[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4852798B2 - Biodegradable paper sheet and method for producing paper container - Google Patents

Biodegradable paper sheet and method for producing paper container Download PDF

Info

Publication number
JP4852798B2
JP4852798B2 JP2001192283A JP2001192283A JP4852798B2 JP 4852798 B2 JP4852798 B2 JP 4852798B2 JP 2001192283 A JP2001192283 A JP 2001192283A JP 2001192283 A JP2001192283 A JP 2001192283A JP 4852798 B2 JP4852798 B2 JP 4852798B2
Authority
JP
Japan
Prior art keywords
paper
biodegradable
pulp
biodegradable resin
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001192283A
Other languages
Japanese (ja)
Other versions
JP2003013391A (en
Inventor
健太郎 山脇
龍吉 松尾
純一 神永
友美子 加藤
敏明 掛村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2001192283A priority Critical patent/JP4852798B2/en
Publication of JP2003013391A publication Critical patent/JP2003013391A/en
Application granted granted Critical
Publication of JP4852798B2 publication Critical patent/JP4852798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Bag Frames (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Paper (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、食品、医薬品、電子・電気部品、各種工業品などの紙を主体とした包装材料に用いられる生分解性を有するガスバリアー性紙シートや紙容器に関するものである。
【0002】
【従来の技術】
一般的に、食品、医薬品、電子・電気部品、各種工業品などの包装材では、ガスバリアー性機能(耐酸素、耐水蒸気透過性)が必要とされるものが数多くある。従来、ガスバリアー性機能の付与として、酸素バリアー性では、エチレン−酢酸ビニル共重合体ケン化物(EVOH)などを、酸素や水蒸気バリアー性では、ポリ塩化ビニリデン(PVDC)を樹脂フィルムにコーティングしたり、或いはドライプロセスとして、アルミニウムを蒸着するという方法がある。しかし、PVDCは焼却時に有害物質の発生が心配され、アルミニウムは透視性がなく、不燃物であり、リサイクルにおいても分別し難い課題があった。また、これらの課題を解決したケイ素、アルミニウム、マグネシウム、亜鉛などの無機酸化物を蒸着したフィルムが酸素や水蒸気バリアー性に優れ、且つ透視性が良く、焼却可能である為、各種包装材料に使用されている。さらに、生分解性樹脂基材からなる無機酸化物蒸着フィルムが提案され、廃棄後微生物分解し、堆肥化も可能である為、環境負荷の少ない包装材料として有望と考えられている。
【0003】
一方、近年の環境保護意識の高まりは、埋蔵資源である石油由来の材料系から環境負荷の少ない天然資源由来の材料系への移行に波及している。天然資源の中でも植物繊維を原料とした紙は、自然再生でリサイクルや堆肥化が可能であり、ゴミ焼却時の燃焼熱も低く、生分解性もある為、合成樹脂系の容器に代わり、紙容器の需要が増加してきている。
【0004】
そこで、紙を基材として生分解性フィルムとの複合材料が数多く提案され、ガスバリアー性付与においても、紙基材に予め生分解樹脂を積層させたものに無機酸化物を蒸着させたものも提案された。
【0005】
紙基材に生分解樹脂を積層させる場合には、紙と生分解性樹脂フィルムとのラミネーション、紙への生分解性プラスチックの溶融押出しコーティングなどの方法が可能である。しかしながら、紙へラミネーションや溶融押出しコーティングする場合の接着剤やアンカー剤に生分解性がなかったり、紙表面の空隙を埋めたり、平滑にする為に、予め設けられる目止め層と呼ばれるものを形成する目止め剤として用いられる薬剤は、石油由来の合成高分子系のものが使用されていた。また、パルプモールド容器などの三次元的な基材表面には、前述の積層方法は不可能であった。そこで、本出願人は、生分解性樹脂を目止め剤に加え、且つ目止め層をディピング塗工やスプレー塗工によって形成させ得るガスバリアー性の良好なパルプモールド容器を提案した。
【0006】
【発明が解決しようとする課題】
本発明は、上記の課題に鑑みてなされたもので、生分解性、リサイクル性、省資源、安全性、脱石油溶剤等優れた環境保全型のガスバリアー性に優れた紙シート又は紙容器を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、請求項1に係る発明は、パルプスラリーを吸引抄紙して湿紙とする工程と、湿紙の状態で生分解性樹脂の溶液または分散液をスプレー塗工により含浸する工程と、前記含浸後の湿紙を再度吸引ろ過する工程と、ろ過後の湿紙を熱板で加熱加圧する工程とを備えたことを特徴とする紙シートの製造方法である。
【0008】
請求項2に係る発明は、パルプスラリーを吸引抄紙してパルプモールド中間体を得る工程と、前記パルプモールド中間体に対し生分解性樹脂の溶液または分散液をスプレー塗工により含浸する工程と、前記パルプモールド中間体を再度吸引ろ過する工程と、前記パルプモールド中間体を対応する形状の金型で加熱加圧する工程とを備えたことを特徴とする紙容器の製造方法である。
【0009】
請求項3及び4に係る発明は、前記生分解性樹脂の溶液または分散液に層状ケイ酸塩化合物が混合されたものであることを特徴とする紙シート及び紙容器の製造方法である。
【0010】
請求項5に係る発明は、さらに前記ろ過後の湿紙を熱板で加熱加圧する工程の後に無機酸化物の薄膜を設ける工程を備えたことを特徴とする紙シートの製造方法である。
請求項6に係る発明は、さらに前記前記パルプモールド中間体を対応する形状の金型で加熱加圧する工程の後に無機酸化物の薄膜を設ける工程を備えたことを特徴とする紙容器の製造方法である。
【0021】
【発明の実施の形態】
以下に、本発明の好ましい実施形態について詳細に説明する。
本発明で用いられる紙素材は、アルカリ再生処理が可能な紙であり、木材などの通常のパルプ原料、具体的には、針葉樹または広葉樹から得られる漂白または未漂白の亜硫酸パルプ、クラフトパルプ、砕木パルプ、爆砕パルプ、熱機械パルプ(TMP)、化学熱機械パルプ(CTMP)などから選ばれる1種類または2種類以上を混ぜたものでも良く、特に限定されるものではない。場合によっては、最近、古紙の再生技術の進歩と古紙の再生利用が高まっている為、脱墨パルプ(DIP)などの古紙再生パルプを使用しても良い。必要により、非木材繊維である麻類、綿(リンター)、わら、竹、ケナフ、バカス、シオグサ、エスパルト、楮、三椏、雁皮、ラミーなどを混合しても良く、レーヨン、テンセル、ポリノジック繊維などの再生セルロースも非木材繊維に含まれる。その他、微生物産生セルロース、バロニアセルロース、ホヤセルロースなどでも構わない。これに、サイズ剤、乾燥紙力増強剤、湿潤紙力増強剤、染顔料、填料、定着剤などを適宜添加しても良い。
【0022】
本発明で用いられる生分解樹脂としては、ポリオキシカルボン酸類は、ポリグリコリドやポリ乳酸類などが例示でき、特にポリ乳酸類は、乳酸を原料として直接、或いは二量体(ラクチド)から開環重合したもの何れでも良く、D−体、L−体が適宜の比率で配分されているものを示す。ポリラクトン類は、例えば、ε−カプロラクトン、β−プロピオラクトン、γ−ブチロラクトン、δ−バレロラクトンなどのラクトン類を単独、或いは2種以上の共重合体を示す。脂肪族ポリエステル類は、例えば、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート共重合体、ポリエチレンサクシネート共重合体などを示す。脂肪族−芳香族ポリエステル類は、例えば、ポリブチレンアジペート中にテレフタル酸やイソフタル酸が共重合されているものなどを示す。ポリヒドロキシアルカノエート類は、ポリヒドロキシブチレート、ポリヒドロキシブチレートバリレート共重合体などで生物産生のものも含まれる。ポリエステルアミド類は、例えば、ε−カプロラクトンとε−カプロラクタムの共重合体や各種脂肪族ポリエステル中にヘキサメチレンジアミンが共重合しているものなどを示す。ポリエステルウレタン類は、前述の各種脂肪族ポリエステル中に2、或いは3官能のイソシアネート類が共重合、或いは架橋剤として含まれたものである。ポリエステルカーボネート共重合体は、各種脂肪族ポリエステル中にジフェニルカーボネートなどとの共重合によるカーボネート結合を有したものを示す。また、以上の各種ポリエステル類は、単独、或いは2種類以上で混合したものでも良い。架橋剤としては、本発明の主旨を損なわない反応可能な多官能試薬であれば良く、例えば、グリセロール、ソルビトール、トリメチロールプロパン、およびペンタエリスリトールなどのポリオール類や、クエン酸などの多価カルボン酸類、或いは前述の多官能イソシアネート類が挙げられる。
【0023】
さらに、本発明で用いられる生分解性樹脂としては、セルロースを挙げることができる。例えば、各種微細フィブリル化セルロースや微粉末化セルロースなどが挙げられ、セルロース誘導体としては、ヒドロキシメチルエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルプロピルセルロース、ジアルデヒドセルロース、ジエステル化セルロースなどが例示できる。デンプン及びその誘導体としては、アミロペクチン、アミロース、シーゲル、カルボキシメチル化澱粉、エピクロルヒドリン澱粉、アリル澱粉、アセチル化澱粉、各種ヒドロキシアルキル化澱粉、各種カチオン化澱粉、各種アニオン化澱粉、長鎖アルキルエステル化澱粉、デキストリン、リン酸塩澱粉、ジアルデヒド澱粉などが例示できる。その他、請求項記載の天然多糖類、及びその金属塩や誘導体が挙げられる。これらも、前記同様に、単独、或いは二種類以上混合しても良い。
【0024】
さらに、本発明で用いられる生分解性樹脂としては、ロジン誘導体を挙げることができる。例えば、マレイン化ロジン、フマル化ロジン、ロジン変性グリセリンエステル、ロジン変性ペンタエリスリトールエステル、ロジンハーフエステル、水素化ロジンエステル、ロジンエトキシレート、変性ロジン金属塩などが挙げられる。その他、請求項記載の植物性樹脂類や動物性樹脂類、及びこれらの誘導体が単独、或いは複数混合されたものである。
【0025】
さらに、本発明で生分解性樹脂として用いられる、ポリグルタミン酸、ポリリジン、ポリアスパラギン酸などのポリアミノ酸類は、天然物、或いは合成物の何れのものでも良い。
【0026】
以上の各種生分解性樹脂は、二種類以上混合されたものでも良い。混合(ブレンド)タイプの生分解性樹脂として代表的なものは、キトサン/セルロース/澱粉のブレンド物や、澱粉/脂肪族ポリエステルのブレンド物などが有名である。
【0027】
そして、以上の各種生分解性樹脂のうち少なくとも一つ、或いは複数のものが、特に水溶液、或いは水性エマルジョンや水分散液の形態であれば、脱石油系溶剤となり、より一層環境に配慮したものとなる。もちろん、これらの各種生分解性樹脂を石油系溶剤で溶解したものでも構わないが、ポリエステル系生分解性樹脂は、ポリラクトン類やポリ乳酸類以外、毒性の高いクロロホルムなどのハロゲン化炭素類にしか主に溶解しない為、水系エマルジョンや水分散液の形態が望ましいと言える。また、生分解性樹脂が、メチルセルロースやカルボキシメチルセルロース、澱粉やカゼイン、ニカワ、ポリビニルアルコールなど水溶性のものであれば、水溶液として紙基材に塗工や含浸すれば良いが、そうでない場合は、粉砕機やボールミル、ロールミルなど機械的に乾式或いは湿式で細分化して水分散液にしたり、乳化剤や界面活性剤で水性エマルジョン化しても良い。また、乳化重合によりラテックスにしたものやマイクロカプセル化した水性エマルジョンでも構わない。
【0028】
また、以上の各種生分解性樹脂やその溶液で、好ましくは水溶液、或いは水性エマルジョンや水分散液の紙基材への塗工、或いは含浸方法としては、エアナイフコーティング、バーコーティング、ロールコーティング、グラビアコーティング、キャストコーティング、ブレードコーティング、ゲートロールコーティング、キスロールコーティング或いはディピング法やスプレーコーティングなどで塗工、或いは部分含浸が可能であり、サイズプレス含浸すれば、紙基材の内部まで含浸可能である。特に、前記方法による塗工或いは含浸後、熱板により加圧加熱する為、紙基材表面の空隙を埋めて、且つ生分解性樹脂が可塑化し均一で表面平滑性の高い塗膜が得られる。塗工量は5〜30g/m2が好ましく、5g/m2未満であると均一な塗膜が得にくくピンホールが発生し易くなり、30g/m2より多いと物性が飽和し、また極端な場合クラック(凝集破壊)も発生してしまう。サイズプレスで含浸させる場合の含浸量は、紙の坪量が大きければその分含浸量が多い程、目止め効果が向上して、無機酸化物の薄膜を設けたもののガスバリアー性が向上する。紙基材の坪量は、特に制限はないが、30〜400g/m2位の紙から、600g/m2位の厚紙でも可能であるので、含浸量は5〜60g/m2が適当であり、それ未満或いはそれより多いと、前述と同様の現象が起り好ましくない。
【0029】
本発明において、生分解性樹脂やその非水系溶液または水溶液、或いは水性エマルジョンや水分散液に層状ケイ酸塩化合物を添加することで、塗工、或いは含浸後に紙基材に対して層状ケイ酸塩化合物が平板状に配向されて、紙表面の平滑性や耐透気性を向上させる効果がある。層状ケイ酸塩化合物として具体的には、カオリン、雲母族、脆雲母族、パイロフィライト、タルク、スメクタイト、バーミキュライト、緑泥石、セプテ緑泥石、蛇紋石、スチルプノメレーン、モンモリロナイトなどの板状または薄片状のものが挙げられる。これらは紙基材に対して配向可能な粒子径で数十〜数百μm程度の大きさが適当である。
【0030】
また、本発明における紙基材は、片面、或いは両面に予め無機顔料が塗工されていても良い。この無機顔料とは填料を示し、クレー、カオリン、炭酸カルシウム、二酸化チタン、滑石(タルク)などが挙げられ、好ましくは、安価で物性的に良好なクレーが適当である。また、これらは、基材である紙の抄造時の内部添加する場合もあるが、紙力が低下する為、紙基材表面に塗工して緻密な塗工層を形成させた方が好ましい。
【0031】
この表面平滑性の良好なクレーコート紙に代表される無機顔料(填料)が塗工された紙をさらにスーパーカレンダー加工により優れた平滑性にした加工紙は、バリアー性を持たせる基材としては好都合であり、さらにこの加工紙のクレーコート面に目止め層として生分解性樹脂を塗工、或いは含浸して、さらに熱板による熱圧押付けにより平滑性、目止め性を向上させ優れたバリアー性を付与することができる。また、各種生分解性樹脂を塗工、或いは含浸した目止め紙シートをスーパーカレンダー加工しても良い。
【0032】
本発明における無機酸化物の薄膜は、基材のガスバリア性を向上することを目的に設けられたもので、例えば、アルミニウム、ケイ素、亜鉛、マグネシウムなどの酸化物、窒化物などの単体、或いは混合物の無機金属化合物の蒸着膜で形成されている。この中でも、価格が安価でバリア性が良好なものは、ケイ素酸化物とアルミニウム酸化物である。蒸着法としては、真空蒸着法、スパッタリング法、イオンプレーティング法のようなPVD(物理蒸着)法の他にプラズマ活性化CVD(化学気相成長)法によって行うことができる。このうち経済上好ましくて工程で熱が発生しにくく、且つ容器など三次元的に蒸着できるのはCVD法である。
【0033】
無機酸化物層の膜厚は50〜3000Å、より好ましくは100〜2000Åの範囲が透明性、バリア性の点から有利である。厚さが50Åより薄いと均一な薄膜は形成できず、3000Å以上では物性が飽和し、またクラックが発生し易くなり逆にガスバリア性が低下する。
【0034】
本発明のガスバリアー性紙シートの基材である紙シートは、従来の製紙工程で製造でき、抄紙・抄造、プレス工程、加熱乾燥工程を経て作製できる。また、本発明のガスバリアー性紙容器の基材からなる紙容器は、公知の方法で作製できる。例えば、プランジャー型製缶機で打ち抜き4隅を貼りあわせ組み立てて成形したり、専用のトレー成形機で熱圧押付成形できるプレス式成形法や真空成形法、或いは湿式または乾式のパルプモールド成形法により、後工程なく紙容器を作製することが可能である。また、本発明のガスバリアー性紙シートを前述の様に組み立てて成形し、本発明のガスバリアー性紙容器にしても良い。
【0035】
【実施例】
以下、本発明の生分解性目止め紙シート、或いは紙容器についての具体的な実施例を説明する。これらをもって、本発明が限定されるものではない。
【0036】
以下の実施例で用いるパルプスラリーは下記に示す方法に基づいて作製した。
(パルプスラリーの作製方法)
原料パルプは、針葉樹クラフトパルプ(NBKP)抄紙用原料を、JIS−P8209『パルプ試験用手漉き紙調整方法』に準拠して離解し、JIS−P8121『パルプの濾水度試験方法』に準拠したカナダ標準濾水度試験方法で300mlCSFの濾水度(叩解度)のものをビーターで作製し、固形分濃度1.0%パルプスラリーを得た。
【0037】
〈実施例1〉
パルプスラリーを、坪量約250g/m2になるように標準型手漉き角型抄紙機で市販の大型掃除機により吸引抄紙し、脱水プレス(3.43×105Pa)を3分間行い、ヤンキードライヤー(表面温度=約120℃)で加熱乾燥させて厚紙を作製した。それに市販のポリカプロラクトン(ユニオンカーバイド(株)製、トーンP−767)の固形分10wt%ジオキサン溶液をワイヤーバー♯30で1回塗工し、それを100℃オーブンで2分間乾燥して、本発明に関わる生分解性目止め紙シートの一つを作製した。塗工量は、約7g/m2であった。
【0038】
〈実施例2〉
市販の坪量250g/m2のコートボール紙(王子製紙(株)製、UFコート)のクレーコート層に、市販のポリカプロラクトン(ユニオンカーバイド(株)製、トーンP−767)を実施例1と以下同様にして本発明に関わる生分解性目止め紙シートの一つを作製した。塗工量は、約7g/m2であった。
【0039】
〈実施例3〉
実施例1と同様に作製した厚紙に市販のポリ乳酸(島津製作所(株)製、ラクティ)の固形分10wt%ジオキサン溶液をワイヤーバー♯30で1回塗工し、それを100℃オーブンで2分間乾燥して、本発明に関わる生分解性目止め紙シートの一つを作製した。塗工量は、約7g/m2であった。
【0040】
〈実施例4〉
パルプスラリーを、坪量約250g/m2になるように標準型手漉き角型抄紙機で市販の大型掃除機により吸引抄紙し、そのまま湿紙の上に、市販のポリ乳酸(島津製作所(株)製、ラクティ)の固形分10wt%ジオキサン溶液をスプレー塗工/含浸して、再度吸引ろ過し、熱板で加熱加圧(表面温度約120℃、約4×105Pa)を約2分間行い、本発明に関わる生分解性目止め紙シートの一つを作製した。含浸量は約20g/m2であった。
【0041】
〈実施例5〉
実施例4と同様に作製した湿紙の上に、市販のエステル化澱粉の水分散液(ミヨシ油化(株)製、ランディ−200S)を固形分10wt%に水で希釈混合し、それをスプレー塗工/含浸して、余分な水分を再度吸引ろ過し、熱板で加熱加圧(表面温度約120℃、約4×105Pa)を約2分間行い、本発明に関わる生分解性目止め紙シートの一つを作製した。含浸量は約20g/m2であった。
【0042】
〈実施例6〉
パルプスラリーを、固形分0.4wt%に希釈した。このパルプスラリー4Lを雌型の抄型上に吸引脱水することでモールド中間体を得、抄網ごと嵌合しあうプレス型にはさみ、パルプモールド容器を得た。この容器の内面に、市販のエステル化澱粉の水分散液(ミヨシ油化(株)製、ランディ−200S)を固形分10wt%に水で希釈混合したものを、スプレー塗工/含浸して、余分な水分を再度吸引ろ過して、雄型の金型で加圧乾燥(表面温度約120℃、約4×105Pa)を約1分間行い、本発明に関わる生分解性目止め紙容器の一つを作製した。含浸量は約17g/m2であった。
【0043】
〈比較例1〉
濾水度300CSFのNBKP水分散スラリーを、坪量約250g/m2になるように標準型手漉き角型抄紙機で市販の大型掃除機で吸引抄紙し、脱水プレス(3.43×105Pa)を3分間行い、ヤンキードライヤー(表面温度=約120℃)で加熱乾燥させ、NBKP原紙を作製した。
【0044】
〈比較例2〉
市販の坪量250g/m2のコートボール紙(王子製紙(株)製、UFコート)のクレーコート層に、市販のスチレンブタジエン共重合体ラテックス(固形分=50wt%)ワイヤーバー♯30で1回塗工し、それを100℃オーブンで2分間乾燥して、目止め紙シートの一つを作製した。塗工量は、約8g/m2であった。
【0045】
上記の実施例1〜6で得られた生分解性目止め紙シート、或いは紙容器と比較例1〜2で得られたサンプルを1cm×4cm位の紙片に裁断し、目止め層側の表面粗さを東京精密(株)製の表面粗さ計サーフコムで中心線平均粗さ(Ra)を測定した。測定条件は、TRAVERS LENGTH=4mm、CUTOFF=0.8mm、V−MAG=×2K、SPEED=0.3mm/sで行った。その測定結果を表1に示す。
【0046】
【表1】

Figure 0004852798
【0047】
表1の結果より、本発明の生分解性目止め紙シート、及び紙容器(実施例1〜6)の表面粗さは非常に小さく、良好な平滑性であることが判った。また、熱板で熱圧押付けすることで、さらに平滑性が向上することが判った。また、目止め剤として市販のスチレンブタジエン共重合体ラテックスを塗工したものも良好な平滑性が得られた。
【0048】
次に、本発明のガスバリアー性紙シート、或いは紙容器について具体的な実施例を説明するが、これらは本発明を限定するものではない。
【0049】
〈実施例7〉
実施例1で作製した生分解性目止め紙シートの目止め層上に、ヘキサメチルジシロキサンをモノマーガスとして用い、プラズマ活性化CVDにより、膜厚400Åの無機酸化物の薄膜を設けて、本発明のガスバリアー性紙シートの一つを得た。
【0050】
〈実施例8〉
実施例2で作製した生分解性目止め紙シートの目止め層上に、ヘキサメチルジシロキサンをモノマーガスとして用い、プラズマ活性化CVDにより、膜厚400Åの無機酸化物の薄膜を設けて、本発明のガスバリアー性紙シートの一つを得た。
【0051】
〈実施例9〉
実施例3で作製した本発明に関わる生分解性目止め紙シートの目止め層上に、ヘキサメチルジシロキサンをモノマーガスとして用い、プラズマ活性化CVDにより、膜厚400Åの無機酸化物の薄膜を設けて、本発明のガスバリアー性紙シートの一つを得た。
【0052】
〈実施例10〉
実施例4で作製した生分解性目止め紙シートの目止め層上に、ヘキサメチルジシロキサンをモノマーガスとして用い、プラズマ活性化CVDにより、膜厚400Åの無機酸化物の薄膜を設けて、本発明のガスバリアー性紙シートの一つを得た。
【0053】
〈実施例11〉
実施例5で作製した生分解性目止め紙シートの目止め層上に、ヘキサメチルジシロキサンをモノマーガスとして用い、プラズマ活性化CVDにより、膜厚400Åの無機酸化物の薄膜を設けて、本発明のガスバリアー性紙シートの一つを得た。
【0054】
〈実施例12〉
実施例6で作製した生分解性目止め紙容器の内面に、ヘキサメチルジシロキサンをモノマーガスとして用い、プラズマ活性化CVDにより、膜厚400Åの無機酸化物の薄膜を設けて、本発明のガスバリアー性紙容器の一つを得た。
【0055】
〈比較例3〉
比較例1で作製したNBKP原紙に、ヘキサメチルジシロキサンをモノマーガスとして用い、プラズマ活性化CVDにより、膜厚400Åの無機酸化物の薄膜を設けた。
【0056】
〈比較例4〉
比較例2で作製した市販のスチレンブタジエン共重合体ラテックスを塗工したコートボールの塗工層上にヘキサメチルジシロキサンをモノマーガスとして用い、プラズマ活性化CVDにより、膜厚400Åの無機酸化物の薄膜を設けた。
【0057】
実施例7〜12で得られた各ガスバリアー性紙シート、或いは紙容器について、JIS−Z0208『防湿包装材料の透湿度試験方法(カップ法)』に準拠して、本発明の各ガスバリアー性紙シート、或いは紙容器の目止め層+無機酸化物薄膜層側を塩化カルシウム充填側に一律して、40℃、90%RHの環境下で保存した時の水蒸気透過度を測定した。なお、実施例6の容器状のものに対しては、塩化カルシウムを容器に充填し、アルミ箔入りラミネートフィルムで容器開口部を密閉したものを測定した。その結果を表2に示す。
【0058】
【表2】
Figure 0004852798
【0059】
表2の結果より、本発明の生分解性のあるガスバリアー性紙シート、或いは紙容器の水蒸気透過度は、非常に良好なものであることが判った。また、市販のスチレンブタジエン共重合体ラテックスを目止め層に施したものも良好な水蒸気バリア性を示した。
【0060】
本発明の生分解性のあるガスバリアー性紙シート或いは紙容器である実施例7〜12の試料、及び比較例1〜4を、各々約1cm角に裁断して、その各々5gを0.5wt%の苛性ソーダ水溶液1.5L中に加え、それを標準離解機で約20分間離解してみた所、本発明の全ての実施例のものと目止め層を施してない比較例1、3は完全に離解された。それに対して、比較例2と比較例4のスチレンブタジエン共重合体ラテックスを目止め剤として使用したものは、少し固まりが残っていた。
【0061】
本発明の生分解性のあるガスバリアー性紙シート或いは紙容器(実施例7〜12)、及び比較例1〜4を10cm×10cmに裁断し、それを畑土壌中に埋設して生分解性の評価をおこなったところ、約5ヶ月後、本発明の全ての実施例のものと目止め層を施してない比較例1、3はバラバラに分解しており原形を止めていなかった。それに対して、比較例2と比較例4のスチレンブタジエン共重合体ラテックスを目止め剤として使用したものは、フィルム状の薄紙片が残存していた。
【0062】
豚ふんとオガクズを混合し水分を約65%に調整して約1ヶ月経った堆肥中に、本発明の生分解性のあるガスバリアー性紙シート或いは紙容器(実施例7〜12)、及び比較例1〜4を10cm×10cmに裁断して埋設し、生分解性の評価をおこなったところ、約4ヶ月後、本発明の全ての実施例のものと目止め層を施してない比較例1、3はバラバラに分解しており原形を止めていなかった。それに対して、比較例2と比較例4のスチレンブタジエン共重合体ラテックスを目止め剤として使用したものは、フィルム状の薄紙片が残存していた。
【0063】
【発明の効果】
本発明によれば、紙基材に、生分解性樹脂を塗工又は含浸することによって、生分解性樹脂層を形成してなる紙シートは、生分解性樹脂層が目止めの作用をし、さらに、熱板によって熱圧押付け等の熱処理することで、紙の空隙を埋め生分解性樹脂を可塑化し、均一で表面平滑性の高い生分解性樹脂層からなる塗膜を形成させることができる。さらに、紙シート或いはそのシートを成形してなる紙容器の生分解性樹脂層からなる塗膜に無機酸化物の薄膜層を設けることにより、ガスバリアー性に優れた紙シート或いは紙容器を提供することができる。
【0064】
本発明によって得られる紙シート或いは紙容器は、環境負荷の小さい紙基材、生分解性樹脂層、及びその生分解性樹脂層上に設ける無機酸化物の薄膜層とからなり、生分解性を有し、またアルカリで分解可能であるから、古紙の再生が可能であり、焼却処理や堆肥化しても問題はない。
また、紙基材に塗工又は含浸により生分解性樹脂層を形成する際、その塗工又は含浸液は、水溶液、水分散液とすることで、溶剤等を使用しないために、塗工又は含浸工程での溶剤の蒸散等の問題がなく、作業環境の安全性に配慮したものである。このように、本発明により、生分解性、リサイクル性、省資源、安全性等優れた環境保全型のガスバリアー性に優れた紙シート又は紙容器を提供することが可能である。
【0065】
本発明の生分解性のあるガスバリアー性紙シート或いは紙容器は、今後ますます要求される環境保全型の各種包装材料として、食品、医薬品、電子・電気部品、各種工業品分野などで好適に使用されるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biodegradable gas barrier paper sheet and paper container used for packaging materials mainly composed of paper such as foods, pharmaceuticals, electronic / electrical parts, and various industrial products.
[0002]
[Prior art]
In general, many packaging materials such as foods, pharmaceuticals, electronic / electrical parts, and various industrial products require a gas barrier function (oxygen resistance, water vapor resistance). Conventionally, as a gas barrier function, a resin film is coated with saponified ethylene-vinyl acetate copolymer (EVOH) or the like for oxygen barrier property, or with polyvinylidene chloride (PVDC) for oxygen or water vapor barrier property. Alternatively, there is a method of depositing aluminum as a dry process. However, PVDC is concerned about the generation of harmful substances during incineration, and aluminum has no transparency and is an incombustible material, and there is a problem that it is difficult to separate even in recycling. In addition, the films deposited with inorganic oxides such as silicon, aluminum, magnesium, and zinc that have solved these problems are excellent in oxygen and water vapor barrier properties, have good transparency, and can be incinerated. Has been. Further, an inorganic oxide vapor deposition film made of a biodegradable resin base material has been proposed, and can be decomposed by microorganisms after disposal and composting. Therefore, it is considered to be promising as a packaging material with a low environmental load.
[0003]
On the other hand, the recent increase in environmental protection awareness has spread to the shift from oil-derived material systems, which are reserve resources, to natural resources-derived material systems, which have a low environmental impact. Among natural resources, paper made from plant fibers can be recycled and composted by natural regeneration, has low combustion heat when incinerated, and is biodegradable. Container demand is increasing.
[0004]
Therefore, many composite materials with paper as a base material and a biodegradable film have been proposed, and in addition to providing a gas barrier property, an inorganic oxide is vapor-deposited on a paper base material previously laminated with a biodegradable resin. was suggested.
[0005]
When laminating a biodegradable resin on a paper substrate, methods such as lamination of paper and biodegradable resin film, melt extrusion coating of biodegradable plastic onto paper, and the like are possible. However, when laminating or melt-extrusion coating on paper, the adhesive or anchor agent is not biodegradable, or forms what is called a pre-sealed sealing layer to fill or smooth the voids on the paper surface. The chemicals used as sealing agents have been petroleum-derived synthetic polymers. Moreover, the above-mentioned lamination method was impossible on the surface of a three-dimensional substrate such as a pulp mold container. Therefore, the present applicant has proposed a pulp mold container having a good gas barrier property in which a biodegradable resin is added to the sealant and the seal layer can be formed by dipping coating or spray coating.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems. A paper sheet or a paper container excellent in environmental barrier gas barrier properties such as biodegradability, recyclability, resource saving, safety, and petroleum removal solvent is excellent. The purpose is to provide.
[0007]
[Means for Solving the Problems]
  In order to achieve the above object, the invention according to claim 1A step of sucking and making pulp slurry into wet paper, a step of impregnating a biodegradable resin solution or dispersion in the form of wet paper by spray coating, and a step of suction filtration of the wet paper after the impregnation again And a step of heating and pressurizing the wet paper after filtration with a hot plateIt is.
[0008]
  The invention according to claim 2A process for obtaining a pulp mold intermediate by sucking paper from the pulp slurry, a step of impregnating the pulp mold intermediate with a solution or dispersion of a biodegradable resin by spray coating, and sucking the pulp mold intermediate again. A method for producing a paper container, comprising: a step of filtering; and a step of heating and pressurizing the pulp mold intermediate with a mold having a corresponding shape.It is.
[0009]
  Claim 3And 4The invention according toA method for producing a paper sheet and a paper container, wherein the biodegradable resin solution or dispersion is mixed with a layered silicate compoundIt is.
[0010]
The invention according to claim 5 is a method for producing a paper sheet, further comprising a step of providing an inorganic oxide thin film after the step of heating and pressurizing the wet paper after filtration with a hot plate.
The invention according to claim 6 further comprises the step of providing an inorganic oxide thin film after the step of heating and pressurizing the pulp mold intermediate with a mold having a corresponding shape. It is.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
The paper material used in the present invention is a paper that can be subjected to alkali regeneration treatment, and is a normal pulp raw material such as wood, specifically, bleached or unbleached sulfite pulp, kraft pulp, ground wood obtained from conifers or hardwoods. One kind or a mixture of two or more kinds selected from pulp, explosive pulp, thermomechanical pulp (TMP), chemical thermomechanical pulp (CTMP), etc. may be used, and there is no particular limitation. In some cases, recently, because of the progress in the recycling technology of used paper and the recycling of used paper, recycled paper recycled pulp such as deinked pulp (DIP) may be used. If necessary, non-wood fibers such as hemp, cotton (linter), straw, bamboo, kenaf, bacus, shiogusa, esparto, cocoon, cocoon, cocoon, ramie, etc. may be mixed, rayon, tencel, polynosic fiber, etc. Regenerated cellulose is also included in non-wood fibers. In addition, microbial-produced cellulose, valonia cellulose, squirt cellulose, etc. may be used. To this, a sizing agent, a dry paper strength enhancer, a wet paper strength enhancer, a dye / pigment, a filler, a fixing agent, and the like may be appropriately added.
[0022]
Examples of the biodegradable resin used in the present invention include polyglycolides and polylactic acids as polyoxycarboxylic acids. In particular, polylactic acids are ring-opened directly from lactic acid as a raw material or from a dimer (lactide). Any polymerized product may be used, and the D-form and L-form are distributed at an appropriate ratio. Examples of polylactones include lactones such as ε-caprolactone, β-propiolactone, γ-butyrolactone, and δ-valerolactone, or a copolymer of two or more. Examples of the aliphatic polyesters include polybutylene succinate, polybutylene succinate adipate copolymer, polyethylene succinate copolymer, and the like. Examples of the aliphatic-aromatic polyesters include those in which terephthalic acid or isophthalic acid is copolymerized in polybutylene adipate. Polyhydroxyalkanoates include polyhydroxybutyrate, polyhydroxybutyrate valerate copolymer, and the like that are biologically produced. Examples of the polyesteramides include copolymers of ε-caprolactone and ε-caprolactam, and those obtained by copolymerizing hexamethylenediamine in various aliphatic polyesters. Polyester urethanes are those in which di- or trifunctional isocyanates are copolymerized or included as a crosslinking agent in the various aliphatic polyesters described above. A polyester carbonate copolymer shows what has the carbonate bond by copolymerization with diphenyl carbonate etc. in various aliphatic polyester. The above-mentioned various polyesters may be used singly or as a mixture of two or more. The crosslinking agent may be any reactive polyfunctional reagent that does not impair the gist of the present invention. For example, polyols such as glycerol, sorbitol, trimethylolpropane, and pentaerythritol, and polyvalent carboxylic acids such as citric acid. Or the above-mentioned polyfunctional isocyanates.
[0023]
Furthermore, examples of the biodegradable resin used in the present invention include cellulose. Examples include various finely fibrillated cellulose and finely powdered cellulose. Examples of cellulose derivatives include hydroxymethylethylcellulose, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxyethylpropylcellulose, dialdehydecellulose, and diesterified cellulose. It can be illustrated. Starches and derivatives thereof include amylopectin, amylose, siegel, carboxymethylated starch, epichlorohydrin starch, allyl starch, acetylated starch, various hydroxyalkylated starches, various cationized starches, various anionized starches, and long chain alkyl esterified starches. , Dextrin, phosphate starch, dialdehyde starch and the like. In addition, the natural polysaccharide of Claims, its metal salt, and a derivative are mentioned. Similarly to the above, these may be used alone or in combination of two or more.
[0024]
Furthermore, examples of the biodegradable resin used in the present invention include rosin derivatives. Examples thereof include maleated rosin, fumarized rosin, rosin-modified glycerin ester, rosin-modified pentaerythritol ester, rosin half ester, hydrogenated rosin ester, rosin ethoxylate, and modified rosin metal salt. In addition, the plant resins and animal resins described in the claims and derivatives thereof are used alone or in combination.
[0025]
Furthermore, polyamino acids such as polyglutamic acid, polylysine and polyaspartic acid used as a biodegradable resin in the present invention may be either natural products or synthetic products.
[0026]
The above-mentioned various biodegradable resins may be a mixture of two or more. Representative examples of mixed (blend) type biodegradable resins include chitosan / cellulose / starch blends and starch / aliphatic polyester blends.
[0027]
And, if at least one or more of the above-mentioned various biodegradable resins are in the form of an aqueous solution, an aqueous emulsion or an aqueous dispersion, it becomes a non-petroleum solvent and is more environmentally friendly. It becomes. Of course, these various biodegradable resins may be dissolved in petroleum solvents, but polyester biodegradable resins can only be used for highly toxic carbon halides such as chloroform, other than polylactones and polylactic acids. Since it does not mainly dissolve, it can be said that the form of an aqueous emulsion or aqueous dispersion is desirable. In addition, if the biodegradable resin is water-soluble such as methylcellulose, carboxymethylcellulose, starch, casein, glue, polyvinyl alcohol, etc., it may be coated or impregnated on the paper substrate as an aqueous solution, otherwise, A pulverizer, ball mill, roll mill or the like may be mechanically dry-type or wet-divided into an aqueous dispersion, or an emulsifier or surfactant may be used as an aqueous emulsion. Moreover, what was made into the latex by emulsion polymerization and the aqueous emulsion microencapsulated may be used.
[0028]
The above-mentioned various biodegradable resins and solutions thereof, preferably aqueous solutions, aqueous emulsions or aqueous dispersions are applied to paper substrates, or impregnation methods include air knife coating, bar coating, roll coating, gravure. Can be applied by coating, cast coating, blade coating, gate roll coating, kiss roll coating, dipping method or spray coating, or partially impregnated. . In particular, after applying or impregnating by the above method, pressurizing and heating with a hot plate, the gap on the surface of the paper substrate is filled, and the biodegradable resin is plasticized to obtain a uniform and highly smooth coating film. . The coating amount is 5-30 g / m2Is preferably 5 g / m2If it is less than 30 g / m, it is difficult to obtain a uniform coating film and pinholes are likely to occur.2If it is more, the physical properties are saturated, and in an extreme case, cracks (cohesive failure) also occur. When impregnating with a size press, the larger the basis weight of the paper, the greater the amount of impregnation, and the greater the impregnation effect, the better the gas barrier property of the one provided with the inorganic oxide thin film. The basis weight of the paper substrate is not particularly limited, but is 30 to 400 g / m.2600g / m from the top paper2Thick paper is also possible, so the impregnation amount is 5-60 g / m2However, if it is less than or more than that, the same phenomenon as described above occurs, which is not preferable.
[0029]
In the present invention, by adding a layered silicate compound to a biodegradable resin, its non-aqueous solution or aqueous solution, or an aqueous emulsion or aqueous dispersion, the layered silicic acid is applied to the paper substrate after coating or impregnation. The salt compound is oriented in a flat plate shape, and has an effect of improving the smoothness and air resistance of the paper surface. Specific examples of layered silicate compounds include kaolin, mica, brittle mica, pyrophyllite, talc, smectite, vermiculite, chlorite, septe chlorite, serpentine, stilpnomelane, and montmorillonite. Or a flaky thing is mentioned. These are suitable particle sizes that can be oriented with respect to the paper substrate and have a size of several tens to several hundreds of μm.
[0030]
Moreover, the paper base in the present invention may be coated with an inorganic pigment on one side or both sides in advance. The inorganic pigment is a filler, and examples thereof include clay, kaolin, calcium carbonate, titanium dioxide, talc, and preferably a clay that is inexpensive and has good physical properties is suitable. In addition, these may be added internally during the paper making of the base material, but because the paper strength is reduced, it is preferable to coat the paper base surface to form a dense coating layer .
[0031]
The processed paper, which is made by applying super-calender processing to paper coated with inorganic pigments (fillers) typified by clay-coated paper with good surface smoothness, is used as a base material with barrier properties. Convenient and excellent barrier with improved smoothness and sealability by applying or impregnating biodegradable resin as a sealing layer on the clay coat surface of this processed paper, and further by hot pressing with a hot plate Sex can be imparted. Also, a sealing paper sheet coated or impregnated with various biodegradable resins may be supercalendered.
[0032]
The inorganic oxide thin film according to the present invention is provided for the purpose of improving the gas barrier properties of the substrate. For example, oxides such as aluminum, silicon, zinc, and magnesium, simple substances such as nitrides, or mixtures thereof It is formed with a vapor-deposited film of an inorganic metal compound. Among these, silicon oxide and aluminum oxide are inexpensive and have good barrier properties. The vapor deposition method can be performed by a plasma activated CVD (chemical vapor deposition) method in addition to a PVD (physical vapor deposition) method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method. Among these, the CVD method is economically preferable, hardly generates heat in the process, and can be vapor-deposited three-dimensionally such as a container.
[0033]
The thickness of the inorganic oxide layer is 50 to 3000 mm, more preferably 100 to 2000 mm in terms of transparency and barrier properties. If the thickness is less than 50 mm, a uniform thin film cannot be formed. If the thickness is 3000 mm or more, the physical properties are saturated, and cracks are easily generated, and the gas barrier property is lowered.
[0034]
The paper sheet which is the base material of the gas barrier paper sheet of the present invention can be produced by a conventional papermaking process, and can be produced through papermaking / papermaking, a pressing process, and a heat drying process. Moreover, the paper container which consists of a base material of the gas barrier paper container of this invention can be produced by a well-known method. For example, press-molding method or vacuum molding method, or wet or dry pulp mold molding method, which can be formed by bonding and assembling the four corners with a plunger-type can making machine, hot pressing with a special tray molding machine Thus, it is possible to produce a paper container without a post process. Further, the gas barrier paper sheet of the present invention may be assembled and molded as described above to form the gas barrier paper container of the present invention.
[0035]
【Example】
Hereinafter, specific examples of the biodegradable sealing paper sheet or paper container of the present invention will be described. With these, the present invention is not limited.
[0036]
The pulp slurry used in the following examples was prepared based on the method shown below.
(Pulp slurry production method)
The raw material pulp is made from softwood kraft pulp (NBKP) papermaking material that is disaggregated according to JIS-P8209 “Paper Test Hand Paper Preparation Method” and JIS-P8121 “Pulp Freeness Test Method” Canada. A standard freeness test method having a freeness (beatability) of 300 ml CSF was prepared with a beater to obtain a pulp slurry having a solid content of 1.0%.
[0037]
<Example 1>
The pulp slurry has a basis weight of about 250 g / m.2A standard hand-made square paper machine is used to make suction paper with a commercially available large vacuum cleaner, and a dehydration press (3.43 × 10FivePa) was carried out for 3 minutes, and heat-dried with a Yankee dryer (surface temperature = about 120 ° C.) to produce cardboard. A 10 wt% dioxane solution of a commercially available polycaprolactone (manufactured by Union Carbide Co., Ltd., Tone P-767) was applied once with a wire bar # 30 and dried in a 100 ° C. oven for 2 minutes. One of the biodegradable sealing paper sheets related to the invention was prepared. The coating amount is about 7g / m2Met.
[0038]
<Example 2>
Commercial basis weight 250g / m2In the present invention, commercially available polycaprolactone (manufactured by Union Carbide Co., Tone P-767) was applied to the clay coat layer of the coated cardboard (made by Oji Paper Co., Ltd., UF Coat). One of the biodegradable sealing paper sheets involved was made. The coating amount is about 7g / m2Met.
[0039]
<Example 3>
A solid 10 wt% dioxane solution of commercially available polylactic acid (manufactured by Shimadzu Corporation, Lacty) was applied once to the cardboard produced in the same manner as in Example 1 with a wire bar # 30, and this was applied in a 100 ° C. oven for 2 times. Drying for 1 minute produced one of the biodegradable sealing paper sheets according to the present invention. The coating amount is about 7g / m2Met.
[0040]
<Example 4>
The pulp slurry has a basis weight of about 250 g / m.2Suction paper is made with a standard hand-made square paper machine with a commercially available large vacuum cleaner, and a solid polylactic acid (Shimadzu Co., Ltd., Lacty) 10 wt% dioxane solution on the wet paper as it is Spray applied / impregnated, filtered again with suction, heated and pressurized with a hot plate (surface temperature of about 120 ° C., about 4 × 10FivePa) was performed for about 2 minutes to produce one of the biodegradable sealing paper sheets according to the present invention. Impregnation amount is about 20g / m2Met.
[0041]
<Example 5>
On a wet paper produced in the same manner as in Example 4, a commercially available aqueous dispersion of esterified starch (Miyoshi Oil Chemical Co., Ltd., Randy-200S) was diluted and mixed with water to a solid content of 10 wt%. Spray coating / impregnation, suction filter excess water again, heat and press with hot plate (surface temperature about 120 ° C, about 4x10FivePa) was performed for about 2 minutes to produce one of the biodegradable sealing paper sheets according to the present invention. Impregnation amount is about 20g / m2Met.
[0042]
<Example 6>
The pulp slurry was diluted to a solid content of 0.4 wt%. This pulp slurry 4L was sucked and dehydrated onto a female papermaking mold to obtain a mold intermediate, which was then sandwiched between press molds fitted together with the papermaking mesh to obtain a pulp mold container. On the inner surface of this container, a commercially available aqueous dispersion of esterified starch (Miyoshi Oil Chemical Co., Ltd., Randy-200S) diluted with water to a solid content of 10 wt% was spray coated / impregnated, Excess water is filtered by suction again and dried with pressure in a male mold (surface temperature of about 120 ° C., about 4 × 10FivePa) was performed for about 1 minute to produce one of the biodegradable sealing paper containers according to the present invention. Impregnation amount is about 17g / m2Met.
[0043]
<Comparative example 1>
NBKP water-dispersed slurry having a freeness of 300 CSF has a basis weight of about 250 g / m.2A standard hand-made square paper machine is used for suction paper making with a commercially available large vacuum cleaner, and a dehydrating press (3.43 × 10FivePa) was performed for 3 minutes, and heat-dried with a Yankee dryer (surface temperature = about 120 ° C.) to prepare NBKP base paper.
[0044]
<Comparative example 2>
Commercial basis weight 250g / m2A coated styrene-copolymer latex (solid content = 50 wt%) wire bar # 30 was applied once to a clay coat layer of a coated cardboard paper (made by Oji Paper Co., Ltd., UF coat). One of the sealing paper sheets was prepared by drying in an oven at 2 ° C. for 2 minutes. The coating amount is about 8 g / m2Met.
[0045]
The biodegradable sealing paper sheet obtained in Examples 1 to 6 above, or the paper container and the sample obtained in Comparative Examples 1 and 2 are cut into a 1 cm × 4 cm piece of paper, and the surface on the sealing layer side The center line average roughness (Ra) was measured with a surface roughness meter Surfcom manufactured by Tokyo Seimitsu Co., Ltd. The measurement conditions were TRAVERS LENGTH = 4 mm, CUTOFF = 0.8 mm, V-MAG = × 2K, and SPEED = 0.3 mm / s. The measurement results are shown in Table 1.
[0046]
[Table 1]
Figure 0004852798
[0047]
From the results in Table 1, it was found that the biodegradable sealing paper sheet of the present invention and the paper containers (Examples 1 to 6) had very small surface roughness and good smoothness. Moreover, it turned out that smoothness improves further by hot-pressing with a hot plate. Also, good smoothness was obtained when a commercially available styrene butadiene copolymer latex was applied as a sealing agent.
[0048]
Next, specific examples of the gas barrier paper sheet or the paper container of the present invention will be described, but these do not limit the present invention.
[0049]
<Example 7>
On the sealing layer of the biodegradable sealing paper sheet produced in Example 1, an inorganic oxide thin film having a thickness of 400 mm was provided by plasma activated CVD using hexamethyldisiloxane as a monomer gas. One of the gas barrier paper sheets of the invention was obtained.
[0050]
<Example 8>
On the sealing layer of the biodegradable sealing paper sheet produced in Example 2, an inorganic oxide thin film having a thickness of 400 mm was formed by plasma activated CVD using hexamethyldisiloxane as a monomer gas. One of the gas barrier paper sheets of the invention was obtained.
[0051]
<Example 9>
On the sealing layer of the biodegradable sealing paper sheet according to the present invention produced in Example 3, an inorganic oxide thin film having a thickness of 400 mm was formed by plasma activated CVD using hexamethyldisiloxane as a monomer gas. And one of the gas barrier paper sheets of the present invention was obtained.
[0052]
<Example 10>
On the sealing layer of the biodegradable sealing paper sheet prepared in Example 4, an inorganic oxide thin film having a thickness of 400 mm was provided by plasma activated CVD using hexamethyldisiloxane as a monomer gas. One of the gas barrier paper sheets of the invention was obtained.
[0053]
<Example 11>
On the sealing layer of the biodegradable sealing paper sheet prepared in Example 5, an inorganic oxide thin film having a thickness of 400 mm was provided by plasma activated CVD using hexamethyldisiloxane as a monomer gas. One of the gas barrier paper sheets of the invention was obtained.
[0054]
<Example 12>
The inner surface of the biodegradable sealing paper container prepared in Example 6 is provided with a 400-mm-thick inorganic oxide thin film by plasma activated CVD using hexamethyldisiloxane as a monomer gas, and the gas of the present invention. One of the barrier paper containers was obtained.
[0055]
<Comparative Example 3>
The NBKP base paper produced in Comparative Example 1 was provided with an inorganic oxide thin film having a thickness of 400 mm by plasma activated CVD using hexamethyldisiloxane as a monomer gas.
[0056]
<Comparative example 4>
On the coated layer of the coated ball coated with the commercially available styrene butadiene copolymer latex prepared in Comparative Example 2, hexamethyldisiloxane was used as a monomer gas, and an inorganic oxide having a thickness of 400 mm was formed by plasma activated CVD. A thin film was provided.
[0057]
About each gas barrier property paper sheet or paper container obtained in Examples 7-12, each gas barrier property of this invention is based on JIS-Z0208 "The moisture-permeable packaging material moisture permeability test method (cup method)". The water vapor permeability was measured when the paper sheet or the container layer + inorganic oxide thin film layer side was uniformly placed on the calcium chloride-filled side and stored in an environment of 40 ° C. and 90% RH. In addition, with respect to the container-shaped thing of Example 6, what filled the container with calcium chloride and sealed the container opening part with the laminate film containing aluminum foil was measured. The results are shown in Table 2.
[0058]
[Table 2]
Figure 0004852798
[0059]
From the results in Table 2, it was found that the water vapor permeability of the biodegradable gas barrier paper sheet or paper container of the present invention was very good. A commercially available styrene butadiene copolymer latex applied to the sealing layer also showed good water vapor barrier properties.
[0060]
The samples of Examples 7 to 12 and Comparative Examples 1 to 4 which are biodegradable gas barrier paper sheets or paper containers of the present invention and each of Comparative Examples 1 to 4 are each cut into about 1 cm square, and 5 g of each is 0.5 wt. % Of caustic soda aqueous solution was added to 1.5 L, and it was disaggregated for about 20 minutes with a standard disaggregator. As a result, all of the examples of the present invention and Comparative Examples 1 and 3 without a sealing layer were completely used. Was disaggregated. On the other hand, those using the styrene butadiene copolymer latex of Comparative Example 2 and Comparative Example 4 as a sealant remained a little hardened.
[0061]
The biodegradable gas barrier paper sheet or paper container (Examples 7 to 12) and Comparative Examples 1 to 4 of the present invention are cut into 10 cm × 10 cm and embedded in field soil to biodegradable. As a result of the evaluation, after about 5 months, all of the examples of the present invention and Comparative Examples 1 and 3 without the sealing layer were disassembled apart and did not stop the original shape. On the other hand, in the case of using the styrene butadiene copolymer latex of Comparative Example 2 and Comparative Example 4 as a sealing agent, a film-like thin paper piece remained.
[0062]
The biodegradable gas barrier paper sheet or paper container (Examples 7 to 12) of the present invention in the compost after mixing pig dung and sawdust and adjusting the water content to about 65% for about one month, and Comparative Examples 1 to 4 were cut into 10 cm × 10 cm and embedded, and biodegradability was evaluated. After about 4 months, all of the examples of the present invention and comparative examples in which no sealing layer was applied 1 and 3 were disassembled apart and did not stop the original shape. On the other hand, in the case of using the styrene butadiene copolymer latex of Comparative Example 2 and Comparative Example 4 as a sealing agent, a film-like thin paper piece remained.
[0063]
【The invention's effect】
According to the present invention, a paper sheet in which a biodegradable resin layer is formed by coating or impregnating a paper base material with a biodegradable resin has a function of sealing the biodegradable resin layer. Furthermore, by performing a heat treatment such as hot pressing with a hot plate, the biodegradable resin can be plasticized by filling the gaps in the paper, and a coating film composed of a uniform and highly smooth biodegradable resin layer can be formed. it can. Furthermore, a paper sheet or paper container having excellent gas barrier properties is provided by providing a thin film layer of inorganic oxide on a paper sheet or a coating film comprising a biodegradable resin layer of a paper container formed by molding the sheet. be able to.
[0064]
The paper sheet or paper container obtained by the present invention comprises a paper substrate having a low environmental load, a biodegradable resin layer, and a thin film layer of an inorganic oxide provided on the biodegradable resin layer, and has biodegradability. It can be recycled with alkali and can be recycled. There is no problem even if it is incinerated or composted.
In addition, when a biodegradable resin layer is formed on a paper substrate by coating or impregnation, the coating or impregnating liquid is an aqueous solution or an aqueous dispersion, so that no solvent is used. There is no problem of solvent transpiration in the impregnation process, and the safety of the working environment is taken into consideration. As described above, according to the present invention, it is possible to provide a paper sheet or a paper container excellent in environmental conservation type gas barrier properties such as biodegradability, recyclability, resource saving and safety.
[0065]
The biodegradable gas-barrier paper sheet or paper container of the present invention is suitably used in various fields such as food, pharmaceuticals, electronic / electric parts, and various industrial products as environmentally friendly packaging materials that will be increasingly required in the future. It is what is used.

Claims (6)

パルプスラリーを吸引抄紙して湿紙とする工程と、  A process of sucking and making pulp slurry into wet paper;
湿紙の状態で生分解性樹脂の溶液または分散液をスプレー塗工により含浸する工程と、  A step of impregnating a biodegradable resin solution or dispersion in the state of wet paper by spray coating;
前記含浸後の湿紙を再度吸引ろ過する工程と、  Sucking and filtering the wet paper after the impregnation again;
ろ過後の湿紙を熱板で加熱加圧する工程と  Heating and pressurizing the wet paper after filtration with a hot plate;
を備えたことを特徴とする紙シートの製造方法。A method for producing a paper sheet, comprising:
パルプスラリーを吸引抄紙してパルプモールド中間体を得る工程と、  Obtaining pulp pulp intermediate by sucking and making pulp slurry; and
前記パルプモールド中間体に対し生分解性樹脂の溶液または分散液をスプレー塗工により含浸する工程と、  Impregnating the pulp mold intermediate with a solution or dispersion of a biodegradable resin by spray coating;
前記パルプモールド中間体を再度吸引ろ過する工程と、  Suction filtration of the pulp mold intermediate again;
前記パルプモールド中間体を対応する形状の金型で加熱加圧する工程と  Heating and pressing the pulp mold intermediate with a mold having a corresponding shape;
を備えたことを特徴とする紙容器の製造方法。A method for producing a paper container, comprising:
前記生分解性樹脂の溶液または分散液に層状ケイ酸塩化合物が混合されたものであることを特徴とする請求項1記載の紙シートの製造方法2. The method for producing a paper sheet according to claim 1 , wherein a layered silicate compound is mixed with the biodegradable resin solution or dispersion . 前記生分解性樹脂の溶液または分散液に層状ケイ酸塩化合物が混合されたものであることを特徴とする請求項2記載の紙容器の製造方法 3. The method for producing a paper container according to claim 2, wherein a layered silicate compound is mixed with the biodegradable resin solution or dispersion . 前記ろ過後の湿紙を熱板で加熱加圧する工程の後に無機酸化物の薄膜を設ける工程を備えたことを特徴とする請求項1または3記載の紙シートの製造方法 Process for manufacturing paper sheet according to claim 1 or 3, wherein further comprising a step of Ru provided a thin film of an inorganic oxide after the step of heating and pressing the wet paper after the filtration with hot plate. 前記前記パルプモールド中間体を対応する形状の金型で加熱加圧する工程の後に無機酸化物の薄膜を設ける工程を備えたことを特徴とする請求項2または4記載の紙容器の製造方法 5. The method for producing a paper container according to claim 2, further comprising a step of providing a thin film of an inorganic oxide after the step of heating and pressurizing the pulp mold intermediate with a mold having a corresponding shape .
JP2001192283A 2001-06-26 2001-06-26 Biodegradable paper sheet and method for producing paper container Expired - Fee Related JP4852798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001192283A JP4852798B2 (en) 2001-06-26 2001-06-26 Biodegradable paper sheet and method for producing paper container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001192283A JP4852798B2 (en) 2001-06-26 2001-06-26 Biodegradable paper sheet and method for producing paper container

Publications (2)

Publication Number Publication Date
JP2003013391A JP2003013391A (en) 2003-01-15
JP4852798B2 true JP4852798B2 (en) 2012-01-11

Family

ID=19030758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001192283A Expired - Fee Related JP4852798B2 (en) 2001-06-26 2001-06-26 Biodegradable paper sheet and method for producing paper container

Country Status (1)

Country Link
JP (1) JP4852798B2 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172814B2 (en) * 2003-06-03 2007-02-06 Bio-Tec Biologische Naturverpackungen Gmbh & Co Fibrous sheets coated or impregnated with biodegradable polymers or polymers blends
JP2005281921A (en) * 2004-03-30 2005-10-13 Kohjin Co Ltd Clean paper
JP2006104622A (en) * 2004-10-07 2006-04-20 Miyoshi Oil & Fat Co Ltd Recycled paper
JP4838559B2 (en) * 2005-09-14 2011-12-14 富士通株式会社 Resin molding
US8637126B2 (en) * 2006-02-06 2014-01-28 International Paper Co. Biodegradable paper-based laminate with oxygen and moisture barrier properties and method for making biodegradable paper-based laminate
FI122032B (en) * 2008-10-03 2011-07-29 Teknologian Tutkimuskeskus Vtt Fiber product having a barrier layer and process for its preparation
KR101342218B1 (en) * 2008-10-30 2013-12-16 (주)엘지하우시스 Bio-wallpapers and preparation methods thereof
JP2010106398A (en) * 2008-10-30 2010-05-13 Dynapac Co Ltd Corrugated board and method for producing the same
TW201031524A (en) * 2009-02-16 2010-09-01 Wei Mon Ind Co Ltd Paperboard with polylactic acid
JP5225896B2 (en) * 2009-03-06 2013-07-03 ソマール株式会社 Paper making aid and method for producing paper using the same
RU2487881C1 (en) * 2009-07-07 2013-07-20 Тетра Лаваль Холдингз Энд Файнэнс С.А. Barrier layer for packaging laminate and packaging laminate having said barrier layer
JP5564867B2 (en) * 2009-09-14 2014-08-06 凸版印刷株式会社 Method for producing gas barrier layer forming composition
CN103228436B (en) * 2010-09-20 2016-03-16 费德罗-莫格尔动力系公司 There is the nonwoven layers of bonding and the fibrolaminar composite plate of biodegradable resin and building method thereof
JP6143848B2 (en) * 2012-05-15 2017-06-07 マントローズ−ハウザー カンパニー, インコーポレイテッド Seaweed-based food packaging coating
JP5536932B2 (en) * 2013-05-30 2014-07-02 中井紙器工業株式会社 Paper molding product manufacturing method and manufacturing apparatus
WO2016111659A1 (en) * 2015-01-08 2016-07-14 Barazi Aykut Onder Edible antimicrobial film made of pistachio resin
CN105085998B (en) * 2015-09-02 2017-12-15 浙江万里学院 Edibility condiment packaging bag and its preparation method and application
PL3266608T3 (en) * 2016-07-07 2019-08-30 Coffee Service Sp.z o.o. Multi-layer biodegradable laminated structures intended for the production especially of food packaging and food packaging obtained therefrom
JP6404411B2 (en) * 2016-09-29 2018-10-10 栗原紙材株式会社 Pulp mold
WO2018067006A1 (en) 2016-10-03 2018-04-12 Huhtamaki Molded Fiber Technology B.V. Biodegradable and compostable food packaging unit from a moulded pulp material, and method for manufacturing such food packaging unit
CN106633925A (en) * 2016-12-11 2017-05-10 戴琪 Preparation method of high-toughness collagen food fresh-keeping film
US10357936B1 (en) 2017-04-28 2019-07-23 TemperPack Technologies, Inc. Insulation panel
US11701872B1 (en) 2017-04-28 2023-07-18 TemperPack Technologies, Inc. Insulation panel
US10800596B1 (en) 2017-04-28 2020-10-13 TemperPack Technologies, Inc. Insulation panel
FR3071190B1 (en) 2017-09-19 2021-02-19 C E E Cie Europeenne Des Emballages Robert Schisler PROCESS FOR MANUFACTURING CUPBOARDS COATED WITH BIODEGRADABLE VARNISH AND CUP MANUFACTURED ACCORDING TO THE PROCEDURE
WO2019069963A1 (en) 2017-10-04 2019-04-11 日本製紙株式会社 Barrier material
SE1850921A1 (en) 2018-07-19 2020-01-20 Celwise Ab Laminated structure and method of its production
KR20200024506A (en) * 2018-08-28 2020-03-09 한지만 Eco-paper suction strow
KR20210077709A (en) * 2018-10-15 2021-06-25 데니머 바이오플라스틱스 인코포레이티드 Biopolymer Coated Fiber Food Service Items
US11702239B2 (en) * 2018-10-22 2023-07-18 Double Double D, Llc Degradable containment features
EP3914771B1 (en) * 2019-01-21 2024-07-17 Plantics Holding B.V. Biodegradable container and plate material and method for the manufacture thereof
KR102140079B1 (en) * 2019-07-26 2020-08-11 주식회사 애니켐 Tasteless odorless biodegradable recyclable water-proof coating paper
KR102249029B1 (en) * 2019-09-09 2021-05-07 한지만 Eco friendly bowl made by agar, sodium alginate and calcium lactate
WO2021251449A1 (en) * 2020-06-10 2021-12-16 日本製紙株式会社 Vapor-deposition paper base material
CN115698427B (en) * 2020-06-16 2024-07-02 日本制纸株式会社 Coated paper
KR102321870B1 (en) * 2020-06-17 2021-11-04 주식회사 한창제지 Biodegradable and recycleable PLA composition, and food packing paper using the same
JPWO2022075030A1 (en) * 2020-10-08 2022-04-14
KR102530750B1 (en) * 2020-11-25 2023-05-18 안성훈 Manufacturing method of pulp container using biodegradable biopolymer
JP6958758B1 (en) * 2020-12-28 2021-11-02 王子ホールディングス株式会社 Base paper for thin-film paper and thin-film paper
KR102542634B1 (en) * 2021-02-09 2023-06-14 주식회사그린패키지솔루션 Pulp tray and manufacturing method of the same
KR102271563B1 (en) * 2021-04-12 2021-07-01 (주)지용패키징 Eco-friendly coating composition for paper containers
US20240270998A1 (en) * 2021-06-16 2024-08-15 Kaneka Corporation Biodegradable laminated article and method for producing the same
KR102544912B1 (en) * 2021-07-21 2023-06-19 유하경 Eco-friendly packing member of laminating biodegradable layer and method of manufacturing the member
JP7577421B2 (en) 2021-07-30 2024-11-05 株式会社吉野工業所 Laminate
KR102353165B1 (en) * 2021-10-27 2022-01-19 서민욱 Biodegradable disposable container composition using fumigation and Manufacturing method thereof
CN113878847B (en) * 2021-11-22 2023-09-12 安徽银灵塑业有限公司 Production device and production method for environment-friendly degradable plastic shopping bag
KR102716708B1 (en) * 2021-12-15 2024-10-15 주식회사그린패키지솔루션 Biodegradable Composition and Packaging Container Having Coating Layer Using the Same
CN114703692B (en) * 2022-04-26 2022-11-04 农业农村部农业生态与资源保护总站 Production process of straw-based full-biodegradable tableware
CN116084209B (en) * 2023-02-07 2024-02-27 江南大学 Preparation method of fluorine-free degradable waterproof and oilproof packaging paper
JP7332069B1 (en) * 2023-04-20 2023-08-23 王子ホールディングス株式会社 Base paper for metallized paper, metallized paper, and packaging bags
JP7518572B1 (en) 2023-06-30 2024-07-18 洵子 西野 Manufacturing method of pipe member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191930A (en) * 1998-12-24 2000-07-11 Daicel Chem Ind Ltd Biodegradable resin composition and its molded article
JP2001079816A (en) * 1999-09-09 2001-03-27 Seibu Electric & Mach Co Ltd Manufacture of container made of biodegradable material
JP4289573B2 (en) * 1999-08-30 2009-07-01 ミヨシ油脂株式会社 Biodegradable resin aqueous dispersion and biodegradable composite material
JP2001128564A (en) * 1999-11-08 2001-05-15 Kuraray Co Ltd Paper mulch sheet
JP3476073B2 (en) * 2000-02-24 2003-12-10 日清食品株式会社 Food paper container manufacturing method and food paper container

Also Published As

Publication number Publication date
JP2003013391A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP4852798B2 (en) Biodegradable paper sheet and method for producing paper container
JP2022538563A (en) Gas barrier film for packaging materials
US20230416992A1 (en) Barrier film for packaging material
WO2003070459A1 (en) Biodegradable film
CA3120542A1 (en) Gas barrier film for packaging material
CN114127361A (en) Paperboard and laminate comprising a bio-barrier
EP3887435A1 (en) Process for production of film or coating comprising cellulosic nanomaterial
CA3179407A1 (en) Process for production of nano-coated substrate
JP7562959B2 (en) Double-sided laminated paper and paper cups
CA3179764A1 (en) Process for production of nano-coated substrate
JP4233345B2 (en) Biodegradable film manufacturing method and biodegradable film
CN114402106B (en) Composition, film or coating comprising microfibrillated cellulose and extract from bark or cork
SE2230361A1 (en) Multilayer barrier film
SE2230363A1 (en) Barrier film for packaging material
WO2024056938A1 (en) Product and method for producing the same
SE2230362A1 (en) Multilayer barrier film
FI20225793A1 (en) Multilayer product and method for producing the same
WO2024056940A1 (en) Multilayer product and method for producing the same
WO2024127189A1 (en) Raw edge tape comprising mfc and polymeric outer layers for paperboard containers
WO2024033267A1 (en) Parchment paper with high oxygen barrier properties
WO2023067602A1 (en) Improvement in water-vapor barrier properties in foldable materials
JP2022153685A (en) Method of producing barrier sheet and barrier sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees