[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4942262B2 - Method for producing urea urethane solution having wide compatibility and storage stability and useful as thixotropic agent - Google Patents

Method for producing urea urethane solution having wide compatibility and storage stability and useful as thixotropic agent Download PDF

Info

Publication number
JP4942262B2
JP4942262B2 JP2001241108A JP2001241108A JP4942262B2 JP 4942262 B2 JP4942262 B2 JP 4942262B2 JP 2001241108 A JP2001241108 A JP 2001241108A JP 2001241108 A JP2001241108 A JP 2001241108A JP 4942262 B2 JP4942262 B2 JP 4942262B2
Authority
JP
Japan
Prior art keywords
group
urea urethane
tolylene diisocyanate
mixture
urethane solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001241108A
Other languages
Japanese (ja)
Other versions
JP2002105042A (en
Inventor
ハウベンエステル カールハインツ
オールト ウーリッヒ
ボーカー アクセル
ホルツカンプ ヘリバート
ブッフマン クリストフ
Original Assignee
ベーイプシロンカー ヘミー ゲゼルシャフト ミット ベシュレンクター ハフトゥング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベーイプシロンカー ヘミー ゲゼルシャフト ミット ベシュレンクター ハフトゥング filed Critical ベーイプシロンカー ヘミー ゲゼルシャフト ミット ベシュレンクター ハフトゥング
Publication of JP2002105042A publication Critical patent/JP2002105042A/en
Application granted granted Critical
Publication of JP4942262B2 publication Critical patent/JP4942262B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • C08G18/2825Alkanols, cycloalkanols or arylalkanols including terpenealcohols having at least 6 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/284Compounds containing ester groups, e.g. oxyalkylated monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3237Polyamines aromatic
    • C08G18/324Polyamines aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/04Thixotropic paints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Paints Or Removers (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

The invention relates to a process for preparing a solution which comprises urea urethanes and is effective as a thixotropic agent, which involves reacting at least two structurally different monohydroxy compounds with an excess of toluylene diisocyanate to form monoisocyanate adducts, removing the unreacted portion of the toluylene diisocyanate, and reacting the resultant monoisocyanate adducts with diamines in an aprotic solvent in the presence of a lithium salt to form urea urethanes. The invention also relates to the use of the solution to receive thixotropic coating compositions.

Description

【0001】
【発明の属する技術分野】
本発明は、尿素ウレタンを含有し、チキソトロピック剤として有用な溶液の製造方法に関する。詳しくは、本発明は、モノヒドロキシ化合物を過剰のトリレンジイソシアネートと反応させ、反応混合液から未反応のトリレンジイソシアネートを除去し、次いで、生成したモノイソシアネート付加物をジアミンと、リチウム塩の存在下、非プロトン性溶媒中で反応させることにより尿素ウレタン溶液を得る方法に関する。本発明は、さらにチキソトロピックコーティング組成物を得る当該溶液の使用にも関する。
【0002】
【従来の技術】
液状コーティングシステムのレオロジーを調節するために、有機的に修飾したベントナイト、シリカ、水素化ビーバー油およびポリアミドワックスが主として用いられている。これらの物質は、そのほとんどが乾燥した固体であり、溶媒を用いてせん断力をかけて半製品とし、次いで温度調節を慎重に行いながら溶液コーティングシステムに加えなければならないという不都合を有する。この温度調節が悪いと完成したコーティングシステム中に結晶が生成して、コーティングの欠陥となる。
【0003】
現在使用されているこのようなレオロジー的補助手段では、無色透明なコーティング中に濁りやくすみが生じるという一般的欠点がある。さらに、反応させる際に乾燥粉体を取扱うことは粉塵の原因となり好ましくない。
レオロジー調節のための別の解決法が欧州特許出願EP−A−0 198519に記載されている。これは、イソシアネートとアミンとをフィルム形成性樹脂溶液の存在下に反応させて、非常に微細に分散した状態の針状(acicular)結晶となる尿素とするものである。このようにして修飾したフィルム形成性バインダーはレオロジー調節・たるみ防止バインダーとして販売されている。これをたるみ調節剤と称す。これらの製品はこれらが製造された時に使用されたバインダーと常に結合していて、最終製品であるコーティング組成物に一般的に行われる手直しなどができないという欠点がある。
【0004】
欧州特許 EP−B−0 006 252には前述した欠点の幾分かを除去するためのチキソトロピック剤の製造方法が記載されている。すなわち、非プロトン性溶媒中でリチウム塩の存在下にイソシアネート付加物とポリアミンとを反応させて得られる尿素ウレタンについて記載されている。しかしながら、このようにして得られた生成物には二つの重大な欠点がある。その一つは製造方法に起因するもので、チキソトロピック剤の化学的構造が特定できないということである。モノイソシアネート付加物であると記載されているが、現実の生成物はモノ付加物ではなくて異なる付加物の混合物であることが実験により明確に確認される。記載されている製造方法によると、1モルのジイソシアネートが一種類のモノアルコールの1モルと最初に反応する。この製造方法よると所望のNCO官能性モノ付加物が部分的に生成するが、非NCO官能性ジ付加物も生成するので、塩化リチウムの存在下でのポリアミドとの後続の反応において、尿素ウレタンの鎖延長を調整することができずに尿素重合体となってしまう。これらの生成物は沈殿現象を示す傾向があり、溶液状態に維持することが著しく困難である。さらに、この製造方法によるチキソトロピック剤は、同一構造のモノイソシアネート付加物だけがジアミンと常に反応するという事実からくる欠点も有している。このことから、第一に、使用するコーティングシステムの相溶性が制限され、明らかにゲル構造になり、かつ濁りが激しくなる。第二に、レオロジー的な効果が劣ることになる。
【0005】
【発明が解決しようとする課題】
したがって、本発明の目的は、一方において、限定された構造を有し、したがって製造された溶液が数ヶ月以上という比較的高い貯蔵安定性を示し、他方、バインダー中での比較的幅広い相溶性に特徴を有し、したがって製品の信頼性のある使用を与えるチキソトロピック剤を提供することである。水性コーティング材、ハイソリッド系のように相対的に極性処方である現在のコーティングシステムにおいて、このことは大きな利点となる。
【0006】
【課題を解決するための手段】
驚くべきことに、尿素付加物を得るために、アルコール成分が異なる少なくとも2つの構造的に相違するモノイソシアネート付加物をジアミンと反応させることにより、初めに特定した方法において、上記目的が達成されることが見出された。
【0007】
本発明の製造方法においては、先ず、一般式 R−OHで表される構造的に異なる少なくとも2種類のモノヒドロキシ化合物と1.5〜5倍量の過剰のトリレンジイソシアネートとを反応させて一般式(I)で表されるモノイソシアネート付加物を得る。ここで、Rは,炭素数4〜22のn−アルキル基もしくはイソ−アルキル基、炭素数3〜18のアルケニル基、シクロアルキル基、アラルキル基、または式Cm2m+1(O−Cn2n)x、Cm2m+1(OOC−Cv2v)x あるいはZ−C64(O−Cn2n)xで表される置換基であり、ここで、mは1〜22,nは2〜4、xは1〜15、vは4または5およびZは炭素数1〜12のアルキル基である。
【0008】
【化8】

