体、例えば、ルテニウム触媒を浄化部に設けることでも同様の効果は得られた。また本実施の形態では、原料の炭化水素成分としてメタンを用いたが、天然ガス、LPG等の炭化水素成分、メタノール等のアルコール、あるいはナフサ成分等一般に水蒸気改質の原料として用いられているものも、使用することができる。
【0032】
【発明の効果】
以上のように本発明の構成により、改質部の反応を効果的に進行させ、かつ装置内に水が滞留する事態を防止することができた。また、冷却に必要な装置構成を小さくできるとともに、一酸化炭素と水の変成反応の反応性をより向上させることができた。
【0033】
また、起動時の改質部の反応性確保、定常時の変成部の動作性向上を、比較的単純な構成で行うができた。
【図面の簡単な説明】
【図1】本発明の第1の実施形態における水素生成装置の要部の縦断面をしめした図
【図2】本発明の第2の実施形態における水素生成装置の要部の縦断面をしめした図
【図3】本発明の第3の実施形態における水素生成装置の縦断面をしめした図
【符号の説明】
1 改質部
1a 改質触媒部
2 加熱部
3 変成部
3a 変成触媒体
4 浄化部
4a 浄化触媒体
5 原料供給部
6 水供給部
7 ガス通気経路
8 空気供給部
9 第一温度測定部
10 第二温度測定部
11 第三温度測定部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen generator for reforming a hydrocarbon fuel with water.
[0002]
[Prior art]
One method for producing hydrogen is a steam reforming method. This is a method of generating hydrogen by performing a steam reforming reaction between a natural gas, a hydrocarbon component such as LPG, an alcohol such as methanol, or an organic compound raw material such as a naphtha component and water in a reforming section provided with a reforming catalyst. . In this steam reforming reaction, carbon monoxide is generated as a subcomponent, and therefore, a shift unit that causes a shift reaction between water and carbon monoxide is used in combination. In addition, when the steam reforming method is used as the hydrogen supply method for the polymer electrolyte fuel cell, a carbon monoxide oxidation method or a methanation method is further used after the shift section in order to further remove carbon monoxide. Provide a purification section.
[0003]
A catalyst corresponding to each reaction is provided in the reforming section, the shift section, and the purification section. Since each catalyst has a different reaction temperature, it is necessary to heat the catalyst to the reaction temperature in order to supply hydrogen stably. The reaction temperature is highest in the reforming section located upstream of the raw material flow, and the temperature decreases in the order of the transformation section and the purification section. Therefore, in the conventional hydrogen generator using the steam reforming method, the heat from the reforming unit, for example, the heat held in the reformed gas or the surplus heat of the heating unit provided in the reforming unit, And the structure which heats a purification | cleaning part sequentially is used in many cases.
[0004]
[Problems to be solved by the invention]
When the reaction part temperatures of the reforming part, the transformation part, and the purification part are not appropriate, hydrogen generation does not proceed effectively. For example, in the steam reforming method, water is supplied so that oxygen does not run short than an equivalent amount in which carbon atoms in the raw material react to form carbon dioxide. In order for the raw material and water to react, it is necessary that at least water exists in the state of water vapor. However, when the reforming section is at a low temperature, the reaction does not proceed even if water is supplied and stays in the apparatus. In addition, when the raw material and water are supplied after the reforming section is heated to a high temperature, there is a possibility that the catalytic body deteriorates due to heat during the heating process and the reactivity decreases. Therefore, it is necessary to supply the raw material and water at an appropriate temperature.
[0005]
Further, the gas downstream from the reforming section has a temperature higher than the heat resistance temperature of the shift section catalyst. When a gas having a temperature higher than the heat-resistant temperature is supplied, the catalyst is deteriorated and the characteristics are deteriorated. Therefore, it is necessary to cool from the reforming part to the transformation part. Further, it is an object of the hydrogen generator to sufficiently reduce the carbon monoxide concentration in the purification unit and supply hydrogen. However, it is cumbersome to measure the carbon monoxide concentration every time the device is started and to determine the start of hydrogen supply, so a simple and accurate method for detecting the normal operation state is desired. .
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, an operation method of the hydrogen generator of the present invention includes a raw material supply unit, a water supply unit, a reforming unit including a reforming catalyst body that causes the raw material and water to react, and the modified unit. A heating section for heating the porous catalyst body, a shift section having a shift catalyst body for reacting carbon monoxide and water, a gas vent path communicating the reforming section and the shift section, and the gas vent path a method of operating a first temperature detection unit and the hydrogen generating apparatus Ru comprising a, after starting the operation of the heating unit, the temperature detected by the first temperature detection unit reaches the predetermined lower limit value If the raw material supply section and the more the water supply unit reformer supply of the raw material and water started, the lower limit value, the der Rukoto wherein 100 ° C. or higher 400 ° C. or less.
[0008]
Further, the method for operating the hydrogen generator of the present invention, a gas vent route for communicating the shift converter and the reformer, a water inlet to the gas vent passage, the water inlet and said shift converter and a second temperature detection unit to the gas venting path between, so that the temperature detected by the second temperature detecting section is not scooped an upper limit value, to supply water from the water inlet Features.
[0009]
Moreover, as for the operating method of the hydrogen generator of this invention, it is desirable that the said upper limit is 500 to 250 degreeC. This is because if it is lower than this temperature, water accumulates on the downstream side and the catalyst deteriorates.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention solves the problems of conventional hydrogen generators, and controls the supply of raw materials, water, and air based on the gas temperatures from the reforming unit, the transformation unit, and the purification unit. A hydrogen apparatus capable of effectively operating a catalyst body and corresponding to a stable supply of hydrogen is provided. Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
(Embodiment 1)
FIG. 1 is a view showing a longitudinal section of an essential part of the hydrogen generator of the present invention. In FIG. 1, 1 is a reforming section provided with a reforming catalyst section 1a for a steam reforming reaction. For the reforming catalyst portion 1a, a catalyst prepared by preparing a white metal noble metal was used. 2 is a heating part of the reforming part, and in this configuration, a flame burner is used as a heating means. Reference numeral 3 denotes a shift section that stores the shift catalyst body 3a. As the shift catalyst body 3a, a catalyst containing at least copper as a component was used. Reference numeral 4 denotes a carbon monoxide purifying section, in which a white metal-based oxidation catalyst 4a is provided as a purifying catalyst. 5 is a raw material supply unit mainly composed of hydrocarbon for steam reforming reaction, 6 is a water supply unit, 7 is a gas ventilation path constituted by the reforming unit 1, the transformation unit 2 and the purification unit 3, Gas is flowed in the order of the reforming unit 1, the transformation unit 2, and the purification unit 3, and the purification unit 3 has an outlet. An air supply unit 8 supplies air to the gas ventilation path 7 between the transformation unit 2 and the purification unit 3. A first temperature detection unit 9 detects the gas temperature after the reforming unit 1 and is provided in the gas ventilation path 7 between the reforming unit 1 and the shift unit 3.
[0012]
Next, the operation of the apparatus when supplying hydrogen in the hydrogen generator of this embodiment will be described. The heating unit 2 is operated to heat the reforming catalyst body 1a of the reforming unit 1. A hydrocarbon component as a raw material is supplied from the raw material supply unit 5 and water is supplied from the water supply unit 6 to the reforming catalyst unit 2a to advance the steam reforming reaction. The first temperature detection unit 9 measures the gas temperature after the reforming unit 2, sets a lower limit for the temperature, and starts supplying raw material and water to the reforming unit 2 when the measured temperature exceeds the lower limit. To do. The gas after the reforming section is vented to the transformation section 3 through the gas vent path 7. The gas after the transformation unit 3 is vented to the purification unit 4 through the gas ventilation path 7. The gas after the purification unit 4 is supplied to the outside through the gas ventilation path 7. At this time, air is supplied from the air supply unit 8 to the gas after the transformation unit from the gas ventilation path 7 between the transformation unit 3 and the purification unit 4.
[0013]
The purpose of this hydrogen generator is to generate hydrogen stably. For that purpose, it is necessary to operate each reaction part of a reforming part, a transformation part, and a purification | cleaning part at appropriate temperature. In particular, the reforming part is a part for proceeding with the basic reaction of hydrogen generation, and the supply of raw materials and water and temperature control are important. Therefore, water is supplied so that oxygen does not run short than the equivalent amount that carbon atoms in the raw material react to form carbon dioxide.
[0014]
Further, in order for the raw material and water to react, it is necessary that at least the water exists in the state of water vapor. However, when the reforming section is at a low temperature immediately after the start of the apparatus, the reaction does not proceed because water does not exist sufficiently even if water is supplied, and water remains in the apparatus. If a large amount of water stays, there is a possibility of closing the gas ventilation path. Therefore, in the present invention, the gas temperature after the reforming section is measured, and the raw material and water are supplied based on the temperature. With this configuration, water is sufficiently evaporated and the reaction of the reforming section is effectively performed.
[0015]
Next, an example of the operation of the hydrogen generator in this embodiment will be shown. First, the operation when the apparatus is activated will be described. The heating unit was activated and heating of the reforming unit was started. By heating the reforming section reforming catalyst body by the heating section, the gas body in the reforming catalyst body undergoes volume expansion, and the heated gas body flows into the gas ventilation path. In the first temperature detection unit, the gas body temperature after the reforming unit reforming catalyst unit is measured. In the present embodiment, based on the measured gas temperature after the reforming unit 1 in the first temperature detection unit, the supply of the raw material and water to the reforming unit 1 is started when the temperature exceeds 100 ° C. .
[0016]
Using methane gas as a hydrocarbon component as a raw material, 2 mol or more of water was added to 1 mol of methane gas, and supplied to the reforming catalyst unit 1a of the reforming unit 1. In this embodiment, when the temperature of the first temperature detection part exceeds 100 ° C., the reforming catalyst part temperature is also 100 ° C. or higher, and it has been confirmed that the supplied water can be sufficiently evaporated. During the steady operation, the heating heat amount of the heating unit 2 was controlled so that the first temperature measurement unit temperature was about 700 ° C., and the steam reforming reaction was advanced.
[0017]
Before supplying the raw material and water, supply the inert gas such as nitrogen gas to the reforming section and start heating the reforming section, so that the reforming section catalyst body temperature can be grasped more accurately. Can do. Moreover, it can substitute for nitrogen gas etc. by using the gas body which starts raw material supply before water supply and vaporizes a raw material by heating. However, when only the raw material is sent to the reforming section, carbon deposition occurs due to the reforming section temperature, so it is necessary to supply water as quickly as possible.
[0018]
In addition, the gas temperature after the reforming unit is measured and used as a criterion for starting the supply of the raw material and water. However, the temperature of the reforming unit reforming catalyst unit may be directly measured and the temperature may be used as the criterion. In this embodiment, the first temperature detection unit temperature is 100 ° C., but it goes without saying that the temperature varies depending on the operating conditions such as the device configuration, the raw material type, the raw material and water supply ratio, and the like. Nor. Moreover, although air was supplied as a gas containing oxygen, it is not restricted to air if it is a gas containing oxygen. Moreover, although the flame burner was used as a heating part, if it is the structure which can heat a reforming catalyst, it will not restrict to this.
[0019]
(Embodiment 2)
FIG. 2 shows a second embodiment of the present invention. The configuration is almost the same as that of the first embodiment shown in FIG. 1, and the operation is substantially the same as that of the first embodiment. The description of the same part is omitted, and only the difference is described. The difference is that the water supply path 6a is provided in the gas ventilation path 7 between the reforming section 1 and the transformation section 3 from the water supply section 6, and the second temperature detection section is provided in the gas ventilation path 7 after the water supply path. This is the point.
[0020]
Next, the operation of this embodiment will be described. The operation is almost the same as in the first embodiment. The difference is that an upper limit value is provided for the temperature of the second temperature detection unit, and water is supplied from the water supply unit 6 to the gas ventilation path 7 between the reforming unit 1 and the shift unit 3 so as not to exceed the upper limit value. It is.
[0021]
In general, in the hydrogen generator, the temperature of the reforming section located upstream of the raw material flow is the highest, and the temperature of each reaction section decreases in the order of the conversion section and the purification section. Therefore, the transformation unit and the purification unit are sequentially heated by heat from the reforming unit, for example, heat held by the reformed gas or surplus heat of the heating unit provided in the reforming unit. However, since the optimum reaction temperature of each reaction part is different, it is necessary to finally control to a temperature suitable for the catalytic reaction of each reaction part. In the present embodiment, a configuration is shown in which the gas temperature entering the shift section is controlled, and water is supplied to the gas after the reforming section to control the gas temperature. By directly supplying water and cooling with latent heat of evaporation and sensible heat, there is an advantage that the apparatus configuration necessary for cooling can be reduced as compared with the case where the gas temperature is cooled by air cooling. Moreover, since water is added to the reformed gas, the reactivity of the carbon monoxide and water shift reaction can be further improved.
[0022]
Next, an example of operation of the hydrogen generator in this embodiment will be described. A catalyst mainly composed of copper and zinc was used as the shift portion catalyst body. Since the heat-resistant temperature of this catalyst is 300 ° C., the upper limit value of the second temperature detection part temperature is set to 300 ° C. Since water is directly supplied to the gas after the reforming section, the temperature control responsiveness can be remarkably improved as compared with the temperature control configuration by air cooling. Moreover, the volume required for the temperature control configuration could be reduced to about 1/10.
[0023]
In the case of a catalyst body mainly composed of iron and chromium, the upper limit is 500 ° C. This upper limit value needs to be determined according to characteristics such as the type of catalyst body and heat resistance. Moreover, although the 2nd temperature detection part measured the temperature of the gas after a reforming part, it may measure the temperature of a shift part shift catalyst directly, and may supply water based on the temperature.
[0024]
(Embodiment 3)
FIG. 3 shows a third embodiment of the present invention. The configuration is almost the same as that of the first embodiment shown in FIG. 1, and the operation similar to that of the first embodiment is performed. The description of the same part will be omitted, and only the difference will be described. The difference is that the third temperature detection unit 11 is provided in the gas ventilation path 7 after the purification unit 4.
[0025]
Next, the operation of this embodiment will be described. When the apparatus is activated, the same operation as in the first embodiment is performed. The difference is that a lower limit value is set for the third temperature detection unit temperature, and it is determined that the supply of hydrogen from the apparatus is started when the third temperature detection unit temperature exceeds the lower limit value.
[0026]
When the hydrogen generator of the present invention is used as a device for supplying hydrogen to a fuel cell, particularly a polymer electrolyte fuel cell, it is necessary to reduce and supply carbon monoxide in the hydrogen. The concentration of carbon monoxide in hydrogen can be measured with an analytical instrument using infrared rays. However, it is not preferable to measure the carbon monoxide concentration with an analytical instrument and determine the start-up state of the apparatus from the viewpoints of cost increase and enlargement of the apparatus.
[0027]
In the present invention, the gas temperature downstream of the purification unit is measured and a lower limit value is provided. When the temperature exceeds the lower limit value, the carbon monoxide concentration in the hydrogen gas to be supplied has decreased to a predetermined value or less, so-called normal. The present invention provides a configuration that is in an operating state and can supply hydrogen to an external device. Then, the display means that indicates the normal operation state, or the product gas discharge path that is opened during normal operation is provided in the product gas discharge unit, so that the fuel connection with the hydrogen gas supply device can be controlled safely. can do.
[0028]
Basically, when the purification unit is operated effectively, carbon monoxide can be reduced. The purifying property of the carbon monoxide of the catalyst body of the purifying part is temperature dependent. Therefore, the reduction status of carbon monoxide is judged from the gas temperature downstream of the purification unit. When a white metal catalyst is used as the catalyst of the purification unit, the carbon monoxide oxidation characteristics of the catalyst depend on the carbon monoxide concentration at the inlet, and the reactivity decreases when the carbon monoxide concentration is high. In addition, the amount of heat generated during the oxidation of carbon monoxide and hydrogen is basically determined by how much it has reacted with oxygen. When the carbon monoxide concentration at the inlet is high, the reactivity decreases, so the amount of heat generation decreases, and the gas temperature after the purification section does not rise very much.
[0029]
Next, when the shift reaction at the shift portion proceeds and the carbon monoxide concentration at the inlet is lowered, the reactivity is improved, and the gas temperature after the purification portion is increased. Since the temperature increase rate is substantially constant when the amount of air supplied to the purification unit is constant, the amount of decrease in carbon monoxide can be assumed by measuring the gas temperature. Therefore, a lower limit value is provided for the gas temperature after the purification unit, and it can be determined whether or not the operation state of the apparatus is normal based on the temperature.
[0030]
Next, an example of operation of the hydrogen generator in this embodiment will be described. A platinum catalyst was used as the purification catalyst in the purification section. In the apparatus configuration of the present embodiment, when the temperature of the third temperature measurement unit was 100 ° C. or higher, the carbon monoxide concentration in the gas after the purification unit could be stably reduced to 20 ppm or less. Therefore, it can be said that the startup state of the hydrogen generator can be determined with 100 ° C. as the lower limit. Note that the temperature of the gas after the purification section basically differs depending on the type of catalyst used, the use conditions of the catalyst, and the apparatus configuration, and therefore needs to be determined according to the conditions.
[0031]
Further, the same effect can be obtained by providing not only a catalyst having an oxidizing property in the purification unit catalyst but also a catalytic body exhibiting catalytic properties for methanating at least carbon monoxide, for example, a ruthenium catalyst in the purification unit. In this embodiment, methane is used as the hydrocarbon component of the raw material. However, natural gas, hydrocarbon components such as LPG, alcohols such as methanol, or naphtha components are generally used as raw materials for steam reforming. Can also be used.
[0032]
【Effect of the invention】
As described above, according to the configuration of the present invention, the reaction of the reforming section can be effectively advanced, and the situation where water stays in the apparatus can be prevented. In addition, the apparatus configuration required for cooling could be reduced, and the reactivity of the carbon monoxide and water shift reaction could be further improved.
[0033]
In addition, the reactivity of the reforming part at the start-up and the operability improvement of the metamorphic part at the steady state can be achieved with a relatively simple configuration.
[Brief description of the drawings]
FIG. 1 is a vertical cross-sectional view of a main part of a hydrogen generator according to a first embodiment of the present invention. FIG. 2 is a vertical cross section of a main part of a hydrogen generator according to a second embodiment of the present invention. FIG. 3 is a vertical sectional view of a hydrogen generator according to a third embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Reformation part 1a Reformation catalyst part 2 Heating part 3 Transformation part 3a Transformation catalyst body 4 Purification part 4a Purification catalyst body 5 Raw material supply part 6 Water supply part 7 Gas ventilation path 8 Air supply part 9 First temperature measurement part 10 1st Second temperature measurement unit 11 Third temperature measurement unit

Claims (3)

原料供給部と、水供給部と、前記原料と水とを反応させる改質触媒体を具備した改質部と、前記改質触媒体を加熱する加熱部と、一酸化炭素と水とを反応させる変成触媒体を具備した変成部と、前記改質部と前記変成部とを連通するガス通気経路と、前記ガス通気経路に第一温度検出部とを備える水素生成装置の運転方法であって、前記加熱部の動作を開始したのち、前記第一温度検出部により検出された温度が予め定めた下限値に到達した場合、前記原料供給部及び前記水供給部より前記改質部に原料と水との供給を開始し、前記下限値は、100℃以上400℃以下であることを特徴とする水素生成装置の運転方法。A raw material supply unit, a water supply unit, a reforming unit equipped with a reforming catalyst body that causes the raw material and water to react, a heating unit that heats the reforming catalyst body, and a reaction between carbon monoxide and water. a shift converter provided with the shifting catalyst body which, there by the reforming section and the gas vent path for communicating the shift converter, the first temperature detection unit and the method for operating the hydrogen generating apparatus Ru provided with said gas vent path When the temperature detected by the first temperature detection unit reaches a predetermined lower limit after starting the operation of the heating unit, the raw material is supplied from the raw material supply unit and the water supply unit to the reforming unit. and it starts supplying the water, the lower limit value, the method operating the hydrogen generating apparatus according to claim der Rukoto below 100 ° C. or higher 400 ° C.. 前記改質部と前記変成部とを連通するガス通気経路と、前記ガス通気経路に水注入口と、前記水注入口と前記変成部との間の前記ガス通気経路に第二温度検出部とを備え、前記第二温度検出部により検出される温度が上限値を越さないように、前記水注入口より水を供給することを特徴とする請求項記載の水素生成装置の運転方法。A gas ventilation path communicating the reforming section and the transformation section; a water inlet in the gas ventilation path; a second temperature detection section in the gas ventilation path between the water inlet and the transformation section; wherein the as the temperature detected by the second temperature detecting section is not scooped the upper limit value, a method operating the hydrogen generating apparatus according to claim 1, wherein the supplying water from said water inlet. 前記上限値は、500℃以下250℃以上であることを特徴とする請求項記載の水素生成装置の運転方法。The method for operating a hydrogen generator according to claim 2 , wherein the upper limit value is 500 ° C or lower and 250 ° C or higher.
JP2003004477A 2003-01-10 2003-01-10 Hydrogen generator Expired - Lifetime JP4945878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004477A JP4945878B2 (en) 2003-01-10 2003-01-10 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004477A JP4945878B2 (en) 2003-01-10 2003-01-10 Hydrogen generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP37385699A Division JP3415086B2 (en) 1999-12-28 1999-12-28 Hydrogen generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010091420A Division JP5406107B2 (en) 2010-04-12 2010-04-12 Operation method of hydrogen generator

Publications (3)

Publication Number Publication Date
JP2003238112A JP2003238112A (en) 2003-08-27
JP2003238112A5 JP2003238112A5 (en) 2007-02-08
JP4945878B2 true JP4945878B2 (en) 2012-06-06

Family

ID=27785695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004477A Expired - Lifetime JP4945878B2 (en) 2003-01-10 2003-01-10 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP4945878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155781A (en) * 2010-04-12 2010-07-15 Panasonic Corp Hydrogen generator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004002477A1 (en) * 2004-01-16 2005-08-11 Viessmann Werke Gmbh & Co Kg Device for generating hydrogen
EP2062851A4 (en) 2006-08-30 2011-11-02 Kyocera Corp Reaction device, fuel battery system, and electronic device
US8382866B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
JP4939148B2 (en) * 2006-08-30 2012-05-23 京セラ株式会社 Reactor, fuel cell system and electronic device
JP2008137866A (en) * 2006-12-04 2008-06-19 Corona Corp Fuel processor and its operation control method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212779A (en) * 1981-06-23 1982-12-27 Kansai Electric Power Co Inc:The Fuel controlling method in fuel cell power generating system
JPS57212775A (en) * 1981-06-23 1982-12-27 Kansai Electric Power Co Inc:The Fuel control in fuel cell power generating system
US4539267A (en) * 1984-12-06 1985-09-03 United Technologies Corporation Process for generating steam in a fuel cell powerplant
JPH02188405A (en) * 1989-01-13 1990-07-24 Fuji Electric Co Ltd Water cooled carbon monoxide conversion reactor of fuel cell
JPH03266369A (en) * 1990-03-16 1991-11-27 Fuji Electric Co Ltd Operating method of fuel reforming device
JPH05135794A (en) * 1991-11-11 1993-06-01 Chubu Electric Power Co Inc Fuel cell power generating device
JP2809556B2 (en) * 1992-05-28 1998-10-08 三菱電機株式会社 Fuel cell power generator
JPH06260203A (en) * 1993-03-05 1994-09-16 Fuji Electric Co Ltd Control system of fuel reformer for fuel cell
JP3585249B2 (en) * 1993-06-16 2004-11-04 大阪瓦斯株式会社 Fuel cell power generator
JPH07126001A (en) * 1993-10-29 1995-05-16 Aqueous Res:Kk Fuel-reforming device
JP3467759B2 (en) * 1993-11-29 2003-11-17 石川島播磨重工業株式会社 Control method of outlet temperature of reformer
JP3552064B2 (en) * 1994-01-11 2004-08-11 新日本石油株式会社 Method for controlling hydrogen production apparatus and apparatus therefor
JPH07282829A (en) * 1994-04-11 1995-10-27 Osaka Gas Co Ltd Fuel reforming device of fuel cell
JPH1064570A (en) * 1996-08-22 1998-03-06 Tokyo Gas Co Ltd Starting method for phosphoric acid type fuel cell
JPH10297903A (en) * 1997-04-25 1998-11-10 Toyota Motor Corp Fuel reformer
JPH10330101A (en) * 1997-05-27 1998-12-15 Sanyo Electric Co Ltd Hydrogen-manufacturing apparatus and method therefor
JP3490877B2 (en) * 1997-11-17 2004-01-26 三洋電機株式会社 Starting method of reformer for fuel cell
JP2001143731A (en) * 1999-11-16 2001-05-25 Daikin Ind Ltd Fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155781A (en) * 2010-04-12 2010-07-15 Panasonic Corp Hydrogen generator

Also Published As

Publication number Publication date
JP2003238112A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
US6562088B2 (en) Method for operating a hydrogen generating apparatus
JP5643871B2 (en) Method for producing reformed gas
KR100466381B1 (en) Fuel reforming system
US6797420B2 (en) Power generation device and operation method therefor
JP4105758B2 (en) Fuel cell system
US8945784B2 (en) Hydrogen production apparatus and fuel cell system using the same
EP3981739A1 (en) Hydrogen generator, fuel cell system using same, and operation method thereof
CN101888969A (en) Fuel cell system and method for starting the same
JP4945878B2 (en) Hydrogen generator
JP2000340246A (en) Reforming device for fuel cell
JP4030322B2 (en) Fuel processing apparatus, fuel cell power generation system, fuel processing method, and fuel cell power generation method
JP4827405B2 (en) Hydrogen generator and fuel cell system using the same
US9079771B2 (en) Hydrogen generation system, fuel cell system, and method for operation of hydrogen generation system
JP2009084135A (en) Fuel processor, driving method therefor, and fuel cell system
JP2007210835A (en) Apparatus for producing hydrogen and fuel battery system
JP2004115321A (en) Reforming apparatus
JP5406107B2 (en) Operation method of hydrogen generator
JP3415086B2 (en) Hydrogen generator
JP2007284265A (en) Method for stopping reforming system
JP5249622B2 (en) Method for starting hydrogen-containing gas generator
JP3708428B2 (en) Hydrogen generator
JP2005216615A (en) Fuel processing device and fuel cell power generation system
JP2005314180A (en) Method for stopping auto-oxidizable internal heating reformer
JP2009078938A (en) Desulfurizer and method for operating the same, and fuel cell system
JP2008087990A (en) Hydrogen generation apparatus and fuel cell system equipped with the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050720

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4945878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

EXPY Cancellation because of completion of term