JP4711434B2 - Ceramic-containing additive and method for producing the same - Google Patents
Ceramic-containing additive and method for producing the same Download PDFInfo
- Publication number
- JP4711434B2 JP4711434B2 JP2006307718A JP2006307718A JP4711434B2 JP 4711434 B2 JP4711434 B2 JP 4711434B2 JP 2006307718 A JP2006307718 A JP 2006307718A JP 2006307718 A JP2006307718 A JP 2006307718A JP 4711434 B2 JP4711434 B2 JP 4711434B2
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- mass
- sic
- iron
- based alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Description
本発明は、セラミックス分散鉄基合金を得る際に鉄基合金の溶湯に添加されるセラミックス含有添加材及びその製造方法に関する。 The present invention relates to a ceramic-containing additive that is added to a molten iron-base alloy when a ceramic-dispersed iron-base alloy is obtained, and a method for producing the same.
鉄基合金は、金属組織の形態、含有成分の種類及びその割合に応じて諸特性が様々に変化する。例えば、C量が少ない鋼材は高強度、高剛性を示し、C量が多い鋳鉄材は、強度や剛性は鋼材に若干劣るものの、鋼材に比して優れた耐摩耗性及び耐食性を示す。 Iron-based alloys have various properties that vary depending on the form of the metal structure, the type of contained components, and their proportions. For example, a steel material with a small amount of C exhibits high strength and high rigidity, and a cast iron material with a large amount of C exhibits slightly higher wear resistance and corrosion resistance than steel materials, although the strength and rigidity are slightly inferior to those of steel materials.
ところで、構造材を設ける場合、該構造材に耐食性と高剛性とが同時に希求されることがある。この際、例えば、耐食性に優れる鋳鉄材を用いて鋳造を行うと、得られた構造材の剛性が十分でないことが懸念される。 By the way, when providing a structural material, corrosion resistance and high rigidity may be required for the structural material at the same time. At this time, for example, when casting is performed using a cast iron material having excellent corrosion resistance, there is a concern that the rigidity of the obtained structural material is not sufficient.
このような観点から、金属材にセラミックスを分散させ、金属材の特性を活用しつつ、セラミックスによって希求される特性の確保を図った金属基複合材が提案されている。例えば、特許文献1では、鉄基合金の溶湯にSiC粒子を添加した後、この溶湯ないし固化物を鋳鉄に添加してSiC分散鋳造複合材とすることが検討されている。
From such a point of view, a metal matrix composite material has been proposed in which ceramics are dispersed in a metal material and the properties required of the ceramic material are secured while utilizing the properties of the metal material. For example,
このようにしてSiC等のセラミックスが分散された鉄基合金(セラミックス分散複合材)では、セラミックスが分散されていない鉄基合金に比して、例えば、ヤング率が向上していることが認められる。 In this way, it is recognized that the iron-based alloy (ceramic-dispersed composite material) in which ceramics such as SiC are dispersed has improved Young's modulus, for example, as compared with the iron-based alloy in which ceramics are not dispersed. .
また、特許文献2では、金属ホウ化物固溶体粒子を分散した炭化ケイ素セラミックス焼結体、又は金属ホウ化物固溶体セラミックス焼結体の少なくともいずれか一方を、マルテン系高クロム鋳鉄、高Ni合金系グレン鋳鉄、マルテン系ハイス鋼等で鋳ぐるんで鋳ぐるみ複合体とすることが開示されている。
Further, in
特許文献1に示されるように、鉄基合金にSiCを分散させた複合材を作製する場合には、SiCを含む添加材(成形体)を鉄基合金の溶湯に添加することが一般的である。この添加材は、例えば、鉄基合金の溶湯中のSi量を大きくしてSiCとして析出させることで作製されている。
As shown in
しかしながら、この場合、Siが鉄基合金の基地組織に固溶することがある。この場合、SiCの生成量が少ない添加材となり、このため、該添加材を鋳鉄材に添加して複合材を作製しても、ヤング率がさほどは向上しないという不具合が惹起される。 In this case, however, Si may be dissolved in the base structure of the iron-based alloy. In this case, it becomes an additive with a small amount of SiC generated, and therefore, even if the additive is added to a cast iron material to produce a composite material, there is a problem that the Young's modulus is not improved so much.
また、特許文献2記載の手法は、焼結体を鋳ぐるむものであるため、セラミックスを鉄基合金に略均等に分散させることは容易ではない。
Further, since the technique described in
本発明は上記した問題を解決するためになされたもので、多量のSiCが分散され、このために母材である鉄基合金に比してヤング率が向上したセラミックス分散複合材を得ることが可能なセラミックス含有添加材及びその製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and a large amount of SiC is dispersed. Therefore, it is possible to obtain a ceramic-dispersed composite material having an improved Young's modulus as compared with an iron-based alloy as a base material. An object of the present invention is to provide a possible ceramic-containing additive and a method for producing the same.
前記の目的を達成するために、本発明は、セラミックス分散鉄基合金を得る際に鉄基合金の溶湯に添加されるセラミックス含有添加材であって、
当該セラミックス含有添加材の質量を100質量%とするとき、3〜25質量%のCと、7〜35質量%のSiと、7〜20質量%のAlとを含有し、残部がFe及び不可避的不純物であり、前記Cと前記Siとで形成された前記セラミックスとしてのSiCを9.5〜85体積%含むことを特徴とする。
In order to achieve the above object, the present invention provides a ceramic-containing additive that is added to a molten iron-base alloy when obtaining a ceramic-dispersed iron-base alloy,
When the mass of the ceramic-containing additive is 100% by mass, it contains 3 to 25% by mass of C, 7 to 35% by mass of Si, and 7 to 20% by mass of Al , with the balance being Fe and inevitable. specifically an impurity, the SiC as the ceramic formed by the said and the C Si and wherein from 9.5 to 85% by volume containing Mukoto.
この添加材の母材は、鉄基合金である。従って、セラミックス分散複合材を作製するべく鉄基合金の溶湯に添加した際、母材である鉄基合金が溶湯によって速やかに溶解する。このため、セラミックス(SiC)が溶湯中に略均等に分散するので、結局、SiCが略均等に分散したセラミックス分散複合材を容易に得ることができる。 The base material of this additive is an iron-based alloy. Therefore, when added to the molten iron-based alloy to produce a ceramic-dispersed composite material, the base iron-based alloy is quickly dissolved by the molten metal. For this reason, since ceramics (SiC) disperse | distributes substantially uniformly in a molten metal, the ceramic dispersion | distribution composite material in which SiC disperse | distributed substantially uniformly can be obtained easily after all.
しかも、この添加材においては、母材である鉄基合金の基地組織中にAlが固溶している。従って、Siの前記基地組織中への固溶が抑制され、このためにCと結合するSi量が多くなる。すなわち、多量のSiCを含むので、該添加材を少量添加した場合であっても、諸特性が著しく優れたセラミックス分散複合材を容易に得ることができる。 Moreover, in this additive material, Al is dissolved in the base structure of the iron-base alloy that is the base material. Therefore, solid solution of Si into the base structure is suppressed, and for this reason, the amount of Si bonded to C increases. That is, since a large amount of SiC is contained, even when a small amount of the additive is added, a ceramic-dispersed composite material having remarkably excellent characteristics can be easily obtained.
また、本発明は、セラミックス分散鉄基合金を得る際に鉄基合金の溶湯に添加されるとともに、当該セラミックス含有添加材の質量を100質量%とするとき、3〜25質量%のCと、7〜35質量%のSiと、7〜20質量%のAlとを含有し、残部がFe及び不可避的不純物であるセラミックス含有添加材の製造方法であって、
3〜25質量%のCと、7〜35質量%のSiとを含有し、且つ残部がFe及び不可避的不純物である溶湯に対し、Alを7〜20質量%の割合で添加する工程と、
Alが添加された前記溶湯を凝固体とするとともに、前記Cと前記Siとを化学的に結合させて前記セラミックスとしてのSiCとする工程と、
を有することを特徴とする。
Further, the present invention is added to the molten iron-based alloy when obtaining a ceramic-dispersed iron-based alloy , and 3 to 25% by mass of C when the mass of the ceramic-containing additive is 100% by mass, A method for producing a ceramic-containing additive containing 7 to 35% by mass of Si and 7 to 20% by mass of Al, the balance being Fe and inevitable impurities ,
A step of adding Al in a ratio of 7 to 20% by mass with respect to a molten metal containing 3 to 25% by mass of C and 7 to 35% by mass of Si and the balance being Fe and inevitable impurities,
A step of using the molten metal to which Al is added as a solidified body and chemically combining the C and the Si to form SiC as the ceramic;
It is characterized by having.
上記したように、Alが添加される本発明では、鉄基合金の基地組織にSiが固溶することが抑制される。このSiがCと結合してSiCを形成するので、SiCを多量に含む添加材を容易且つ簡便に得ることが可能となる。 As described above, in the present invention in which Al is added, Si is suppressed from being dissolved in the base structure of the iron-based alloy. Since this Si combines with C to form SiC, an additive containing a large amount of SiC can be obtained easily and simply.
本発明によれば、鉄基合金の溶湯にAlを添加して該鉄基合金の基地組織にSiが固溶することを抑制し、これによりSiCの生成量を多くするようにしているので、多量のSiCを含む添加材を容易に作製することができる。 According to the present invention, Al is added to the molten iron-base alloy to suppress the solid solution of Si in the base structure of the iron-base alloy, thereby increasing the amount of SiC generated. An additive containing a large amount of SiC can be easily produced.
しかも、この添加材の母材は鉄基合金であるので、鉄基合金の溶湯に添加された際に速やかに溶解し、SiCが溶湯中に略均等に分散する。この溶湯を凝固することで、SiCが略均等に分散したセラミックス分散複合材が得られる。このようなセラミックス分散複合材は、母材である鉄基合金に比して優れた諸特性を有する。例えば、大きなヤング率を示す。 Moreover, since the base material of the additive is an iron-based alloy, it quickly dissolves when added to the molten iron-based alloy, and SiC is dispersed substantially uniformly in the molten metal. By solidifying the molten metal, a ceramic dispersed composite material in which SiC is dispersed substantially uniformly is obtained. Such a ceramic-dispersed composite material has various characteristics superior to an iron-based alloy as a base material. For example, it shows a large Young's modulus.
以下、本発明に係るセラミックス含有添加材及びその製造方法につき好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the ceramic-containing additive and the method for producing the same according to the present invention will be described in detail with reference to the accompanying drawings.
本実施の形態に係るセラミックス含有添加材は、鉄基合金を母材とし、且つ該母材中にSiCが分散されたものである。なお、鉄基合金の基地組織中には、Alが固溶されている。添加材の形状は、例えば、ディスク体形状や円柱体形状とすることができるが、特にこれらの形状に限定されるものではない。 The ceramic-containing additive according to the present embodiment uses an iron-based alloy as a base material, and SiC is dispersed in the base material. Note that Al is dissolved in the base structure of the iron-based alloy. The shape of the additive can be, for example, a disk shape or a cylindrical shape, but is not particularly limited to these shapes.
ここで、該セラミックス含有添加材に対して機器分析を行った場合、該セラミックス含有添加材中に存在する元素がFe、C、Si及びAlであることが確認される。Feは母材(鉄基合金)由来の元素であり、C、Siは、母材及びSiC由来の元素である。また、Alは、上記したように鉄基合金の基地組織中に固溶して存在しているものである。 Here, when an instrumental analysis is performed on the ceramic-containing additive, it is confirmed that the elements present in the ceramic-containing additive are Fe, C, Si, and Al. Fe is an element derived from the base material (iron-based alloy), and C and Si are elements derived from the base material and SiC. Moreover, Al exists as a solid solution in the base structure of the iron-based alloy as described above.
そして、C、Si、Alの割合は、それぞれ、3〜25質量%、7〜35質量%、7〜20質量%であり、残部はFe及び不可避的不純物である。 And the ratio of C, Si, and Al is 3-25 mass%, 7-35 mass%, and 7-20 mass%, respectively, and the remainder is Fe and inevitable impurities.
また、SiCは、該セラミックス含有添加材の全体積の少なくとも9.5体積%を占める。換言すれば、SiCは、9.5体積%以上の割合でセラミックス含有添加材中に存在する。なお、当初のSi量が35体積%であるので、SiCの割合は最大で85体積%となる。 Further, SiC occupies at least 9.5% by volume of the total volume of the ceramic-containing additive. In other words, SiC is present in the ceramic-containing additive at a ratio of 9.5% by volume or more. Since the initial Si amount is 35% by volume, the ratio of SiC is 85% by volume at the maximum.
このセラミックス含有添加材は、鉄基合金の溶湯にAlを添加する第1工程と、前記溶湯を凝固させる第2工程とを経て作製することができる。 This ceramic-containing additive can be produced through a first step of adding Al to the molten iron-based alloy and a second step of solidifying the molten metal.
すなわち、先ず、第1工程において、所定量のCとSiを含有し、残部がFe及び不可避的不純物である鉄基合金の溶湯を準備する。この中、SiとCの一部は、後述する第2工程でSiCを形成することによって消費される。 That is, first, in a first step, a molten iron-based alloy containing a predetermined amount of C and Si and the balance being Fe and inevitable impurities is prepared. Among these, a part of Si and C is consumed by forming SiC in the second step described later.
ここで、前記溶湯におけるCの割合は、3〜35質量%に設定される。3質量%未満であると、第2工程時にSiCの生成量が少なくなる。すなわち、SiCの含有量が少ない添加材となるので、諸特性に優れたセラミックス分散複合材を得るためには、添加材を多量に添加する必要が生じる。一方、35質量%よりも多いと、セラミックス分散複合材を作製する際、セラミックス含有添加材を鉄基合金の溶湯に添加しても、セラミックス含有添加材の母材である鉄基合金が前記溶湯中で溶解し難いので、SiCを分散させることが容易でなくなる。 Here, the ratio of C in the molten metal is set to 3 to 35 mass%. If the amount is less than 3% by mass, the amount of SiC generated during the second step is reduced. That is, since it becomes an additive with a low content of SiC, it is necessary to add a large amount of additive in order to obtain a ceramic-dispersed composite material excellent in various properties. On the other hand, when the content is more than 35% by mass, even when the ceramic-containing additive is added to the molten iron-based alloy when the ceramic-dispersed composite material is produced, the iron-based alloy that is the base material of the ceramic-containing additive is Since it is difficult to dissolve, it is not easy to disperse SiC.
また、Siの割合は7〜35質量%に設定される。上記と同様に、7質量%未満であるとSiCの生成量が少なくなり、35質量%よりも多いとSiCが良好に分散したセラミックス分散複合材を得ることが容易でなくなるからである。 Moreover, the ratio of Si is set to 7-35 mass%. Similarly to the above, when the amount is less than 7% by mass, the amount of SiC generated is small, and when it exceeds 35% by mass, it is not easy to obtain a ceramic-dispersed composite material in which SiC is well dispersed.
その後、この溶湯に対して、7〜20質量%の割合となるようにAlを添加する。7質量%未満では、SiCの生成量が少ない。また、20質量%を超える割合でSiCを添加しても、SiCの生成量が飽和して略一定となるのでコスト的に不利となる。 Then, Al is added so that it may become a ratio of 7-20 mass% with respect to this molten metal. If it is less than 7% by mass, the amount of SiC produced is small. Moreover, even if SiC is added at a rate exceeding 20% by mass, the amount of SiC produced is saturated and becomes substantially constant, which is disadvantageous in terms of cost.
このようにして得られた溶湯を、次に、第2工程において凝固させる。 The molten metal thus obtained is then solidified in the second step.
この凝固時には、FeとC、Siによって鉄基合金の基地組織が形成される。そして、次に、この基地組織中にAlが固溶する。このため、過剰Siが該基地組織中に固溶することが抑制される。 At the time of this solidification, a base structure of an iron-based alloy is formed by Fe, C, and Si. Next, Al dissolves in the base structure. For this reason, it is suppressed that excess Si dissolves in the base tissue.
前記基地組織中に固溶されない過剰Siは、過剰Cと化学的に結合する。その結果、SiCが形成される。凝固がさらに進行することにより、多量のSiCを含有した所定形状のセラミックス含有添加材が得られるに至る。 Excess Si that is not solid-dissolved in the base tissue chemically bonds with excess C. As a result, SiC is formed. As the solidification further proceeds, a ceramic-containing additive having a predetermined shape containing a large amount of SiC is obtained.
ここで、溶湯中のSi量と、セラミックス含有添加材における生成SiC量との関係をグラフにして図1に示す。なお、Al量は、無添加、7質量%、15質量%とした。この図1から、Alを添加することでSiCの生成量を大きくすることができることが明らかである。 Here, the relationship between the amount of Si in the molten metal and the amount of generated SiC in the ceramic-containing additive is shown as a graph in FIG. In addition, Al amount was made into additive-free, 7 mass%, and 15 mass%. From FIG. 1, it is clear that the amount of SiC produced can be increased by adding Al.
SiC生成量(割合)は、溶湯に存在する当初のSi量及びAl添加量にもよるが、Si、Alがともに少なくとも7質量%であることから、セラミックス含有添加材の全体積の少なくとも9.5%を占める。また、Si、Alが最大で35質量%、20質量%であることから、最大で85質量%となる。 Although the amount (ratio) of SiC produced depends on the initial amount of Si and Al added in the molten metal, since both Si and Al are at least 7% by mass, at least 9.% of the total volume of the ceramic-containing additive. Occupies 5%. Moreover, since Si and Al are 35 mass% and 20 mass% at maximum, it will be 85 mass% at maximum.
すなわち、本実施の形態によれば、Alを鉄基合金の溶湯に添加するようにしているので鉄基合金の基地組織中へのSiの固溶量が制御され、このために多量のSiCを含有するセラミックス含有添加材を得ることが可能となる。 That is, according to the present embodiment, since Al is added to the molten iron-based alloy, the amount of Si dissolved in the base structure of the iron-based alloy is controlled. For this reason, a large amount of SiC is added. It becomes possible to obtain the ceramic containing additive to contain.
このようにして得られたセラミックス含有添加材は、上記したように、C、Si、Alのそれぞれを3〜25質量%、7〜35質量%、7〜20質量%含有するとともに、残部がFe及び不可避的不純物である。また、SiCを9.5〜85体積%の割合で含む。 As described above, the ceramic-containing additive thus obtained contains 3 to 25 mass%, 7 to 35 mass%, and 7 to 20 mass% of C, Si, and Al, respectively, with the balance being Fe. And inevitable impurities. Moreover, SiC is contained in the ratio of 9.5-85 volume%.
このセラミックス含有添加材は、例えば、鋳鉄材のヤング率を向上させるものとして使用することができる。この場合、鋳鉄材の溶湯に該セラミックス含有添加材を添加した後、鋳造を実施すればよい。 This ceramic-containing additive can be used, for example, to improve the Young's modulus of a cast iron material. In this case, casting may be performed after the ceramic-containing additive is added to the cast iron melt.
上記から諒解されるように、セラミックス含有添加材の母材は鉄基合金である。従って、このセラミックス含有添加材の母材は、鋳鉄材(鉄基合金)の溶湯に添加された際に速やかに溶解し、その結果、SiCが溶湯中に略均等に分散される。このため、SiCが鋳鉄材中に略均等に分散されたセラミックス分散複合材を得ることができる。 As can be understood from the above, the base material of the ceramic-containing additive is an iron-based alloy. Therefore, the base material of the ceramic-containing additive rapidly dissolves when added to the molten cast iron material (iron-based alloy), and as a result, SiC is dispersed substantially uniformly in the molten metal. For this reason, a ceramic dispersed composite material in which SiC is dispersed substantially uniformly in the cast iron material can be obtained.
前記のセラミックス含有添加材をFCD450相当材の溶湯に添加した後に鋳造を行ってセラミックス分散複合材を得、このセラミックス分散複合材につきヤング率を測定した。比較のため、Alを添加することなく作製したセラミックス含有添加材をFCD450相当材の溶湯に添加して作製したSiC分散複合体、及びFCD450相当材の各ヤング率も測定した。結果を併せて図2に示す。この図2から、Alを添加したセラミックス含有添加材を用いることで、鋳鉄材に比してヤング率が著しく大きなセラミックス分散複合材が得られることが明らかである。 The ceramic-containing additive was added to a molten FCD450 equivalent material and then cast to obtain a ceramic-dispersed composite material. The Young's modulus of this ceramic-dispersed composite material was measured. For comparison, the Young's modulus of the SiC dispersion composite prepared by adding the ceramic-containing additive prepared without adding Al to the melt of the FCD450 equivalent material and the FCD450 equivalent material was also measured. The results are also shown in FIG. From FIG. 2, it is clear that a ceramic-dispersed composite material having a remarkably large Young's modulus as compared with cast iron material can be obtained by using a ceramic-containing additive material to which Al is added.
また、耐摩耗性を比較したところ、Alを含有するセラミックス含有添加材を添加して得られたセラミックス分散複合材の方が優れているという結果が得られた。 Further, when the wear resistance was compared, a result was obtained that the ceramic-dispersed composite material obtained by adding the ceramic-containing additive containing Al was superior.
なお、上記した実施の形態においては、CとSiを含有する溶湯に対してAlを添加してセラミックス含有添加材を作製するようにしているが、セラミックス分散複合材の母材をいわゆる特殊鋳鉄材とするべく、他の金属元素をさらに添加してセラミックス含有添加材を構成するようにしてもよい。 In the embodiment described above, Al is added to the molten metal containing C and Si to produce a ceramic-containing additive, but the base material of the ceramic-dispersed composite material is a so-called special cast iron material. Therefore, a ceramic-containing additive may be configured by further adding another metal element.
Claims (2)
当該セラミックス含有添加材の質量を100質量%とするとき、3〜25質量%のCと、7〜35質量%のSiと、7〜20質量%のAlとを含有し、残部がFe及び不可避的不純物であり、前記Cと前記Siとで形成された前記セラミックスとしてのSiCを9.5〜85体積%含むことを特徴とするセラミックス含有添加材。 A ceramic-containing additive that is added to a molten iron-based alloy when obtaining a ceramic-dispersed iron-based alloy,
When the mass of the ceramic-containing additive is 100% by mass, it contains 3 to 25% by mass of C, 7 to 35% by mass of Si, and 7 to 20% by mass of Al , with the balance being Fe and inevitable. specifically an impurity, ceramic containing the additive material, wherein from 9.5 to 85% by volume containing Mukoto the SiC as the ceramic formed by the said and the C Si.
3〜25質量%のCと、7〜35質量%のSiとを含有し、且つ残部がFe及び不可避的不純物である溶湯に対し、Alを7〜20質量%の割合で添加する工程と、
Alが添加された前記溶湯を凝固体とするとともに、前記Cと前記Siとを化学的に結合させて前記セラミックスとしてのSiCとする工程と、
を有することを特徴とするセラミックス含有添加材の製造方法。 When the ceramic-dispersed iron-based alloy is obtained, it is added to the molten iron-based alloy, and when the mass of the ceramic-containing additive is 100% by mass, 3 to 25% by mass C and 7 to 35% by mass A method for producing a ceramic-containing additive containing Si and 7 to 20% by mass of Al, the balance being Fe and inevitable impurities ,
A step of adding Al in a ratio of 7 to 20% by mass with respect to a molten metal containing 3 to 25% by mass of C and 7 to 35% by mass of Si and the balance being Fe and inevitable impurities,
A step of using the molten metal to which Al is added as a solidified body and chemically combining the C and the Si to form SiC as the ceramic;
The manufacturing method of the ceramic containing additive characterized by having.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006307718A JP4711434B2 (en) | 2006-11-14 | 2006-11-14 | Ceramic-containing additive and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006307718A JP4711434B2 (en) | 2006-11-14 | 2006-11-14 | Ceramic-containing additive and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008121082A JP2008121082A (en) | 2008-05-29 |
JP4711434B2 true JP4711434B2 (en) | 2011-06-29 |
Family
ID=39506157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006307718A Expired - Fee Related JP4711434B2 (en) | 2006-11-14 | 2006-11-14 | Ceramic-containing additive and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4711434B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104726775B (en) * | 2015-03-05 | 2016-09-28 | 中南大学 | A kind of aluminium-based porous alloy material of siderochrome and preparation method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01268830A (en) * | 1988-04-19 | 1989-10-26 | Kimura Chuzosho:Kk | Manufacture of sic dispersion cast composite material |
-
2006
- 2006-11-14 JP JP2006307718A patent/JP4711434B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01268830A (en) * | 1988-04-19 | 1989-10-26 | Kimura Chuzosho:Kk | Manufacture of sic dispersion cast composite material |
Also Published As
Publication number | Publication date |
---|---|
JP2008121082A (en) | 2008-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018118260A4 (en) | Materials and methods for producing metal nanocomposites, and metal nanocomposites obtained therefrom | |
JP2017519105A (en) | Method for manufacturing engine components, use of engine components and aluminum alloys | |
JP2016505382A (en) | Method for manufacturing engine components, use of engine components and aluminum alloys | |
JP2006063400A (en) | Aluminum-based composite material | |
JP4711434B2 (en) | Ceramic-containing additive and method for producing the same | |
JP6300574B2 (en) | High rigidity low thermal expansion casting | |
JP5712525B2 (en) | Spheroidal graphite cast iron products with excellent wear resistance | |
JP5490373B2 (en) | High hardness shot material | |
JP5282546B2 (en) | High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance | |
JP4594917B2 (en) | Composite material and manufacturing method thereof | |
JP6993646B2 (en) | Inoculant for cast iron | |
JP4397872B2 (en) | Iron-based high hardness shot material and method for producing the same | |
JP5282547B2 (en) | High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance | |
JP7186144B2 (en) | Iron-based alloy member | |
MX2014009958A (en) | Copper-nickel-zinc alloy containing silicon. | |
JP4684985B2 (en) | Manufacturing method of composite material | |
JP5095669B2 (en) | Cylinder lining material for centrifugal casting and centrifugal casting method for producing cylinder lining material | |
JP2015127455A (en) | Powder high speed tool steel | |
JP5475380B2 (en) | Austenitic cast iron, its manufacturing method and austenitic cast iron casting | |
JP2008255393A (en) | High rigidity material and its manufacturing method | |
JP4704949B2 (en) | Mixed powder for producing iron-based sintered body and iron-based sintered body | |
EP1452611B1 (en) | Method of producing products made from carbide-reinforced, structural metal materials | |
JP5409475B2 (en) | Cylindrical sliding member and manufacturing method thereof | |
JP4699787B2 (en) | Heat-resistant Al-based alloy with excellent wear resistance and rigidity | |
JP5339770B2 (en) | Method for manufacturing sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110228 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110316 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110318 |
|
LAPS | Cancellation because of no payment of annual fees |