[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4865311B2 - Biomass treatment using fluid catalytic cracking - Google Patents

Biomass treatment using fluid catalytic cracking Download PDF

Info

Publication number
JP4865311B2
JP4865311B2 JP2005346866A JP2005346866A JP4865311B2 JP 4865311 B2 JP4865311 B2 JP 4865311B2 JP 2005346866 A JP2005346866 A JP 2005346866A JP 2005346866 A JP2005346866 A JP 2005346866A JP 4865311 B2 JP4865311 B2 JP 4865311B2
Authority
JP
Japan
Prior art keywords
oil
catalyst
biomass
mass
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005346866A
Other languages
Japanese (ja)
Other versions
JP2007153924A (en
Inventor
優一郎 藤山
俊彰 奥原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2005346866A priority Critical patent/JP4865311B2/en
Priority to PCT/JP2006/324298 priority patent/WO2007064014A1/en
Publication of JP2007153924A publication Critical patent/JP2007153924A/en
Application granted granted Critical
Publication of JP4865311B2 publication Critical patent/JP4865311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/54Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed
    • C10G3/55Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed with moving solid particles, e.g. moving beds
    • C10G3/57Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids characterised by the catalytic bed with moving solid particles, e.g. moving beds according to the fluidised bed technique
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fuel Cell (AREA)

Description

本発明は流動接触分解を用いたバイオマスの処理方法に関する。   The present invention relates to a method for treating biomass using fluid catalytic cracking.

従来、エネルギーセキュリティーの観点、並びに炭酸ガスの削減の観点から、バイオマスが自動車燃料や石油化学原料として有望視されている。   Conventionally, biomass is considered promising as an automobile fuel or petrochemical raw material from the viewpoint of energy security and the reduction of carbon dioxide gas.

バイオマスを自動車等の燃料油として利用する方法については、従来多くの試みが為されている。例えば、下記特許文献1〜5には、バイオマスである植物油や動物油を鉱物油と混合し、ディーゼルエンジン用燃料として用いる方法が開示されている。しかしながら、バイオマスを単に鉱物油と混合しただけでは、バイオマスが不飽和結合や酸素を含むなどの理由により、得られる燃料の安定性が不十分となり、管理が困難となる。また、これらの成分は自動車に使用される材料に対して悪影響を及ぼすおそれがある。   Many attempts have been made to use biomass as fuel oil for automobiles. For example, Patent Documents 1 to 5 below disclose a method in which vegetable oil or animal oil, which is biomass, is mixed with mineral oil and used as a fuel for a diesel engine. However, if the biomass is simply mixed with mineral oil, the stability of the obtained fuel becomes insufficient and management becomes difficult because the biomass contains unsaturated bonds and oxygen. In addition, these components may adversely affect materials used in automobiles.

一方、下記特許文献6には、高級脂肪酸グリセリンエステルをゼオライト含有触媒と接触させてガソリンを製造する方法が開示されている。
特開昭61−57686号公報 特表平6−510804号公報 特開平07−82576号公報 特開平8−41468号公報 特開平10−152687号公報 特開昭59−62694号公報
On the other hand, Patent Document 6 below discloses a method for producing gasoline by bringing a higher fatty acid glycerin ester into contact with a zeolite-containing catalyst.
JP-A-61-57686 Japanese Patent Publication No. 6-510804 Japanese Patent Application Laid-Open No. 07-82576 JP-A-8-41468 JP-A-10-152687 JP 59-62694 A

しかし、上記従来の方法であっても、実用化に供し得るものとしては以下の点で改善の余地がある。   However, even the above-described conventional method has room for improvement in terms of the following points that can be put to practical use.

すなわち、上記特許文献6記載の方法によれば、実験室レベルでのガソリンの製造は可能であるが、工業レベルの流動接触分解装置(以下、場合により「FCC」という。)を用いてバイオマスを処理する場合、バイオマスに含まれるエステル(油脂)由来の水及び酸が副生するため、それらの副生成物による装置の腐食を防がなければ、工業的な生産は不可能である。より具体的には、実験室レベルでは、ガラス等でできたサンプル管に生成物を入れるため、腐食の問題はない。これに対して工業レベルのFCCでは、反応器出口温度は480℃以上と高いため、当該箇所では水の凝縮は起こらないが、反応系の下流に生成物を分離する蒸留塔などにおいては、蒸留塔の塔頂部及びその付近の温度が水の露点を下回ることから、水の凝縮が発生し、凝縮した水に溶け込んだ酸による腐食が問題となる。   That is, according to the method described in Patent Document 6, gasoline can be produced at a laboratory level, but biomass can be produced using an industrial level fluid catalytic cracker (hereinafter referred to as “FCC” in some cases). In the case of treatment, since water and acid derived from esters (oils and fats) contained in the biomass are by-produced, industrial production is impossible unless corrosion of the apparatus by these by-products is prevented. More specifically, at the laboratory level, since the product is put into a sample tube made of glass or the like, there is no problem of corrosion. On the other hand, in the industrial level FCC, the reactor outlet temperature is as high as 480 ° C. or higher, so that water does not condense at that location, but in a distillation column or the like that separates the product downstream of the reaction system, Since the temperature at the top of the tower and in the vicinity thereof is below the dew point of water, water condensation occurs, and corrosion due to the acid dissolved in the condensed water becomes a problem.

また、バイオマス由来の酸素含有原料をFCCで処理すると、鉱物油系のFCC原料として一般的に用いられている減圧軽油(以下、場合により「VGO」という。)に比べて、コーク生成量が増大してしまう。FCCでは触媒再生におけるコーク燃焼に伴い発生する熱量を原料油の気化、分解反応に必要な熱量として用い、これらをバランスさせることにより運転を行う。コークが増えて熱量が余剰となる場合は、触媒の冷却あるいは触媒の二段再生における一段目再生等からの一酸化炭素の抜き出しにより、余剰の熱量を取り除く操作が必要となる。各FCCによってその余剰熱を取り除く能力に違いはあるものの、各々その能力の上限で運転を行うことが一般的になっている。さらに、近年は環境規制の強化により二酸化炭素の排出量が制限されており、事実上殆どのFCCにおいてコーク量が運転上の制約条件となっている。このような事情があるため、バイオマス導入によってコークが増加すると、運転の過酷度を下げてコーク収率を下げ、同時にガソリン収率を犠牲にするか、あるいは適油量自体を下げることになることになり、経済的に不利となる。   In addition, when biomass-derived oxygen-containing raw materials are treated with FCC, the amount of coke produced increases compared to vacuum gas oil (hereinafter sometimes referred to as “VGO”), which is generally used as a mineral oil-based FCC raw material. Resulting in. In FCC, the heat generated by coke combustion in catalyst regeneration is used as the amount of heat necessary for the vaporization and decomposition reaction of the raw material oil, and the operation is performed by balancing these. When coke increases and the amount of heat becomes excessive, it is necessary to remove the excess amount of heat by cooling the catalyst or extracting carbon monoxide from the first stage regeneration in the second stage regeneration of the catalyst. Although there is a difference in the ability to remove the excess heat by each FCC, it is common to operate at the upper limit of the ability. Furthermore, in recent years, carbon dioxide emissions have been limited due to stricter environmental regulations, and the amount of coke has become a constraint in operation in virtually all FCCs. Because of this situation, if coke increases due to the introduction of biomass, the severity of operation will be lowered to lower the coke yield, and at the same time the gasoline yield will be sacrificed, or the appropriate oil amount itself will be lowered. It becomes economically disadvantageous.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、流動接触分解装置においてバイオマスを効率よく且つ安定的に処理することが可能なバイオマスの処理方法を提供することを目的とする。   This invention is made | formed in view of the subject which the said prior art has, and aims at providing the processing method of biomass which can process biomass efficiently and stably in a fluid catalytic cracking apparatus. .