Figure 0004942262
【0009】
次いで、未反応のトリレンジイソシアネートを反応混合液から除去し、さらに生成したモノイソシアネート付加物を式 2 N−R 3 −NH 2 で表されるジアミンとリチウム塩の存在下に非プロトン性溶媒中で反応させて、一般式(II)で表される尿素付加物を得る。ここで、 3 は、置換基−Co2o−、ただしo=2〜12、−(Cp2p−O−Cp2p)q、ただしp=2〜4 および q=1〜10、
【0010】
【化9】
Figure 0004942262
ここで、 4 は、CH3もしくはH、もしくは
【0011】
【化10】
Figure 0004942262
またはこれらの混合物である。
【0012】
【化11】
Figure 0004942262
【0013】
ここで、R1およびR2はモノイソシアネート付加物のR基に基づく置換基である。
本発明の製造方法において、前述のジアミンの一部または全部を次式のパラ−キシリレンジアミンで置換することもできる。
【0014】
【化12】
Figure 0004942262
【0015】
【発明の実施の形態】
本発明の製造方法によれば、尿素ウレタンを含有し、かつチキソトロピック剤として活性な溶液を基本的に二つの異なるルートによって製造することができる。
a)一つのルート;
先ず構造的に異なる少なくとも2種類のアルコール R−OHを混合し、次いで、この混合液を1.5〜5倍量の過剰のトリレンジイソシアネートと反応させる。反応後に反応混合物から未反応のトリレンジイソシアネートを公知の穏やかな条件下で除去した後に、構造的に異なるモノイソシアネート付加物の反応混合液とジアミンをリチウム塩の存在下に非プロトン系溶媒中で反応させて一般式(II)の尿素ウレタンを製造することができる。
【0016】
b)他のルート;
先ず構造的に異なる少なくとも2種類のアルコール R−OHを別々に1.5〜5倍量の過剰のトリレンジイソシアネートと反応させる。反応後に反応混合物から未反応のトリレンジイソシアネートを公知の穏やかな条件下で除去した後に、構造的に異なるモノイソシアネート付加物を混合する。構造的に異なるモノイソシアネート付加物の反応混合物とジアミンをリチウム塩の存在下に非プロトン性溶媒中で反応させて一般式(II)の尿素ウレタを製造することができる。
【0017】
構造的に異なるモノイソシアネート付加物の混合物中の各モノイソシアネート付加物のモル比は好ましくは20〜80%であり、より好ましくは35〜65%であり、45〜55%が特に好ましい。このモノイソシアネート付加物のモル比の合計は100%である。過剰に加えるトリレンジイソシアネートは1.5〜5.0モルが好ましく、2.0〜4.0モルが特に好ましい。
【0018】
このようにして製造される尿素ウレタン溶液の固形分量は、好ましくは5〜80%、より好ましくは20〜60%で、25〜50%が特に好ましい。モノイソシアネート付加物とジアミンとの反応は、例えばジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、N−ブチルピロリドンまたは相当のアルキルピロリドン、あるいはこれらの混合液のような非プロトン系溶媒中で行なう。
【0019】
リチウム化合物の割合は、使用するジアミンのアミン当量に対して、好ましくは0.2〜2モル、より好ましくは0.5〜1.5モルで、0.75〜1.25モルが最も好ましい。使用するリチウム塩として、LiClはコーティングシステムに悪影響し、かつチキソトロピックコーティングシステムを適用する金属基板の腐食を加速する塩素イオンを含有するので、LiNO3の利点が大きい。
【0020】
モノイソシアネート製造に使用するアルコールR−OHは線状か分岐状の飽和あるいは不飽和の一級アルコールが好ましい。例えば、n−ブタノール、2−エチルヘキサノール、イソトリデシルアルコール、鎖長C10〜C20のゲルベ(Guerbet)アルコール、オレイルアルコール、リノレイルアルコール、ラウリルアルコール、ステアリルアルコールのようなアルコールであり、また、ベンジルアルコールのような芳香族置換のアルカノールも適している。しかし、シクロヘキサノールやそのアルキル置換誘導体のような脂環族アルコールは好ましくない。
【0021】
極性の調節のため特に適しているのは上述したアルコールのアルコキシ誘導体であり、この場合に、例えば、メタノールやアリルアルコールのような低級アルコールもアルコキシ化のための出発物質として使用することができる。このようにして出来た生成物はその鎖中に、好ましくはエチレンオキシドおよび/またはプロピレンオキシド単位を含んでおり、その単位は交互かブロック状である。アルコキシ化のために、その出発物質として、例えば、フェノールやアルキルフェノールのような芳香族アルコールを使用することもできる。
【0022】
最新のバインダーシステムに対する本発明の尿素ウレタンの相溶性を調整するために、例えばε−カプロラクトンのようなラクトンと前述のアルコールやアルコキシ化アルコールと付加反応させたり、またはヒドロキシ官能性(メタ)アクリレートを使用して、アルコール成分にエステル基またはポリエステル基を導入することもできる。
【0023】
モノイソシアネート付加物の製造に使用するジイソシアネートは異性体が混在しているとして良く知られているトリレンジイソシアネートから実質的に構成されている。この異性体の混在は、過剰のジイソシアネート留分を蒸留する際に異性体分布のシフトが起こり、その結果、一般的に市場で入手できる物よりも2,6−トリレンジイソシアネート含有量の多いものとなっている。これらの蒸留物はさらにモノ付加物の製造に再利用できる。2,4−異性体留分が50−100%であるトリレンジイソシアネートが好ましい。
【0024】
2 N−R 3 −NH 2 のジアミンは直鎖状や分岐状の炭素鎖長C2〜C12の線状ジアミンから実質的になり、1,3−プロパンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、ジアミノドデカン またはネオペンタンジアミンがその例である。4,4’−ジアミノジシクロヘキシルメタン または3,3’−ジメチル−4,4’−ジアミノジシクロヘキシルメタンのような環状ジアミンも好ましい。例えば、メタ−キシリレンジアミンまたはパラ−キシリレンジアミンのような芳香族ジアミンは特に好ましい。 さらに、これらジアミンの混合物を使用すると尿素ウレタン溶液の結晶化が減少する傾向になるので、製造の際にジアミンの混合物を使用することができる。
【0025】
本発明の製造方法により製造された尿素ウレタン溶液は遊離のイソシアネートも遊離のアミノ基も含まず生理学的に使用し易い。さらに、バインダーや充填剤(フィラー)との逆効果の副反応も起こらない。本方法により製造された尿素ウレタン溶液の貯蔵安定性は著しく高く、通常の貯蔵温度で容易に6ヶ月以上の貯蔵が可能である。また、この尿素ウレタン溶液のバインダーとの相溶性は非常に広く、信頼してチキソトロピック剤を使用できる。
さらに本発明は、本方法により製造した尿素ウレタン溶液を、コーティング組成物をチキソトロピックにするために使用することを提供するものでもある。このコーティング組成物は、好ましくは水系の無溶媒コーティング材料、PVCプラスチゾル、エポキシ系コーティングおよび不飽和ポリエステル系コーティングを包含する。
【0026】
【実施例】
本発明の製造方法の主たる特徴を下記の実施例により例示する。
[EP−B−0 006 252による比較例( 非発明)]
トリレンジイソシアネート(TDI)(65% 2,4−異性体、 以下T65と称す)1モル(174g)を反応容器に入れ、メトキシポリエチレングリコール(重量平均分子量:350g/モル)を攪拌下にゆっくりと滴下し、既知の方法により反応を完結させる。反応中の温度は40℃未満に保つ。このようにして製造したイソシアネート付加物には遊離のトリレンジイソシアネートが6.3%含まれ、全NCO量は8.05%である。 N−メチルピロリドン(NMP)中、キシリレンジアミン0.5モル(68g)およびアミン当量でLiCl0.75モルからなる溶液にこの反応混合物を加える。固形成分(SC)は50%である。反応は発熱反応である。当初は透明な生成物であったものが、2ヶ月の貯蔵後にはゲル生成の傾向が見られる。
【0027】
[モノ付加物の製造(本発明)]
実施例 1−7
[実施例 1]
n−ブタノール0.5モル(37g)をトリレンジイソシアネート(2,4異性体80%、以下T80と称す)1.25モル(217.5g)に30℃、2時間以上で添加する。温度を45℃未満に保つ。添加終了後、攪拌を2時間継続すると理論的NCO含量が33.0%にまで到達した。過剰のイソシアネートを150−170℃、0.1ミリバールの減圧蒸留で除去する。NCO含量は16.9%、遊離のTDI含量は0.2%未満である。
【0028】
[実施例 2]
ブチルトリグリコール0.25モル(53g)をトリレンジイソシアネート(T65)0.625モル(108.75g)に室温、2時間以上で添加する。温度を45℃未満に保つ。添加終了後、攪拌を2時間継続すると理論的NCO含量が25.8%にまで到達した。過剰のイソシアネートを150−170℃、0.1ミリバールの減圧蒸留で除去する。NCO含量は10.9%、遊離のTDI含量は0.5%未満である。
[実施例 3]
イソトリデカノール0.25モル(50g)をトリレンジイソシアネート(T65)0.75モル(130.5g)に40℃、2時間以上で添加する。温度を60℃未満に保つ。添加終了後、攪拌を2時間継続すると理論的NCO含量が29.1%にまで到達した。過剰のイソシアネートを150−170℃、0.1ミリバールの減圧蒸留で除去する。NCO含量は11.3%、遊離のTDI含量は0.5%未満である。
【0029】
[実施例 4]
ブタノール0.25モル(18g)をカプロラクトン0.5モル(57g)およびDBTL0.1%(0.075g)に160℃で6時間反応させて、50℃まで冷却した。このようにして製造したヒドロキシエステル(BuCP2:ヒドロキシル基数 186)をトリレンジイソシアネート0.75モル(130.5g)に40℃で2時間以上で加えた。温度を60℃未満に保つ。添加終了後、攪拌を2時間継続すると理論的NCO含量が26.2%にまで到達した。過剰のイソシアネートを150−170℃、0.1ミリバールの減圧蒸留で除去する。NCO含量は9.2%、遊離のTDI含量は0.5%未満である。
[実施例 5]
メトキシポリエチレングリコール 350の0.2モル(70g)をトリレンジイソシアネート(T80)0.6モル(104.4g)に50℃、2時間以上で添加する。温度を50℃と55℃の間に保つ。添加終了後、攪拌を3時間継続すると理論的NCO含量が24.1%にまで到達した。 過剰のイソシアネートを150−170℃、0.1ミリバールの減圧蒸留で除去する。NCO含量は8.0%、遊離のTDI含量は0.5%未満である。
【0030】
[実施例 6]
メトキシポリエチレングリコール(MPEG)500の0.2モル(100g)をトリレンジイソシアネート(T80)0.6モル(104.4g)に50℃、2時間以上で添加する。温度を50℃と55℃の間に保つ。添加終了後、攪拌を3時間継続すると理論的NCO含量が20.5%にまで到達した。 過剰のイソシアネートを150−170℃、0.1ミリバールの減圧蒸留で除去する。NCO含量は6.2%、遊離のTDI含量は0.5%未満である。
[実施例 7]
メトキシポリエチレングリコール 500の0.2モル(100g)とメトキシポリエチレングリコール 350の0.2モル(70g)との混合物をトリレンジイソシアネート(T80)0.8モル(139.2g)に50℃、2時間以上で添加する。温度を50℃と55℃の間に保つ。添加終了後、攪拌を3時間継続すると理論的NCO含量が16.3%にまで到達した。 過剰のイソシアネートを150−170℃、0.1ミリバールの減圧蒸留で除去する。NCO含量は7.0%、遊離のTDI含量は0.5%未満である。
【0031】
【表1】
Figure 0004942262
【0032】
【表2】
Figure 0004942262
【0033】
[尿素ウレタンの製造(本発明)]
( 実施例 8−14 )
[実施例 8]
LiCl15.9gとキシリレンジアミン68g(0.5モル)を80℃でN−メチルピロリドン403gに溶解する。次いで、表2の混合物A320gを1時間で加える。反応完結後に30分間攪拌を継続してから反応溶液を室温まで冷却する。生成物である尿素ウレタン溶液の固形成分含量は50%である。生成溶液は透明で、比較的長期に安定しておりゲルの生成が見られない。
[実施例 9]
LiCl15.9gとキシリレンジアミン68g(0.5モル)を80℃でN−メチルピロリドン656gに溶解する。次いで、表2の混合物B572gを1時間で加える。反応完結後に30分間攪拌を継続してから反応溶液を室温まで冷却する。生成物である尿素ウレタン溶液の固形成分含量は50%である。生成溶液は透明で、比較的長期に安定している。
【0034】
[実施例 10]
LiNO325.8gとキシリレンジアミン68g(0.5モル)を80℃でN−メチルピロリドン690gに溶解する。次いで、表2の混合物C472gを1時間で加える。反応完結後に30分間攪拌を継続してから反応溶液を室温まで冷却する。生成物である尿素ウレタン溶液の固形成分含量は45%である。生成溶液は長期間透明である。
[実施例 11]
LiCl15.9gとキシリレンジアミン68g(0.5モル)を80℃でジメチルアセトアミド760gに溶解する。次いで、表2の混合物D413gを1時間で加える。反応完結後に30分間攪拌を継続してから反応溶液を室温まで冷却する。生成物である尿素ウレタン溶液の固形成分含量は40%である。生成溶液は透明で、比較的長期に安定している。
【0035】
[実施例 12]
LiCl15.9gとヘキサメチレンジアミン84g(0.5モル)を80℃でN−メチルピロリドン830gに溶解する。次いで、表2の混合物E580gを1時間で加える。反応完結後に30分間攪拌を継続してから反応溶液を室温まで冷却する。生成物である尿素ウレタン溶液の固形成分含量は45%である。生成溶液は透明で、比較的長期に安定している。
[実施例 13]
LiCl15.9gとヘキサメチレンジアミン84g(0.5モル)を80℃でN−メチルピロリドン630gに溶解する。次いで、表2の混合物A320gを1時間で加える。反応完結後に30分間攪拌を継続してから反応溶液を室温まで冷却する。生成物である尿素ウレタン溶液の固形成分含量は40%である。生成溶液は透明で、比較的長期に安定していて、ゲルの生成が見られない。
【0036】
[実施例 14]
LiCl15.9gとキシリレンジアミン68g(0.5モル)を80℃でN−メチルピロリドン497gに溶解する。次いで、表2の混合物F413gを1時間で加える。反応完結後に30分間攪拌を継続してから反応溶液を室温まで冷却する。生成物である尿素ウレタン溶液の固形成分含量は50%である。生成溶液は透明で、比較的長期に安定していて、ゲルの生成が見られない。
[実施例 15]
LiCl11.1gとパラキシリレンジアミン84g(0.5モル)を80℃でN−メチルピロリドン460gに溶解する。次いで、表2の混合物B400gを1時間で加える。反応完結後に30分間攪拌を継続してから反応溶液を室温まで冷却する。生成物である尿素ウレタン溶液の固形成分含量は50%である。生成溶液は透明で、比較的長期に安定している。
【0037】
[実施例 16]
LiNO315.5gとパラキシリレンジアミン68g(0.5モル)を80℃でN−メチルピロリドン414gに溶解する。次いで、表2の混合物C283gを1時間で加える。反応完結後に30分間攪拌を継続してから反応溶液を室温まで冷却する。生成物である尿素ウレタン溶液の固形成分含量は45%である。生成溶液は長い間透明である。
【0038】
[使用例]
本発明の方法により製造された尿素ウレタン溶液と水および水/溶媒混合液との相溶性とレオロジ−的効果をテストした。
水および水/溶媒混合液との溶解性とレオロジー的効果を調べるために、尿素ウレタンを水または水/溶媒混合液に、2分間、1m/秒のせん断力で攪拌しながら加えて、4時間後に評価した。
レオロジー的効果の評価は、評価1が濃いゲルで、評価6がゲル無しである。
相溶性の評価は、評価1が透明な溶液で、評価6が尿素ウレタンの沈殿物ありである。
【0039】
【表3】
Figure 0004942262
【0040】
本発明の尿素ウレタンの抗沈積効果を調べるために、顔料スラリーを調整して、3週間貯蔵後の沈積挙動を調べた。顔料スラリーを調整するためには、先ず、水、ブチルグリコールおよびDisperbyk(登録商標) 192(ドイツ BYK-Chemie社製)のすべてを混ぜ合せる。次いで、この混合液を攪拌しながら顔料(ドイツMerck社製:Iriodin(登録商標) 9303 Royal Gold WRII)に加える。その後、Dispermat (登録商標)CV分散機(ドイツ VMA Getmann社製)を用いて、せん断力2m/秒で2分間攪拌しながら、本発明の尿素ウレタンを加える。沈積挙動を評価するために、これらのスラリーをガラスチューブ(高さ10cm、直径1.5cm)に7.5cmの高さにまで入れる。室温で3週間貯蔵した後に、離液状態(syneresis)を決定した。
【0041】
【表4】
Figure 0004942262
【0042】
【表5】
Figure 0004942262
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a solution containing urea urethane and useful as a thixotropic agent. Specifically, the present invention reacts a monohydroxy compound with excess tolylene diisocyanate, removes unreacted tolylene diisocyanate from the reaction mixture, and then converts the resulting monoisocyanate adduct to the presence of a diamine and a lithium salt. The present invention relates to a method for obtaining a urea urethane solution by reacting in an aprotic solvent. The invention further relates to the use of the solution to obtain a thixotropic coating composition.
[0002]
[Prior art]
Organically modified bentonite, silica, hydrogenated beaver oil and polyamide wax are mainly used to adjust the rheology of liquid coating systems. Most of these materials are dry solids and have the disadvantage that they must be sheared with a solvent to produce a semi-finished product and then added to the solution coating system with careful temperature control. If this temperature control is poor, crystals will form in the finished coating system, resulting in coating defects.
[0003]
Such rheological aids currently in use have the general disadvantage of turbidity and dullness in colorless and transparent coatings. Furthermore, it is not preferable to handle the dry powder during the reaction because it causes dust.
Another solution for rheology control is described in European patent application EP-A-0 198519. This is the reaction of isocyanate and amine in the presence of a film-forming resin solution to form urea that becomes acicular crystals in a very finely dispersed state. The film-forming binder thus modified is sold as a rheology control / sag prevention binder. This is called a sag regulator. These products have the disadvantage that they are always bonded to the binder used when they are manufactured and cannot be reworked as is typically done with the final coating composition.
[0004]
European patent EP-B-0 006 252 describes a process for the preparation of thixotropic agents to eliminate some of the aforementioned drawbacks. That is, it describes urea urethane obtained by reacting an isocyanate adduct and a polyamine in the presence of a lithium salt in an aprotic solvent. However, the product obtained in this way has two serious drawbacks. One of them is due to the manufacturing method, and the chemical structure of the thixotropic agent cannot be specified. Although described as a monoisocyanate adduct, experiments clearly confirm that the actual product is not a monoadduct but a mixture of different adducts. According to the process described, one mole of diisocyanate first reacts with one mole of a monoalcohol. This production method partially produces the desired NCO functional monoadduct, but also produces a non-NCO functional diadduct, so that in subsequent reactions with the polyamide in the presence of lithium chloride, urea urethane The chain extension cannot be adjusted, resulting in a urea polymer. These products tend to exhibit precipitation and are extremely difficult to maintain in solution. Furthermore, the thixotropic agent according to this production method also has the disadvantage that only the monoisocyanate adduct of the same structure always reacts with the diamine. This firstly limits the compatibility of the coating system used, clearly having a gel structure and increasing turbidity. Second, the rheological effect is inferior.
[0005]
[Problems to be solved by the invention]
The object of the present invention is therefore, on the one hand, to have a limited structure and thus the solution produced has a relatively high storage stability of more than a few months, while on the other hand a relatively broad compatibility in the binder. It is to provide a thixotropic agent that has characteristics and thus gives reliable use of the product. This is a significant advantage in current coating systems that are relatively polar formulations, such as aqueous coatings, high solids.
[0006]
[Means for Solving the Problems]
Surprisingly, in order to obtain a urea adduct, the above object is achieved in the originally specified process by reacting at least two structurally different monoisocyanate adducts with different alcohol components with a diamine. It was found.
[0007]
In the production method of the present invention, first, at least two structurally different monohydroxy compounds represented by the general formula R—OH are reacted with an excess of tolylene diisocyanate in an amount of 1.5 to 5 times. A monoisocyanate adduct represented by the formula (I) is obtained. Here, R is an n-alkyl group or iso-alkyl group having 4 to 22 carbon atoms, an alkenyl group having 3 to 18 carbon atoms, a cycloalkyl group, an aralkyl group, or the formula C m H 2m + 1 (O—C n H 2n ) x , C m H 2m + 1 (OOC—C v H 2v ) x or Z—C 6 H 4 (O—C n H 2n ) x , where m 1 to 22, n is 2 to 4, x is 1 to 15, v is 4 or 5, and Z is an alkyl group having 1 to 12 carbon atoms.
[0008]
[Chemical 8]
Figure 0004942262
[0009]
Then, the unreacted tolylene diisocyanate is removed from the reaction mixture, and the resulting monoisocyanate adduct is converted into an aprotic solvent in the presence of a diamine represented by the formula H 2 N—R 3 —NH 2 and a lithium salt. The reaction is carried out in the middle to obtain a urea adduct represented by the general formula (II). Here, R 3 is a substituent —C o H 2o —, where o = 2 to 12, — (C p H 2p —O—C p H 2p ) q, where p = 2 to 4 and q = 1 to 10,
[0010]
[Chemical 9]
Figure 0004942262
Where R 4 is CH 3 or H, or
[Chemical Formula 10]
Figure 0004942262
Or a mixture of these.
[0012]
Embedded image
Figure 0004942262
[0013]
Here, R 1 and R 2 are substituents based on the R group of the monoisocyanate adduct.
In the production method of the present invention, a part or all of the above-mentioned diamine can be substituted with para-xylylenediamine of the following formula.
[0014]
Embedded image
Figure 0004942262
[0015]
DETAILED DESCRIPTION OF THE INVENTION
According to the production method of the present invention, a solution containing urea urethane and active as a thixotropic agent can be produced basically by two different routes.
a) one route;
First, at least two kinds of structurally different alcohols R—OH are mixed, and then this mixture is reacted with an excess of tolylene diisocyanate in an amount of 1.5 to 5 times. After the reaction, unreacted tolylene diisocyanate is removed from the reaction mixture under known mild conditions, and then the reaction mixture of structurally different monoisocyanate adducts and the diamine are present in an aprotic solvent in the presence of a lithium salt. The urea urethane of general formula (II) can be produced by reaction.
[0016]
b) other routes;
First, at least two structurally different alcohols R—OH are separately reacted with 1.5 to 5 times the excess of tolylene diisocyanate. After the reaction, unreacted tolylene diisocyanate is removed from the reaction mixture under known mild conditions, and then structurally different monoisocyanate adducts are mixed. A urea mixture of the general formula (II) can be prepared by reacting a structural mixture of structurally different monoisocyanate adducts and a diamine in an aprotic solvent in the presence of a lithium salt.
[0017]
The molar ratio of each monoisocyanate adduct in a mixture of structurally different monoisocyanate adducts is preferably 20 to 80%, more preferably 35 to 65%, and particularly preferably 45 to 55%. The total molar ratio of this monoisocyanate adduct is 100%. The tolylene diisocyanate added in excess is preferably from 1.5 to 5.0 mol, particularly preferably from 2.0 to 4.0 mol.
[0018]
The solid content of the urea urethane solution thus produced is preferably 5 to 80%, more preferably 20 to 60%, and particularly preferably 25 to 50%. The reaction of the monoisocyanate adduct with the diamine may be performed by, for example, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, N-butylpyrrolidone or a corresponding alkylpyrrolidone, or a mixture thereof. In an aprotic solvent.
[0019]
The ratio of the lithium compound is preferably 0.2 to 2 mol, more preferably 0.5 to 1.5 mol, and most preferably 0.75 to 1.25 mol with respect to the amine equivalent of the diamine used. As the lithium salt used, LiNO 3 has the advantage of LiNO 3 because it contains chlorine ions that adversely affect the coating system and accelerate the corrosion of the metal substrate to which the thixotropic coating system is applied.
[0020]
The alcohol R—OH used for the production of the monoisocyanate is preferably a linear or branched saturated or unsaturated primary alcohol. For example, n- butanol, 2-ethylhexanol, an alcohol such as isotridecyl alcohol, chain length C 10 -C 20 of Guerbet (Guerbet) alcohol, oleyl alcohol, linoleyl alcohol, lauryl alcohol, stearyl alcohol, also Also suitable are aromatic substituted alkanols such as benzyl alcohol. However, alicyclic alcohols such as cyclohexanol and alkyl substituted derivatives thereof are not preferred.
[0021]
Particularly suitable for the control of the polarity are the abovementioned alkoxy derivatives of alcohols, in which case lower alcohols such as, for example, methanol or allyl alcohol can also be used as starting materials for the alkoxylation. The product thus produced preferably contains ethylene oxide and / or propylene oxide units in the chain, which units are alternating or blocky. For the alkoxylation, it is also possible to use, for example, aromatic alcohols such as phenol and alkylphenol as starting materials.
[0022]
In order to adjust the compatibility of the urea urethane of the present invention with the latest binder systems, for example, a lactone such as ε-caprolactone is added to the above alcohol or alkoxylated alcohol, or a hydroxy functional (meth) acrylate is added. It can also be used to introduce ester groups or polyester groups into the alcohol component.
[0023]
The diisocyanate used in the production of the monoisocyanate adduct is substantially composed of tolylene diisocyanate which is well known as a mixture of isomers. This mixture of isomers causes a shift in isomer distribution when distilling excess diisocyanate fractions, resulting in a higher 2,6-tolylene diisocyanate content than what is generally commercially available. It has become. These distillates can be further reused for the production of monoadducts. Tolylene diisocyanate having a 2,4-isomer fraction of 50-100% is preferred.
[0024]
The diamine of the formula H 2 N—R 3 —NH 2 consists essentially of linear or branched linear diamines with carbon chain lengths C 2 to C 12 , 1,3-propanediamine, hexamethylenediamine, octa Examples are methylenediamine, diaminododecane or neopentanediamine. Cyclic diamines such as 4,4'-diaminodicyclohexylmethane or 3,3'-dimethyl-4,4'-diaminodicyclohexylmethane are also preferred. For example, aromatic diamines such as meta-xylylenediamine or para-xylylenediamine are particularly preferred. Furthermore, the use of a mixture of these diamines tends to reduce the crystallization of the urea urethane solution, so that a mixture of diamines can be used in the production.
[0025]
The urea urethane solution produced by the production method of the present invention contains no free isocyanate or free amino group and is physiologically easy to use. In addition, there is no adverse side reaction with the binder or filler (filler). The storage stability of the urea urethane solution produced by this method is remarkably high, and it can be easily stored for more than 6 months at normal storage temperature. Further, the compatibility of the urea urethane solution with the binder is very wide, and a thixotropic agent can be used with reliability.
Furthermore, the present invention also provides the use of the urea urethane solution produced by this process to make the coating composition thixotropic. The coating composition preferably includes a water-based solventless coating material, PVC plastisol, an epoxy-based coating and an unsaturated polyester-based coating.
[0026]
【Example】
The main features of the production method of the present invention are illustrated by the following examples.
[Comparative example according to EP-B-0 006 252 (non-invention)]
1 mol (174 g) of tolylene diisocyanate (TDI) (65% 2,4-isomer, hereinafter referred to as T65) is placed in a reaction vessel, and methoxypolyethylene glycol (weight average molecular weight: 350 g / mol) is slowly added with stirring. Add dropwise and complete the reaction by known methods. The temperature during the reaction is kept below 40 ° C. The isocyanate adduct thus produced contains 6.3% free tolylene diisocyanate and the total NCO amount is 8.05%. The reaction mixture is added to a solution of 0.5 mol (68 g) xylylenediamine and 0.75 mol LiCl at amine equivalents in N-methylpyrrolidone (NMP). The solid component (SC) is 50%. The reaction is exothermic. Although initially a clear product, there is a tendency for gel formation after 2 months of storage.
[0027]
[Production of Mono Adduct (Invention)]
Example 1-7
[Example 1]
0.5 mol (37 g) of n-butanol is added to 1.25 mol (217.5 g) of tolylene diisocyanate (80% of 2,4 isomer, hereinafter referred to as T80) at 30 ° C. over 2 hours. Keep temperature below 45 ° C. After the addition was complete, stirring was continued for 2 hours until the theoretical NCO content reached 33.0%. Excess isocyanate is removed by vacuum distillation at 150-170 ° C. and 0.1 mbar. The NCO content is 16.9% and the free TDI content is less than 0.2%.
[0028]
[Example 2]
0.25 mol (53 g) of butyltriglycol is added to 0.625 mol (108.75 g) of tolylene diisocyanate (T65) at room temperature over 2 hours. Keep temperature below 45 ° C. After the addition was complete, stirring was continued for 2 hours until the theoretical NCO content reached 25.8%. Excess isocyanate is removed by vacuum distillation at 150-170 ° C. and 0.1 mbar. The NCO content is 10.9% and the free TDI content is less than 0.5%.
[Example 3]
Isotridecanol 0.25 mol (50 g) is added to tolylene diisocyanate (T65) 0.75 mol (130.5 g) at 40 ° C. over 2 hours. Keep temperature below 60 ° C. After the addition was complete, stirring was continued for 2 hours until the theoretical NCO content reached 29.1%. Excess isocyanate is removed by vacuum distillation at 150-170 ° C. and 0.1 mbar. The NCO content is 11.3% and the free TDI content is less than 0.5%.
[0029]
[Example 4]
Butanol 0.25 mol (18 g) was reacted with caprolactone 0.5 mol (57 g) and DBTL 0.1% (0.075 g) at 160 ° C. for 6 hours and cooled to 50 ° C. The hydroxy ester thus produced (BuCP2: hydroxyl group number 186) was added to 0.75 mol (130.5 g) of tolylene diisocyanate at 40 ° C. over 2 hours. Keep temperature below 60 ° C. After the addition was complete, stirring was continued for 2 hours until the theoretical NCO content reached 26.2%. Excess isocyanate is removed by vacuum distillation at 150-170 ° C. and 0.1 mbar. The NCO content is 9.2% and the free TDI content is less than 0.5%.
[Example 5]
0.2 mol (70 g) of methoxypolyethylene glycol 350 is added to 0.6 mol (104.4 g) of tolylene diisocyanate (T80) at 50 ° C. over 2 hours. Keep temperature between 50 ° C and 55 ° C. After the addition was complete, stirring was continued for 3 hours until the theoretical NCO content reached 24.1%. Excess isocyanate is removed by vacuum distillation at 150-170 ° C. and 0.1 mbar. The NCO content is 8.0% and the free TDI content is less than 0.5%.
[0030]
[Example 6]
0.2 mol (100 g) of methoxypolyethylene glycol (MPEG) 500 is added to 0.6 mol (104.4 g) of tolylene diisocyanate (T80) at 50 ° C. over 2 hours. Keep temperature between 50 ° C and 55 ° C. After the addition was complete, stirring was continued for 3 hours until the theoretical NCO content reached 20.5%. Excess isocyanate is removed by vacuum distillation at 150-170 ° C. and 0.1 mbar. The NCO content is 6.2% and the free TDI content is less than 0.5%.
[Example 7]
A mixture of 0.2 mol (100 g) of methoxypolyethylene glycol 500 and 0.2 mol (70 g) of methoxypolyethylene glycol 350 was added to 0.8 mol (139.2 g) of tolylene diisocyanate (T80) at 50 ° C. for 2 hours. Add above. Keep temperature between 50 ° C and 55 ° C. After the addition was complete, stirring was continued for 3 hours until the theoretical NCO content reached 16.3%. Excess isocyanate is removed by vacuum distillation at 150-170 ° C. and 0.1 mbar. The NCO content is 7.0% and the free TDI content is less than 0.5%.
[0031]
[Table 1]
Figure 0004942262
[0032]
[Table 2]
Figure 0004942262
[0033]
[Production of urea urethane (present invention)]
(Example 8-14)
[Example 8]
15.9 g of LiCl and 68 g (0.5 mol) of xylylenediamine are dissolved in 403 g of N-methylpyrrolidone at 80 ° C. Then 320 g of the mixture A in Table 2 is added in 1 hour. After completion of the reaction, stirring is continued for 30 minutes, and then the reaction solution is cooled to room temperature. The solid content of the product urethane urethane solution is 50%. The resulting solution is transparent and stable for a relatively long time, and no gel is formed.
[Example 9]
15.9 g of LiCl and 68 g (0.5 mol) of xylylenediamine are dissolved in 656 g of N-methylpyrrolidone at 80 ° C. Then 572 g of the mixture B from Table 2 is added in 1 hour. After completion of the reaction, stirring is continued for 30 minutes, and then the reaction solution is cooled to room temperature. The solid content of the product urethane urethane solution is 50%. The resulting solution is clear and stable for a relatively long time.
[0034]
[Example 10]
25.8 g of LiNO 3 and 68 g (0.5 mol) of xylylenediamine are dissolved in 690 g of N-methylpyrrolidone at 80 ° C. Then 472 g of the mixture C in Table 2 is added in 1 hour. After completion of the reaction, stirring is continued for 30 minutes, and then the reaction solution is cooled to room temperature. The product, urea urethane solution, has a solid content of 45%. The resulting solution is clear for a long time.
[Example 11]
15.9 g of LiCl and 68 g (0.5 mol) of xylylenediamine are dissolved in 760 g of dimethylacetamide at 80 ° C. Then, 413 g of the mixture D in Table 2 is added in 1 hour. After completion of the reaction, stirring is continued for 30 minutes, and then the reaction solution is cooled to room temperature. The product urea urethane solution has a solid content of 40%. The resulting solution is clear and stable for a relatively long time.
[0035]
[Example 12]
15.9 g of LiCl and 84 g (0.5 mol) of hexamethylenediamine are dissolved in 830 g of N-methylpyrrolidone at 80 ° C. Then 580 g of the mixture E in Table 2 is added in 1 hour. After completion of the reaction, stirring is continued for 30 minutes, and then the reaction solution is cooled to room temperature. The product, urea urethane solution, has a solid content of 45%. The resulting solution is clear and stable for a relatively long time.
[Example 13]
15.9 g of LiCl and 84 g (0.5 mol) of hexamethylenediamine are dissolved in 630 g of N-methylpyrrolidone at 80 ° C. Then 320 g of the mixture A in Table 2 is added in 1 hour. After completion of the reaction, stirring is continued for 30 minutes, and then the reaction solution is cooled to room temperature. The product urea urethane solution has a solid content of 40%. The resulting solution is clear, stable for a relatively long time, and no gel formation is observed.
[0036]
[Example 14]
15.9 g of LiCl and 68 g (0.5 mol) of xylylenediamine are dissolved in 497 g of N-methylpyrrolidone at 80 ° C. Then, 413 g of mixture F from Table 2 is added in 1 hour. After completion of the reaction, stirring is continued for 30 minutes, and then the reaction solution is cooled to room temperature. The solid content of the product urethane urethane solution is 50%. The resulting solution is clear, stable for a relatively long time, and no gel formation is observed.
[Example 15]
11.1 g of LiCl and 84 g (0.5 mol) of paraxylylenediamine are dissolved in 460 g of N-methylpyrrolidone at 80 ° C. Then 400 g of the mixture B in Table 2 is added in 1 hour. After completion of the reaction, stirring is continued for 30 minutes, and then the reaction solution is cooled to room temperature. The solid content of the product urethane urethane solution is 50%. The resulting solution is clear and stable for a relatively long time.
[0037]
[Example 16]
15.5 g of LiNO 3 and 68 g (0.5 mol) of paraxylylenediamine are dissolved in 414 g of N-methylpyrrolidone at 80 ° C. Then 283 g of the mixture C in Table 2 is added in 1 hour. After completion of the reaction, stirring is continued for 30 minutes, and then the reaction solution is cooled to room temperature. The product, urea urethane solution, has a solid content of 45%. The product solution is clear for a long time.
[0038]
[Example of use]
The compatibility and rheological effects of the urea urethane solution prepared by the method of the present invention and water and water / solvent mixtures were tested.
In order to investigate the solubility and rheological effect of water and water / solvent mixture, urea urethane was added to water or water / solvent mixture for 2 minutes with stirring at a shear force of 1 m / second for 4 hours. It was evaluated later.
In the evaluation of the rheological effect, evaluation 1 is a dark gel and evaluation 6 is no gel.
In the evaluation of compatibility, the evaluation 1 is a transparent solution, and the evaluation 6 is a precipitate of urea urethane.
[0039]
[Table 3]
Figure 0004942262
[0040]
In order to investigate the anti-deposition effect of the urea urethane of the present invention, the pigment slurry was prepared and the deposition behavior after storage for 3 weeks was examined. To prepare the pigment slurry, first, all of water, butyl glycol and Disperbyk® 192 (manufactured by BYK-Chemie, Germany) are mixed. The mixture is then added to the pigment (Merck, Germany: Iriodin® 9303 Royal Gold WRII) with stirring. Thereafter, using the Dispermat (registered trademark) CV disperser (manufactured by VMA Getmann, Germany), the urea urethane of the present invention is added while stirring at a shearing force of 2 m / sec for 2 minutes. In order to evaluate the deposition behavior, these slurries are placed in a glass tube (height 10 cm, diameter 1.5 cm) to a height of 7.5 cm. After storage for 3 weeks at room temperature, syneresis was determined.
[0041]
[Table 4]
Figure 0004942262
[0042]
[Table 5]
Figure 0004942262

Claims (17)

一般式 R−OHで表されるモノヒドロキシ化合物を1.5〜5倍モル量の過剰のトリレンジイソシアネートと反応させ、反応混合液から未反応のトリレンジイソシアネートを除去し、次いで生成したモノイソシアネート付加物を式H2N−R3−NH2のジアミンと、リチウム塩の存在下、非プロトン性溶媒中で反応させて尿素ウレタンを得ることからなり、
尿素ウレタンを得るために、そのアルコール成分が異なる少なくとも2種類の構造的に異なるモノイソシアネート付加物をジアミンと反応させることを特徴とする
尿素ウレタンを含有し、チキソトロピック剤として有用な尿素ウレタン溶液の製造方法。
ここで、Rは、炭素数4〜22のn−アルキル基もしくはイソアルキル基、炭素数3〜18のアルケニル基、シクロアルキル基、アラルキル基、または式Cm2m+1(O−Cn2n)x、Cm2m+1(OOC−Cv2v)x あるいはZ−C64(O−Cn2n)xであり、mは1〜22,nは2〜4、xは1〜15、vは4あるいは5およびZは炭素数1〜12のアルキル基であり、
3は、−Co2o−、ここでo=2〜12、−(Cp2p−O−Cp2p)q、ここでp=2〜4 および q=1〜10、
Figure 0004942262
ここで、R4は、CH3もしくはH、もしくは
Figure 0004942262
またはこれらの混合物である。
The monohydroxy compound represented by the general formula R-OH is reacted with 1.5 to 5 times the molar excess of tolylene diisocyanate to remove unreacted tolylene diisocyanate from the reaction mixture, and then the resulting monoisocyanate Reacting the adduct with a diamine of formula H 2 N—R 3 —NH 2 in the presence of a lithium salt in an aprotic solvent to obtain urea urethane;
In order to obtain urea urethane, a urea urethane solution containing urea urethane, characterized by reacting at least two structurally different monoisocyanate adducts having different alcohol components with diamine, is useful as a thixotropic agent. Production method.
Here, R is an n-alkyl group or isoalkyl group having 4 to 22 carbon atoms, an alkenyl group having 3 to 18 carbon atoms, a cycloalkyl group, an aralkyl group, or a formula C m H 2m + 1 (O—C n H 2n) x, a C m H 2m + 1 (OOC -C v H 2v) x or Z-C 6 H 4 (O -C n H 2n) x, m is 1 to 22, n is 2-4, x is 1 to 15, v is 4 or 5, and Z is an alkyl group having 1 to 12 carbon atoms,
R 3 is —C o H 2o —, where o = 2 to 12, — (C p H 2p —O—C p H 2p ) q, where p = 2 to 4 and q = 1 to 10,
Figure 0004942262
Where R 4 is CH 3 or H, or
Figure 0004942262
Or a mixture of these.
式 H2N−R3−NH2 のジアミンとして、下記式のパラ−キシリレンジアミンを全部または一部に用いる請求項 1記載の尿素ウレタン溶液の製造方法。
Figure 0004942262
The method for producing a urea urethane solution according to claim 1 , wherein para-xylylenediamine of the following formula is used in whole or in part as a diamine of the formula H 2 N—R 3 —NH 2 .
Figure 0004942262
先ず少なくとも2種類の構造的に異なるアルコールR−OHを混合し、次いでその混合物を1.5〜5倍モル量の過剰のトリレンジイソシアネートと反応させ、反応混合液から未反応のトリレンジイソシアネートを除去し、得られた構造的に異なるモノイソシアネート付加物の混合物をジアミンと、リチウム塩の存在下、非プロトン性溶媒中で反応させて尿素ウレタンを得る請求項1または2に記載の尿素ウレタン溶液の製造方法。First, at least two structurally different alcohols R—OH are mixed, and then the mixture is reacted with a 1.5 to 5-fold molar amount of excess tolylene diisocyanate to remove unreacted tolylene diisocyanate from the reaction mixture. The urea urethane solution according to claim 1 or 2, wherein the urea urethane solution is obtained by reacting the resulting mixture of structurally different monoisocyanate adducts with a diamine in an aprotic solvent in the presence of a lithium salt. Manufacturing method. 先ず少なくとも2種類の構造的に異なるアルコールR−OHを別々に1.5〜5倍モル量の過剰のトリレンジイソシアネートと反応させ、反応混合液から未反応のトリレンジイソシアネートを除去し、得られた構造的に異なるモノイソシアネート付加物を混合し、得られた構造的に異なるモノイソシアネート付加物の混合物をジアミンと、リチウム塩の存在下、非プロトン性溶媒中で反応させて尿素ウレタンを得る請求項1または2に記載の尿素ウレタン溶液の製造方法。First, at least two structurally different alcohols R—OH are separately reacted with an excess of 1.5 to 5 moles of excess tolylene diisocyanate to remove unreacted tolylene diisocyanate from the reaction mixture. Claiming a mixture of structurally different monoisocyanate adducts and reacting the resulting mixture of structurally different monoisocyanate adducts with a diamine in the presence of a lithium salt in an aprotic solvent to obtain a urea urethane. Item 3. A method for producing a urea urethane solution according to Item 1 or 2. 構造的に異なるモノイソシアネート付加物の混合物におけるモノイソシアネート付加物のモル比が20%〜80%であり、そのモル比の総和が100%である請求項3または4に記載の尿素ウレタン溶液の製造方法。The urea urethane solution according to claim 3 or 4, wherein the molar ratio of each monoisocyanate adduct in the mixture of structurally different monoisocyanate adducts is 20% to 80%, and the sum of the molar ratios is 100%. Production method. 当該溶液の固形成分が5〜80重量%となるように調整することを特徴とする請求項1〜5のいずれかに記載の尿素ウレタン溶液の製造方法。  It adjusts so that the solid component of the said solution may be 5 to 80 weight%, The manufacturing method of the urea urethane solution in any one of Claims 1-5 characterized by the above-mentioned. 過剰に加えるトリレンジイソシアネートのモル量が2〜4倍モル量である請求項1〜のいずれかに記載の尿素ウレタン溶液の製造方法。 The method for producing a urea urethane solution according to any one of claims 1 to 6 , wherein the molar amount of tolylene diisocyanate added in excess is 2 to 4 times the molar amount . 2,4−異性体が50〜100重量%であるトリレンジイソシアネート異性体混合物を使用する請求項1〜7のいずれかに記載の尿素ウレタン溶液の製造方法。  The method for producing a urea urethane solution according to any one of claims 1 to 7, wherein a tolylene diisocyanate isomer mixture in which the 2,4-isomer is 50 to 100% by weight is used. リチウム化合物がジアミンのアミン当量に基づき、0.2〜2モルを使用する請求項1〜6のいずれかに記載の尿素ウレタン溶液の製造方法。The method for producing a urea urethane solution according to any one of claims 1 to 6, wherein the lithium compound is used in an amount of 0.2 to 2 mol based on the amine equivalent of the diamine. リチウム塩としてLiNO3を使用する請求項1〜7のいずれかに記載の尿素ウレタン溶液の製造方法。Method for producing a urea urethane solution according to any of claims 1 to 7 using the LiNO 3 as a lithium salt. 請求項1〜8記載のいずれかに記載の製造方法によって得られた溶液を使用したチキソトロピックコーティング組成物。  The thixotropic coating composition using the solution obtained by the manufacturing method in any one of Claims 1-8. 一般式(II)で表される化合物。
Figure 0004942262
ここで、R1及びR2は独立して炭素数4〜22のn−アルキル基もしくはイソアルキル基、炭素数3〜18のアルケニル基、シクロアルキル基、アラルキル基、または、式Cm2m+1(O−Cn2n)x、Cm2m+1(OOC−Cv2v)x あるいはZ−C64(O−Cn2n)xで表される置換基(mは1〜22,nは2〜4、xは1〜15、vは4または5、およびZは炭素数1〜12のアルキル基である)を表し;R3は置換基−Co2o−(o=2〜12)、−(Cp2p−O−Cp2p)q(p=2〜4 および q=1〜10)、
Figure 0004942262
ここで、R4は、CH3もしくはH、もしくは
Figure 0004942262
ある。ただし、R 1 とR 2 は異なる。
A compound represented by the general formula (II).
Figure 0004942262
Here, R 1 and R 2 are each independently an n-alkyl group or isoalkyl group having 4 to 22 carbon atoms, an alkenyl group having 3 to 18 carbon atoms, a cycloalkyl group, an aralkyl group, or the formula C m H 2m + 1 (O—C n H 2n ) x , C m H 2m + 1 (OOC—C v H 2v ) x or Z—C 6 H 4 (O—C n H 2n ) x Represents 1 to 22, n is 2 to 4, x is 1 to 15, v is 4 or 5, and Z is an alkyl group having 1 to 12 carbon atoms; R 3 is a substituent —C o H 2o - (o = 2~12), - (C p H 2p -O-C p H 2p) q (p = 2~4 and q = 1 to 10),
Figure 0004942262
Where R 4 is CH 3 or H, or
Figure 0004942262
It is. However, R 1 and R 2 are different.
前記一般式(II)において、R1及びR2が独立して、n−ブチル基、2−エチルヘキシル基、イソトリデシル基、オレイル基、リノレイル基、ラウリル基、ステアリル基、シクロヘキシル基、または、ベンジル基を表す請求項12記載の化合物。In the general formula (II), R 1 and R 2 are independently n-butyl group , 2 -ethylhexyl group, isotridecyl group, oleyl group, linoleyl group, lauryl group, stearyl group, cyclohexyl group, or benzyl group. 13. A compound according to claim 12 which represents 前記R1及びR2が独立して、n−ブチル基、または、イソトリデシル基を表す請求項13記載の化合物。The compound according to claim 13, wherein R 1 and R 2 independently represent an n-butyl group or an isotridecyl group . 前記R1及びR2が独立して、ブチルトリグリコール、メトキシポリエチレングリコール 500、及びメトキシポリエチレングリコール 350のいずれかの化合物をトリレンジイソシアネートと反応させてウレタン結合を形成した結果生じる、該化合物の残基を表す請求項12記載の化合物。Wherein R 1 and R 2 are independently Buchirutoriguri call, methoxy polyethylene glycol 500, and a compound of any of methoxy polyethylene glycol 350 was reacted with tolylene diisocyanate resulting from forming a urethane bond, said compound The compound of claim 12, which represents the residue of 前記一般式(II)において、R3が、プロピレン基、ヘキサメチレン基、オクタメチレン基、ドデシレン基、ネオペンチレン基、m−キシリレン基、p−キシリレン基、
Figure 0004942262
を表す請求項12記載の化合物。
In the general formula (II), R 3 is a propylene group, hexamethylene group, octamethylene group, dodecylene group, neopentylene group, m-xylylene group, p-xylylene group,
Figure 0004942262
13. A compound according to claim 12 which represents
前記R3が、ヘキサメチレン基、m−キシリレン基、または、p−キシリレン基を表す請求項16記載の化合物。The compound according to claim 16, wherein R 3 represents a hexamethylene group, an m-xylylene group, or a p-xylylene group.
JP2001241108A 2000-08-16 2001-08-08 Method for producing urea urethane solution having wide compatibility and storage stability and useful as thixotropic agent Expired - Lifetime JP4942262B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10039837A DE10039837C2 (en) 2000-08-16 2000-08-16 Process for the preparation of a storage-stable, rheologically effective urea urethane solution with broad compatibility
DEDE10039837.5 2000-08-16
DE10039837.5 2000-08-16

Publications (2)

Publication Number Publication Date
JP2002105042A JP2002105042A (en) 2002-04-10
JP4942262B2 true JP4942262B2 (en) 2012-05-30

Family

ID=7652494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001241108A Expired - Lifetime JP4942262B2 (en) 2000-08-16 2001-08-08 Method for producing urea urethane solution having wide compatibility and storage stability and useful as thixotropic agent

Country Status (10)

Country Link
EP (1) EP1188779B1 (en)
JP (1) JP4942262B2 (en)
KR (1) KR100796040B1 (en)
CN (1) CN1204117C (en)
AT (1) ATE268790T1 (en)
CA (1) CA2352660C (en)
DE (2) DE10039837C2 (en)
DK (1) DK1188779T3 (en)
ES (1) ES2220631T3 (en)
TW (1) TWI226892B (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10241853B3 (en) * 2002-09-09 2004-01-22 Byk-Chemie Gmbh Polymeric urea urethane as a rheology control agent and manufacturing process
JP5336043B2 (en) * 2003-07-08 2013-11-06 ヌプレクス レジンズ ビー.ブイ. Carbon-substituted methylamine derivatives and their use as rheology control agents
KR100482427B1 (en) * 2003-12-19 2005-04-14 박장원 Crosslinked foam which has inner-cavity structure, and process of forming thereof
US7220300B2 (en) * 2004-12-04 2007-05-22 Xerox Corporation Phase change inks containing bis(urea-urethane) compounds
US7560587B2 (en) * 2004-12-04 2009-07-14 Xerox Corporation Bis[urea-urethane] compounds
US7144450B2 (en) * 2004-12-04 2006-12-05 Xerox Corporation Phase change inks containing trans-1,2-cyclohexane bis(urea-urethane) compounds
WO2007105258A1 (en) * 2006-03-07 2007-09-20 The Yokohama Rubber Co., Ltd. Thixotropy-imparting agent, hardenable resin composition making use of the same and method of using the hardenable resin composition
DE102006010721B4 (en) * 2006-03-08 2010-04-15 Byk-Chemie Gmbh Biuret compounds for rheology control
KR100803024B1 (en) * 2006-07-25 2008-02-14 케이에스케미칼 주식회사 The preparing method of urethane-urea solution which is used as thixotropic agent in the paint
DE202008008419U1 (en) 2008-04-23 2009-06-04 Byk-Chemie Gmbh Stable dispersions of inorganic nanoparticles
DE102008029858A1 (en) * 2008-04-23 2009-10-29 Byk-Chemie Gmbh Stable dispersions of inorganic nanoparticles
DE102008038488A1 (en) 2008-08-20 2010-02-25 Henkel Ag & Co. Kgaa Moisture-curing waterproof coating
DE102008059702A1 (en) 2008-12-01 2010-06-02 Byk-Chemie Gmbh Process for the preparation of rheologically active urea urethanes in organic salts
BRPI1015095B1 (en) * 2009-04-21 2019-09-17 Huntsman International Llc COMPOSITION, PROCESSES FOR PREPARING A COMPOSITION AND A POLYESOCYANULATE MATERIAL, AND A POLYESOCYANURETE MATERIAL
DE102009021912A1 (en) 2009-05-19 2010-12-02 Byk-Chemie Gmbh From oxetane-based macromonomers available polymers, processes for their preparation and their use as additives in coating materials and plastics
DE102009021913A1 (en) 2009-05-19 2010-12-02 Byk-Chemie Gmbh Terminal unsaturated, oxetane-based macromonomers and process for their preparation
EP2292675A1 (en) 2009-09-08 2011-03-09 BYK-Chemie GmbH Polyureas as a rheology controlling agents.
WO2011091812A1 (en) 2010-01-28 2011-08-04 Byk-Chemie Gmbh Coating preparation containing urea components and amide components
ES2535938T3 (en) * 2011-02-22 2015-05-19 Basf Se Agents to modify the rheology for coating masses that can cure by radiation
EP2644633A1 (en) * 2012-03-29 2013-10-02 Huntsman International Llc Isocyanate-based prepolymer
EP2644632A1 (en) * 2012-03-29 2013-10-02 Huntsman International Llc Isocyanate-based prepolymer
ES2604115T3 (en) 2012-12-15 2017-03-03 Byk-Chemie Gmbh Composition for rheology control
PL3131962T3 (en) 2014-04-15 2018-09-28 Byk-Chemie Gmbh Composition for rheology control
DE102015004640A1 (en) 2014-04-15 2015-10-15 Byk-Chemie Gmbh Rheology control agent comprising a drug combination
TR201808677T4 (en) * 2014-04-15 2018-07-23 Byk Chemie Gmbh Storage-stable urea preparations suitable for use as rheology control agents.
CN107849209B (en) * 2015-07-27 2020-12-15 毕克化学有限公司 Urea urethanes for rheology control
KR101835720B1 (en) 2015-11-30 2018-03-08 케이에스케미칼 주식회사 Manufacturing method of thixotropic agent with shear thinning
JP6975792B2 (en) 2017-01-30 2021-12-01 ベーイプシロンカー ヘミー ゲゼルシャフト ミット ベシュレンクター ハフトゥング Urea group-and / or urethane group-containing amides as rheology control agents and in rheology control agents, their production and use thereof.
EP3459985B1 (en) * 2017-09-22 2020-06-17 Cliq Swisstech Gmbh Urea urethanes (ii)
CN110785447B (en) 2017-04-13 2022-02-11 毕克化学有限公司 Polymers suitable as thickeners
EP3428233A1 (en) 2017-07-13 2019-01-16 Sika Technology Ag Coating system with high surface roughness
CN111344327B (en) * 2017-11-14 2023-04-11 巴斯夫欧洲公司 Process for preparing urea urethane polymers
CA3086715C (en) * 2017-12-21 2022-07-12 Byk-Chemie Gmbh Urea and urethane group containing anti-settling rheology control additive
JP7035198B2 (en) 2017-12-21 2022-03-14 ベーイプシロンカー ヘミー ゲゼルシャフト ミット ベシュレンクター ハフトゥング Rheology control agent for preventing sagging containing urea group
KR102071950B1 (en) 2017-12-28 2020-01-31 낙우산업(주) Nanoclay to improve thickening and thixotropic behavior in natural paints and the preparing process the same
CN108070066B (en) * 2017-12-29 2020-11-27 陈鹏 Paint and ink anti-settling agent and preparation method thereof
WO2019190997A1 (en) 2018-03-27 2019-10-03 Advansix Resins & Chemicals Llc Thixotropic rheology modifying agent compositions
JP7332251B2 (en) * 2018-06-28 2023-08-23 ホヤ レンズ タイランド リミテッド Polymerizable composition for optical members
JP7196316B2 (en) 2019-01-04 2022-12-26 ベーイプシロンカー ヘミー ゲゼルシャフト ミット ベシュレンクター ハフトゥング Urea group-containing rheology control additive
CN113840858B (en) 2019-03-14 2023-12-15 毕克化学有限公司 Rheology control additives containing cyclic amides
EP4200347A1 (en) * 2020-08-24 2023-06-28 Basf Se Urea urethane compounds
EP4255982A1 (en) 2020-12-04 2023-10-11 BYK-Chemie GmbH Rheology control agent
DE102021128685A1 (en) 2021-11-04 2023-05-04 Voco Gmbh Highly effective, silica-free, storage-stable dental etching gel
WO2024008765A1 (en) 2022-07-06 2024-01-11 Byk-Chemie Gmbh Composition comprising a cyclic amide
WO2024133435A1 (en) 2022-12-21 2024-06-27 Byk-Chemie Gmbh Liquid rheology control agent

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415040A (en) * 1977-07-04 1979-02-03 Kanebo Ltd Bobbin exchange apparatus fof spun yarn winder
DE2822908C2 (en) * 1978-05-26 1980-03-20 Byk-Mallinckrodt Chemische Produkte Gmbh, 4230 Wesel Thixotropic agents for coating agents
ATE29138T1 (en) * 1984-01-27 1987-09-15 Byk Chemie Gmbh ADDITIONAL COMPOUNDS SUITABLE AS DISPERSING AGENT, PROCESS FOR THEIR PRODUCTION, THEIR USE AND SOLIDS COATED WITH THEM.
JPH0786133B2 (en) * 1986-03-13 1995-09-20 大日本インキ化学工業株式会社 Thixotropic coating composition
US4683279A (en) * 1986-07-08 1987-07-28 Air Products And Chemicals, Inc. Low melting urethane linked toluenediisocyanates
DE3706151A1 (en) * 1987-02-26 1988-09-08 Bayer Ag POLYHANE-MODIFIED POLYETHERURETHANES AND THEIR USE AS EMULSION SPLITTERS FOR WATER-IN-OIL EMULSIONS
US4942213A (en) * 1987-12-04 1990-07-17 Byk-Chemie Gmbh Addition compounds useful as dispersing agents and dispersion stabilizers, process for producing them, their use and solids coated therewith
JP2974491B2 (en) * 1992-03-05 1999-11-10 共栄社化学株式会社 Anti-sagging agent for non-aqueous paints
DE19636382A1 (en) * 1996-09-09 1998-03-12 Bayer Ag Pigment preparations for ink jet printing
DE19919482C2 (en) * 1999-04-29 2001-04-26 Byk Chemie Gmbh Process for the preparation of a thixotropic agent and its use
JP3904349B2 (en) * 1999-08-05 2007-04-11 三井化学株式会社 Thixotropic agent and method for producing the same

Also Published As

Publication number Publication date
KR20020014680A (en) 2002-02-25
DE10039837C2 (en) 2003-03-20
DK1188779T3 (en) 2004-08-30
ATE268790T1 (en) 2004-06-15
DE50102521D1 (en) 2004-07-15
CA2352660A1 (en) 2002-02-16
CN1338453A (en) 2002-03-06
CN1204117C (en) 2005-06-01
TWI226892B (en) 2005-01-21
EP1188779B1 (en) 2004-06-09
CA2352660C (en) 2008-10-21
EP1188779A1 (en) 2002-03-20
ES2220631T3 (en) 2004-12-16
DE10039837A1 (en) 2002-03-07
KR100796040B1 (en) 2008-01-21
JP2002105042A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP4942262B2 (en) Method for producing urea urethane solution having wide compatibility and storage stability and useful as thixotropic agent
KR100581741B1 (en) Process for preparing a thixotropic agent and its use
US6617468B2 (en) Rheologically active urea urethane compounds
DE3885401T2 (en) Water-dispersible thickener made of modified polyurethane with improved viscosity behavior in high-shear forces in aqueous systems.
KR101423747B1 (en) Biuret compounds for rheology control
US8956452B2 (en) Method for producing rheologically effective urea urethanes in organic salts
JP5035792B2 (en) Method for producing a stable polycarbodiimide dispersion that can be used as a crosslinking agent without an organic solvent
KR101275836B1 (en) Biuret compounds, their preparation and use, and intermediates in their preparation
CN102597036A (en) Polyureas as rheology control agents
JP2002533487A (en) Thixotropic aminoformaldehyde resin
US11352506B2 (en) Urea urethanes
JP2569659B2 (en) Method for emulsifying isocyanate compound
JPH0710947A (en) Production of aqueous epoxy resin dispersion
CN118325038A (en) Urea carbamate thixotropic agent solution and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111014

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111019

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111110

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111214

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4942262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term