JP4726395B2 - Electrical property value measurement method - Google Patents
Electrical property value measurement method Download PDFInfo
- Publication number
- JP4726395B2 JP4726395B2 JP2003083761A JP2003083761A JP4726395B2 JP 4726395 B2 JP4726395 B2 JP 4726395B2 JP 2003083761 A JP2003083761 A JP 2003083761A JP 2003083761 A JP2003083761 A JP 2003083761A JP 4726395 B2 JP4726395 B2 JP 4726395B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric
- dielectric substrate
- measurement
- cavity resonator
- resonance frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は電気的物性値測定法に関するものであり、特にミリ波領域で電子部品又は回路基板として使用する誘電体材料の誘電定数又は抵抗率を測定するための電気的物性値測定法に関するものである。
【0002】
【従来技術】
従来から、30GHz以上のミリ波帯における誘電体基板の誘電定数測定法としてはファブリぺロ共振器法が知られている。しかしながら、このファブリぺロ共振器法では1辺75mm以上の角板、或いは直径75mm以上の円板形状の大型の試料が望ましいため、セラミックス等の誘電体基板にこの方法を適用することは困難であった。
【0003】
これに対して、近年、30GHz以上のミリ波帯における誘電体基板の誘電定数測定法として、遮断円筒導波管法が提案されている(非特許文献1参照)。
【0004】
この方法は、2個の円筒導波管の間に誘電体基板を配置して共振器構造を構成し、TE0m1(m=1、2・・・)モードの共振周波数と無負荷Qを測定し、該共振周波数と無負荷Qから誘電体基板の比誘電率と誘電正接を計算する方法である。
【0005】
又、誘電正接の計算のために必要な遮断円筒内壁の導電率測定は、試料を挟まない状態で行われ、遮断円筒の両端に短絡導体板を配置して構成した空洞共振器のTE0m1(m=1、2・・・)モードの共振周波数と無負荷Qの測定から決定される。通常、空洞共振器の共振周波数が測定したい周波数帯になるように共振器寸法を設計する。
【0006】
このような遮断円筒導波管法では、比較的作製容易な1辺30mm以下の角板、或いは直径30mm以下の円板形状の試料を用いて測定できるため、ミリ波帯における誘電定数測定法として有効である。
【0007】
【非特許文献1】
「電子情報通信学会、信学技法MW2001−137(2001−12)、「遮断円筒導波管法によるミリ波複素誘電率の測定結果に関する検討」
【0008】
【発明が解決しようとする課題】
しかしながら、遮断円筒導波管法では、測定試料である誘電体基板の比誘電率や厚さによって、TE0m1(m=1、2・・・)モードの共振周波数が試料を挟まないときの空洞共振器の共振周波数に対して大きく変化する。その結果、測定したい周波数で測定を行うためには比誘電率が高いほど試料の厚さを薄くする必要があり、ある程度の厚みを持った試料では所望の周波数で誘電定数を測定することが困難になるという問題があった。
【0009】
又、誘電正接の解析するときに用いる円筒内壁の導電率は、試料を挟まない状態で測定される。この測定周波数と試料を挟んだときの周波数の差があまりに大きいと導電率の値に不確かさが生じる。これはミリ波帯では微小ながらも導電率に周波数依存性があるためである。その結果、誘電体基板の誘電定数測定の測定精度に不確かさが生じることも課題である。
【0010】
例えば、非特許文献1では、内径7.0mm、長さ26.1mmを有する遮断円筒の導電率測定の周波数は53GHzであるのに対し、比誘電率が2.1と低い場合では、厚さ0.2mmのテフロン(R)試料の測定周波数は52GHzであり、両周波数は近いため、テフロン(R)試料の誘電正接の測定精度は良好である。同じ遮断円筒を用いて比誘電率が9.4と高いサファイア試料では、テフロン(R)と同じ厚さ0.2mmの場合、測定周波数は42GHz、厚さ0.5mmの場合、測定周波数は32GHzとなり、サファイアの厚みにより測定周波数は大きく低下する。このように比誘電率が高く試料が厚い場合では、測定したい周波数帯で測定できない。更に、試料の測定周波数と遮断円筒の導電率測定の周波数(53GHz)は大きく異なり、サファイア試料の誘電正接の測定精度は誤差が大きくなるという問題があった。
【0011】
本発明は、比誘電率の高い誘電体基板や厚い誘電体基板の電気的物性値を、測定したい周波数帯で測定できるとともに、誘電体基板の物性値の測定精度を大きく向上できる電気的物性値測定法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者等は上記課題に対して検討を重ねた結果、有底筒状導体と導体板間に、誘電体基板を配置して円筒空洞共振器を構成し、該円筒空洞共振器のTEモード、特にTE011モードの共振周波数と無負荷Qを測定し、該共振周波数と無負荷Qから、誘電体基板の電気的物性値を求めること、つまり、共振器の構造において電界強度が弱い場所に試料を配置することにより、誘電体基板への電界の集中を緩和し共振周波数の低下を防ぎ、この結果、誘電体基板の電気的物性値を所望の測定周波数で測定するに際して、測定周波数が誘電体基板の比誘電率と厚さに大きく依存しないようにすることにより、測定周波数が30GHz以上のミリ波帯における比誘電率や誘電損失等の電気的物性値を測定できることを見出し、本発明に至った。
【0014】
すなわち、本発明の電気的物性値測定法は、導体板上に誘電体基板を配置し、開口部が前記誘電体基板側となるように有底筒状導体を前記誘電体基板上に載置して円筒空洞共振器を構成し、該円筒空洞共振器の30GHz以上のTEモードの共振周波数と無負荷Qを測定し、該共振周波数と無負荷Qから、前記誘電体基板の誘電定数を求めることを特徴とする。
【0015】
本発明の誘電定数測定法によって、誘電体基板の比誘電率と厚さに測定周波数を大きく依存させずに、30GHz以上のミリ波帯における誘電定数を測定できる理由を説明する。図5は円筒空洞共振器のTE011モードの電界強度の分布を示すもので、この円筒空洞共振器のTE011モードの電界強度は空洞共振器の高さ方向の中心面で最大になり、両端でゼロになる。10GHz前後で誘電体基板の誘電定数を測定する場合、図6に示すように、空洞共振器の中央に誘電体基板1を配置する方法がJIS R 1641:2002として規定されている。
【0016】
しかしながら、この方法を30GHz以上のミリ波帯域に拡張した場合、図7に示すように、空洞共振器の寸法が周波数に比例して小型になるのに対して誘電体基板1の厚さは割れないような厚さまでしか薄くできない。この結果、マイクロ波に比べて共振器の寸法に対する基板の厚みが相対的に大きくなるため、誘電体基板1に蓄積されるTE011モードの電界エネルギーが大きくなる。この状態では、試料を挿入していない状態の空洞共振器のTE011モードの共振周波数に対して、誘電定数の測定周波数が大きく低下する。つまり、上記円筒空洞共振器の測定周波数は、誘電体基板1の比誘電率と厚さに大きく依存するようになる。尚、図5〜7において、符号2a、2bは遮断円筒を示している。
【0017】
非特許文献1の誘電定数測定法は、図8(a)に示すように両端の導体を除去した円筒空洞、もしくは図8(b)に示すように両端に電波吸収体3a、3bを配置した遮断円筒とするものであるが、測定周波数が誘電体基板1の比誘電率と厚さに大きく依存する傾向は図7の場合と同じである。
【0018】
これに対して、本発明の電気的物性値測定法では、図4に示すように、誘電体基板31を端面の導体板36に接して配置するため、円筒空洞共振器本来のTE011モード電界強度の小さな位置に誘電体基板31を配置することになる。この結果、誘電体基板31の中に蓄積される電界エネルギーが制限され、TE011モードの共振周波数の低下、即ち誘電定数の測定周波数の低下が緩和される。
【0019】
又、本発明の電気的物性値測定法によって得た誘電体基板の比誘電率と誘電正接より、誘電体基板の抵抗率を計算することができるので、本発明は誘電体基板の抵抗率測定法としても機能する。
【0020】
さらに、本発明の電気的物性値測定法は、円筒空洞共振器の温度を変化させ、該円筒空洞共振器の共振周波数と無負荷Qの温度依存性を測定し、誘電体基板の電気的物性値の温度依存性を求めることを特徴とする。このような電気的物性値測定法では、より簡単に誘電体基板の電気的物性値の温度依存性を求めることができる。
【0022】
【発明の実施の形態】
図1は円筒空洞共振器に測定試料である誘電体基板を配置した状態を示す縦断面図(参考例)である。この図1において円筒空洞共振器は高さ方向中央から外れた面で2分割され、誘電体基板31が分割面で挟持されている。即ち、円筒空洞共振器32は、開口部を有し且つ深さの異なる一対の金属製の有底筒状導体32a、32b間に、それぞれの開口部に面するように誘電体基板31を介装して構成されている。
【0023】
有底筒状導体32aの側壁には貫通孔が形成され、外部から内部に向けて同軸ケーブル34a、34bが挿通しており、その内部側の先端にはループアンテナ35a、35bが形成されている。ループアンテナ35a、35bの空洞共振器への挿入深さLはTE011モードの共振周波数における挿入損失が30dB程度になるように調整される。
【0024】
発信器、例えばシンセサイズドスイーパーから周波数が掃引された信号を片方の同軸ケーブルからループアンテナを通して空洞共振器に注入し、TE011モードの共振電磁界が励振される。他方のループアンテナから同軸ケーブルを通して、空洞共振器の透過信号がネットワークアナライザー等の測定機器に入力され、空洞共振器の共振周波数、無負荷Qが測定される。
【0025】
図2は本発明の電気的物性値測定法に用いる円筒空洞共振器を示す縦断面図である。この図2において円筒空洞共振器32は、開口部を有した有底筒状導体32aと、導体板36の間に、開口部に面するように(導体板36上に)誘電体基板31を配置して構成される。
【0028】
比誘電率は次式から計算される。
【0029】
【数1】
【0030】
ここで、f0は共振周波数、ε1は比誘電率、t1は誘電体試料の厚み、L1は空洞長さ、Rは空洞半径を示す。ただしdetHは行列Hの行列式であり、Hは次式で与えられる。
【0031】
【数2】
【0032】
ここで、β1p、β2pはそれぞれ誘電体領域および空気領域の伝搬定数を示す。又、誘電正接tanδは次式から計算される。
【0033】
【数3】
【0034】
ここで、Quは無負荷Q、Qdは誘電体損によるQ、Qcは導体損によるQである。
【0035】
【数4】
【0036】
ここで、Wは共振器に蓄えられる全蓄積エネルギー、Pd1は誘電体で失われる損失エネルギーである。
【0037】
【数5】
【0038】
ここで、Wは共振器に蓄えられる全蓄積エネルギー、Pc1は誘電体領域で失われる導体損失エネルギー、Pc2は空気領域で失われる導体損失エネルギーである。
【0039】
【数6】
【0040】
ここで、W1は誘電体に蓄えられる蓄積エネルギーとW2は空気に蓄えられる蓄積エネルギーの和である。
【0041】
【数7】
【0042】
ここで、誘電正接tanδとPd1は次式の関係となっている。
【0043】
【数8】
【0044】
ここで、W1は電界の積分より次式から求められる。
【0045】
【数9】
【0046】
ここで、W2は電界の積分より次式から求められる。
【0047】
【数10】
【0048】
ここで、Pc1は磁界の積分より次式から求められる。
【0049】
【数11】
【0050】
ここで、Pc2は磁界の積分より次式から求められる。
【0051】
比誘電率は共振周波数の測定値より求められ、行列式である式(1)を0にするような比誘電率を求める。また誘電正接は、無負荷Qの測定値より式(3)を用いて求める。ここで、誘電正接は式(3)のQdに式(7)、(4)を代入することで求められる。又、Qcも式(5)、(10)、(11)を式(3)へ代入することで求まる。
【0052】
また、図1の場合は、シミュレータやモード整合法等の電磁界解析を用いて新たに共振周波数と比誘電率の関係、無負荷Qと誘電正接の関係を求めることが必要である。比誘電率は共振周波数の測定値から求めることができる。また誘電正接も同様に、無負荷Qの測定値から式(3)の関係を用いて求めることができる。
【0053】
本発明の電気的物性値測定法は、特にミリ波帯において最も効果があり、有機系材料および無機系誘電体基板の測定に好適に用いることができ、特に比誘電率が2〜20の誘電体基板の測定に好適である。
【0054】
また、本発明では、誘電体基板の厚みを厚くしても、共振周波数が殆ど変化しないため、測定試料である誘電体基板の破損を防止でき、より高周波での測定が可能となる。
【0055】
【実施例】
誘電体基板を挿入する前に、まず、測定で使用する空洞共振器の評価をする必要がある。この評価方法はすでにJIS R 1641:2002で確立されており、その方法に従った。空洞共振器は、予めモードチャートにより空洞の寸法設計を行っており、測定されるTE011モードの共振ピークが38GHz付近になるように、又、他のモードから妨害されないようになっている。TE011モードと縮退してるTM111モードは空洞の端板に溝を入れることで分離している。測定に使用する空洞共振器の寸法およびTE011モードのQuより測定した比導電率を表1に示す。また、使用した空洞共振器を図2に示す。
【0056】
【表1】
【0057】
次に、測定された空洞共振器を用いて誘電体基板の比誘電率、誘電正接の測定を行う。本測定に用いた誘電体基板(試料)は、厚さが0.5mmから0.7mm程度、直径20mmのC面サファイア基板である。
【0058】
空洞共振器にサファイア基板を挿入したときの共振周波数も予め計算しておき、横軸比誘電率、縦軸共振周波数のモードチャートを作成し、共振器の設計を行っておく必要がある。具体的には、測定に用いる共振器の寸法が、サファイア基板の厚みが0.5mmから0.8mm程度、比誘電率が1から10までの間で、TE011モードが他のモードと交差することのないように、つまり妨害されることのないように設計されている。
【0059】
さらにモードチャートから予想されるTE011モードの近くのモードの抑制を行った。測定に用いた寸法の場合では、TE311モードの抑制のため、直径に対して励振孔を対称関係から30度ずらした位置に設けている。
【0060】
更に、TE112モードの抑制のため励振孔を共振器の長さに対して、サファイア基板側から長さの0.4倍の位置に設けている。ネットワークアナライザを用いて共振周波数および無負荷Qの測定を行い、サファイア基板の比誘電率、誘電正接を計算した結果を表2に示す。
【0061】
【表2】
【0062】
表1、2より、本発明の電気的物性値測定法においては、空洞共振器本来のTE011モードの共振周波数と、サファイア基板を空洞共振器内に配置した後の共振周波数の変化が少なく、さらにサファイア基板の厚さの増加による共振周波数の低下幅も小さいことが判る。
【0063】
又、C軸に垂直なサファイア基板の比誘電率は10GHz前後において9.4〜9.5であることが知られており、本測定結果はこれらと良く一致する。また、サファイア基板の誘電正接は周波数/誘電正接=1×106GHzであることが報告されているが、これによると今回の35GHz付近の誘電正接は0.000035となり、表2の誘電正接はこれに近い値になっていることが判る。
【0064】
【発明の効果】
本発明によれば、30GHz以上のミリ波帯においても、空洞共振器の本来のTE011モードの共振周波数と、誘電体基板挿入後の共振周波数の変化が小さいため、所望の周波数で誘電定数等の電気的物性値を測定できる。さらに、空洞共振器の実効導電率の測定周波数と誘電定数の測定周波数が近いため、誘電正接の測定精度を高くすることができる。
【図面の簡単な説明】
【図1】 参考例の電気的物性値測定法に用いられる円筒空洞共振器の励振方法の一例を示す説明図である。
【図2】 本発明の電気的物性値測定法に用いられる円筒空洞共振器の励振方法の一例を示す説明図である。
【図3】 図1の電気的物性値測定法に用いられる円筒空洞共振器の構造(a)、及び電界強度分布(b)を示すものである。
【図4】 図2の電気的物性値測定法に用いられる円筒空洞共振器の構造(a)、及び電界強度分布(b)を示すものである。
【図5】 従来の円筒空洞共振器の構造(a)、及びTE011モードの電界強度分布(b)(c)である。
【図6】 中央に誘電体基板を配置した従来の円筒空洞共振器の構造(a)、及び電界強度分布(b)である。
【図7】 中央に誘電体基板を配置した従来の円筒空洞共振器の構造(a)、及びミリ波帯における電界強度分布(b)である。
【図8】 中央に誘電体基板を配置した従来の遮断円筒導波管共振器の構造を示す説明図である。
【符号の説明】
31・・・誘電体基板(試料)
32a、32b・・・有底筒状導体
36・・・導体板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to electrical property value measurement method relates especially electrical property value measurement method for measuring dielectric constant or resistivity of the dielectric material used as an electronic component or a circuit board in the millimeter wave region Is.
[0002]
[Prior art]
Conventionally, the Fabry-Perot resonator method is known as a method for measuring the dielectric constant of a dielectric substrate in a millimeter wave band of 30 GHz or higher. However, in this Fabry-Perot resonator method, a square plate with a side of 75 mm or more, or a large disk-shaped sample with a diameter of 75 mm or more is desirable. Therefore, it is difficult to apply this method to a dielectric substrate such as ceramics. there were.
[0003]
On the other hand, in recent years, a blocking cylindrical waveguide method has been proposed as a method for measuring the dielectric constant of a dielectric substrate in a millimeter wave band of 30 GHz or higher (see Non-Patent Document 1).
[0004]
In this method, a dielectric substrate is arranged between two cylindrical waveguides to form a resonator structure, and the resonance frequency and no-load Q of the TE 0m1 (m = 1, 2,...) Mode are measured. In this method, the relative dielectric constant and the dielectric loss tangent of the dielectric substrate are calculated from the resonance frequency and no load Q.
[0005]
Further, the conductivity measurement of the inner wall of the cut-off cylinder necessary for the calculation of the dielectric loss tangent is performed in a state where no sample is sandwiched, and TE 0m1 of a cavity resonator configured by arranging a short-circuit conductor plate at both ends of the cut-off cylinder. m = 1, 2,...) determined from the measurement of the resonance frequency of the mode and the no-load Q. Usually, the resonator dimensions are designed so that the resonance frequency of the cavity resonator is in the frequency band to be measured.
[0006]
In such a cut-off cylindrical waveguide method, it is possible to measure using a square plate having a side of 30 mm or less or a disk-shaped sample having a diameter of 30 mm or less, which is relatively easy to manufacture. It is valid.
[0007]
[Non-Patent Document 1]
"The Institute of Electronics, Information and Communication Engineers, IEICE Techniques MW 2001-137 (2001-12)," Examination of Millimeter-Wave Complex Dielectric Constant Measurement Results Using the Cut-off Cylindrical Waveguide Method "
[0008]
[Problems to be solved by the invention]
However, in the cut-off cylindrical waveguide method, the cavity when the resonance frequency of the TE 0m1 (m = 1, 2,...) Mode does not sandwich the sample depends on the relative permittivity and thickness of the dielectric substrate that is the measurement sample. It changes greatly with respect to the resonance frequency of the resonator. As a result, in order to perform measurement at the frequency to be measured, it is necessary to reduce the thickness of the sample as the relative dielectric constant increases, and it is difficult to measure the dielectric constant at a desired frequency with a sample having a certain thickness. There was a problem of becoming.
[0009]
Further, the conductivity of the inner wall of the cylinder used when analyzing the dielectric loss tangent is measured in a state where no sample is sandwiched. If the difference between the measurement frequency and the frequency when the sample is sandwiched is too large, uncertainty will arise in the conductivity value. This is because the conductivity is frequency-dependent in the millimeter wave band although it is very small. As a result, there is a problem that uncertainty occurs in the measurement accuracy of the dielectric constant measurement of the dielectric substrate.
[0010]
For example, in Non-Patent Document 1, the frequency of conductivity measurement of a cut-off cylinder having an inner diameter of 7.0 mm and a length of 26.1 mm is 53 GHz, whereas when the relative dielectric constant is as low as 2.1, the thickness is The measurement frequency of the 0.2 mm Teflon (R) sample is 52 GHz, and since both frequencies are close, the measurement accuracy of the dielectric loss tangent of the Teflon (R) sample is good. In the case of a sapphire sample having a high relative permittivity of 9.4 using the same blocking cylinder, the measurement frequency is 42 GHz when the thickness is 0.2 mm, which is the same as Teflon (R), and the measurement frequency is 32 GHz when the thickness is 0.5 mm. Thus, the measurement frequency greatly decreases depending on the thickness of sapphire. Thus, when the relative permittivity is high and the sample is thick, it cannot be measured in the desired frequency band. In addition, the measurement frequency of the sample and the conductivity measurement frequency (53 GHz) of the blocking cylinder are greatly different, and there is a problem that the measurement accuracy of the dielectric loss tangent of the sapphire sample has a large error.
[0011]
The present invention can measure the electrical property value of a dielectric substrate having a high relative dielectric constant or a thick dielectric substrate in a frequency band to be measured, and can greatly improve the measurement accuracy of the property value of the dielectric substrate. The purpose is to provide a measurement method .
[0012]
[Means for Solving the Problems]
The present inventors have made the extensive investigations with respect to the problems, a bottomed tubular conductor and the conductor plates constitute a cylindrical cavity resonator by disposing a dielectric substrate, TE modes of the cylindrical cavity In particular, the resonance frequency and the no-load Q of the TE 011 mode are measured, and the electrical property value of the dielectric substrate is obtained from the resonance frequency and the no-load Q, that is, in a place where the electric field strength is weak in the resonator structure. By arranging the sample, the concentration of the electric field on the dielectric substrate is relaxed and the resonance frequency is prevented from being lowered. As a result, when measuring the electrical property value of the dielectric substrate at the desired measurement frequency, the measurement frequency is It has been found that by making it not greatly dependent on the relative permittivity and thickness of the body substrate, it is possible to measure the electrical physical properties such as the relative permittivity and dielectric loss in the millimeter wave band where the measurement frequency is 30 GHz or more. It came.
[0014]
That is, according to the electrical property value measuring method of the present invention, a dielectric substrate is disposed on a conductor plate, and the bottomed cylindrical conductor is placed on the dielectric substrate so that the opening is on the dielectric substrate side. Then, a cylindrical cavity resonator is configured, and the resonance frequency and no-load Q of the TE mode of 30 GHz or more of the cylindrical cavity resonator are measured, and the dielectric constant of the dielectric substrate is obtained from the resonance frequency and no-load Q. It is characterized by that.
[0015]
The reason why the dielectric constant in the millimeter wave band of 30 GHz or higher can be measured by the dielectric constant measurement method of the present invention without greatly depending on the measurement frequency on the relative dielectric constant and thickness of the dielectric substrate. Figure 5 shows the distribution of the electric field strength of the TE 011 mode cylindrical cavity resonator, the electric field strength of the TE 011 mode of the cylindrical cavity resonator is maximized at the center plane in the height direction of the cavity resonator, both ends Becomes zero. When measuring the dielectric constant of the dielectric substrate at around 10 GHz, as shown in FIG. 6, a method of disposing the dielectric substrate 1 in the center of the cavity resonator is defined as JIS R 1641: 2002.
[0016]
However, when this method is extended to a millimeter wave band of 30 GHz or more, as shown in FIG. 7, the size of the cavity resonator is reduced in proportion to the frequency, whereas the thickness of the dielectric substrate 1 is cracked. It can only be thinned to such a thickness. As a result, since the thickness of the substrate relative to the dimensions of the resonator is relatively larger than that of the microwave, the electric field energy of the TE 011 mode accumulated in the dielectric substrate 1 is increased. In this state, the measurement frequency of the dielectric constant is greatly reduced with respect to the resonance frequency of the TE 011 mode of the cavity resonator in which no sample is inserted. That is, the measurement frequency of the cylindrical cavity resonator greatly depends on the relative dielectric constant and thickness of the dielectric substrate 1. 5 to 7,
[0017]
In the dielectric constant measurement method of Non-Patent Document 1, a cylindrical cavity from which conductors at both ends are removed as shown in FIG. 8A, or
[0018]
On the other hand, in the electrical property value measuring method of the present invention , as shown in FIG. 4, the
[0019]
In addition, since the resistivity of the dielectric substrate can be calculated from the relative dielectric constant and the dielectric loss tangent of the dielectric substrate obtained by the electrical property value measuring method of the present invention, the present invention measures the resistivity of the dielectric substrate. It also functions as a law.
[0020]
Furthermore, the electrical property value measuring method of the present invention changes the temperature of the cylindrical cavity resonator, measures the temperature dependence of the resonance frequency of the cylindrical cavity resonator and the unloaded Q, and the electrical property of the dielectric substrate. It is characterized in that the temperature dependency of the value is obtained. In such an electrical property value measurement method, the temperature dependence of the electrical property value of the dielectric substrate can be obtained more easily.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a longitudinal sectional view (reference example) showing a state in which a dielectric substrate as a measurement sample is arranged in a cylindrical cavity resonator. In FIG. 1, the cylindrical cavity resonator is divided into two at a surface deviating from the center in the height direction, and a
[0023]
A through-hole is formed in the side wall of the bottomed
[0024]
A signal whose frequency has been swept from a transmitter, for example, a synthesized sweeper, is injected from one coaxial cable through the loop antenna into the cavity resonator, and a TE 011 mode resonant electromagnetic field is excited. Through the coaxial cable from the other loop antenna, the transmission signal of the cavity resonator is input to a measuring instrument such as a network analyzer, and the resonance frequency and unloaded Q of the cavity resonator are measured.
[0025]
FIG. 2 is a longitudinal sectional view showing a cylindrical cavity resonator used in the electrical property value measuring method of the present invention. In FIG. 2, a cylindrical cavity resonator 32 has a
[0028]
The relative dielectric constant is calculated from the following equation.
[0029]
[Expression 1]
[0030]
Here, f 0 is the resonance frequency, ε 1 is the relative dielectric constant, t 1 is the thickness of the dielectric sample, L 1 is the cavity length, and R is the cavity radius. However, detH is a determinant of the matrix H, and H is given by the following equation.
[0031]
[Expression 2]
[0032]
Here, β 1p and β 2p represent propagation constants of the dielectric region and the air region, respectively. The dielectric loss tangent tan δ is calculated from the following equation.
[0033]
[Equation 3]
[0034]
Here, Qu is unloaded Q, Qd is Q due to dielectric loss, and Qc is Q due to conductor loss.
[0035]
[Expression 4]
[0036]
Here, W is the total stored energy stored in the resonator, and P d1 is the loss energy lost in the dielectric.
[0037]
[Equation 5]
[0038]
Here, W is the total stored energy stored in the resonator, P c1 is the conductor loss energy lost in the dielectric region, and P c2 is the conductor loss energy lost in the air region.
[0039]
[Formula 6]
[0040]
Here, W1 is the sum of stored energy stored in the dielectric and W2 is the sum of stored energy stored in the air.
[0041]
[Expression 7]
[0042]
Here, the dielectric loss tangent tan δ and P d1 have the following relationship.
[0043]
[Equation 8]
[0044]
Here, W1 is obtained from the following equation by integration of the electric field.
[0045]
[Equation 9]
[0046]
Here, W2 is obtained from the following equation from the integration of the electric field.
[0047]
[Expression 10]
[0048]
Here, P c1 is obtained from the following equation by integration of the magnetic field.
[0049]
[Expression 11]
[0050]
Here, P c2 is obtained from the following equation by integration of the magnetic field.
[0051]
The relative permittivity is obtained from the measured value of the resonance frequency, and the relative permittivity is determined so that the determinant (1) is zero. Further, the dielectric loss tangent is obtained from the measured value of the no load Q using the formula (3). Here, the dielectric loss tangent is obtained by substituting Equations (7) and (4) for Qd in Equation (3). Qc can also be obtained by substituting equations (5), (10), and (11) into equation (3).
[0052]
In the case of FIG. 1, it is necessary to newly obtain the relationship between the resonance frequency and the relative dielectric constant and the relationship between the no load Q and the dielectric loss tangent by using electromagnetic field analysis such as a simulator or a mode matching method. The relative dielectric constant can be obtained from the measured value of the resonance frequency. Similarly, the dielectric loss tangent can be obtained from the measured value of the no load Q using the relationship of the expression (3).
[0053]
The electrical property value measurement method of the present invention is most effective particularly in the millimeter wave band, and can be suitably used for measurement of organic materials and inorganic dielectric substrates, and in particular, a dielectric having a relative dielectric constant of 2 to 20. Suitable for measurement of body substrate.
[0054]
In the present invention, even if the thickness of the dielectric substrate is increased, the resonance frequency hardly changes. Therefore, the dielectric substrate as a measurement sample can be prevented from being damaged, and measurement at a higher frequency is possible.
[0055]
【Example】
Before inserting the dielectric substrate, it is necessary to first evaluate the cavity resonator used in the measurement. This evaluation method was already established in JIS R 1641: 2002, and the method was followed. The cavity resonator is dimensioned in advance by a mode chart so that the measured resonance peak of the TE 011 mode is in the vicinity of 38 GHz and is not disturbed by other modes. The TE 011 mode and the degenerated TM 111 mode are separated by placing a groove in the end plate of the cavity. Table 1 shows the dimensions of the cavity resonator used for the measurement and the specific conductivity measured from the TE 011 mode Qu. Moreover, the used cavity resonator is shown in FIG.
[0056]
[Table 1]
[0057]
Next, the dielectric constant and dielectric loss tangent of the dielectric substrate are measured using the measured cavity resonator. The dielectric substrate (sample) used for this measurement is a C-plane sapphire substrate having a thickness of about 0.5 mm to 0.7 mm and a diameter of 20 mm.
[0058]
It is necessary to calculate the resonance frequency when the sapphire substrate is inserted into the cavity resonator in advance, create a mode chart of the relative dielectric constant of the horizontal axis and the resonance frequency of the vertical axis, and design the resonator. Specifically, the dimensions of the resonator used for the measurement are such that the thickness of the sapphire substrate is about 0.5 mm to 0.8 mm, the relative dielectric constant is 1 to 10, and the TE 011 mode intersects with other modes. It is designed not to be disturbed, that is, not disturbed.
[0059]
Further, suppression of modes near the TE 011 mode predicted from the mode chart was performed. In the case of the dimensions used for the measurement, the excitation hole is provided at a position shifted by 30 degrees from the symmetrical relationship with respect to the diameter in order to suppress the TE 311 mode.
[0060]
Furthermore, an excitation hole is provided at a position 0.4 times the length from the sapphire substrate side with respect to the length of the resonator in order to suppress the TE 112 mode. Table 2 shows the results of measuring the resonant frequency and unloaded Q using a network analyzer and calculating the relative dielectric constant and dielectric loss tangent of the sapphire substrate.
[0061]
[Table 2]
[0062]
From Tables 1 and 2, in the electrical property value measuring method of the present invention, the resonance frequency of the TE 011 mode inherent to the cavity resonator and the change in the resonance frequency after the sapphire substrate is arranged in the cavity resonator are small. It can also be seen that the decrease in the resonance frequency due to the increase in the thickness of the sapphire substrate is small.
[0063]
Further, it is known that the relative dielectric constant of the sapphire substrate perpendicular to the C axis is 9.4 to 9.5 at around 10 GHz, and this measurement result agrees well with these. In addition, it has been reported that the dielectric loss tangent of the sapphire substrate is frequency / dielectric loss tangent = 1 × 10 6 GHz. According to this, the dielectric loss tangent near 35 GHz is 0.000035, and the dielectric loss tangent in Table 2 is It can be seen that the value is close to this.
[0064]
【The invention's effect】
According to the present invention, even in a millimeter wave band of 30 GHz or higher, the change in the resonance frequency of the original TE 011 mode of the cavity resonator and the resonance frequency after insertion of the dielectric substrate is small. Can be measured. Furthermore, since the measurement frequency of the effective conductivity of the cavity resonator and the measurement frequency of the dielectric constant are close, the measurement accuracy of the dielectric loss tangent can be increased.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of an excitation method of a cylindrical cavity resonator used in an electrical property value measuring method of a reference example .
FIG. 2 is an explanatory diagram showing an example of a cylindrical cavity resonator excitation methods used for Electrical property value measurement method of the present invention.
3 shows the structure (a) and electric field strength distribution (b) of a cylindrical cavity resonator used in the electrical property value measurement method of FIG. 1. FIG.
4 shows the structure (a) and electric field intensity distribution (b) of a cylindrical cavity resonator used in the electrical property value measurement method of FIG. 2. FIG.
FIG. 5 shows a structure (a) of a conventional cylindrical cavity resonator and electric field intensity distributions (b) and (c) of a TE 011 mode .
FIG. 6 shows a structure (a) and electric field intensity distribution (b) of a conventional cylindrical cavity resonator in which a dielectric substrate is arranged in the center.
FIG. 7 shows a structure (a) of a conventional cylindrical cavity resonator in which a dielectric substrate is arranged in the center, and an electric field intensity distribution (b) in the millimeter wave band.
FIG. 8 is an explanatory view showing the structure of a conventional cutoff cylindrical waveguide resonator in which a dielectric substrate is arranged in the center.
[Explanation of symbols]
31 ... Dielectric substrate (sample)
32a, 32b ... Bottomed
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003083761A JP4726395B2 (en) | 2003-03-25 | 2003-03-25 | Electrical property value measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003083761A JP4726395B2 (en) | 2003-03-25 | 2003-03-25 | Electrical property value measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004294124A JP2004294124A (en) | 2004-10-21 |
JP4726395B2 true JP4726395B2 (en) | 2011-07-20 |
Family
ID=33399143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003083761A Expired - Fee Related JP4726395B2 (en) | 2003-03-25 | 2003-03-25 | Electrical property value measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4726395B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103983858A (en) * | 2014-05-15 | 2014-08-13 | 中国电子科技集团公司第四十一研究所 | High-precision broadband measurement method for dielectric property of low-loss material |
CN104577290A (en) * | 2015-01-29 | 2015-04-29 | 无锡江南计算技术研究所 | Split cylindrical resonant cavity |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4530907B2 (en) * | 2005-04-25 | 2010-08-25 | 京セラ株式会社 | Method for measuring dielectric properties of dielectric thin films |
JP4530951B2 (en) * | 2005-08-29 | 2010-08-25 | 京セラ株式会社 | Dielectric constant measurement method and open-ended half-wavelength coplanar line resonator |
JP4904509B2 (en) * | 2006-09-06 | 2012-03-28 | 国立大学法人横浜国立大学 | Method and system for measuring passive intermodulation distortion |
JP5451509B2 (en) * | 2010-04-27 | 2014-03-26 | 京セラ株式会社 | Thickness measurement method |
CN105067895B (en) * | 2015-08-05 | 2018-07-20 | 深圳鼎缘电子科技有限公司 | Compact band hinders resonant cavity fixture and test specimen assay method |
RU2753662C1 (en) * | 2020-09-08 | 2021-08-19 | федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") | Apparatus for measuring intrinsic quality factor of dielectric resonator |
-
2003
- 2003-03-25 JP JP2003083761A patent/JP4726395B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103983858A (en) * | 2014-05-15 | 2014-08-13 | 中国电子科技集团公司第四十一研究所 | High-precision broadband measurement method for dielectric property of low-loss material |
CN103983858B (en) * | 2014-05-15 | 2017-01-25 | 中国电子科技集团公司第四十一研究所 | High-precision broadband measurement method for dielectric property of low-loss material |
CN104577290A (en) * | 2015-01-29 | 2015-04-29 | 无锡江南计算技术研究所 | Split cylindrical resonant cavity |
Also Published As
Publication number | Publication date |
---|---|
JP2004294124A (en) | 2004-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Catala-Civera et al. | Accurate determination of the complex permittivity of materials with transmission reflection measurements in partially filled rectangular waveguides | |
US7952365B2 (en) | Resonator, printed board, and method for measuring complex dielectric constant | |
Lobato-Morales et al. | Permittivity measurements at microwave frequencies using epsilon-near-zero (ENZ) tunnel structure | |
Cheng et al. | W-band characterizations of printed circuit board based on substrate integrated waveguide multi-resonator method | |
Sharma et al. | Analysis of dielectric properties of polydimethylsiloxane (PDMS) as a flexible substrate for sensors and antenna applications | |
Raveendran et al. | Complex permittivity extraction of planar dielectrics using a noninvasive microwave transmission line resonant technique | |
Heinola et al. | Dielectric characterization of printed wiring board materials using ring resonator techniques: A comparison of calculation models | |
JP4726395B2 (en) | Electrical property value measurement method | |
Han et al. | Highly Integrated Improved Hexagonal CSRR-based Fluid Sensor for Complex Dielectric Parameter Detection | |
Mohd Bahar et al. | Microfluidic biochemical sensor based on circular SIW‐DMS approach for dielectric characterization application | |
Parvathi et al. | Ultrahigh-sensitivity and compact EBG-based microwave sensor for liquid characterization | |
Sheen | A dielectric resonator method of measuring dielectric properties of low loss materials in the microwave region | |
Mahant et al. | HMSIW based highly selective filter for radar applications | |
EP1677383A1 (en) | Temperature compensation of resonators using different materials for housing and inner conductor as well as suitable dimensions | |
JP4628116B2 (en) | Conductivity measurement method | |
JP3532069B2 (en) | How to measure surface resistance | |
JP4157387B2 (en) | Electrical property measurement method | |
CN116027116A (en) | Dielectric constant testing device based on TM0np mode parallel flat dielectric resonator | |
JP4530907B2 (en) | Method for measuring dielectric properties of dielectric thin films | |
Beria et al. | Highly Sensitive Miniaturized DS-CSRR Sensor for Complex Permittivity Measurements | |
Sofin RG et al. | Measurement of dielectric constant using a microwave microstrip ring resonator (MMRR) at 10 GHz irrespective of the type of overlay | |
Salski et al. | Characterization of Low-Loss Liquids With a Double-Concave Fabry–Perot Open Resonator in the 20–50-GHz Range | |
JP4216739B2 (en) | Electrical property value measuring method and measuring jig | |
Kazemi et al. | Employing higher order modes in a broadband SIW sensor for permittivity measurement of medium loss materials | |
JP4373857B2 (en) | Electrical property measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050909 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081106 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090902 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090909 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20091030 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110412 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4726395 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140422 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |