[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4867211B2 - Method for suppressing thermal deformation of resin film - Google Patents

Method for suppressing thermal deformation of resin film Download PDF

Info

Publication number
JP4867211B2
JP4867211B2 JP2005177623A JP2005177623A JP4867211B2 JP 4867211 B2 JP4867211 B2 JP 4867211B2 JP 2005177623 A JP2005177623 A JP 2005177623A JP 2005177623 A JP2005177623 A JP 2005177623A JP 4867211 B2 JP4867211 B2 JP 4867211B2
Authority
JP
Japan
Prior art keywords
inorganic fine
resin film
particle layer
fine particle
thermal deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005177623A
Other languages
Japanese (ja)
Other versions
JP2006347054A (en
Inventor
匠 渋田
伸浩 大崎
泰一 阪谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005177623A priority Critical patent/JP4867211B2/en
Publication of JP2006347054A publication Critical patent/JP2006347054A/en
Application granted granted Critical
Publication of JP4867211B2 publication Critical patent/JP4867211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、樹脂フィルムの熱変形抑制方法に関する。   The present invention relates to a method for suppressing thermal deformation of a resin film.

包装用フィルム、LCD、有機ELといった各種ディスプレイ、フレキシブル基板等に使用される樹脂フィルムは、高温で保存したり、加熱処理した場合に、熱変形してしまうことがあった。
このような問題を解決する方法として、フィルム製造工程において熱弛緩処理(アニール処理)を付加する方法が知られている。しかしながらこの方法は、十分な寸法安定性を付与するためには長時間のアニールが必要となるので生産性が悪く、フィルムの製造コストが高くなってしまうという問題があった。
Resin films used for packaging films, various displays such as LCD and organic EL, flexible substrates, etc., may be thermally deformed when stored at high temperatures or when heat-treated.
As a method for solving such a problem, a method of adding a thermal relaxation treatment (annealing treatment) in a film manufacturing process is known. However, this method has a problem that a long time annealing is required in order to provide sufficient dimensional stability, so that the productivity is poor and the manufacturing cost of the film is increased.

樹脂フィルムの熱変形を抑える他の方法として、厚さ50μmの2軸延伸ポリエチレン−2,6−ナフタレンジカルボキシレートフィルムの少なくとも片面にビニル基を有するポリジメチルシロキサンとジメチルハイドロジェンシランからなる付加反応タイプの硬化型シリコーンをメチルエチルケトン、メチルイソブチルケトン及びトルエンの混合溶剤中に溶解させ、さらにシリコーンレジンを配合しさらに白金触媒を添加して調製した塗工液を塗布、乾燥させて十分な寸法安定性を示す離型フィルムを形成する方法が開示されている(例えば特許文献1参照)。しかしながら前記離型フィルムは高い寸法安定性を備えているものの、特定の硬化型シリコーンと特定のシリコーンレジンを用いるため、塗工液の調製が複雑であり、コストも高いという問題があった。   As another method for suppressing thermal deformation of a resin film, an addition reaction comprising polydimethylsiloxane having a vinyl group on at least one side of a biaxially stretched polyethylene-2,6-naphthalenedicarboxylate film having a thickness of 50 μm and dimethylhydrogensilane Dimensional stability sufficient by applying a coating solution prepared by dissolving a type of curable silicone in a mixed solvent of methyl ethyl ketone, methyl isobutyl ketone and toluene, adding a silicone resin, and adding a platinum catalyst. A method of forming a release film showing the above is disclosed (for example, see Patent Document 1). However, although the release film has high dimensional stability, there is a problem that since a specific curable silicone and a specific silicone resin are used, the preparation of the coating liquid is complicated and the cost is high.

特開平9−262951号公報JP-A-9-262951

本発明は、簡便でかつ安価な方法で、樹脂フィルムの熱変形を抑制する方法を提供する。   The present invention provides a method for suppressing thermal deformation of a resin film by a simple and inexpensive method.

すなわち本発明は、樹脂フィルムの少なくとも片面に無機微粒子層(ただし、無機微粒子層が有機高分子と無機微粒子とを含む層である場合を除く。)を積層する樹脂フィルムの熱変形抑制方法であって、前記無機微粒子層の膜厚が0.05〜1μmであり、前記無機微粒子層を構成する無機微粒子がシリカであることを特徴とする樹脂フィルムの熱変形抑制方法である。
That is, the present invention is a method for suppressing thermal deformation of a resin film in which an inorganic fine particle layer (except when the inorganic fine particle layer is a layer containing an organic polymer and inorganic fine particles) is laminated on at least one side of the resin film. A method for suppressing thermal deformation of a resin film , wherein the inorganic fine particle layer has a thickness of 0.05 to 1 μm, and the inorganic fine particles constituting the inorganic fine particle layer are silica .

本発明によれば、簡便でかつ安価な方法で、樹脂フィルムの熱変形を抑制することができる。   According to the present invention, thermal deformation of a resin film can be suppressed by a simple and inexpensive method.

以下、本発明について詳述する。
本発明で用いられる樹脂フィルムは公知の樹脂フィルムであり、その材料や層構成、製造方法など特に限定されるものではない。樹脂フィルムを構成する材料としては、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、セロファン、トリアセチルセルロース、ジアセチルセルロース、アセチルセルロースブチレート、ポリメタクリル酸メチル等を挙げることができる。樹脂フィルムの製造方法としては、Tダイ成形法、インフレーション成形法、プレス形成法、溶媒キャスト法等が挙げられる。また、一軸延伸、あるいは二軸延伸された樹脂フィルムであってもよい。
Hereinafter, the present invention will be described in detail.
The resin film used in the present invention is a known resin film, and there are no particular limitations on the material, layer structure, manufacturing method, and the like. Examples of the material constituting the resin film include polyethylene terephthalate, polyethylene, polypropylene, cellophane, triacetyl cellulose, diacetyl cellulose, acetyl cellulose butyrate, polymethyl methacrylate, and the like. Examples of the method for producing the resin film include a T-die molding method, an inflation molding method, a press forming method, and a solvent casting method. Further, the resin film may be uniaxially stretched or biaxially stretched.

本発明で用いられる樹脂フィルムは、単層であってもよく、多層であってもよい。また、多孔質フィルムであってもよい。多層フィルムである場合には、シリカ蒸着膜のような無機物からなる層を有していてもよい。本発明で用いられる樹脂フィルムの膜厚は、通常200μm以下である。   The resin film used in the present invention may be a single layer or a multilayer. Moreover, a porous film may be sufficient. In the case of a multilayer film, it may have a layer made of an inorganic material such as a silica vapor deposition film. The film thickness of the resin film used in the present invention is usually 200 μm or less.

本発明における樹脂フィルムの熱変形とは、樹脂フィルムを加熱したときにおこる熱膨張や、延伸フィルム等で顕著に見られる熱収縮である。
樹脂フィルムの少なくとも片面に無機微粒子層を積層することにより、樹脂フィルムの熱変形を抑制することができる。無機微粒子層は、樹脂フィルムの片面のみに積層してもよく、両面に積層してもよい。無機微粒子層を両面に積層する場合には、一方の無機微粒子層と他方の無機微粒子層とが同じ無機微粒子から形成されていてもよく、異なる無機微粒子から形成されていてもよい。また、各無機微粒子層の厚みも同じでも異なっていてもよい。
The thermal deformation of the resin film in the present invention is thermal expansion that occurs when the resin film is heated, or thermal shrinkage that is noticeable in a stretched film or the like.
By laminating the inorganic fine particle layer on at least one surface of the resin film, thermal deformation of the resin film can be suppressed. An inorganic fine particle layer may be laminated | stacked only on the single side | surface of a resin film, and may be laminated | stacked on both surfaces. When the inorganic fine particle layer is laminated on both surfaces, one inorganic fine particle layer and the other inorganic fine particle layer may be formed from the same inorganic fine particles, or may be formed from different inorganic fine particles. Further, the thickness of each inorganic fine particle layer may be the same or different.

本発明における無機微粒子層とは、無機微粒子が積み重なって形成されてなる層である。無機微粒子層には、低融点ガラスや有機珪素化合物等の無機バインダー添加してもよい。
本発明における無機微粒子層の厚さは、樹脂フィルムの熱変形抑制効果および無機微粒子層の強度の観点から、0.05〜1μmであることが好ましい。
The inorganic fine particle layer in the present invention is a layer formed by stacking inorganic fine particles. You may add inorganic binders , such as low melting glass and an organic silicon compound, to an inorganic fine particle layer.
The thickness of the inorganic fine particle layer in the present invention is preferably 0.05 to 1 μm from the viewpoint of the thermal deformation suppressing effect of the resin film and the strength of the inorganic fine particle layer.

樹脂フィルムに無機微粒子層を積層する方法としては、無機微粒子を分散させた塗工液を樹脂フィルム上に塗工する方法が挙げられる。無機微粒子層を形成する無機微粒子は、アスペクト比が2未満であり、塗工液中で均一に分散しやすいものが好ましい。アスペクト比が大きい無機微粒子や、塗工液中で分散しにくい無機微粒子を用いた場合には、均一な無機微粒子層を積層することが困難となることがある。本発明で用いられる無機微粒子としては、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸バリウム等が挙げられる。塗工液中での分散性が良好であること、粒子が真球状であり粒径が均一であることから、無機微粒子としてシリカを用いることが好ましい。なおシリカとは、二酸化ケイ素粒子またはコロイダルシリカのことである。
本発明で用いられる無機微粒子は1種類に限定されるものではなく、必要に応じて複数の無機微粒子を混合して無機微粒子層を形成することができる。
Examples of the method for laminating the inorganic fine particle layer on the resin film include a method in which a coating liquid in which inorganic fine particles are dispersed is applied on the resin film. The inorganic fine particles forming the inorganic fine particle layer preferably have an aspect ratio of less than 2 and can be easily dispersed uniformly in the coating liquid. When inorganic fine particles having a large aspect ratio or inorganic fine particles that are difficult to disperse in the coating liquid are used, it may be difficult to laminate a uniform inorganic fine particle layer. Examples of the inorganic fine particles used in the present invention include silicon oxide, titanium oxide, aluminum oxide, zinc oxide, tin oxide, calcium carbonate, barium sulfate, talc, kaolin, and barium sulfate. Silica is preferably used as the inorganic fine particles because the dispersibility in the coating liquid is good and the particles are spherical and the particle size is uniform. Silica refers to silicon dioxide particles or colloidal silica.
The inorganic fine particles used in the present invention are not limited to one type, and an inorganic fine particle layer can be formed by mixing a plurality of inorganic fine particles as necessary.

塗工液中での無機微粒子の分散性および積層した無機微粒子層の強度の観点から、粒径が1nm〜300nmである無機微粒子を用いることが好ましい。透明性に優れる無機微粒子層を形成する際には、粒径が1〜100nmである無機微粒子を用いることが特に好ましい。無機微粒子の粒径とは、光学顕微鏡、レーザー顕微鏡、走査型電子顕微鏡、透過型電子顕微鏡、原子間力顕微鏡等を用いて画像で観察された粒径や、レーザー回折散乱法、動的光散乱法、BET法の平均粒径、シアーズ法などにより求められる平均粒径である。   From the viewpoint of dispersibility of the inorganic fine particles in the coating liquid and the strength of the laminated inorganic fine particle layer, it is preferable to use inorganic fine particles having a particle diameter of 1 nm to 300 nm. When forming an inorganic fine particle layer having excellent transparency, it is particularly preferable to use inorganic fine particles having a particle diameter of 1 to 100 nm. The particle size of inorganic fine particles refers to the particle size observed in images using an optical microscope, laser microscope, scanning electron microscope, transmission electron microscope, atomic force microscope, etc., laser diffraction scattering method, dynamic light scattering Method, average particle size obtained by BET method, sears method, and the like.

無機微粒子層を形成するために使用する塗工液は、無機微粒子を溶媒に分散させた液または無機コロイドであり、透明性、緻密性に優れることから、シリカを分散させた液またはコロイダルシリカを用いることが好ましい。溶媒には揮発性の有機溶媒を用いてもよいが、乾燥設備の防爆型構造が不要となりコスト低減が可能であるため、水を使用することが好ましい。
塗工液中の無機微粒子の量は、形成する無機微粒子層の膜厚に応じて適宜選択することができるが、1〜20重量%の範囲が好ましい。
The coating liquid used to form the inorganic fine particle layer is a liquid or inorganic colloid in which inorganic fine particles are dispersed in a solvent, and since it is excellent in transparency and denseness, a liquid in which silica is dispersed or colloidal silica is used. It is preferable to use it. Although a volatile organic solvent may be used as the solvent, it is preferable to use water because the explosion-proof structure of the drying equipment is unnecessary and the cost can be reduced.
The amount of inorganic fine particles in the coating liquid can be appropriately selected according to the thickness of the inorganic fine particle layer to be formed, but is preferably in the range of 1 to 20% by weight.

塗工液は、スターラーによる攪拌、超音波分散、超高圧分散(超高圧ホモジナイザー)等の手法により、塗工液中の粒子の分散性を向上させてもよい。また、塗工液のpH調整を行い粒子の分散性を向上させてもよい。イオン性分散剤や非イオン性分散剤や界面活性剤を添加することにより、塗工液中の粒子の分散性を向上させてもよい。また、アルコール等の有機溶剤を添加してもよい。   The coating liquid may improve the dispersibility of the particles in the coating liquid by a method such as stirring with a stirrer, ultrasonic dispersion, or ultra-high pressure dispersion (ultra-high pressure homogenizer). Further, the dispersibility of the particles may be improved by adjusting the pH of the coating solution. You may improve the dispersibility of the particle | grains in a coating liquid by adding an ionic dispersant, a nonionic dispersant, and surfactant. Moreover, you may add organic solvents, such as alcohol.

無機微粒子を含む塗工液を樹脂フィルム上に塗工する方法としては、ロールコーター、リバースロールコーター、グラビアコーター、ナイフコーター、バーコーター等を用いて塗工する方法が挙げられる。塗工液を塗工する前に、樹脂フィルム表面に予めコロナ処理、オゾン処理、プラズマ処理、フレーム処理、電子線処理、アンカーコート処理、洗浄処理等の前処理を施しておいてもよい。
塗工液の塗工厚みは、形成する無機微粒子層厚みに応じて適宜設定することができるが、通常1〜20g/m2の範囲である。
Examples of a method for applying a coating solution containing inorganic fine particles on a resin film include a method using a roll coater, a reverse roll coater, a gravure coater, a knife coater, a bar coater, or the like. Before applying the coating solution, pretreatment such as corona treatment, ozone treatment, plasma treatment, flame treatment, electron beam treatment, anchor coating treatment, and washing treatment may be applied to the resin film surface in advance.
Although the coating thickness of a coating liquid can be suitably set according to the inorganic fine particle layer thickness to form, it is the range of 1-20 g / m < 2 > normally.

本発明の樹脂フィルムの熱変形抑制方法は、ボイル処理やレトルト処理といった加熱工程が必要とされる食品用包装材、偏光板の熱変形による画質低下が問題となる大型液晶ディスプレイ(LCD)、発光層からの発熱による変形が危惧されるプラズマディスプレイパネル(PDP)およびその前面版、スパッタ等の製膜時の加熱変形が問題となるフレキシブル基板およびそれを使用する有機ELディスプレイ、内部発熱による変形、短絡が問題のリチウム二次電池のセパレーター等に使用可能である。   The resin film thermal deformation suppression method of the present invention includes food packaging materials that require heating processes such as boil processing and retort processing, large liquid crystal displays (LCDs) that suffer from image quality degradation due to thermal deformation of polarizing plates, and light emission. Plasma display panel (PDP), which may be deformed due to heat generation from the layer, and its front plate, flexible substrate in which heat deformation during film formation such as sputtering, and organic EL display using the same, deformation due to internal heat generation, short circuit However, it can be used as a separator for the lithium secondary battery in question.

以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this.

[参考例]
樹脂フィルムには、二軸延伸ナイロン基材を主とする、日本エコラップ(株)製ガスバリアフィルム、セービックスYON−R2(膜厚約15μm)のガスバリア層上に、活性水素化合物とイソシアネート化合物(商品名:AD76H5/CAT−10L=10/4(重量比)、東洋モートン(株)製)を混合した液を塗工し、乾燥させて膜厚約0.2μmの層を形成したフィルムを使用した。該樹脂フィルムから、10cm×10cmの試験片を作製し、該試験片を100℃のウォーターバス中で一時間保持した後、収縮率を測定した。MD方向の収縮率は2.0%、TD方向の収縮率は3.5%であった。
[Reference example]
The resin film is composed of a biaxially stretched nylon base material, a gas barrier film made by Nihon Eco Wrap Co., Ltd., and a gas barrier layer of Savix YON-R2 (film thickness of about 15 μm), an active hydrogen compound and an isocyanate compound (trade name) : AD76H5 / CAT-10L = 10/4 (weight ratio) manufactured by Toyo Morton Co., Ltd.) was applied and dried to form a film having a thickness of about 0.2 μm. A test piece of 10 cm × 10 cm was prepared from the resin film, and the test piece was held in a water bath at 100 ° C. for 1 hour, and then the shrinkage rate was measured. The shrinkage in the MD direction was 2.0%, and the shrinkage in the TD direction was 3.5%.

[実施例1]
無機微粒子として日産化学社製コロイダルシリカ、スノーテックスST−XS(平均粒径4〜6nm、固形分濃度20重量%)を12.5g、日産化学社製コロイダルシリカ、スノーテックスST−ZL(平均粒径70〜100nm、固形分濃度40重量%)を25g、純水87.5gと界面活性剤水溶液25g(東レ・ダウコーニングシリコーン社製界面活性剤SH3746を1重量%、純水99重量%)およびイソプロピルアルコールを100g投入し塗工液を調製した。塗工液中の固形分濃度はST−XSが1重量%、ST−ZLが4重量%であった。参考例で用いた樹脂フィルムの活性水素化合物およびイソシアネート化合物から形成された膜面に該塗工液をバーコーターを用いて塗工し、60℃で乾燥して無機微粒子層を積層した。無機微粒子層の膜厚は250mであった。無機微粒子層を積層した樹脂フィルムから、10cm×10cmの試験片を作製し、該試験片を100℃のウォーターバス中で一時間保持した後、収縮率を測定した。MD方向の収縮率は1.3%、TD方向の収縮率は3.2%であった。無機微粒子層を積層することにより、樹脂フィルムの熱収縮が抑制されたことが確認できた。


[Example 1]
12.5 g of Nissan Chemical Co., Ltd. colloidal silica, Snowtex ST-XS (average particle size 4-6 nm, solid content concentration 20% by weight) as inorganic fine particles, Nissan Chemical Co., Ltd. colloidal silica, Snowtex ST-ZL (average particle) 25 g of diameter 70 to 100 nm, solid content concentration 40 wt%), 87.5 g of pure water and 25 g of aqueous surfactant solution (1 wt% of surfactant SH3746 manufactured by Toray Dow Corning Silicone, 99 wt% of pure water) and 100 g of isopropyl alcohol was added to prepare a coating solution. The solid content concentration in the coating solution was 1 wt% for ST-XS and 4 wt% for ST-ZL. The coating liquid was applied to the film surface formed of the active hydrogen compound and isocyanate compound of the resin film used in Reference Example using a bar coater, and dried at 60 ° C. to laminate an inorganic fine particle layer. The film thickness of the inorganic fine particle layer was 250 nm . A test piece of 10 cm × 10 cm was prepared from the resin film on which the inorganic fine particle layer was laminated, and the test piece was held in a water bath at 100 ° C. for 1 hour, and then the shrinkage was measured. The shrinkage in the MD direction was 1.3%, and the shrinkage in the TD direction was 3.2%. It was confirmed that the thermal contraction of the resin film was suppressed by laminating the inorganic fine particle layer.


Claims (1)

樹脂フィルムの少なくとも片面に無機微粒子層(ただし、無機微粒子層が有機高分子と無機微粒子とを含む層である場合を除く。)を積層する樹脂フィルムの熱変形抑制方法であって、前記無機微粒子層の膜厚が0.05〜1μmであり、前記無機微粒子層を構成する無機微粒子がシリカであることを特徴とする樹脂フィルムの熱変形抑制方法。 A method for suppressing thermal deformation of a resin film in which an inorganic fine particle layer (except when the inorganic fine particle layer is a layer containing an organic polymer and inorganic fine particles) is laminated on at least one surface of the resin film, the inorganic fine particles A method for suppressing thermal deformation of a resin film , wherein the layer has a thickness of 0.05 to 1 μm, and the inorganic fine particles constituting the inorganic fine particle layer are silica .
JP2005177623A 2005-06-17 2005-06-17 Method for suppressing thermal deformation of resin film Active JP4867211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177623A JP4867211B2 (en) 2005-06-17 2005-06-17 Method for suppressing thermal deformation of resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177623A JP4867211B2 (en) 2005-06-17 2005-06-17 Method for suppressing thermal deformation of resin film

Publications (2)

Publication Number Publication Date
JP2006347054A JP2006347054A (en) 2006-12-28
JP4867211B2 true JP4867211B2 (en) 2012-02-01

Family

ID=37643391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177623A Active JP4867211B2 (en) 2005-06-17 2005-06-17 Method for suppressing thermal deformation of resin film

Country Status (1)

Country Link
JP (1) JP4867211B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514355B1 (en) 2008-04-14 2015-04-22 쇼와 덴코 가부시키가이샤 Cured film and method for production thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297869A (en) * 1998-04-08 1999-10-29 Mitsubishi Electric Corp Power semiconductor device
JP2002029019A (en) * 2000-05-09 2002-01-29 Toray Ind Inc Biaxially oriented laminated polyester film and method for manufacturing the same
JP2004035607A (en) * 2002-06-28 2004-02-05 Teijin Chem Ltd Organosiloxane resin composition and polycarbonate resin molded product having protected surface
JP4266623B2 (en) * 2002-11-29 2009-05-20 リンテック株式会社 Hard coat film
US7261934B2 (en) * 2003-09-11 2007-08-28 Teijin Dupont Films Japan Limited Polyester film
JP4074847B2 (en) * 2003-09-30 2008-04-16 恵和株式会社 Optical sheet and backlight unit using the same

Also Published As

Publication number Publication date
JP2006347054A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP5451215B2 (en) Film for polarizer support substrate
US20090214854A1 (en) Gas barrier multilayer film
JP4812552B2 (en) Gas barrier laminated film
JP5221880B2 (en) White polyester film for reflector
US20120128986A1 (en) Laminated polyester film
JP2008176313A (en) Polarizing plate and liquid crystal display
CN105555849B (en) Laminate film and its manufacturing method
JP5166740B2 (en) White polyester film for reflector
TW201445175A (en) Polarizer and image display device
JP2011008169A (en) Film for polarizer supporting base material
TW200928520A (en) Method for forming optical compensating films, optical compensating films formed thereby, structure of optical compensating films, and polarizing plates
TW201930424A (en) Gap layer, layered body, method for manufacturing gap layer, and optical member and optical device
JP4259166B2 (en) Biaxially oriented polyester film
JP2006007550A (en) Double-side mold release film
US7534416B2 (en) Antireflective transparent zeolite hardcoat, method for fabricating the same
JP2001290141A (en) Mold releasing
TW201910824A (en) Optical member, image display device, and method of manufacturing optical member
JP2004177719A (en) Mold releasing film
JP4867211B2 (en) Method for suppressing thermal deformation of resin film
JPH01283136A (en) Transparent plastic film with excellent gas barrier property
TW200909544A (en) Coating composition and optical member
JP2008246848A (en) Laminated film for light reflecting plate and method for manufacturing it
JP2000071395A (en) Packing laminated film and laminated film for deposition packing
JP5694114B2 (en) Method for producing conductive film
JP2009220316A (en) Laminated film and indicator

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R151 Written notification of patent or utility model registration

Ref document number: 4867211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350