そこで、本発明は、反応帯域、分離帯域、ストリッピング帯域及び再生帯域を有する流動接触分解装置を用いて接触分解によりバイオマスを処理する方法であって、反応帯域において、バイオマス及び鉱物油を含有し且つ原料油全量に対するバイオマス由来の油脂の質量比が下記式(1)で表される条件を満たす原料油を、超安定Y型ゼオライトを10〜50質量%含有する触媒を用いて、反応帯域の出口温度480〜540℃、触媒/油比4〜12wt/wt、反応圧力1〜3kg/cmG、原料油と触媒との接触時間1〜3秒の条件下で処理することを特徴とするバイオマスの処理方法を提供する。
x<M/18 (1)
[式中、xは原料油全量に対するバイオマス由来の油脂の質量比(単位:質量%)を示し、Mwはバイオマス由来の油脂の平均分子量を示す。]
Therefore, the present invention is a method for treating biomass by catalytic cracking using a fluid catalytic cracking apparatus having a reaction zone, a separation zone, a stripping zone and a regeneration zone, and contains biomass and mineral oil in the reaction zone. And the raw material oil which satisfy | fills the mass ratio of the fats and oils derived from biomass with respect to the total amount of raw material oils satisfy | fills the conditions represented by following formula (1) using the catalyst containing 10-50 mass% of super stable Y-type zeolite, The treatment is performed under conditions of an outlet temperature of 480 to 540 ° C., a catalyst / oil ratio of 4 to 12 wt / wt, a reaction pressure of 1 to 3 kg / cm 2 G, and a contact time of 1 to 3 seconds between the feedstock and the catalyst A method for treating biomass is provided.
x <M w / 18 (1)
[In formula, x shows the mass ratio (unit: mass%) of the fats and oils derived from biomass with respect to raw material oil whole quantity, and Mw shows the average molecular weight of the fats and oils derived from biomass. ]

上記本発明のバイオマスの処理方法によれば、流動接触分解装置を用いてバイオマスを処理するに際し、バイオマスと鉱物油と含有する原料油において原料油全量に対するバイオマス由来の油脂の質量比が上記式(1)で表される条件を満たすようにし、その原料油を上記特定条件下で上記特定の触媒で処理することで、バイオマス由来の水及び酸の生成並びにコークの生成量の増大が十分に抑制される。そのため、流動接触分解装置においてバイオマスを効率よく且つ安定的に処理することができるようになる。   According to the biomass processing method of the present invention, when the biomass is processed using a fluid catalytic cracking apparatus, the mass ratio of the fats and oils derived from biomass to the total amount of the raw material oil in the raw material oil containing biomass and mineral oil is expressed by the above formula ( By satisfying the conditions represented by 1) and treating the feedstock with the specific catalyst under the specific conditions, the generation of biomass-derived water and acid and the increase in the amount of coke are sufficiently suppressed. Is done. Therefore, biomass can be processed efficiently and stably in a fluid catalytic cracking apparatus.

また、上記本発明のバイオマス処理方法において、原料油は、原料油全量に対するバイオマス由来の油脂の質量比が下記式(2)で表される条件を更に満たすものであることが好ましい。このような原料油を用いることで、処理に伴う二酸化炭素の排出量を十分に低減することができるようになる。なお、本発明でいう「残油」とは、常圧残油、減圧残油及びそれらの水素化物の総称である。
x<C(R−R’)/1.4 (2)
[式中、xは原料油全量に対するバイオマス由来の油脂の質量比(単位:質量%)を示し、Rは鉱物油全量を基準とした残油の割合(単位:質量%)を示し、R’は原料油全量を基準とした残油の割合(単位:質量%)を示し、Cは残油中の残炭濃度(単位:質量%)を示す。]
Moreover, in the biomass processing method of the present invention, it is preferable that the raw material oil further satisfies the condition represented by the following formula (2) in the mass ratio of the biomass-derived fat to the total amount of the raw material oil. By using such a raw material oil, it becomes possible to sufficiently reduce the amount of carbon dioxide emissions associated with the treatment. The “residual oil” as used in the present invention is a general term for atmospheric residual oil, vacuum residual oil and hydrides thereof.
x <C (R−R ′) / 1.4 (2)
[In the formula, x represents the mass ratio (unit: mass%) of the fat and oil derived from biomass to the total amount of raw material oil, R represents the ratio of residual oil (unit: mass%) based on the total amount of mineral oil, R ′ Indicates the ratio (unit: mass%) of the residual oil based on the total amount of the feedstock oil, and C indicates the residual coal concentration (unit: mass%) in the residual oil. ]

また、上記本発明のバイオマスの処理方法は、バイオマスを原料としているものであるためエネルギーセキュリティーの観点並びに炭酸ガスの削減の観点で優れている。したがって、本発明によれば、後述するように、当該生成物を用いた各種燃料及び石油化学製品を提供することができる。   Moreover, since the biomass processing method of the present invention uses biomass as a raw material, it is excellent in terms of energy security and carbon dioxide gas reduction. Therefore, according to the present invention, as will be described later, various fuels and petrochemical products using the product can be provided.

すなわち、本発明は、上記本発明のバイオマスの処理方法により得られる水素を含有することを特徴とする燃料電池用燃料を提供する。   That is, this invention provides the fuel for fuel cells characterized by containing the hydrogen obtained by the biomass processing method of the said invention.

また、本発明は、上記本発明のバイオマスの処理方法により得られる沸点25〜220℃の留分の一部又は全部あるいはその水素化物を含有することを特徴とするガソリンを提供する。   Moreover, this invention provides the gasoline characterized by including a part or all of the fraction of the boiling point 25-220 degreeC obtained by the processing method of the biomass of the said invention, or its hydride.

また、本発明は、上記本発明のバイオマスの処理方法により得られる沸点170〜370℃の留分の一部又は全部を含有することを特徴とするディーゼル燃料を提供する。   Moreover, this invention provides the diesel fuel characterized by including the one part or all part of the fraction with a boiling point of 170-370 degreeC obtained by the processing method of the biomass of the said invention.

また、本発明は、上記本発明のバイオマスの処理方法により得られる炭素数3又は4の炭化水素を含有することを特徴とする液化石油ガスを提供する。   Moreover, this invention provides the liquefied petroleum gas characterized by containing the C3 or C4 hydrocarbon obtained by the biomass processing method of the said invention.

また、本発明は、上記本発明のバイオマスの処理方法により得られるプロピレンを構成モノマーとして含有することを特徴とする合成樹脂を提供する。かかる合成樹脂は、好ましくは、燃焼廃棄したとき、環境規制上の二酸化炭素の排出量をゼロとカウントできることを特徴とする。   Moreover, this invention provides the synthetic resin characterized by containing the propylene obtained by the processing method of the biomass of the said invention as a structural monomer. Such a synthetic resin is preferably characterized in that the amount of carbon dioxide emission under environmental regulations can be counted as zero when discarded by combustion.

また、本発明は、上記本発明のバイオマスの処理方法により得られるイソブチレンと、メタノール又はエタノールとを反応させて得られるエーテルを含有することを特徴とするガソリンを提供する。   Moreover, this invention provides the gasoline characterized by including the ether obtained by making the isobutylene obtained by the processing method of the biomass of the said invention react with methanol or ethanol.

また、本発明は、上記本発明のバイオマスの処理方法により得られるブチレンと、イソブタンとをアルキレーション装置を用いて反応させた反応物を含有することを特徴とするガソリンを提供する。   The present invention also provides a gasoline characterized by containing a reaction product obtained by reacting butylene obtained by the biomass processing method of the present invention with isobutane using an alkylation device.

また、本発明は、上記本発明のバイオマスの処理方法により得られるブチレンの二量化物を含有することを特徴とするガソリンを提供する。   Moreover, this invention provides the gasoline characterized by containing the dimerization product of butylene obtained by the processing method of the biomass of the said invention.

本発明によれば、流動接触分解装置においてバイオマスを効率よく且つ安定的に処理することが可能なバイオマスの処理方法が提供される。また、上記本発明のバイオマスの処理方法を用いることにより、エネルギーセキュリティーの観点並びに炭酸ガスの削減の点で有用な燃料及び石油化学原料が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the processing method of biomass which can process biomass efficiently and stably in a fluid catalytic cracking apparatus is provided. In addition, by using the biomass processing method of the present invention, a fuel and a petrochemical raw material that are useful in terms of energy security and carbon dioxide reduction are provided.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明では、バイオマスと鉱物油とを含有し、原料油全量に対するバイオマス由来の油脂の質量比が上記式(1)で表される条件を満たす原料油が用いられる。   In this invention, the raw material oil which contains biomass and mineral oil and satisfy | fills the mass ratio of the fats and oils derived from biomass with respect to raw material oil whole quantity satisfy | fills the said Formula (1) is used.

バイオマスとしては、植物又は動物由来の油脂を用いることができる。かかる油脂は高級脂肪酸とグリセリンのエステルを含むものであり、より具体的には、パーム油、菜種油、コーン油、大豆油、グレープシード油等の植物油、ラード等の動物油などが挙げられる。これらの油脂は使用済みの廃油であってもよい。   As biomass, oil derived from plants or animals can be used. Such fats and oils contain esters of higher fatty acids and glycerin, and more specifically include vegetable oils such as palm oil, rapeseed oil, corn oil, soybean oil, and grape seed oil, and animal oils such as lard. These fats and oils may be used waste oil.

また、本発明で用いられる鉱物油としては、原油を蒸留して得られる常圧残油、常圧残油をさらに減圧蒸留して得られる減圧軽油、減圧残油、これらの水素化処理油、または熱分解油、及びそれらの混合物が挙げられる。これらの鉱物油のうち、常圧残油、減圧残油及びそれらの水素化物を本発明では「残油」と称する。   Further, as the mineral oil used in the present invention, a normal pressure residue obtained by distilling crude oil, a vacuum gas oil obtained by further distillation under reduced pressure of the normal pressure residue, a vacuum residue, these hydrotreated oils, Or pyrolysis oil and mixtures thereof are mentioned. Among these mineral oils, atmospheric residue, reduced residue and hydride thereof are referred to as “residue” in the present invention.

また、本発明で用いられる触媒は、超安定Y型ゼオライトを10〜50質量%、好ましくは15〜40質量%含有する。該触媒の好ましい態様としては、超安定Y型ゼオライトを、副活性成分であり重質油の大きな分子を分解することのできるマトリックス、カオリンなどの増量剤と共にバインダーで粒子状に成型したものが挙げられる。該触媒の平均粒径は50〜90μm、かさ密度は0.6〜0.9g/cm、表面積は50〜350m/g、細孔容積は0.05〜0.5ml/gであることがそれぞれ好ましい。 The catalyst used in the present invention contains 10 to 50% by mass, preferably 15 to 40% by mass, of ultrastable Y-type zeolite. As a preferred embodiment of the catalyst, ultrastable Y-type zeolite is formed into a particulate form with a binder together with a bulking agent such as kaolin, a matrix capable of decomposing large molecules of heavy oil, which is a secondary active ingredient. It is done. The catalyst has an average particle size of 50 to 90 μm, a bulk density of 0.6 to 0.9 g / cm 3 , a surface area of 50 to 350 m 2 / g, and a pore volume of 0.05 to 0.5 ml / g. Are preferred respectively.

また、該触媒は、超安定Y型ゼオライトの他に、Y型ゼオライトよりも細孔径の小さい結晶性アルミのシリケートゼオライト、シリコアルミノフォスフェート(SAPO)などを更に含有してもよい。そのようなゼオライト又はSAPOとして、ZSM−5、β、ω、SAPO−5、SAPO−11、SAPO−34等が挙げられる。これらのゼオライト又はSAPOは、前記超安定Y型ゼオライトを含む触媒粒子と同一の触媒粒子中に含まれてもよく、あるいは別の触媒粒子として含まれてもよい。   In addition to the ultrastable Y-type zeolite, the catalyst may further contain a crystalline aluminum silicate zeolite having a smaller pore size than that of the Y-type zeolite, silicoaluminophosphate (SAPO), and the like. Examples of such zeolite or SAPO include ZSM-5, β, ω, SAPO-5, SAPO-11, and SAPO-34. These zeolite or SAPO may be contained in the same catalyst particles as the catalyst particles containing the ultrastable Y-type zeolite, or may be contained as separate catalyst particles.

また、本発明で用いられる流動接触分解装置(FCC)は、反応帯域、分離帯域、ストリッピング帯域及び再生帯域を有する装置であれば特に制限されない。また、該FCCは鉱物油の処理を目的として従来使用されている既存の装置でもよく、あるいはバイオマス処理のために新たに建設される装置であってもよい。   Further, the fluid catalytic cracking device (FCC) used in the present invention is not particularly limited as long as it is a device having a reaction zone, a separation zone, a stripping zone and a regeneration zone. The FCC may be an existing device conventionally used for the treatment of mineral oil, or may be a device newly constructed for biomass processing.

また、本発明における残油比率は特に制限されないが、本発明のバイオマスの処理方法は、残油比率が10質量%以上で運転されている流動接触分解装置に適用することが好ましい。更に好ましい残油比率は30質量%以上である。なお、本発明でいう「残油比率」とは、流動接触分解装置の原料油中に占める残油の比率を質量比で表した値(単位:質量%)を意味する。   Moreover, the residual oil ratio in the present invention is not particularly limited, but the biomass treatment method of the present invention is preferably applied to a fluid catalytic cracking apparatus operated at a residual oil ratio of 10% by mass or more. A more preferable residual oil ratio is 30% by mass or more. In addition, the “residual oil ratio” in the present invention means a value (unit: mass%) in which the ratio of the residual oil in the feedstock oil of the fluid catalytic cracking apparatus is expressed by mass ratio.

FCCの反応帯域では、反応帯域の出口温度480〜540℃、触媒/油比4〜12wt/wt、反応圧力1〜3kg/cmG、原料油と触媒との接触時間1〜3秒の条件下で処理する流動接触分解が行われる。ここで、本発明でいう「流動接触分解」とは、上記のバイオマス、鉱物油などの重質な原料油と、流動状態に保持されている触媒とを、後述する運転条件で連続的に接触させ、重質原料油をガソリンや軽質オレフィンを主体とした軽質な炭化水素に分解する処理を意味する。この流動接触分解には、触媒粒子と原料油とが共に管内を上昇する、いわゆるライザークラッキングが多く用いられる。 In the FCC reaction zone, the reaction zone outlet temperature is 480 to 540 ° C., the catalyst / oil ratio is 4 to 12 wt / wt, the reaction pressure is 1 to 3 kg / cm 2 G, and the contact time between the feedstock and the catalyst is 1 to 3 seconds. Fluid catalytic cracking is carried out as described below. Here, “fluid catalytic cracking” as used in the present invention means that the above-mentioned heavy feedstock such as biomass and mineral oil and the catalyst maintained in a fluidized state are continuously contacted under the operating conditions described later. This means that heavy feedstock oil is decomposed into light hydrocarbons mainly composed of gasoline and light olefins. In this fluid catalytic cracking, so-called riser cracking, in which both catalyst particles and raw material oil rise in the pipe, is often used.

また、本発明でいう「反応帯域の出口温度」とは、流動床型反応器の出口温度のことであり、分解生成物が急冷あるいは触媒と分解される前の温度である。本発明における反応帯域の出口温度は、上述の通り480〜540℃であり、好ましくは490〜520℃、より好ましくは500〜510℃である。反応帯域の出口温度が480℃未満であると目的生成物であるガソリンや軽質オレフィンを高い収率で得ることができず、また、540℃を超えると熱分解が顕著になりドライガス発生量が増大してしまう。   The “reaction zone outlet temperature” in the present invention is the outlet temperature of the fluidized bed reactor, and is the temperature before the decomposition product is quenched or decomposed with the catalyst. As described above, the outlet temperature of the reaction zone in the present invention is 480 to 540 ° C, preferably 490 to 520 ° C, more preferably 500 to 510 ° C. If the outlet temperature of the reaction zone is less than 480 ° C., the target products such as gasoline and light olefins cannot be obtained in high yield, and if it exceeds 540 ° C., thermal decomposition becomes remarkable and the amount of dry gas generated It will increase.

また、本発明でいう「触媒/油比」は、触媒循環量(ton/h)と原料油供給速度(ton/h)との比である。本発明における触媒/油比は、上述の通り4〜12wt/wtであり、好ましくは5〜10wt/wt、より好ましくは6〜8wt/wtである。触媒/油比が4wt/wt未満であると十分な分解率を得ることができない。また、触媒/油比が12を超えると触媒循環量が大きくなり、再生帯域において触媒再生に必要な触媒滞留時間を確保できず、触媒の再生が不十分となる。   Further, the “catalyst / oil ratio” referred to in the present invention is a ratio between the catalyst circulation rate (ton / h) and the feed oil supply speed (ton / h). As described above, the catalyst / oil ratio in the present invention is 4 to 12 wt / wt, preferably 5 to 10 wt / wt, and more preferably 6 to 8 wt / wt. When the catalyst / oil ratio is less than 4 wt / wt, a sufficient decomposition rate cannot be obtained. On the other hand, when the catalyst / oil ratio exceeds 12, the amount of catalyst circulation increases, the catalyst residence time necessary for catalyst regeneration cannot be ensured in the regeneration zone, and the regeneration of the catalyst becomes insufficient.

また、本発明でいう「反応圧力」とは流動床型反応器の全圧を意味する。本発明における反応圧力は、上述の通り1〜3kg/cmGであり、好ましくは1.2〜2kg/cmGである。反応圧力が1kg/cmG未満であると大気圧との差が過剰に小さくなり、コントロールバルブによる圧力の調整が困難となる。また、反応圧力が1kg/cmG未満の場合、それに伴って再生帯域の圧力も小さくなり、再生に必要なガスの滞留時間を確保するために容器を大きくしなければならず、経済的に好ましくない。一方、反応圧力が3kg/cmGを超えると、単分子反応である分解反応に対する水素移行反応などの二分子反応の割合が増加してしまう。なお、ここでいう「水素移行反応」とは、ナフテン等からオレフィンが水素を受け取ってパラフィンに変換される反応であり、目的物である軽質オレフィンの減少、ガソリンのオクタン価の低下などの原因となる反応である。 The “reaction pressure” in the present invention means the total pressure of the fluidized bed reactor. The reaction pressure in the present invention are as described above 1 to 3 kg / cm 2 G, preferably 1.2~2kg / cm 2 G. When the reaction pressure is less than 1 kg / cm 2 G, the difference from the atmospheric pressure becomes excessively small, and it becomes difficult to adjust the pressure with the control valve. In addition, when the reaction pressure is less than 1 kg / cm 2 G, the pressure in the regeneration zone decreases accordingly, and the container must be enlarged to ensure the residence time of the gas necessary for regeneration. It is not preferable. On the other hand, when the reaction pressure exceeds 3 kg / cm 2 G, the ratio of a bimolecular reaction such as a hydrogen transfer reaction to a decomposition reaction that is a unimolecular reaction increases. The “hydrogen transfer reaction” referred to here is a reaction in which olefins receive hydrogen from naphthene or the like and are converted to paraffin, which causes a decrease in the target light olefin, a decrease in gasoline octane number, and the like. It is a reaction.

また、本発明でいう「原料油と触媒との接触時間」とは、流動床型反応器の入口で原料油と触媒とが接触してから反応器出口で反応生成物と触媒とが分離されるまでの時間を意味する。本発明における原料油と触媒との接触時間は、上述の通り1〜3秒であり、好ましくは1〜2秒である。   Further, the “contact time between the feedstock and the catalyst” as used in the present invention means that the reaction product and the catalyst are separated at the outlet of the reactor after the feedstock and the catalyst are brought into contact at the inlet of the fluidized bed reactor. It means time to complete. As described above, the contact time between the raw material oil and the catalyst in the present invention is 1 to 3 seconds, preferably 1 to 2 seconds.

反応帯域で接触分解を受けた生成物、未反応物及び触媒の混合物は分離帯域に送られ、当該分離帯域において混合物からの触媒の分離が行われる。分離帯域としては、サイクロン等の遠心力を利用した固液分離装置が好ましく用いられる。   The mixture of the product, unreacted product and catalyst that have undergone catalytic cracking in the reaction zone is sent to the separation zone, where the catalyst is separated from the mixture. As the separation zone, a solid-liquid separation device using a centrifugal force such as a cyclone is preferably used.

分離帯域において分離された触媒はストリッピング帯域に送られ、当該ストリッピング帯域において触媒粒子から生成物、未反応物等の炭化水素類の大部分が除去される。一方、反応中に原料の一部がより重質な炭素質(コーク)となり触媒上に付着し得るが、コーク及び一部重質の炭化水素類が付着した触媒は、該ストリッピング帯域から再生帯域(再生塔)に送られる。   The catalyst separated in the separation zone is sent to the stripping zone, and most of hydrocarbons such as products and unreacted substances are removed from the catalyst particles in the stripping zone. On the other hand, part of the raw material becomes heavier carbonaceous matter (coke) during the reaction and can be deposited on the catalyst, but the catalyst with coke and partly heavy hydrocarbons adhered is regenerated from the stripping zone. Sent to the band (regeneration tower).

再生帯域においては、コーク等が付着した触媒に酸化処理が施される。この酸化処理を受けた触媒が再生触媒であり、触媒上に沈着したコーク及び重質炭化水素類が燃焼により減少されたものである。この再生触媒は、上記の反応帯域に連続的に循環される。場合によっては不必要な熱分解あるいは過分解を抑制するため、分解生成物は分離帯域の直前又は直後で急冷される。再生帯域における炭素質の燃焼に伴い発生する熱量により触媒の加熱が行われ、その熱は触媒と共に反応帯域に持ち込まれる。この熱量によって原料油の加熱・気化が行われる。また、分解反応は吸熱反応であることから、分解反応熱としても上記の熱量が利用される。このように再生帯域における発熱と反応帯域における吸熱させることがFCC運転の必須条件となっている。   In the regeneration zone, an oxidation treatment is performed on the catalyst to which coke or the like is attached. The catalyst that has undergone this oxidation treatment is a regenerated catalyst, and the coke and heavy hydrocarbons deposited on the catalyst are reduced by combustion. This regenerated catalyst is continuously circulated through the reaction zone. In some cases, the decomposition products are quenched immediately before or after the separation zone in order to suppress unnecessary thermal decomposition or excessive decomposition. The catalyst is heated by the amount of heat generated by the combustion of the carbonaceous material in the regeneration zone, and the heat is brought into the reaction zone together with the catalyst. The heating and vaporization of the raw material oil is performed by this heat quantity. In addition, since the decomposition reaction is an endothermic reaction, the above-described amount of heat is also used as the heat of decomposition reaction. Thus, heat generation in the regeneration zone and heat absorption in the reaction zone are essential conditions for FCC operation.

熱が余剰となったときの対策としては、触媒を冷却する方法がある。この方法は、再生帯域の触媒の一部を抜き出し、熱をスチーム発生等に用いることにより触媒の熱を奪う方法である。   As a countermeasure when the heat becomes excessive, there is a method of cooling the catalyst. This method is a method in which a part of the catalyst in the regeneration zone is extracted and heat is used for generating steam to take away the heat of the catalyst.

熱余剰時の別の対策としては、再生帯域を2段にし、1段目の再生帯域を酸素不足雰囲気下で運転する方法がある。この場合、コークの燃焼は不完全燃焼となり、排ガスとして一酸化炭素が排出される。炭素が一酸化炭素まで酸化されるときの反応熱と二酸化炭素まで酸化されるときの反応熱の差分を、余剰な熱として系外に排出することができる。コークスの燃焼にかかわる反応熱(燃焼熱)は以下の通りである。
+1/2O→HO 12.1×10kJ/kg(28900kcal/kg)
C+1/2O→CO 0.9×10kJ/kg(2200kcal/kg)
C+O→CO 3.3×10kJ/kg(7820kcal/kg)
As another countermeasure against excess heat, there is a method in which the regeneration zone is made up of two stages and the first regeneration zone is operated in an oxygen-deficient atmosphere. In this case, the combustion of coke becomes incomplete combustion, and carbon monoxide is discharged as exhaust gas. The difference between the heat of reaction when carbon is oxidized to carbon monoxide and the heat of reaction when carbon is oxidized to carbon dioxide can be discharged out of the system as surplus heat. The reaction heat (combustion heat) related to the combustion of coke is as follows.
H 2 + 1 / 2O 2 → H 2 O 12.1 × 10 4 kJ / kg (28900 kcal / kg)
C + 1 / 2O 2 → CO 0.9 × 10 4 kJ / kg (2200 kcal / kg)
C + O 2 → CO 2 3.3 × 10 4 kJ / kg (7820 kcal / kg)

なお、系外に排出された一酸化炭素を更に二酸化炭素まで酸化し、そのエネルギーを電力やスチームとして回収することもできる。   In addition, the carbon monoxide discharged | emitted out of the system can be further oxidized to a carbon dioxide, and the energy can also be collect | recovered as electric power or steam.

接触分解に伴い生じるコーク量の上限値は、通常、FCCごとにほぼ決まっている。例えば、前述した熱余剰時の対策により系外に排出できる熱量の大きさによって、コーク量の許容値が決まる。また、FCCの立地によって発生する二酸化炭素量の上限値が決められている場合があり、その数値によってコーク量の許容値が制限される。通常、FCCはできるだけ大きい通油量、できるだけ高い分解率で運転され、結果的にコーク量の上限値での運転を行うことになる。   Usually, the upper limit of the amount of coke produced by catalytic cracking is almost determined for each FCC. For example, the permissible value of the coke amount is determined by the amount of heat that can be discharged out of the system by the above-described countermeasure for excess heat. In addition, an upper limit value of the amount of carbon dioxide generated depending on the location of the FCC may be determined, and the allowable value of the coke amount is limited by the numerical value. Normally, the FCC is operated with as much oil flow as possible and as high a decomposition rate as possible, and as a result, operation is performed with the upper limit of the coke amount.

しかし、従来のバイオマス由来の酸素含有原料をFCCで処理すると、鉱物油系のFCC原料として一般的に用いられている減圧軽油(以下、場合により「VGO」という。)に比べて、コーク生成量が増大してしまう。これに対して本発明では、バイオマスと鉱物油と含有する原料油において原料油全量に対するバイオマス由来の油脂の質量比が上記式(1)で表される条件を満たすようにし、その原料油を上記特定条件下で上記特定の触媒で処理することで、コークの生成量の増大を十分に抑制することができるため、コークの上限値での運転を維持することができる。   However, when the conventional biomass-derived oxygen-containing raw material is treated with FCC, the amount of coke produced is lower than that of vacuum gas oil (hereinafter sometimes referred to as “VGO”), which is generally used as a mineral oil-based FCC raw material. Will increase. On the other hand, in the present invention, the mass ratio of the oil and fat derived from biomass to the total amount of the raw material oil in the raw material oil containing biomass and mineral oil satisfies the condition represented by the above formula (1), and the raw material oil is By treating with the specific catalyst under specific conditions, an increase in the amount of coke produced can be sufficiently suppressed, so that operation at the upper limit of coke can be maintained.

本発明では、原料油当たりのコークの生成量(質量%)を「コーク収率」と称するが、本発明におけるコーク収率は、好ましくは2〜12質量%、より好ましくは5〜10質量%、更に好ましくは6〜8質量%である。コーク収率が2質量%未満であると反応に必要な熱が不足する傾向にある。また、コーク収率が12質量%を超えると、再生帯域で発生する熱量が過剰に大きくなり、分解率の低下、通油量の低下などの運転の制約を受けるため、好ましくない。   In the present invention, the amount of coke produced per feed oil (mass%) is referred to as “coke yield”. The coke yield in the present invention is preferably 2 to 12 mass%, more preferably 5 to 10 mass%. More preferably, it is 6-8 mass%. When the coke yield is less than 2% by mass, the heat necessary for the reaction tends to be insufficient. On the other hand, if the coke yield exceeds 12% by mass, the amount of heat generated in the regeneration zone becomes excessively large, which is not preferable because it is subject to operational restrictions such as a decrease in decomposition rate and a decrease in oil flow rate.

また、本発明におけるFCCは、生成物回収帯域を更に備えることが好ましい。かかる生成物回収帯域としては、生成物を沸点などにより分離して回収する生成物回収設備が挙げられる。該生成物回収設備は複数の蒸留塔、吸収塔、コンプレッサー、ストリッパー、熱交換器等を含んで構成される。反応帯域で得られた480〜540℃の生成物は、上記の分離帯域を経て、第一の蒸留塔に送られる。ここで熱交換器により生成物の熱を奪い、軽油及び軽油よりも重質な留分を塔底から、ガソリン及びガソリンよりも軽質な留分を塔頂から、それぞれ抜き出す。なお、軽油を蒸留塔の中間段から抜き出し、塔底からは重油のみを抜き出すこともできる。   In addition, the FCC in the present invention preferably further includes a product recovery zone. An example of such a product recovery zone is a product recovery facility that separates and recovers the product by its boiling point. The product recovery equipment includes a plurality of distillation towers, absorption towers, compressors, strippers, heat exchangers, and the like. The product of 480-540 ° C. obtained in the reaction zone is sent to the first distillation column via the separation zone. Here, the heat of the product is removed by a heat exchanger, and light oil and a fraction heavier than light oil are extracted from the tower bottom, and gasoline and a lighter fraction than gasoline are extracted from the tower top. It is also possible to extract light oil from the middle stage of the distillation tower and extract only heavy oil from the bottom of the tower.

第一の蒸留塔から得られる軽質分はコンプレッサーに送られて圧縮され、その後、複数の吸収塔、蒸留塔を経てガソリン、C4留分、C3留分、ドライガスに分離回収される。ここでいうC4留分とは、炭素数が4の炭化水素であるブタン、ブチレンを指す。また、C3留分とは、炭素数が3の炭化水素であるプロパン、プロピレンを指す。また、ドライガスとは、炭素数が2以下の炭化水素であるメタン、エチレン及びそれよりも分子量が小さい水素などのガスを指す。なお、蒸留塔の能力により、ガソリンにC4留分の一部が混ざったり、C3留分にC4留分の一部が混ざったりする場合もある。   Light components obtained from the first distillation column are sent to a compressor and compressed, and then separated and recovered into gasoline, C4 fraction, C3 fraction, and dry gas via a plurality of absorption towers and distillation towers. The C4 fraction here refers to butane and butylene, which are hydrocarbons having 4 carbon atoms. The C3 fraction refers to propane and propylene which are hydrocarbons having 3 carbon atoms. The dry gas refers to a gas such as methane, ethylene which is a hydrocarbon having 2 or less carbon atoms, and hydrogen having a molecular weight smaller than that. Depending on the capability of the distillation tower, a portion of the C4 fraction may be mixed with gasoline, or a portion of the C4 fraction may be mixed with the C3 fraction.

上述の第一蒸留塔の塔頂部及びその付近では温度が水の露点を下回ることから、従来のバイオマスの処理方法においては、バイオマスに含まれるエステル(油脂)由来の水が凝集し、水に含まれる酸による装置の腐食が問題となる。これに対して本発明のバイオマスの処理方法によれば、バイオマス由来の水及び酸の生成が十分に抑制される。   Since the temperature is below the dew point of water at and near the top of the first distillation tower, water derived from esters (oils and fats) contained in biomass is aggregated and contained in water in the conventional biomass processing method. Corrosion of the equipment due to the acid is a problem. On the other hand, according to the biomass processing method of the present invention, the generation of biomass-derived water and acid is sufficiently suppressed.

以上の通り、本発明のバイオマスの処理方法によれば、流動接触分解装置においてバイオマスを効率よく且つ安定的に処理することが可能となる。   As described above, according to the biomass processing method of the present invention, biomass can be efficiently and stably processed in a fluid catalytic cracking apparatus.

また、本発明のバイオマスの処理方法は、バイオマスを原料としていることからエネルギーセキュリティーの観点並びに炭酸ガスの削減の観点で優れているため、各種燃料の基材や石油化学製品の原料を製造する際に非常に有用である。   In addition, since the biomass processing method of the present invention uses biomass as a raw material, it is excellent in terms of energy security and carbon dioxide gas reduction. Therefore, when manufacturing base materials for various fuels and raw materials for petrochemical products, Very useful to.

例えば、上記本発明のバイオマスの処理方法により得られる水素は、燃料電池の燃料として用いることができる。   For example, hydrogen obtained by the biomass processing method of the present invention can be used as a fuel for a fuel cell.

また、上記本発明のバイオマスの処理方法により得られる沸点25〜220℃の留分はガソリン基材として用いることができる。ここで、沸点25〜220℃の留分は、その一部をガソリン基材として用いてもよく、あるいは全部をガソリン基材として用いてもよい。また、沸点25〜220℃の留分を水素化処理し、得られる水素化物をガソリン基材として用いることもできる。   Moreover, the fraction of boiling point 25-220 degreeC obtained by the processing method of the biomass of the said invention can be used as a gasoline base material. Here, a part of the fraction having a boiling point of 25 to 220 ° C. may be used as a gasoline base material, or may be used as a gasoline base material. Alternatively, a fraction having a boiling point of 25 to 220 ° C. can be hydrotreated, and the resulting hydride can be used as a gasoline base material.

また、上記本発明のバイオマスの処理方法により得られる沸点170〜370℃の留分は、ディーゼル燃料基材として用いることができる。ここで、沸点170〜370℃の留分は、その一部をディーゼル燃料基材として用いてもよく、あるいは全部をディーゼル燃料機材として用いてもよい。   The fraction having a boiling point of 170 to 370 ° C. obtained by the biomass processing method of the present invention can be used as a diesel fuel base material. Here, part of the fraction having a boiling point of 170 to 370 ° C. may be used as a diesel fuel base material, or all may be used as diesel fuel equipment.

また、上記本発明のバイオマスの処理方法により得られる炭素数3又は4の炭化水素は、液化石油ガス基材として用いることができる。   Further, the hydrocarbon having 3 or 4 carbon atoms obtained by the biomass processing method of the present invention can be used as a liquefied petroleum gas base material.

また、上記本発明のバイオマスの処理方法により得られるプロピレンは合成樹脂の構成モノマーとして用いることができる。かかる合成樹脂は、バイオマスを原料とするものであるため、燃焼廃棄したとき、環境規制上の二酸化炭素の排出量をゼロとカウントできるという利点を有する。   Moreover, the propylene obtained by the biomass processing method of the present invention can be used as a constituent monomer of a synthetic resin. Since such a synthetic resin is made from biomass, it has the advantage that the amount of carbon dioxide emissions in environmental regulations can be counted as zero when burned and discarded.

また、上記本発明のバイオマスの処理方法により得られるイソブチレンと、メタノール又はエタノールとを反応させて得られるエーテルは、ガソリン基材として用いることができる。   Moreover, the ether obtained by making the isobutylene obtained by the processing method of the biomass of the said invention react with methanol or ethanol can be used as a gasoline base material.

また、上記本発明のバイオマスの処理方法により得られるブチレンと、イソブタンとをアルキレーション装置を用いて反応させた反応物は、ガソリン基材として用いることができる。   In addition, a reaction product obtained by reacting butylene obtained by the biomass processing method of the present invention with isobutane using an alkylation apparatus can be used as a gasoline base material.

また、上記本発明のバイオマスの処理方法により得られるブチレンの二量化物は、ガソリン基材として用いることができる。   The dimerized butylene obtained by the biomass processing method of the present invention can be used as a gasoline base material.

以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

[実施例1]
実施例1では、バイオマスとして大豆油を使用した。該大豆油の脂肪酸組成は、パルミチン酸10〜12質量%、ステアリン酸2〜5質量%、オレイン酸20〜25質量%、リノール酸50〜57質量%、リノレン酸5〜9質量%であった。また、該大豆油の平均分子量は880であった。
[Example 1]
In Example 1, soybean oil was used as biomass. The fatty acid composition of the soybean oil was 10-12 mass% palmitic acid, 2-5 mass% stearic acid, 20-25 mass% oleic acid, 50-57 mass% linoleic acid, and 5-9 mass% linolenic acid. . The average molecular weight of the soybean oil was 880.

一方、アラビアンライト原油を常圧蒸留装置、減圧蒸留装置を用いて処理し、減圧軽油を得た。この減圧軽油を更に水素化装置により処理することにより、硫黄濃度0.2質量%の水素化減圧軽油を得た。得られた水素化減圧軽油の性状を表1に示す。   On the other hand, Arabian light crude oil was processed using an atmospheric distillation apparatus and a vacuum distillation apparatus to obtain a vacuum gas oil. This vacuum gas oil was further processed by a hydrogenator to obtain a hydrogenated vacuum gas oil having a sulfur concentration of 0.2% by mass. Properties of the resulting hydrogenated vacuum gas oil are shown in Table 1.

上記の大豆油と水素化減圧軽油とを、大豆油30質量%、水素化減圧軽油70質量%の割合で混合し、原料油を得た。得られた原料油は、原料油全量に対する大豆油の質量比が30質量%であり、バイオマス由来の油脂の平均分子量が880であることから、上記式(1)で表される条件を満たす原料油である。   The soybean oil and hydrogenated vacuum gas oil were mixed at a ratio of 30% by mass of soybean oil and 70% by mass of hydrogenated vacuum gas oil to obtain a raw material oil. The obtained raw material oil has a mass ratio of soybean oil to the total amount of the raw material oil of 30% by mass, and the average molecular weight of the oil derived from biomass is 880, so that the raw material satisfying the condition represented by the above formula (1) is satisfied. Oil.

次に、以下のようにして触媒を調製した。   Next, a catalyst was prepared as follows.

先ず、40質量%硫酸3370g中に、JIS3号水硝子の希釈溶液(SiO濃度11.6質量%)21550を滴下し、pH3.0のシリカゾルを得た。このシリカゾル全量に超安定Y型ゼオライト3500g及びカオリン4000gを加えて混練し、250℃の熱風で噴霧乾燥した。得られた噴霧乾燥物を50℃、50リットルの0.2質量%硫酸アンモニウムで洗浄した後、110℃のオーブン中で乾燥し、さらに600℃で焼成して触媒Aを得た。得られた触媒A及びそれに含まれるゼオライトの物性を表2に示す。 First, a diluted solution of JIS No. 3 water glass (SiO 2 concentration 11.6% by mass) 21550 was dropped into 3370 g of 40% by mass sulfuric acid to obtain a silica sol having a pH of 3.0. 3500 g of ultrastable Y-type zeolite and 4000 g of kaolin were added to the total amount of the silica sol, kneaded, and spray dried with hot air at 250 ° C. The obtained spray-dried product was washed with 50 liters and 50 liters of 0.2 mass% ammonium sulfate, dried in an oven at 110 ° C., and calcined at 600 ° C. to obtain catalyst A. Table 2 shows the physical properties of the obtained catalyst A and the zeolite contained therein.

次に、触媒Aをスチーミングにより疑似平衡化した。「疑似平衡化」とは、高温下でスチームと触媒とを所定時間接触させ、流動接触分解装置中の平衡触媒の劣化状態を再現させる手法を意味し、本実施例では、800℃で6時間、100%スチームで触媒をスチーミングした。また、「平衡触媒」とは、流動接触分解装置中に蓄えられ、一定期間反応と再生を繰り返した触媒のことであり、未使用のフレッシュな触媒よりも活性が低下したものを意味する。流動接触分解装置では、内部に蓄え垂れた触媒のうち一部を系外に抜き出し、抜き出された触媒の代わりにフレッシュな触媒を装置内に投入することにより、装置内の平衡触媒が一定に保たれる。   Next, catalyst A was pseudo-equilibrated by steaming. “Pseudo-equilibrium” means a method of bringing steam and the catalyst into contact with each other at a high temperature for a predetermined time to reproduce the deterioration state of the equilibrium catalyst in the fluid catalytic cracking apparatus. The catalyst was steamed with 100% steam. The “equilibrium catalyst” is a catalyst that is stored in a fluid catalytic cracking apparatus and has repeatedly reacted and regenerated for a certain period of time, and means one having a lower activity than an unused fresh catalyst. In the fluid catalytic cracking device, a part of the catalyst stored inside is taken out of the system, and a fresh catalyst is put in the device instead of the extracted catalyst, so that the equilibrium catalyst in the device is kept constant. Kept.

次に、断熱型のライザータイプFCCパイロット装置を用いて、上記の原料油を疑似平衡化した触媒Aを処理した。FCCパイロット装置の規模は、インベントリー2kg、フィード量1kg/hであり、運転条件は、反応帯域の出口温度500℃、触媒/油比6wt/wt、反応圧力1kg/cmG、原料油と触媒との接触時間2秒、再生塔温度720℃とした。得られた生成物の収率を表3に示す。なお、表中の収率は全て生成物の量を原料油全量に対する重量比で示したものである。 Next, the catalyst A obtained by quasi-equilibrium the above raw material oil was treated using an adiabatic riser type FCC pilot device. The scale of the FCC pilot device is inventory 2 kg, feed amount 1 kg / h, operating conditions are reaction zone outlet temperature 500 ° C., catalyst / oil ratio 6 wt / wt, reaction pressure 1 kg / cm 2 G, feedstock oil and catalyst The contact time was 2 seconds and the regeneration tower temperature was 720 ° C. The yield of the obtained product is shown in Table 3. The yields in the table are all expressed by the weight ratio of the product to the total amount of the raw material oil.

次に、得られた生成物のうち水層部分を取り出し、これに腐食検査用のカーボンスチールの試験片を投入した。所定時間経過後に試験片を取り出して検査したが、腐食は認められなかった。   Next, an aqueous layer portion was taken out from the obtained product, and a carbon steel test piece for corrosion inspection was put therein. After a predetermined time had passed, the test piece was taken out and inspected, but no corrosion was observed.

[実施例2]
実施例1においてアラビアンライト原油を常圧蒸留装置を用いて処理したときに得られた常圧残油を、残油水素化装置を用いて処理し、水素化常圧残油を得た。水素化常圧残油の硫黄濃度は0.3質量%、残炭濃度は3.6質量%であった。この水素化常圧残油の性状を表1に示す。
[Example 2]
The atmospheric residual oil obtained when the Arabian light crude oil in Example 1 was processed using an atmospheric distillation apparatus was processed using a residual oil hydrogenation apparatus to obtain a hydrogenated atmospheric residual oil. The sulfur concentration of the hydrogenated atmospheric residual oil was 0.3% by mass, and the residual coal concentration was 3.6% by mass. Table 1 shows the properties of this hydrogenated atmospheric residue.

次に、上記の水素化常圧残油、並びに実施例1と同様の大豆油及び水素化減圧軽油を、大豆油30質量%、水素化減圧軽油52質量%、水素化常圧残油18質量%の割合で混合し、原料油を得た。得られた原料油は、原料油全量に対する大豆油の質量比が30質量%であり、バイオマス由来の油脂の平均分子量が880であることから、上記式(1)で表される条件を満たす原料油である。また、鉱物油全量(水素化減圧軽油と水素化常圧残油との合計量)を基準とした残油の割合が25.7質量%であり、原料油全量を基準とした残油の割合が18質量%であり、残油中の残炭濃度が3.6質量%であることから、上記式(2)で表される条件を満たす。   Next, the above hydrogenated atmospheric residual oil and the same soybean oil and hydrogenated vacuum gas oil as in Example 1 were mixed with 30% by mass of soybean oil, 52% by mass of hydrogenated vacuum gas oil, and 18% of hydrogenated atmospheric residue. % Was mixed to obtain a raw material oil. The obtained raw material oil has a mass ratio of soybean oil to the total amount of the raw material oil of 30% by mass, and the average molecular weight of the oil derived from biomass is 880, so that the raw material satisfying the condition represented by the above formula (1) Oil. The ratio of residual oil based on the total amount of mineral oil (total amount of hydrogenated vacuum gas oil and hydrogenated atmospheric residual oil) is 25.7% by mass, and the ratio of residual oil based on the total amount of raw oil Is 18% by mass and the residual coal concentration in the residual oil is 3.6% by mass, the condition represented by the above formula (2) is satisfied.

このようにして得られた原料油を、実施例1と同様の触媒、装置、反応条件で処理した。反応結果を表3に示す。実施例2のコーク収率は後述する比較例1のコーク収率と同程度であることが確認された。この結果は、実施例2の方法で大豆油を処理すれば、コーク収率を鉱物油のみで接触分解を行う場合と同程度に維持しつつ、大豆油処理に起因する熱バランスに変更のないまま運転が継続できることを示している。   The raw material oil thus obtained was treated with the same catalyst, apparatus and reaction conditions as in Example 1. The reaction results are shown in Table 3. The coke yield of Example 2 was confirmed to be comparable to the coke yield of Comparative Example 1 described later. This result shows that if soybean oil is treated by the method of Example 2, the coke yield is maintained at the same level as when catalytic cracking is carried out using only mineral oil, and the heat balance resulting from soybean oil treatment remains unchanged. This indicates that the operation can be continued.

また、得られた生成物のうち水層部分を取り出し、これに腐食検査用のカーボンスチールの試験片を投入した。所定時間経過後に試験片を取り出して検査したが、腐食は認められなかった。   Moreover, the water layer part was taken out from the obtained product, and a test piece of carbon steel for corrosion inspection was added thereto. After a predetermined time had passed, the test piece was taken out and inspected, but no corrosion was observed.

[比較例1]
実施例1と同様の水素化減圧軽油及び実施例2と同様の水素化常圧残油を、水素化減圧軽油70質量%、水素化常圧残油30質量%の割合で混合し、原料油を得た。
[Comparative Example 1]
Hydrogenated vacuum gas oil similar to Example 1 and hydrogenated atmospheric residual oil similar to Example 2 were mixed in a proportion of 70% by mass of hydrogenated vacuum gas oil and 30% by mass of hydrogenated atmospheric gas residual oil, Got.

このようにして得られた原料油を、実施例1と同様の触媒、装置、反応条件で処理した。反応結果を表3に示す。   The raw material oil thus obtained was treated with the same catalyst, apparatus and reaction conditions as in Example 1. The reaction results are shown in Table 3.

[比較例2]
実施例1と同様の大豆油及び水素化減圧軽油を、大豆油80質量%、水素化減圧軽油20質量%の割合で混合し、原料油を得た。
[Comparative Example 2]
The same soybean oil and hydrogenated vacuum gas oil as in Example 1 were mixed at a ratio of 80% by mass of soybean oil and 20% by mass of hydrogenated vacuum gas oil to obtain a raw material oil.

このようにして得られた原料油を、実施例1と同様の触媒、装置、反応条件で処理した。反応結果を表3に示す。   The raw material oil thus obtained was treated with the same catalyst, apparatus and reaction conditions as in Example 1. The reaction results are shown in Table 3.

また、得られた生成物のうち水層部分を取り出し、これに腐食検査用のカーボンスチールの試験片を投入した。所定時間経過後に試験片を取り出して検査したところ、試験片の一部に腐食が認められた。   Moreover, the water layer part was taken out from the obtained product, and a test piece of carbon steel for corrosion inspection was added thereto. When the test piece was taken out and inspected after a predetermined time, corrosion was found on a part of the test piece.

実施例3]
実施例1と同様の大豆油及び水素化減圧軽油、並びに実施例2と同様の水素化常圧残油を、大豆油30質量%、水素化減圧軽油20質量%、水素化常圧残油50質量%の割合で混合し、原料油を得た。
[ Example 3]
Soybean oil and hydrogenated vacuum gas oil as in Example 1 and hydrogenated atmospheric residue as in Example 2 were 30% soybean oil, 20% hydrogenated vacuum gas oil, and hydrogenated atmospheric residue 50. The raw material oil was obtained by mixing at a ratio of mass%.

このようにして得られた原料油を、実施例1と同様の触媒、装置、反応条件で処理した。反応結果を表3に示す。実施例3においては、実施例2及び比較例1と比べて、コーク収率が多かった。この結果は、熱バランスに余裕のない、あるいは二酸化炭素排出量に余裕のない工業レベルの流動接触分解装置において、実施例3の方法でバイオマスを処理すると、分解率を下げてコーク収率を下げざるを得ないなどの不利益を被ることになることを示している。 The raw material oil thus obtained was treated with the same catalyst, apparatus and reaction conditions as in Example 1. The reaction results are shown in Table 3. In Example 3, compared with Example 2 and Comparative Example 1, the coke yield was higher. This result shows that when biomass is processed by the method of Example 3 in an industrial level fluid catalytic cracker with no heat balance or carbon dioxide emissions, the cracking rate is lowered and the coke yield is lowered. It shows that it will suffer disadvantages such as unavoidable.

また、得られた生成物のうち水層部分を取り出し、これに腐食検査用のカーボンスチールの試験片を投入した。所定時間経過後に試験片を取り出して検査したが、試験片に腐食は認められなかった。   Moreover, the water layer part was taken out from the obtained product, and a test piece of carbon steel for corrosion inspection was added thereto. The test piece was taken out and inspected after a predetermined time, but no corrosion was observed on the test piece.

Figure 0004865311
Figure 0004865311

Figure 0004865311
Figure 0004865311

Figure 0004865311
Figure 0004865311

Claims (1)

反応帯域、分離帯域、ストリッピング帯域及び再生帯域を有する流動接触分解装置を用いて接触分解により植物又は動物由来の油脂からなるバイオマスを処理する方法であって、
前記油脂が高級脂肪酸とグリセリンのエステルからなり、
前記反応帯域において、植物又は動物由来の油脂からなるバイオマス及び鉱物油からなり、且つ原料油全量に対する植物又は動物由来の油脂の質量比が下記式(1)で表される条件を満たす原料油を、超安定Y型ゼオライトを10〜50質量%含有する触媒を用いて、前記反応帯域の出口温度480〜540℃、触媒/油比4〜12wt/wt、反応圧力1〜3kg/cmG、前記原料油と前記触媒との接触時間1〜3秒の条件下で処理することを特徴とするバイオマスの処理方法。
x<M/18 (1)
[式中、xは原料油全量に対する植物又は動物由来の油脂の質量比(単位:質量%)を示し、Mwは植物又は動物由来の油脂の平均分子量を示す。]
A method for treating biomass consisting of oils and fats derived from plants or animals by catalytic cracking using a fluid catalytic cracking device having a reaction zone, a separation zone, a stripping zone and a regeneration zone,
The fats and oils consist of esters of higher fatty acids and glycerol,
In the reaction zone, composed of biomass and mineral oil consisting of fats and oils of vegetable or animal origin, and the mass ratio of the fat or oil of vegetable or animal to feed oil total amount satisfies the condition feedstock represented by the following formula (1) , Using a catalyst containing 10 to 50% by mass of ultrastable Y-type zeolite, outlet temperature of the reaction zone 480 to 540 ° C., catalyst / oil ratio 4 to 12 wt / wt, reaction pressure 1 to 3 kg / cm 2 G, A method for treating biomass, wherein the treatment is performed under a condition where the contact time between the raw material oil and the catalyst is 1 to 3 seconds.
x <M w / 18 (1)
[In the formula, x represents the mass ratio (unit: mass%) of fats and oils derived from plants or animals to the total amount of raw material oil, and Mw represents the average molecular weight of fats and oils derived from plants or animals. ]
JP2005346866A 2005-11-30 2005-11-30 Biomass treatment using fluid catalytic cracking Expired - Fee Related JP4865311B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005346866A JP4865311B2 (en) 2005-11-30 2005-11-30 Biomass treatment using fluid catalytic cracking
PCT/JP2006/324298 WO2007064014A1 (en) 2005-11-30 2006-11-29 Fuel and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005346866A JP4865311B2 (en) 2005-11-30 2005-11-30 Biomass treatment using fluid catalytic cracking

Publications (2)

Publication Number Publication Date
JP2007153924A JP2007153924A (en) 2007-06-21
JP4865311B2 true JP4865311B2 (en) 2012-02-01

Family

ID=38238704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005346866A Expired - Fee Related JP4865311B2 (en) 2005-11-30 2005-11-30 Biomass treatment using fluid catalytic cracking

Country Status (1)

Country Link
JP (1) JP4865311B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189981B2 (en) * 2006-08-18 2013-04-24 Jx日鉱日石エネルギー株式会社 Biomass processing method, fuel for fuel cell, gasoline, diesel fuel, liquefied petroleum gas and synthetic resin

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545581B2 (en) 2007-08-01 2013-10-01 Virginia Tech Intellectual Properties, Inc. Production of stable biomass pyrolysis oils using fractional catalytic pyrolysis
WO2009018531A1 (en) * 2007-08-01 2009-02-05 Virginia Tech Intellectual Properties, Inc. Fractional catalytic pyrolysis of biomass
US8979955B2 (en) 2007-08-01 2015-03-17 Virginia Tech Intellectual Properties, Inc. Production of pyrolysis oil
WO2011103313A2 (en) * 2010-02-17 2011-08-25 Virginia Tech Intellectual Properties, Inc. Production of pyrolysis oil
CN104357076B (en) * 2014-11-10 2016-04-27 东南大学 A kind of two-stage catalytic reaction method improving biomass pyrolytic oil quality
JP6561648B2 (en) * 2015-07-14 2019-08-21 出光興産株式会社 Method for catalytic cracking of feedstock
KR102327295B1 (en) * 2016-10-18 2021-11-17 모에탈 엘엘씨 A process to make a turbine fuel
CN115707760B (en) * 2021-08-20 2024-04-02 中国石油化工股份有限公司 Catalytic cracking method for heavy oil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259777B2 (en) * 2001-07-31 2009-04-30 井上 斉 Biomass gasification method
JP4505247B2 (en) * 2004-03-26 2010-07-21 出光興産株式会社 Method for removing tar in a fluidized bed furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189981B2 (en) * 2006-08-18 2013-04-24 Jx日鉱日石エネルギー株式会社 Biomass processing method, fuel for fuel cell, gasoline, diesel fuel, liquefied petroleum gas and synthetic resin
US8476479B2 (en) 2006-08-18 2013-07-02 Nippon Oil Corporation Method of treating biomass, fuel for fuel cell, gasoline, diesel fuel, liquefied petroleum gas, and synthetic resin

Also Published As

Publication number Publication date
JP2007153924A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP5189981B2 (en) Biomass processing method, fuel for fuel cell, gasoline, diesel fuel, liquefied petroleum gas and synthetic resin
JP4796401B2 (en) Biomass treatment using fluid catalytic cracking
JP5339845B2 (en) Fluid catalytic cracking method
WO2009118352A1 (en) Multi-stage biocatalytic cracking process
TW201028464A (en) Process of cracking biofeeds using high zeolite to matrix surface area catalysts
WO2007090884A2 (en) Fluid catalytic cracking process
US10934491B2 (en) Two-stage process for conversion of solid biomass material
BRPI0802222B1 (en) PROCESS FOR PRODUCING LIGHT OLEFINS FROM A CARGO CONTAINING TRIGLYCERIDES
JP4865311B2 (en) Biomass treatment using fluid catalytic cracking
JP4801983B2 (en) Biomass treatment using fluid catalytic cracking
EP4271769A2 (en) Converting biomass to gasoline
JP5390857B2 (en) Fluid catalytic cracking method
JP5399705B2 (en) Fluid catalytic cracking method
CN106609147A (en) Catalytic converting method for increasing yield of low-carbon olefins and producing high-quality gasoline
KR20160113122A (en) Fluid catalytic cracking process for heavy oil
CN115992002B (en) Method for preparing low-carbon olefin and high-octane gasoline
WO2015182329A1 (en) Method for fluid catalytic cracking of heavy oil
WO2024102930A1 (en) Moving bed lignocellulosic biomass conversion with fluid bed catalyst regeneration
GB2614830A (en) Converting biomass to gasoline
CN116004277A (en) Method for simultaneously preparing hydrogen and low-carbon olefin by using hydrocarbon raw material
CN102212385A (en) Method and device for modifying gasoline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4865311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees