JP4941313B2 - Gas adsorption device, vacuum heat insulating material and vacuum heat insulating box - Google Patents
Gas adsorption device, vacuum heat insulating material and vacuum heat insulating boxInfo
- Publication number
- JP4941313B2 JP4941313B2 JP2008005359A JP2008005359A JP4941313B2 JP 4941313 B2 JP4941313 B2 JP 4941313B2 JP 2008005359 A JP2008005359 A JP 2008005359A JP 2008005359 A JP2008005359 A JP 2008005359A JP 4941313 B2 JP4941313 B2 JP 4941313B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- heat insulating
- vacuum heat
- control member
- box
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Packages (AREA)
- Refrigerator Housings (AREA)
- Separation Of Gases By Adsorption (AREA)
- Drying Of Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は、気体吸着材を大気中で保存可能とする気体吸着デバイスに関するものであり、さらに断熱・保温を必要とするもの、例えば冷蔵庫・保温保冷外被材、自動販売機、電気湯沸かし器、車両等の断熱材として使用可能な真空断熱材および真空断熱箱体に関するものである。 The present invention relates to a gas adsorption device capable of storing a gas adsorbent in the atmosphere, and further requires heat insulation and heat insulation, such as a refrigerator, a heat insulation jacket material, a vending machine, an electric water heater, a vehicle The present invention relates to a vacuum heat insulating material and a vacuum heat insulating box that can be used as a heat insulating material.
近年、高真空を必要とする工業技術への期待が高まりつつある。例えば、地球温暖化防止の観点から省エネルギーが強く望まれており、家庭用電化製品についても省エネルギー化は緊急の課題となっている。特に、冷蔵庫、冷凍庫、自動販売機等の保温保冷機器では熱を効率的に利用するという観点から、優れた断熱性能を有する断熱材、真空断熱箱体が求められている。 In recent years, expectations for industrial technology that requires high vacuum are increasing. For example, energy saving is strongly desired from the viewpoint of preventing global warming, and energy saving is an urgent issue for household appliances. In particular, a heat insulating material such as a refrigerator, a freezer, and a vending machine is required to have a heat insulating material and a vacuum heat insulating box having excellent heat insulating performance from the viewpoint of efficiently using heat.
一般的な断熱材として、グラスウールなどの繊維材やウレタンフオームなどの発泡体が用いられている。しかし、これらの断熱材の断熱性能を向上するためには断熱材の厚さを増す必要かおり、断熱材を充填できる空間に制限があって省スペースや空間の有効利用が必要な場合には適用することができない。 As general heat insulating materials, fiber materials such as glass wool and foams such as urethane foam are used. However, in order to improve the heat insulation performance of these heat insulating materials, it is necessary to increase the thickness of the heat insulating material, and it is applied when there is a limit to the space where the heat insulating material can be filled and space saving or effective use of the space is necessary. Can not do it.
そこで、高性能な断熱材として、真空断熱材が提案されている。真空断熱材は、スペーサの役割を持つ芯材を、ガスバリア性を有する外被材中に挿入し内部を減圧して封止した断熱材である。 Therefore, vacuum heat insulating materials have been proposed as high performance heat insulating materials. The vacuum heat insulating material is a heat insulating material in which a core material serving as a spacer is inserted into a jacket material having a gas barrier property and the inside is decompressed and sealed.
真空断熱材内部の真空度を上げることにより、高性能な断熱性能を得ることができるが、真空断熱材内部に存在する気体には大きく分けて次の3つがある。一つは、真空断熱材作製時、排気できずに残存する気体、別の一つは、減圧封止後、芯材や外被材から発生する気体(芯材や外被材に吸着している気体や、芯材の未反応成分が反応することによって発生する反応ガス等)、残りの一つは、外被材を通過して外部から侵入してくる気体である。 By increasing the degree of vacuum inside the vacuum heat insulating material, high-performance heat insulating performance can be obtained, but the gas existing inside the vacuum heat insulating material is roughly divided into the following three types. One is the gas that cannot be evacuated during the vacuum insulation material preparation, and the other is the gas generated from the core material and the jacket material after being sealed under reduced pressure (adsorbed on the core material and the jacket material). The remaining gas is a gas that passes through the jacket material and enters from the outside.
これらの気体を吸着するため、吸着材を真空断熱材に充填する方法が考案されている。 In order to adsorb these gases, a method of filling the vacuum heat insulating material with the adsorbent has been devised.
例えば、真空断熱材内の気体を、Ba−Li合金を用いて吸着するものがある(例えば、特許文献1参照)。 For example, there exists what adsorb | sucks the gas in a vacuum heat insulating material using a Ba-Li alloy (for example, refer patent document 1).
真空断熱材内の吸着材が吸着すべき気体のうち、吸着困難な気体の一つが窒素である。これは、窒素分子が約940kJ/mo1という大きい結合エネルギーを有する非極性分子であるから、活性化させるのが困難なためである。しかし、Ba−Li合金により窒素を吸着可能とし、真空断熱材内部の真空度を維持するのである。 Of the gases to be adsorbed by the adsorbent in the vacuum heat insulating material, one of the gases that are difficult to adsorb is nitrogen. This is because the nitrogen molecule is a nonpolar molecule having a large binding energy of about 940 kJ / mo1, and therefore it is difficult to activate. However, nitrogen can be adsorbed by the Ba-Li alloy, and the degree of vacuum inside the vacuum heat insulating material is maintained.
真空断熱材の性能の更なる向上を目的として、真空断熱材内部の真空度をさらに低下させることや、プラズマディスプレーパネル等の様に、高真空を必要とする機器のためBa−Liより高活性な気体吸着材の実用化が望まれている。 For the purpose of further improving the performance of the vacuum heat insulating material, the vacuum degree inside the vacuum heat insulating material is further reduced, and it is more active than Ba-Li for equipment that requires a high vacuum such as a plasma display panel. The practical application of a gas adsorbent is desired.
また、真空断熱箱体の例として例えば特許文献2がある。特許文献2においては、冷蔵庫等の外箱と内箱の間に発泡断熱材を充填して成る真空断熱箱体において、前記発泡断熱材に連続気泡硬質ポリウレクンフオームを用い、前記外箱に断熱壁内部と連通した真空インジケータと開閉バルブを設け、前記開閉バルブを介して真空脱気して構成した真空断熱
箱体がある。断熱壁内部と連通した真空インジケータにより内部の真空度がモニターできるため、外部から侵入した気体や内部に残留したガスにより真空度が劣化した場合でも、開閉バルブを介して真空脱気することにより、初期の断熱性能を回復することができる。
しかしながら、特許文献1に記載の上記従来の構成では、活性化のための熱処理を必要とせず、常温下でも窒素吸着可能であり、数分間は空気雰囲気で取り扱い可能と記載されているが、気体吸着材を用いる機器や真空断熱材を工業的に製造する条件では、より長い許容時間か望ましい。 However, the conventional configuration described in Patent Document 1 does not require heat treatment for activation, can adsorb nitrogen even at room temperature, and can be handled in an air atmosphere for several minutes. A longer permissible time is desirable under the conditions of industrially manufacturing equipment using an adsorbent and vacuum insulation.
これは、製造プロ七スにおいて空気と接触することで、窒素吸着能力が消耗し、本来必要な機器性能維持のための吸着能力が乏しくなり、性能劣化や性能ばらつきが大きくなることを防止するためである。真空断熱材等のさらなる高性能化か望まれている中で、機器や真空断熱材内部の真空度維持を図るために、吸着材をより安定的かつ高効率に使いこなすことが大きな課題であった。 This is to prevent nitrogen adsorption capacity from being exhausted due to contact with air in the manufacturing process, resulting in poor adsorption capacity for maintaining the equipment performance that is originally required, and preventing performance deterioration and performance variations from increasing. It is. In order to further improve the performance of vacuum insulation materials, etc., it was a major challenge to use adsorbents more stably and efficiently in order to maintain the degree of vacuum inside equipment and vacuum insulation materials. .
気体吸着材の活性の高さ、つまり、大気中に放置された場合に吸着が飽和するまでの時間は、その形態と材料仕様ごとに異なる。例えば、気体吸着材がペレット状であれば、比較的長い時間大気中に放置しても飽和しない。一方、気体吸着材が粉末状であれば、比表面積が大きくなるため、短時間大気中に放置しただけであっても飽和してしまう。 The height of activity of the gas adsorbent, that is, the time until the adsorption is saturated when left in the atmosphere varies depending on the form and material specifications. For example, if the gas adsorbent is in the form of pellets, it will not saturate even if left in the atmosphere for a relatively long time. On the other hand, if the gas adsorbent is in powder form, the specific surface area becomes large, so that even if it is left in the atmosphere for a short time, it is saturated.
従って、特許文献1の構成ではBa−Liより高活性な気体吸着材を用いた場合、大気に接触可能な時間か非常に短くなる可能性がある。 Therefore, in the configuration of Patent Document 1, when a gas adsorbent having a higher activity than Ba-Li is used, the time in which the gas adsorbent can be contacted with the atmosphere may be very short.
また、特許文献2の構成では、真空断熱箱体において、外部から侵入したガスや内部から発生したガスを、バルブを通じ再減圧しているが、開閉バルブから箱体内部を減圧するには、排気抵抗が大きく、減圧するために非常に時間がかかる。 Further, in the configuration of Patent Document 2, in the vacuum heat insulating box, the gas that has entered from the outside and the gas generated from the inside are reduced again through the valve. The resistance is large and it takes a very long time to decompress.
特許文献2では連続気泡硬質ポリウレクンフオームを芯材に用いているが、より微細な粒径を持つ例えば乾式シリカのような粉体であれば、排気抵抗はさらに高くなり、容易には減圧できず、減圧工程に相当の時間が必要になる。 In Patent Document 2, open-celled hard polyurethane foam is used as a core material. However, if the powder has a finer particle size such as dry silica, the exhaust resistance is further increased, and the pressure can be reduced easily. Therefore, a considerable time is required for the decompression step.
この改善のためには、気体吸着材を内包し、真空ポンプでは粗引き程度の減圧を行い、気体吸着材により、残存した空気を吸着するケミカル真空ポンプ機能を有することが好ましい。 For this improvement, it is preferable to have a chemical vacuum pump function that encloses the gas adsorbing material, performs a rough pressure reduction by the vacuum pump, and adsorbs the remaining air by the gas adsorbing material.
そのためには空気中での取り扱い許容時間が長く、かつ、乾式シリカのような排気抵抗の高い芯材で、かつ大きな真空断熱材の残存空気を除去するためには高活性な、取り扱い性に優れた気体吸着デバイスが必要となる。 For that purpose, the handling time in air is long, the core material has high exhaust resistance such as dry silica, and it has high activity and excellent handling properties to remove residual air from large vacuum insulation materials. Gas adsorption device is required.
従来のBa−Liでは使用量も多く、かつ、ケミカル真空ポンプとして活性が低く、時間がかかることが考えられる。 It is conceivable that conventional Ba-Li has a large amount of use, has low activity as a chemical vacuum pump, and takes time.
本発明は、上記従来の課題を解決するもので、高活性な気体吸着材が粉末状であっても、大気中で長時間保存可能とする気体吸着デバイスを提供することと高活性な気体吸着デバイスを用いた真空断熱箱体を提供することを目的とする。 The present invention solves the above-described conventional problems by providing a gas adsorption device that can be stored in the atmosphere for a long time even when the highly active gas adsorbent is in powder form, and highly active gas adsorption. It aims at providing the vacuum heat insulation box using a device.
上記目的を達成するために、本発明の気体吸着デバイスは、気体吸着材と、前記気体吸着材を内包し外部の気体から遮断するガスバリア性材料からなる外被材と、熱可塑性素材からなり軟化するまで前記外被材に貫通孔が生じることを防ぎ前記気体吸着材が外部の気体を吸着することを防止する制御部材と、軟化する前の前記制御部材に対しては前記制御部材を貫通しない程度の力で前記制御部材に突き刺し力を加え続けており所定の温度上昇で軟化した前記制御部材に対しては前記突き刺し力で前記制御部材を変形させて前記制御部材および前記外被材に貫通孔をあける部材とを有するものである。 In order to achieve the above object, the gas adsorption device of the present invention comprises a gas adsorbent, a jacket material made of a gas barrier material that encloses the gas adsorbent and shields it from an external gas, and a thermoplastic material that is softened. A control member that prevents a through-hole from being formed in the outer jacket material and prevents the gas adsorbent from adsorbing an external gas, and the control member that has not been softened does not pass through the control member. With respect to the control member that has continued to apply a piercing force to the control member with a certain level of force and has been softened by a predetermined temperature rise, the control member is deformed by the piercing force and penetrates the control member and the jacket material. And a member for opening a hole.
気体吸着材をガスバリア性材料からなる外被材で内包することで、外気に触れることなく取り扱えるため、性能低下を抑制できるとともに、形状、大きさも容易に変えることができる。 By enclosing the gas adsorbent with a jacket material made of a gas barrier material, the gas adsorbent can be handled without touching the outside air, so that it is possible to suppress performance degradation and to easily change the shape and size.
さらに、気体吸着材と、外部との連通が加温によりなされるため、気体吸着能を発現させる際、温度以外の因子を制御する必要がなく、生産性の向上を図ることができる。また、真空断熱箱体の箱体外部から力を加えるのが不可能な場合であっても、箱体減圧部の粗引きが終了した後等、吸着能を発現させるタイミングを選定することができる。 Furthermore, since communication between the gas adsorbing material and the outside is performed by heating, it is not necessary to control factors other than temperature when developing gas adsorbing ability, and productivity can be improved. In addition, even when it is impossible to apply force from the outside of the vacuum heat insulating box body, it is possible to select the timing at which the adsorptive capacity is developed, for example, after the roughing of the box decompression section is completed. .
このような吸着デバイスを有効に活用するには、上記のような真空断熱箱体や魔法瓶のような真空断熱外被材、また真空断熱材等のように、内部を真空にすることにより機能を発現する真空機器であれば何でも良い。 In order to make effective use of such adsorption devices, functions can be achieved by evacuating the interior, such as vacuum insulation casings and vacuum insulation jacket materials such as thermos bottles, vacuum insulation materials, etc. Any vacuum device can be used.
本発明の気体吸着デバイスは、気体吸着材をガスバリア性材料からなる外被材で外部と遮断して内包することによって、形状や大きさを容易に変えることができ、さらにはレトルト食品の保存等にも用いられ安価でもある。また、高活性な気体吸着材であっても、外気中で容易にかつ長時間取り扱うことができる。 The gas adsorbing device of the present invention can be easily changed in shape and size by enclosing the gas adsorbing material from the outside with a jacket material made of a gas barrier material, and further, storage of retort food, etc. It is also used at low cost. Moreover, even a highly active gas adsorbent can be handled easily and for a long time in the outside air.
さらに、外被材に貫通孔を生じさせる貫通孔をあける部材を熱可塑性素材からなる制御部材で制御し、加温することで制御部材が軟化し、外被材に貫通孔が生じさせることができ、外部から突き刺し力をかけられない箱体であっても、望むタイミングで吸着能を発現させることができる。 Furthermore, a member that opens a through hole that generates a through hole in the jacket material is controlled by a control member made of a thermoplastic material, and the control member is softened by heating, whereby a through hole is generated in the jacket material. Even if it is a box that cannot be stabbed from the outside, the adsorption ability can be expressed at a desired timing.
また、このような気体吸着デバイスを排気抵抗が高い微細な粒径をもつ芯材を用いた真空断熱箱体へのケミカル真空ポンプとして用いることで、真空引き時間を短縮でき、かつ、外気が侵入しても、気体吸着材が吸着することで真空度を維持することができ、高い信頼性を得ることができる。 In addition, by using such a gas adsorption device as a chemical vacuum pump to a vacuum heat insulation box using a core material with a fine particle size with high exhaust resistance, the time required for evacuation can be shortened and outside air can enter. Even if the gas adsorbent is adsorbed, the degree of vacuum can be maintained, and high reliability can be obtained.
本発明の請求項1に記載の気体吸着デバイスの発明は、気体吸着材と、前記気体吸着材を内包し外部の気体から遮断するガスバリア性材料からなる外被材と、熱可塑性素材からなり軟化するまで前記外被材に貫通孔が生じることを防ぎ前記気体吸着材が外部の気体を吸着することを防止する制御部材と、軟化する前の前記制御部材に対しては前記制御部材を貫通しない程度の力で前記制御部材に突き刺し力を加え続けており所定の温度上昇で軟化した前記制御(有)材に対しては前記突き刺し力で前記制御部材を変形させて前記制御部材および前記外被材に貫通孔をあける部材とを有するものである。 The invention of the gas adsorption device according to claim 1 of the present invention comprises a gas adsorbent, a jacket material made of a gas barrier material that encloses the gas adsorbent and shields it from external gas, and a thermoplastic material that is softened. A control member that prevents a through-hole from being formed in the outer jacket material and prevents the gas adsorbent from adsorbing an external gas, and the control member that has not been softened does not pass through the control member. For the control (with) material that has continued to apply a piercing force to the control member with a certain level of force and has been softened at a predetermined temperature rise, the control member is deformed by the piercing force, and the control member and the outer cover are deformed. And a member for making a through hole in the material.
気体吸着材が高活性であるほど、また、比表面積が大きくなるほど取り扱いの条件が厳しくなる。つまり、気体吸着材の活性を維持するために、空気に接触可能な時間か短くなり、また、接触可能な圧力も小さくなる。従って、このような気体吸着材は、保存時に加
えて、真空機器に設置する際の劣化も問題となる。しかし、ガスバリア性材料からなる外被材で内包することで、外気に触れることなく取り扱えるため生能低下を抑制できるとともに、形状、大きさも容易に変えることができ、安価でもある。
The higher the activity of the gas adsorbent and the greater the specific surface area, the more severe the handling conditions. That is, in order to maintain the activity of the gas adsorbent, the time in which the gas adsorbent can be contacted is shortened, and the contactable pressure is also reduced. Therefore, such a gas adsorbing material also has a problem of deterioration when it is installed in a vacuum apparatus in addition to storage. However, by enclosing it with a jacket material made of a gas barrier material, it can be handled without touching the outside air, so that it is possible to suppress a decrease in vitality, and the shape and size can be easily changed, and it is inexpensive.
さらに、気体吸着材と、外部との連通が加温によりなされるため、気体吸着能を発現させる際、温度以外の因子を制御する必要がなく、生産性の向上を図ることができる。また、真空断熱箱体の箱体外部から力を加えるのが不可能な場合であっても、吸着能を発現させることができる。 Furthermore, since communication between the gas adsorbing material and the outside is performed by heating, it is not necessary to control factors other than temperature when developing gas adsorbing ability, and productivity can be improved. Moreover, even if it is impossible to apply a force from the outside of the vacuum heat insulating box, the adsorption ability can be expressed.
真空機器の一例として、真空断熱材に気体吸着材を適用する際は、ガスバリア性の外被材中に芯材と気体吸着材を挿入したものを千ヤンバーに設置後、チャンバーを減圧し、外被材内部を減圧後、外被材の開口部を封止する。 As an example of vacuum equipment, when applying a gas adsorbent to a vacuum heat insulating material, a chamber with a core material and a gas adsorbent inserted into a gas barrier jacket material is placed in a thousand chamber, the chamber is decompressed, and the outer After decompressing the inside of the material, the opening of the material is sealed.
この際、チャンバー内の減圧は真空ポンプにて行われる。常圧領域、つまり真空封止前ではポンプ、吸着材いずれによっても減圧することが可能である。一方、低圧領域、つまり真空封止後の外被材内部には、真空ポンプで減圧しきれなかった気体、真空封止後に外被材を通して侵入する気体、芯材から発生する気体が存在し、これらは気体吸着材のみで吸着が可能である。従って、真空封止後の外被材内部において気体吸着材の能力を十分に発揮するためには、真空封止後に外部に連通することが必要である。 At this time, the pressure in the chamber is reduced by a vacuum pump. In the normal pressure region, that is, before vacuum sealing, the pressure can be reduced by either a pump or an adsorbent. On the other hand, in the low pressure region, that is, inside the jacket material after vacuum sealing, there is a gas that could not be decompressed by the vacuum pump, a gas that penetrates through the jacket material after vacuum sealing, and a gas generated from the core material, These can be adsorbed only with a gas adsorbent. Therefore, in order to fully demonstrate the capability of the gas adsorbent inside the outer jacket material after vacuum sealing, it is necessary to communicate with the outside after vacuum sealing.
真空機器は、内部に気体吸着材を設置した後は密閉されるため、外部から直接力を加えることにより気体吸着デバイスを切り替えることは困難である。従って、気体吸着材の切り替えは遠隔操作による切り替えが望ましい。遠隔操作による切り替えの手段として、気体吸着デバイスの温度変化により、気体吸着デバイスの密閉を解除する方法が有力である。 Since the vacuum equipment is sealed after the gas adsorbing material is installed inside, it is difficult to switch the gas adsorbing device by applying a force directly from the outside. Therefore, it is desirable to switch the gas adsorbent by remote control. As a means for switching by remote operation, a method of releasing the sealing of the gas adsorption device by changing the temperature of the gas adsorption device is effective.
真空機器が密閉された後、温度を変化させることにより、内部の気体吸着デバイスの温度をも変化させ、所定の温度に到達することにより切り替えが可能である。温度変化による切り替えの方法としては、あらかじめ突き刺し力を加える部材で、ガスバリア性材料からなる外被材で気体吸着材を内包した外被材に突き刺し力を加えておき、その際、突き刺し力を加える部材に針のような貫通孔を生じさせる部材を設けておいて、さらに、その部材の先にたとえば樹脂ででき、軟化前に貫通孔が生じるのを防ぐ制御部材を設けておく。すると低温状態では制御部材の強度が勝るため貫通しないが、真空機器の温度上昇により制御部材が軟化して変形することにより外被材にも貫通孔を生じさせることができる。 After the vacuum apparatus is sealed, the temperature of the internal gas adsorption device is also changed by changing the temperature, and switching is possible by reaching a predetermined temperature. As a method of switching due to temperature change, a member that applies a piercing force in advance, and a piercing force is applied to the jacket material containing the gas adsorbent with a jacket material made of a gas barrier material, and at that time, the piercing force is applied. A member for generating a through-hole such as a needle is provided in the member, and a control member that is made of, for example, resin and prevents the through-hole from being formed before softening is provided at the end of the member. Then, although the strength of the control member is superior in a low temperature state, the control member does not penetrate, but the control member is softened and deformed by the temperature rise of the vacuum equipment, so that a through hole can also be generated in the jacket material.
この際、真空機器自体が断熱性の高いものとなっているため、気体吸着デバイスは加温面に近い方が、貫通時間は短縮でき、さらに、貫通手段および貫通制御手段の部位は、特に、加温面に近い方が貫通時間を短縮することができる。 At this time, since the vacuum equipment itself is highly heat insulating, the gas adsorption device is closer to the heating surface, the penetration time can be shortened, and the penetration means and the penetration control means are particularly The one closer to the heating surface can shorten the penetration time.
以上のような方法を用いることにより、気体吸着デバイスに外部から力を加えずに変形させ、密閉性を解除して、吸着能力を発揮することができる。 By using the method as described above, the gas adsorbing device can be deformed without applying external force, the sealing property can be released, and the adsorbing ability can be exhibited.
また、ガスバリア性材料とは、ガス透過度が104[cm3/m2・day・atm]以下であることが好ましく、より望ましくは103[cm3/m2・day・atm]以下となるものである。 The gas barrier material preferably has a gas permeability of 10 4 [cm 3 / m 2 · day · atm] or less, and more desirably 10 3 [cm 3 / m 2 · day · atm] or less. It will be.
さらに、ポリエチレンテレフタレートやポリエチレン等の樹脂フィルムにアルミニウム等の金属箔をラミネートしたラミネートフィルムを用いることが好ましい。金属箔はガスバリア性郎非常に高く、信頼性が高い。また、箔ではなく蒸着層でも優れたバリア性を生じる。 Furthermore, it is preferable to use a laminate film obtained by laminating a metal foil such as aluminum on a resin film such as polyethylene terephthalate or polyethylene. Metal foil is very high in gas barrier property and highly reliable. Moreover, the barrier property which was excellent also in the vapor deposition layer instead of foil is produced.
蒸着層の方が熱伝導率が低いため、デバイス自体の固体熱伝導率を低減することができるが、一方でガスバリア性は箔におとるため、長期や過酷条件で保存する場合は箔の方が好ましい。また、金属ではなくシリカ等の無機蒸着でも高いガスバリア性を有する。 The vapor deposited layer has lower thermal conductivity, so the solid thermal conductivity of the device itself can be reduced. On the other hand, since the gas barrier property is applied to the foil, the foil is better for long-term or harsh storage. Is preferred. Moreover, it has a high gas barrier property even in inorganic vapor deposition such as silica instead of metal.
熱可塑性素材とは温度の上昇により、同一の突き刺し力によって、より変形しやすくなるものである。これらの条件を満たすものとしては、金属、ガラス、樹脂等がある。 A thermoplastic material is more easily deformed by the same piercing force due to an increase in temperature. Examples of materials that satisfy these conditions include metals, glass, and resins.
突き刺し力を加える部材とは、所定の状況に設定することにより、外部からの力を加えることなく、外被材に対して定常的に力を加える部材である。これらの手段は、弾性体に変形を加え、変形が戻ろうとする動作を外被材により妨げることで、反作用の法則で外被材に力が加えられるものである。 The member that applies the piercing force is a member that constantly applies a force to the jacket material without applying an external force by being set in a predetermined situation. These means apply a force to the jacket material by the law of reaction by applying deformation to the elastic body and hindering the movement of the deformation to return by the jacket material.
例えば、有限な広さを有する外被材に圧縮した状態で圧縮ばねを封入することがこれに相当する。圧縮ばれは長くなろうとすることで外被材に突き刺し力を加え、制御部材および外被材への突き刺し力となる。 For example, it corresponds to enclosing the compression spring in a compressed state in a jacket material having a finite area. By trying to lengthen the compression, a stab force is applied to the jacket material, and a stab force is applied to the control member and the jacket material.
ここでの軟化とは、制御部材の強度が低下して貫通孔が生じうるようになることである。従って、ガラスの軟化温度や樹脂の軟化温度などは通常定義されている温度と異なる場合がある。従って、軟化する温度は物質により一意的なものではなく、制御部材に加わる突き刺し力との兼ね合いで決定する。つまり、制御部材に加えられる突き刺し力が大きい場合は、制御部材の強度が大きくても変形して貫通孔が生じうるため軟化する温度は通常定義されている温度より低くなる。貫通制御手段に加えられる力が小さい場合は、制御部材の軟化温度は、通常定義されている軟化温度に近くなる。 The softening here means that the strength of the control member is lowered and a through hole can be generated. Therefore, the softening temperature of glass, the softening temperature of resin, and the like may be different from the normally defined temperatures. Accordingly, the softening temperature is not unique depending on the substance, and is determined in consideration of the piercing force applied to the control member. That is, when the piercing force applied to the control member is large, even if the strength of the control member is large, it can be deformed to generate a through-hole, so the softening temperature is lower than the normally defined temperature. When the force applied to the penetration control means is small, the softening temperature of the control member is close to the normally defined softening temperature.
また、貫通孔をあける部材は鋭利な金属が良い。外被材に貫通孔が生じる温度は、真空機器に加わる温度を低減するため、可能な限り低くすることが望ましい。このために、外被材の単位面積あたりに加わる力を大きくし、外被材の軟化の程度が小さくても貫通孔が生じるようにすることが望ましい。 Moreover, a sharp metal is good for the member which opens a through-hole. It is desirable that the temperature at which the through hole is formed in the jacket material be as low as possible in order to reduce the temperature applied to the vacuum equipment. For this reason, it is desirable to increase the force applied per unit area of the jacket material so that a through hole is generated even if the degree of softening of the jacket material is small.
外被材の単位面積に加わる力を大きくするごとに、外被材に突き刺し力を加える部材と、外被材の接触面積を小さくすることで達成される。外被材に突き刺し力を加える部材と、外被材の接触面積を小さくするには、外被材に突き刺し力を加える部材が外被材と接触する部分を鋭利な形状とすればよい。 Each time the force applied to the unit area of the jacket material is increased, the contact area between the member that applies the stab force to the jacket material and the jacket material is reduced. In order to reduce the contact area between the member that applies the piercing force to the outer jacket material and the outer jacket material, a portion where the member that applies the piercing force to the outer jacket material contacts the outer jacket material may be formed into a sharp shape.
この際、外被材に突き刺し力を加える部材が外被材と接触する部分の軟化温度が、外被材の軟化温度より低いか同等の場合、外被材の軟化温度では、その鋭利性が失われてしまう。従って、外被材に突き刺し力を加える部材が外被材と接触する部分の軟化温度は外被材の軟化温度より著しく高いことが求められる。金属は樹脂より軟化温度が著しく高いため、以上のような条件を満たすことができる。 At this time, when the softening temperature of the portion where the member that applies the piercing force to the covering material is in contact with the covering material is lower than or equal to the softening temperature of the covering material, the sharpness is reduced at the softening temperature of the covering material. It will be lost. Accordingly, it is required that the softening temperature of the portion where the member that applies the piercing force to the jacket material comes into contact with the jacket material is significantly higher than the softening temperature of the jacket material. Since metal has a remarkably higher softening temperature than resin, the above conditions can be satisfied.
金属としては、鉄、銅、アルミニウム等、通常、構造体として用いられるものを用いることが望ましい。また、単独の金属ではなく、ステンレス、ジュラルミン等、構造体として用いることができる合金を用いても良い。 As a metal, it is desirable to use what is normally used as a structure, such as iron, copper, and aluminum. In addition, an alloy that can be used as a structure, such as stainless steel and duralumin, may be used instead of a single metal.
また、本発明は、軟化した状態の前記制御部材に前記貫通孔をあける部材が突き刺し力を加えた時に、前記制御部材および前記外被材が変形する部分を制限して、前記外被材に貫通孔ができないように前記容器が変形することを防止する支持体を、前記外被材における前記貫通孔をあける部材による変形を防ぎたい部分の内面に当接または近接するように設けたものである。 Further, according to the present invention , when the member that opens the through-hole is applied to the control member in the softened state, a portion where the control member and the outer jacket material are deformed is limited to the outer jacket material. A support that prevents the container from being deformed so as not to form a through hole is provided so as to contact or be close to the inner surface of a portion of the jacket material that is to be prevented from being deformed by a member that opens the through hole. is there.
温度の上昇により貫通制御手段が軟化しても、外被材内部の気体吸着材が突き刺し力により移動したり、変形したりすると突き刺し力による加圧では貫通しない恐れがある。貫通を確実にするためには、貫通部分にあらかじめ加えられていた突き刺し力により変形しない強度が必要であり、かつ、気体吸着材に連通しなければならない。そこで、外被材の内部を減圧すれば大気圧によって気体吸着材が圧縮され、支持体となることで強度が維持され、貫通孔を容易に生じさせることができる。 Even if the penetration control means is softened due to an increase in temperature, if the gas adsorbing material inside the jacket material moves or deforms due to the piercing force, there is a possibility that the pressure by the piercing force does not penetrate. In order to ensure penetration, a strength that does not cause deformation due to the piercing force previously applied to the penetrating portion is required, and the gas adsorbent must be communicated. Therefore, if the inside of the jacket material is depressurized, the gas adsorbent is compressed by the atmospheric pressure and becomes a support, whereby the strength is maintained and a through hole can be easily generated.
請求項2に記載の発明は、制御部材が、外被材と貫通孔をあける部材の間に設置されるものである。 According to a second aspect of the present invention, the control member is installed between the jacket material and the member that opens the through hole.
貫通孔をあける部材は一つに限られるわけではないが、あらかじめ突き刺し力をかけておき、制御部材が温度上昇によって軟化し、貫通孔を生じさせる手段として、例えば針のような貫通手段を、突き刺し力をかけて外被材の外被材に圧し、その針と外被材の間に例えば樹脂のような制御部材を設置し、加温することで樹脂が軟化し貫通する手段や、あるいは、例えば樹脂性の糸で突き刺し力とバランスするように引っ張ったり、遮ったりし、加温とともに糸が伸び、貫通孔をあける部材等が考えられるが、外被材と貫通孔をあける部材の間に置くことで、簡便に作成でき、かつ、確実に制御できるため歩留まりが高い。また、密着させることで薄くデバイス化することが可能となり、小型化ができる。 The member for opening the through hole is not limited to one, but as a means for applying a piercing force in advance and softening the control member due to temperature rise to generate a through hole, for example, a penetrating means such as a needle, Applying a stab force to the outer cover material, press the outer cover material, install a control member such as resin between the needle and the outer cover material, and heat the means to soften and penetrate the resin, or For example, a member that pulls or blocks with a resinous thread so as to balance the piercing force, the thread expands with heating and opens a through hole, etc. can be considered, but between the jacket material and the member that opens the through hole Since it can be created easily and can be reliably controlled, the yield is high. In addition, it is possible to make the device thin by being closely attached, and the size can be reduced.
請求項3に記載の発明は、制御部材が、熱可塑性樹脂からなるものである。 According to a third aspect of the present invention, the control member is made of a thermoplastic resin.
真空機器は構成要素の強度により、大気圧に抗してその形状を維持している。このため、真空機器の一部分が軟化温度より高くなると、大気圧により変形してしまう。従って、制御部材の軟化温度は、真空機器の構成要素の軟化温度より低いことが必須である。 The vacuum equipment maintains its shape against atmospheric pressure due to the strength of the components. For this reason, if a part of vacuum equipment becomes higher than a softening temperature, it will deform | transform by atmospheric pressure. Therefore, it is essential that the softening temperature of the control member is lower than the softening temperature of the components of the vacuum equipment.
熱可塑性樹脂は、金属、硝子等の熱可塑性素材に比較して著しく軟化温度が低いため、真空機器の構成要素より軟化温度が低くなることは容易である。従って、制御部材を熱可塑性樹脂とすることで、真空機器の構成の自由度を向上することができる。 Thermoplastic resins have a remarkably lower softening temperature than thermoplastic materials such as metal and glass, and therefore it is easy for the softening temperature to be lower than components of vacuum equipment. Therefore, the freedom degree of the structure of a vacuum equipment can be improved by making a control member into a thermoplastic resin.
請求項4に記載の発明は、貫通孔をあける部材が、弾性力により外被材に突き刺し力をかけ、貫通孔を生じさせるものである。 According to a fourth aspect of the present invention, the member that opens the through-hole applies a piercing force to the jacket material by an elastic force to generate the through-hole.
外被材に突き刺し力を加える部材が外被材に突き刺し力を加え続けるためには、その一部を弾性体で構成し、突き刺し力を加えその突き刺し力が開放されようとする作用で外被材に力を加える現象が利用できる。クリップで物体を挟む事等がこれに該当する。弾性体がばねであることにより、外被材に加える力を容易に制御できる。 In order for the member that applies the piercing force to the outer jacket material to continue to apply the piercing force to the outer jacket material, a part of it is made of an elastic body, and the outer shell is applied by the action of applying the piercing force and releasing the piercing force. The phenomenon of applying force to the material can be used. For example, the object is sandwiched between clips. Since the elastic body is a spring, the force applied to the jacket material can be easily controlled.
また、弾性体で突き刺し力を加える手法の別の一例としては、ばねの部材を縮めた状態で押しつけておくことで突き刺し力を外被材に加え続けるため、外被材の温度が上昇することにより貫通制御手段の熱可塑性素材が軟化して、外被材に貫通孔が生じる。 As another example of the method of applying the piercing force with the elastic body, the piercing force is continuously applied to the outer jacket material by pressing the spring member in a contracted state, so that the temperature of the outer jacket material rises. As a result, the thermoplastic material of the penetration control means is softened, and a through hole is formed in the jacket material.
請求項5に記載の発明は、気体吸着材が、銅イオン交換されたZSM−5型ゼオライトであるものである。 In the invention according to claim 5, the gas adsorbent is a ZSM-5 type zeolite subjected to copper ion exchange.
銅イオン交換されたZSM−5型ゼオライトは、非常に高活性であるため、空気との接触は僅かでも不可能であり、真空機器に設置後に外被材の温度を上昇させることにより、
真空機器への設置過程における空気への接触を防ぐことができる。また、銅イオン交換されたZSM−5型ゼオライトは、常温における単位重量あたりの空気吸着量が他のゼオライトや、金属系吸着材と比べても高く、少量で大量の空気を吸着でき、省スペース化も行える。
Since the ZSM-5 type zeolite subjected to copper ion exchange is very highly active, contact with air is impossible even slightly, and by increasing the temperature of the jacket material after installation in a vacuum device,
It is possible to prevent contact with air during installation in a vacuum device. In addition, ZSM-5 type zeolite with exchanged copper ions has higher air adsorption per unit weight at room temperature than other zeolites and metal adsorbents, and can absorb a large amount of air in a small amount, saving space. Can also be made.
請求項6に記載の発明は、芯材と、ガスバリア性を有する外被材と、請求項1から請求項5のいずれか一項に記載の気体吸着デバイスとを備えた真空断熱材であって、前記外被材の内部に前記芯材と前記気体吸着デバイスを減圧して封止するものである。 Invention of Claim 6 is a vacuum heat insulating material provided with the core material, the jacket material which has gas-barrier property, and the gas adsorption device as described in any one of Claims 1-5. The core material and the gas adsorption device are decompressed and sealed inside the jacket material.
請求項1から請求項6のいずれか一項に記載の気体吸着デバイスを用いることで、空気吸着材を劣化させることかく、外部から侵入する空気を、より長期間吸着することが可能であり、信頼性の高い真空断熱材を構成することができる。 By using the gas adsorption device according to any one of claims 1 to 6, it is possible to adsorb air entering from the outside for a longer period of time, so as to degrade the air adsorbent, A highly reliable vacuum heat insulating material can be configured.
請求項7に記載の発明は、水分吸着材を前記外被材の内部に備えることを特徴とするものである。 The invention according to claim 7 is characterized in that a moisture adsorbing material is provided inside the jacket material.
多くの空気吸着材は、水分を吸収することで空気吸着能が低下してしまう。水分は極性が高いため吸着しやすい性質であり、外気から浸入するもの以外に、外被材や芯材に吸着し、残存している水分がある。それらによって空気吸着能が低下してしまう。空気吸着能の低下を抑え、より信頼性の高い真空断熱材とするため、水分吸着材を外被材内部に備える。 Many air adsorbents have reduced air adsorption capacity by absorbing moisture. Moisture has a property of being easily adsorbed due to its high polarity, and there is moisture remaining after being adsorbed on the jacket material and the core material in addition to those which enter from the outside air. As a result, the air adsorbing ability decreases. In order to suppress a decrease in air adsorbing capacity and to provide a more reliable vacuum heat insulating material, a moisture adsorbing material is provided inside the jacket material.
請求項8に記載の発明は、前記外箱と前記内箱の間の空間に請求項1から請求項5のいずれか一項に記載の気体吸着デバイスとを備えたものである。 The invention according to claim 8 includes the gas adsorption device according to any one of claims 1 to 5 in a space between the outer box and the inner box .
真空断熱箱体は、外被材が樹脂や金属、ガラス等で構成され、常温において通常取り扱う突き刺し力によって、塑性変形せず、箱体形状を有しているものをさす。また、このような真空断熱箱体においては、箱体内部に空気吸着デバイスを設置しても、外部から突き刺し力を加え、空気吸着能を発現させることは困難である。そのため請求項1から請求項6のいずれか一項に記載の気体吸着デバイスであれば、真空断熱箱体であっても真空吸着能を発現することが可能であり、信頼性の高めることが可能である。 A vacuum heat insulating box is a container whose outer casing material is made of resin, metal, glass or the like and is not plastically deformed by a piercing force that is normally handled at room temperature, and has a box shape. Moreover, in such a vacuum heat insulation box, even if an air adsorption device is installed inside the box, it is difficult to exert an air adsorbing ability by applying a piercing force from the outside. Therefore, if it is a gas adsorption device as described in any one of Claims 1-6, even if it is a vacuum heat insulation box, it can express a vacuum adsorption capability and it can improve reliability. It is.
請求項9に記載の発明は、前記空間にさらに水分吸着材を備えるものである。 The invention according to claim 9 further includes a moisture adsorbent in the space.
多くの空気吸着材は、水分を吸収することで空気吸着能が低下してしまう。水分は極性が高いため吸着しやすい性質であり、外気から浸入するもの以外に、箱体や芯材に吸着し、残存している水分がある。それらによって空気吸着能が低下してしまう。空気吸着能の低下を抑え、より信頼性の高い真空断熱材とするため、水分吸着材を外被材内部に備える。 Many air adsorbents have reduced air adsorption capacity by absorbing moisture. Moisture has a property of being easily adsorbed due to its high polarity, and there is moisture remaining after adsorbing to the box and the core material, in addition to those that enter from outside air. As a result, the air adsorbing ability decreases. In order to suppress a decrease in air adsorbing capacity and to provide a more reliable vacuum heat insulating material, a moisture adsorbing material is provided inside the jacket material.
特に真空断熱材のように一辺や一面を開口させて減圧し、その後溶着するといった工程は困難であり、あらかじめ空間に連通した排気口から減圧し、減圧後、封止、密閉する。この場合、空間体積に比し、排気口の断面積は小さいため、排気力は低下し、吸着水分も残存しやすい。そのため、水分吸着材を備えることで、空気吸着能の低下は抑制され、信頼性を高めることができる。 In particular, the process of opening one side or one side and reducing the pressure as in the case of a vacuum heat insulating material is difficult. After that, the pressure is reduced from an exhaust port communicating with the space in advance, and after the pressure is reduced, it is sealed and sealed. In this case, since the cross-sectional area of the exhaust port is smaller than the space volume, the exhaust force is reduced, and the adsorbed moisture tends to remain. Therefore, by providing the moisture adsorbing material, a decrease in air adsorbing ability can be suppressed and reliability can be improved.
請求項10に記載の発明は、芯材が、平均一次粒子径100nm以下の乾式シリカであるものである。 In the invention described in claim 10, the core material is dry silica having an average primary particle diameter of 100 nm or less.
平均一次粒子径100nm以下の乾式シリカは真空断熱材の芯材として優れたものであるが、排気抵抗が大きいという問題かある。真空断熱材のように一辺や一面を開口させて減圧する工程であれば、大きな問題にならないが、真空断熱箱体のように排気口から減圧する場合は、減圧に著しい時間かかかってしまう。そのため、生産性が悪くなってしまう。 Dry silica having an average primary particle size of 100 nm or less is excellent as a core material of a vacuum heat insulating material, but has a problem of high exhaust resistance. If the pressure is reduced by opening one side or one side like a vacuum heat insulating material, there is no big problem, but if pressure is reduced from the exhaust port like a vacuum heat insulating box, it takes a considerable time for pressure reduction. For this reason, productivity is deteriorated.
そこで、空間内を粗引き後、排気口を封止し、空気吸着デバイスを発現することで、空気吸着材により減圧するケミカル真空ポンプによって、放置している間に減圧することが可能となり、減圧工程を短縮することが可能となる。 Therefore, after roughly evacuating the space, the exhaust port is sealed, and an air adsorption device is developed, so that it can be decompressed while being left by a chemical vacuum pump that decompresses with an air adsorbent. The process can be shortened.
以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same configurations as those of the conventional example or the embodiments described above, and detailed descriptions thereof will be omitted. The present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明の実施の形態1における気体吸着デバイスの断面図である。また、図2は本発明の実施の形態1における真空断熱材の断面図である。また、図3は本発明の実施の形態1における真空断熱箱体の断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a gas adsorption device according to Embodiment 1 of the present invention. Moreover, FIG. 2 is sectional drawing of the vacuum heat insulating material in Embodiment 1 of this invention. Moreover, FIG. 3 is sectional drawing of the vacuum heat insulation box in Embodiment 1 of this invention.
図1において、気体吸着デバイス1は、気体吸着材2をガスバリア性材料からなる外被材3に挿入し、減圧して密封・内包し、外被材3にはクリップ状の突き刺し力を加える部材4により突き刺し力が加えられている。さらに、突き刺し力を加える部材4と外被材3との間には鋭利か形状の貫通孔をあける部材5が設けられており、さらに、貫通孔をあける部材5と外被材3との間には熱可塑性素材からなる制御部材6が設けられている。 In FIG. 1, a gas adsorbing device 1 is a member that inserts a gas adsorbing material 2 into a jacket material 3 made of a gas barrier material, depressurizes and seals and encloses it, and applies a clip-like piercing force to the jacket material 3. The piercing force is applied by 4. Further, a member 5 that opens a sharp through-hole is provided between the member 4 that applies the piercing force and the jacket material 3, and further, between the member 5 that opens the through-hole and the jacket material 3. Is provided with a control member 6 made of a thermoplastic material.
図2において、真空断熱材7は、気体吸着デバイス1、芯材8と水分吸着材9を、ガスバリア性を有する外被材10に挿入後、減圧封止したものである。 In FIG. 2, the vacuum heat insulating material 7 is obtained by sealing the gas adsorbing device 1, the core material 8, and the moisture adsorbing material 9 into an outer cover material 10 having a gas barrier property and then sealing under reduced pressure.
図3において、真空断熱箱体11は、それぞれガスバリア性材料からなる外箱12と内箱13と芯材14とからなり、外箱12と内箱13の間からなる空間15に芯材14を設置し、外箱12と内箱13を接合することで空間15を密閉し、外箱12に設置し、空間15と外気を連通する排気口16から、空間5の空気を排気し、減圧後、排気口16を封止することで、真空断熱箱体1を構成する。また、内箱3には内部にお湯や冷水等を出し入れするための開口部17がある。また、気体吸着デバイス1および水分吸着材9は空間15内に設置する。 In FIG. 3, the vacuum heat insulating box 11 includes an outer box 12, an inner box 13, and a core material 14 each made of a gas barrier material, and the core material 14 is placed in a space 15 between the outer box 12 and the inner box 13. Installed, the outer box 12 and the inner box 13 are joined to seal the space 15, installed in the outer box 12, the air in the space 5 is exhausted from the exhaust port 16 that communicates the space 15 and the outside air, and after decompression The vacuum insulation box 1 is configured by sealing the exhaust port 16. The inner box 3 has an opening 17 for taking in and out hot water and cold water. Further, the gas adsorbing device 1 and the moisture adsorbing material 9 are installed in the space 15.
以上のように構成された気体吸着デバイスおよび真空断熱材および真空断熱箱体の動作・作用について説明する。 The operation and action of the gas adsorption device, the vacuum heat insulating material, and the vacuum heat insulating box configured as described above will be described.
気体吸着デバイス1が加温されることにより、制御部材6が軟化し、突き刺し力を加える部材4によって貫通孔をあける部材5には常に突き刺し力がかかっているため、制御部材6に貫通孔が生じ、さらに、外被材3に貫通孔を生じることで、気体吸着材2は外気と連通し、気体吸着能を発現する。 When the gas adsorbing device 1 is heated, the control member 6 is softened, and the member 5 that pierces the through hole by the member 4 that applies the piercing force is always subjected to the piercing force. Furthermore, the gas adsorbent 2 communicates with the outside air and develops gas adsorbing ability by forming a through-hole in the jacket material 3.
気体吸着材2は空気を吸着する場合には銅イオン交換されたZSM−5型ゼオライトが、単位重量あたりの空気吸着量が多く、かつ、不活性で吸着しにくい窒素も吸着でき、好
ましい。
In the case of adsorbing air, the gas adsorbent 2 is preferable because the ZSM-5 type zeolite subjected to copper ion exchange has a large amount of air adsorption per unit weight and can adsorb inert and hardly adsorbed nitrogen.
また、二酸化炭素を吸着するためであれば、水酸化ナトリウムや水酸化カリウム等のアルカリ性化合物が好ましい。 Moreover, if it is for adsorbing carbon dioxide, an alkaline compound such as sodium hydroxide or potassium hydroxide is preferred.
外被材3はAL箔ラミネートフィルム、AL蒸着ラミネートフィルムがガスバリア性が高く好ましく、またAL以外の金属箔であっても効果は変らない。また、シリカ、ダイヤモンドライクカーボン、アルミナ等の無機材料を蒸着・コーティングしたフィルム材でも構わない。 As the covering material 3, an AL foil laminated film and an AL vapor-deposited laminated film are preferable since they have high gas barrier properties, and even if a metal foil other than AL is used, the effect does not change. Further, a film material on which an inorganic material such as silica, diamond-like carbon, or alumina is deposited and coated may be used.
また、金属箔や無機コーティングよりもガスバリア性は劣るが、エチレン−ビニルアルコール共重合体、ポリ塩化ビニリデン、ポリアクリロニトリル、MXナイロン、ポリビニルアルコール等のガスバリア性樹脂でも構わない。 Moreover, although gas barrier property is inferior to metal foil or inorganic coating, gas barrier resin, such as ethylene-vinyl alcohol copolymer, polyvinylidene chloride, polyacrylonitrile, MX nylon, and polyvinyl alcohol, may be used.
また、貫通孔をあける部材は鋭利な形状が好ましく、強度は突き刺し力を加える部材4により加わる突き刺し力と制御部材6および外被材3の強度との相関によるので、限定できないが、材質は金属のような硬いものが好ましい。樹脂であっても構わないが、制御部材6および外被材3に貫通孔が生じるだけの強度が必要である。 In addition, the member that opens the through hole is preferably a sharp shape, and the strength is based on the correlation between the piercing force applied by the member 4 that applies the piercing force and the strength of the control member 6 and the jacket material 3, but the material is metal. The hard thing like this is preferable. Resin may be used, but the control member 6 and the jacket material 3 need to be strong enough to cause a through hole.
突き刺し力を加える部材4も限定するものではないが、クリップやばねのような弾性原理を用いる方が、簡便で好ましい。また、磁力による突き刺し力を加える部材も、突き刺し力を加えるタイミングを調整でき、好ましい。 The member 4 for applying the piercing force is not limited, but it is simple and preferable to use an elastic principle such as a clip or a spring. Moreover, the member which adds the piercing force by magnetic force can adjust the timing which applies a piercing force, and is preferable.
また、制御部材6冷熱可塑性素材であれば特に限定にしないが、金属、ガラス、樹脂が好ましく、特に樹脂材料は熱軟化温度が低く、より好ましい。また、制御部材6は外被材3の内側にあっても良いが、取り扱い性、信頼性から、貫通孔をあける部材5と外被材3の間に設置することが好ましい。 The control member 6 is not particularly limited as long as it is a cold thermoplastic material, but is preferably a metal, glass, or resin, and more preferably a resin material has a low thermal softening temperature. Moreover, although the control member 6 may be inside the jacket material 3, it is preferable to install between the member 5 which opens a through-hole, and the jacket material 3 from handling property and reliability.
真空断熱材7は、内部に芯材8や外被材10に残存する空気や水分、溶着層等を通過し経時的に侵入する空気や水分により、断熱性能が低下するが、真空断熱材7を加温することで、気体吸着デバイス1の気体吸着能が発現し、空気成分を吸着し、真空度を維持し、断熱性能も保持できる。また、水分は気体吸着デバイス1の空気吸着能を低下させるため、水分吸着材9を別途設け、水分吸着材9に吸着させることで、気体吸着デバイス1の空気吸着能低下を防止する。 The heat insulating performance of the vacuum heat insulating material 7 decreases due to the air and water remaining inside the core material 8 and the outer cover material 10 inside and the air and water that penetrates over time and enters the vacuum heat insulating material 7. By heating the gas, the gas adsorption ability of the gas adsorption device 1 is exhibited, the air component is adsorbed, the degree of vacuum is maintained, and the heat insulation performance can be maintained. In addition, since moisture reduces the air adsorption capacity of the gas adsorption device 1, the moisture adsorption material 9 is separately provided and adsorbed by the moisture adsorption material 9, thereby preventing the air adsorption capacity of the gas adsorption device 1 from being lowered.
また、真空断熱材7を作成後、静置し、芯材8や外被材10に残存する水分を先に吸着させてから、加温し、気体吸着デバイス1の空気吸着能を発現させる方が、より多くの気体吸着能を有し、好ましい。 Moreover, after creating the vacuum heat insulating material 7, it is left still, the water | moisture content which remains in the core material 8 and the jacket material 10 is adsorb | sucked first, it heats, and the air adsorption ability of the gas adsorption device 1 is expressed. However, it has more gas adsorption capacity and is preferable.
水分吸着材9は酸化カルシウムや塩化カルシウムの様に化学吸着するものが好ましい。 The moisture adsorbing material 9 is preferably chemically adsorbed like calcium oxide or calcium chloride.
外被材10は、気体吸着デバイス1の外被材3と同様に、AL箔ラミネートフィルム、AL蒸着ラミネートフィルムがガスバリア性に優れるため好ましく、またAL以外の金属箔であっても効果は変らない。また、シリカ、ダイヤモンドライクカーボン、アルミナ等の無機材料を蒸着・コーティングしたフィルム材でも構わない。また、金属箔や無機コーティングよりもガスバリア性は劣るが、エチレン−ビニルアルコール共重合体、ポリ塩化ビニリデン、ポリアクリロニトリル、MXナイロン、ポリビニルアルコール等のガスバリア性樹脂でも構わない。 The outer covering material 10 is preferable because the AL foil laminated film and the AL vapor-deposited laminated film are excellent in gas barrier properties as in the outer covering material 3 of the gas adsorption device 1, and the effect is not changed even if it is a metal foil other than AL. . Further, a film material on which an inorganic material such as silica, diamond-like carbon, or alumina is deposited and coated may be used. Moreover, although gas barrier property is inferior to metal foil or inorganic coating, gas barrier resin, such as ethylene-vinyl alcohol copolymer, polyvinylidene chloride, polyacrylonitrile, MX nylon, and polyvinyl alcohol, may be used.
また、芯材8は限定するものではないが、ガラスウール繊維やシリカ粉末等の無機粉体
が好ましい。
Moreover, although the core material 8 is not limited, inorganic powders, such as glass wool fiber and a silica powder, are preferable.
真空断熱箱体11は外箱12と内箱13の間に芯材14を設置し、密閉後、排気口16から減圧し、減圧後封止する。その後、加温することで気体吸着デバイス1の吸着能を発現させ、真空度を維持する、水分吸着材9は真空断熱材7と同様に、気体吸着デバイス1の吸着能の低下を防止する。 The vacuum heat insulating box 11 is provided with a core material 14 between the outer box 12 and the inner box 13, sealed, then depressurized from the exhaust port 16, and sealed after being depressurized. Thereafter, the moisture adsorbing material 9 that develops the adsorbing ability of the gas adsorbing device 1 by heating and maintains the degree of vacuum prevents a decrease in the adsorbing ability of the gas adsorbing device 1 in the same manner as the vacuum heat insulating material 7.
特に真空断熱箱体11のような形状の場合、排気口16の断面積が小さいため、排気抵抗が高く、減圧に時間かかかってしまう。排気口を大きくしても良いが、その場合、封止が困難になる。さらに、芯材8が乾式シリカのような平均一次粒子径がT00nm以下の微細な材料であると、断熱性能は優れ、特に圧力依存性に優れるが、排気抵抗が高く、減圧に非常に時聞かかかり、工数が増える。 In particular, in the case of a shape such as the vacuum heat insulation box 11, since the cross-sectional area of the exhaust port 16 is small, the exhaust resistance is high and decompression takes time. Although the exhaust port may be enlarged, sealing becomes difficult in that case. Further, when the core material 8 is a fine material having an average primary particle diameter of T00 nm or less, such as dry silica, the heat insulation performance is excellent, and particularly the pressure dependency is high, but the exhaust resistance is high and the pressure reduction is very frequent. Takes more man-hours.
そこで、このような場合、排気口16からの減圧を短時間で減圧できる1333Pa程度の粗引きまでとし、封止後、加温し、気体吸着デバイス1の吸着能を発現し、残存空気を吸着するケミカル真空ポンプとして活用し、工数短縮を図ることが好ましい。ケミカル真空ポンプとしても作用させる際は、気体吸着材2の量を増量させる必要がある。 Therefore, in such a case, the pressure from the exhaust port 16 is reduced to roughing of about 1333 Pa, which can be reduced in a short time, and after sealing, it is heated to develop the adsorption capacity of the gas adsorption device 1 and adsorb the remaining air. It is preferable to use as a chemical vacuum pump to reduce man-hours. When acting also as a chemical vacuum pump, it is necessary to increase the amount of the gas adsorbent 2.
外箱12と内箱13は箱体としての形状を維持する必要があり、樹脂や金属の成形体である方が好ましい。金属の場合ガスバリア性や耐久性に優れるため、信頼性の面でより好ましい。 The outer box 12 and the inner box 13 need to maintain the shape of the box, and are preferably molded bodies of resin or metal. In the case of metal, since it is excellent in gas barrier property and durability, it is more preferable in terms of reliability.
樹脂の場合、成形性に優れるため、形状自由度が必要な際に好ましい。また、樹脂材を用いる際は、金属箔のインサート成形、金属メッキ、金属蒸着や、シリカ、ダイヤモンドライクカーボン、アルミナ等の無機材料を蒸着・コーティングし、ガスバリア性を向上させることが好ましい。 In the case of resin, since it is excellent in moldability, it is preferable when shape flexibility is required. When using a resin material, it is preferable to improve gas barrier properties by insert molding of metal foil, metal plating, metal vapor deposition, or vapor deposition / coating of inorganic materials such as silica, diamond-like carbon, and alumina.
また、形状は限定させるものではないが、図3のような開口部17を持つような形状の方が保温用途に用いる際は好ましい。また、凹凸のある異型状の真空断熱材として用いても構わない。 Further, the shape is not limited, but a shape having an opening 17 as shown in FIG. 3 is preferable when used for heat insulation. Moreover, you may use as an irregular-shaped vacuum heat insulating material with an unevenness | corrugation.
(実施例1)
実施例1は実施の形態1の気体吸着デバイスおよび真空断熱材の具体例であり、実施の形態1と同一構成については同一符号を付して、その詳細な説明は省略する。
Example 1
Example 1 is a specific example of the gas adsorption device and the vacuum heat insulating material of the first embodiment. The same components as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
実施例1の気体吸着デバイス1は、気体吸着材2として、粉末状の銅イオン交換されたZSM−5型ゼオライトを用いた。気体吸着デバイス1の外被材3として、厚さ15μmのナイロン、厚さ25μmのナイロン、厚さ6μmのアルミニウム箔、厚さ50μmの低密度ポリエチレンフィルムの順にラミネートされたラミネートフィルムを用いた。 In the gas adsorption device 1 of Example 1, a powdery copper ion exchanged ZSM-5 type zeolite was used as the gas adsorbent 2. As the jacket material 3 of the gas adsorption device 1, a laminate film in which a nylon having a thickness of 15 μm, a nylon having a thickness of 25 μm, an aluminum foil having a thickness of 6 μm, and a low-density polyethylene film having a thickness of 50 μm were sequentially laminated.
外被材3の形状は、縦50mm、横100mmの長方形である。外被材3に突き刺し力を加える部材4は、ステンレス製のクリップであり、挟み込み接触する部分には貫通孔をあける部材5であるステンレス性の針がついており、針先には直径5mm、厚さ1mmのポリエチレンテレフタレート片を制御部材6として取り付け、制御部材6(ポリエチレンテレフクレート片)と外被材3が接するようにする。外被材3内部には、気体吸着材2が内包されている。 The shape of the jacket material 3 is a rectangle having a length of 50 mm and a width of 100 mm. The member 4 for applying the piercing force to the outer cover material 3 is a stainless steel clip, and a stainless steel needle which is a member 5 for making a through hole is attached to a portion to be sandwiched and contacted, and the needle tip has a diameter of 5 mm and a thickness. A polyethylene terephthalate piece having a thickness of 1 mm is attached as the control member 6 so that the control member 6 (polyethylene terephthalate piece) and the jacket material 3 are in contact with each other. A gas adsorbent 2 is contained inside the jacket material 3.
上記の通り構成された気体吸着デバイス1を用いて真空断熱材7を作製した。真空断熱材7の芯材8としてガラス繊維集合体を板状としたものを用いた。空断熱材7の外被材1
0は樹脂ラミネートフィルムであり、厚さ15μmのナイロン、厚さ25μmのナイロン、厚さ6μmのアルミニウム、厚さ50μmの低密度ポリエチレンフィルムの順にラミネートされている。
The vacuum heat insulating material 7 was produced using the gas adsorption device 1 comprised as mentioned above. As the core material 8 of the vacuum heat insulating material 7, a glass fiber aggregate having a plate shape was used. Cover material 1 of the air insulation 7
0 is a resin laminate film, which is laminated in the order of 15 μm thick nylon, 25 μm thick nylon, 6 μm thick aluminum, and 50 μm thick low density polyethylene film.
あらかじめ3方向をシールして袋状とした外被材10に芯材8と気体吸着デバイス1と酸化カルシウムを不織布内に内包した水分吸着材9を挿入し、真空チャンバーに設置し100Paまで減圧後、封止した。常温では、気体吸着デバイス1の制御部材6であるポリエチレンテレフクレート片は十分な強度を有するため、大気圧が加わっても変形が小さく貫通孔は生じない。 The core material 8, the gas adsorbing device 1, and the moisture adsorbing material 9 encapsulating calcium oxide in a non-woven fabric are inserted into the envelope material 10 that has been sealed in three directions in advance, and is placed in a vacuum chamber and decompressed to 100 Pa. And sealed. At room temperature, the polyethylene terephthalate piece that is the control member 6 of the gas adsorbing device 1 has sufficient strength, so that even when atmospheric pressure is applied, the deformation is small and no through hole is generated.
真空断熱材7を70℃まで加温し、2時間放置すると、加温された気体吸着デバイス1の制御部材6が軟化し、貫通孔をあける部材5である針が突き刺し力を加える部材4により押し付けられているので、制御部材6の軟化によりこの力に耐え切れなくなり、貫通孔が生じる。この結果、気体吸着デバイス1内部の気体吸着材2と真空断熱材7内の空間か連通し、吸着可能となる。 When the vacuum heat insulating material 7 is heated to 70 ° C. and left to stand for 2 hours, the heated control member 6 of the gas adsorption device 1 is softened, and the needle that is the member 5 that opens the through-hole applies the piercing force. Since it is pressed, the control member 6 becomes soft and cannot withstand this force, and a through hole is generated. As a result, the gas adsorbing material 2 in the gas adsorbing device 1 and the space in the vacuum heat insulating material 7 communicate with each other and can be adsorbed.
真空断熱材7の内部の圧力を計測すると、5Paであり、気体吸着材2による吸着の結果、真空断熱材7の内部圧力が低減したことがわかる。 When the pressure inside the vacuum heat insulating material 7 is measured, it is 5 Pa, and it can be seen that the internal pressure of the vacuum heat insulating material 7 is reduced as a result of the adsorption by the gas adsorbent 2.
さらに、この真空断熱材7を1ヶ月、常温大気中で保存した後の内圧を再度測定すると、5Paであり、外被材10を介して侵入する気体を吸着していることがわかる。 Further, when the internal pressure after the vacuum heat insulating material 7 is stored in the room temperature atmosphere for one month is again measured, it is 5 Pa, and it can be seen that the gas entering through the jacket material 10 is adsorbed.
(実施例2)
実施例2は実施の形態1の気体吸着デバイスおよび真空断熱箱体の具体例であり、実施の形態1と同一構成については同一符号を付して、その詳細な説明は省略する。
(Example 2)
Example 2 is a specific example of the gas adsorption device and the vacuum heat insulation box of the first embodiment. The same components as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
実施例2の気体吸着デバイス1は、気体吸着材2として、粉末状の銅イオン交換されたZSM−5型ゼオライトを用いた。気体吸着デバイス1の外被材3として、厚さ15μmのナイロン、厚さ25μmのナイロン、厚さ6μmのアルミニウム箔、厚さ50μmの低密度ポリエチレンフィルムの順にラミネートされたラミネートフィルムを用いた。外被材3の形状は、縦50mm、横100mmの長方形である。 In the gas adsorption device 1 of Example 2, a powdery copper ion exchanged ZSM-5 type zeolite was used as the gas adsorbent 2. As the jacket material 3 of the gas adsorption device 1, a laminate film in which a nylon having a thickness of 15 μm, a nylon having a thickness of 25 μm, an aluminum foil having a thickness of 6 μm, and a low-density polyethylene film having a thickness of 50 μm were sequentially laminated. The shape of the jacket material 3 is a rectangle having a length of 50 mm and a width of 100 mm.
外被材3に突き刺し力を加える部材4は、ステンレス製のクリップであり、挟み込み接触する部分には貫通孔をあける部材5であるステンレス性の針がついており、針先には直径5mm、厚さ1mmのポリエチレンテレフクレート片を制御部材6として取り付け、制御部材6(ポリエチレンテレフタレート片)と外被材3が接するようにする。外被材3内部には、気体吸着材2が内包されている。 The member 4 for applying the piercing force to the outer cover material 3 is a stainless steel clip, and a stainless steel needle which is a member 5 for making a through hole is attached to a portion to be sandwiched and contacted, and the needle tip has a diameter of 5 mm and a thickness. A polyethylene terephthalate piece having a thickness of 1 mm is attached as the control member 6 so that the control member 6 (polyethylene terephthalate piece) and the jacket material 3 are in contact with each other. A gas adsorbent 2 is contained inside the jacket material 3.
上記の通り構成された気体吸着デバイス1を用いて真空断熱箱体11を作製した。真空断熱箱体11の芯材14として乾式シリカ95wt%にカーボンブラックを5wt%加え、混合したものを用いた。外箱12と内箱13にはステンレスを用い、空間15は厚さ15mmとし、あらかじめ気体吸着デバイス1と酸化カルシウムからなる水分吸着材9を設置し、その後、芯材14を充填した。外箱12と内箱13はTIG溶接で接合した。 The vacuum heat insulation box 11 was produced using the gas adsorption device 1 comprised as mentioned above. As the core material 14 of the vacuum heat insulation box 11, a mixture of 95% by weight of dry silica and 5% by weight of carbon black was used. Stainless steel was used for the outer box 12 and the inner box 13, the space 15 had a thickness of 15 mm, the gas adsorbing device 1 and a moisture adsorbing material 9 made of calcium oxide were installed in advance, and then the core material 14 was filled. The outer box 12 and the inner box 13 were joined by TIG welding.
封止後、あらかじめ外箱12に取り付けておいた排気口16から約30分減圧することで、1000Paまで減圧し、封止した。そして、40度で1時間放置し、残留水分を除去した後、真空断熱箱体を70℃まで加温し、2時間放置すると、加温された気体吸着デバイス1の制御部材6が軟化し、貫通孔をあける部材5である針が突き刺し力を加える部材4により押し付けられているので、制御部材6の軟化により、この力に耐え切れなくなり、貫通孔が生じる。この結果、気体吸着デバイス1内部の気体吸着材2と真空断熱箱体
11内の空間15が連通し、吸着可能となる。
After sealing, the pressure was reduced to 1000 Pa by reducing the pressure from the exhaust port 16 previously attached to the outer box 12 for about 30 minutes. And after leaving at 40 degrees for 1 hour to remove residual moisture, the vacuum heat insulation box is heated to 70 ° C., and left for 2 hours, the control member 6 of the heated gas adsorption device 1 is softened, Since the needle, which is the member 5 that opens the through hole, is pressed by the member 4 that applies the piercing force, the control member 6 becomes soft and cannot withstand this force, and a through hole is generated. As a result, the gas adsorbent 2 in the gas adsorbing device 1 and the space 15 in the vacuum heat insulating box 11 communicate with each other and can be adsorbed.
その後、常温で48h放置し、内部の圧力を計測すると、5Paであり気体吸着材2による吸着の結果、真空断熱箱体11の内部圧力が低減したことがわかる。 Then, when left at room temperature for 48 hours and measuring the internal pressure, it is 5 Pa, and it can be seen that the internal pressure of the vacuum heat insulating box 11 has decreased as a result of adsorption by the gas adsorbent 2.
さらに、この真空断熱箱体11を1ヶ月大気中で保存した後の内圧は5Paであり、外箱12と内箱13を介して侵入する気体を吸着していることがわかる。 Furthermore, it can be seen that the internal pressure after storing the vacuum heat insulating box 11 in the atmosphere for 1 month is 5 Pa, and adsorbs the gas that enters through the outer box 12 and the inner box 13.
本発明にかかる気体吸着デバイスは、高活性の気体吸着材を大気圧下で劣化することなく取り扱うことが可能であるので、真空断熱材や真空断熱箱体等のように、内部を真空にすることにより機能を発現する真空機器に適用できる。 Since the gas adsorbing device according to the present invention can handle a highly active gas adsorbing material without deteriorating under atmospheric pressure, the inside is evacuated like a vacuum heat insulating material or a vacuum heat insulating box. Therefore, it can be applied to a vacuum device that exhibits its function.
1 気体吸着デバイス
2 気体吸着材
3 外被材
4 突き刺し力を加える部材
5 貫通孔をあける部材
6 制御部材
7 真空断熱材
8 芯材
9 水分吸着材
10 外被材
11 真空断熱箱体
12 外箱
13 内箱
14 芯材
15 空間
16 排気口
DESCRIPTION OF SYMBOLS 1 Gas adsorption device 2 Gas adsorption material 3 Outer coating material 4 Member which applies piercing force 5 Member which opens through-hole 6 Control member 7 Vacuum heat insulating material 8 Core material 9 Moisture adsorption material 10 Outer material 11 Vacuum heat insulation box 12 Outer box 13 Inner box 14 Core material 15 Space 16 Exhaust port
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008005359A JP4941313B2 (en) | 2008-01-15 | 2008-01-15 | Gas adsorption device, vacuum heat insulating material and vacuum heat insulating box |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008005359A JP4941313B2 (en) | 2008-01-15 | 2008-01-15 | Gas adsorption device, vacuum heat insulating material and vacuum heat insulating box |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009165934A JP2009165934A (en) | 2009-07-30 |
JP4941313B2 true JP4941313B2 (en) | 2012-05-30 |
Family
ID=40967757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008005359A Expired - Fee Related JP4941313B2 (en) | 2008-01-15 | 2008-01-15 | Gas adsorption device, vacuum heat insulating material and vacuum heat insulating box |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4941313B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10226751B2 (en) | 2014-10-20 | 2019-03-12 | Lg Chem, Ltd. | Core material for vacuum insulation panel including porous aluminosilicate, and vacuum insulation panel provided with the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5899395B2 (en) * | 2011-09-05 | 2016-04-06 | パナソニックIpマネジメント株式会社 | Heat insulation box |
WO2016006186A1 (en) * | 2014-07-08 | 2016-01-14 | パナソニックIpマネジメント株式会社 | Gas-adsorbing device, vacuum insulation material including same, and refrigerator and heat-insulating wall |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4565385B2 (en) * | 2004-12-01 | 2010-10-20 | 住友電気工業株式会社 | Vacuum insulation tube |
JP4887658B2 (en) * | 2005-04-28 | 2012-02-29 | パナソニック株式会社 | Insulation |
JP2007040360A (en) * | 2005-08-02 | 2007-02-15 | Matsushita Electric Ind Co Ltd | Vacuum heat insulating material, and heat insulating container and refrigerator applying the same |
JP2007085696A (en) * | 2005-09-26 | 2007-04-05 | Matsushita Electric Ind Co Ltd | Vacuum heat insulating box body |
JP4867699B2 (en) * | 2007-02-21 | 2012-02-01 | パナソニック株式会社 | Gas adsorption device |
-
2008
- 2008-01-15 JP JP2008005359A patent/JP4941313B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10226751B2 (en) | 2014-10-20 | 2019-03-12 | Lg Chem, Ltd. | Core material for vacuum insulation panel including porous aluminosilicate, and vacuum insulation panel provided with the same |
Also Published As
Publication number | Publication date |
---|---|
JP2009165934A (en) | 2009-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5198167B2 (en) | Vacuum insulation box | |
JP4962399B2 (en) | Gas adsorption device | |
CN106794413B (en) | Gas adsorption device and vacuum heat insulation member using the same | |
WO2007034906A1 (en) | Gas adsorbing device, vacuum heat insulator making use of gas adsorbing device and process for producing vacuum heat insulator | |
JP4867699B2 (en) | Gas adsorption device | |
JP5194823B2 (en) | Vacuum insulation box | |
JP2010060045A (en) | Vacuum heat insulating material, refrigerator using the same, and manufacturing method of vacuum heat insulating material | |
WO2016103679A1 (en) | Dwelling wall provided with vacuum heat-insulating material and vacuum heat-insulating material | |
JP4862569B2 (en) | Glass panel | |
JP5194812B2 (en) | Vacuum heat insulating material and building material to which vacuum heat insulating material is applied | |
JP4941313B2 (en) | Gas adsorption device, vacuum heat insulating material and vacuum heat insulating box | |
JP5256597B2 (en) | Gas adsorption device and vacuum insulation | |
JP2010096291A (en) | Vacuum heat insulated casing | |
JP6726842B2 (en) | Insulation | |
JP2009287791A (en) | Vacuum heat insulating housing | |
JP4752422B2 (en) | Method for manufacturing vacuum insulator | |
JP5719995B2 (en) | Gas adsorption device | |
JP2009167041A (en) | Glass panel | |
JP2009063033A (en) | Heat insulator | |
JP5493706B2 (en) | Gas adsorption device and method of using gas adsorption device | |
JP2008200616A (en) | Gas adsorbing device | |
JP2006075756A (en) | Gas adsorbent and heat insulator | |
JP5609940B2 (en) | Gas adsorption device and vacuum insulation | |
JP5256596B2 (en) | Gas adsorption device and vacuum insulation | |
JP4892944B2 (en) | Method for manufacturing vacuum insulator and vacuum insulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110105 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20110215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110823 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120131 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120213 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4941313 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150309 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |