[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4707142B2 - Light wave distance meter - Google Patents

Light wave distance meter Download PDF

Info

Publication number
JP4707142B2
JP4707142B2 JP2005320943A JP2005320943A JP4707142B2 JP 4707142 B2 JP4707142 B2 JP 4707142B2 JP 2005320943 A JP2005320943 A JP 2005320943A JP 2005320943 A JP2005320943 A JP 2005320943A JP 4707142 B2 JP4707142 B2 JP 4707142B2
Authority
JP
Japan
Prior art keywords
light
path
signal
optical path
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005320943A
Other languages
Japanese (ja)
Other versions
JP2007127541A (en
Inventor
豊 中村
Original Assignee
株式会社 ソキア・トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ソキア・トプコン filed Critical 株式会社 ソキア・トプコン
Priority to JP2005320943A priority Critical patent/JP4707142B2/en
Publication of JP2007127541A publication Critical patent/JP2007127541A/en
Application granted granted Critical
Publication of JP4707142B2 publication Critical patent/JP4707142B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、基準信号によって変調された光を測定光路と参照光路に送光し、測定光路上のターゲットで反射して戻ってきた反射光の位相と参照光路からの光の位相を基にターゲットまでの距離を求めることができる光波距離計に関する。   The present invention transmits light modulated by a standard signal to a measurement optical path and a reference optical path, and based on the phase of the reflected light reflected by the target on the measurement optical path and the phase of the light from the reference optical path. It is related with the light wave rangefinder which can ask for the distance to.

光波距離計としては、例えば、ターゲットに向けて照射された測距光(レーザ光線)による反射光または参照光路からの参照光を受光し、反射光の位相と参照光の位相との位相差から距離を求めている。この種の光波距離計においては、反射光を光電変換して得られた信号の位相と基準信号の位相との位相差に基づいてターゲットまでの距離を求めるに際して、参照光を光電変換して得られた信号の位相と基準信号の位相との位相差に基づいてターゲットまでの距離を求め、両者の距離値の差を演算することで、発光素子や受光素子で生じる誤差を消去できるようになっている(特許文献1参照)。   As an optical distance meter, for example, a reflected light by a distance measuring light (laser beam) irradiated toward a target or a reference light from a reference light path is received, and a phase difference between the phase of the reflected light and the phase of the reference light is detected. Seeking distance. In this type of optical wave distance meter, the reference light is obtained by photoelectric conversion when the distance to the target is obtained based on the phase difference between the phase of the signal obtained by photoelectric conversion of the reflected light and the phase of the reference signal. Based on the phase difference between the phase of the received signal and the phase of the reference signal, the distance to the target is obtained, and the difference between the two values can be calculated to eliminate errors caused by the light emitting element and the light receiving element. (See Patent Document 1).

特開2002−323563号公報JP 2002-323563 A

前記従来技術においては、光源に、互いに異なる波長のレーザ光を発光する2種類のレーザダイオードを用いている。測定光をシャッタで切り替えて測定光と参照光の信号の位相差を求めている。また、測距光の送光に伴ってターゲットで反射して戻ってきた反射光を光電変換して得られた信号と参照光を光電変換して得られた信号をそれぞれ交互にCPUに入力し、CPUにおいて、反射光を光電変換して得られた信号の位相と基準信号の位相との位相差に基づいてターゲットまでの光を演算する処理と、参照光を光電変換して得られた信号の位相と基準信号の位相との位相差を基にターゲットまでの距離を演算する処理を交互に行い、各処理の演算結果を基に最終的にターゲットまでの距離を求めるようにしているため、測定時間を短縮するには充分ではない。   In the prior art, two types of laser diodes that emit laser beams having different wavelengths are used as light sources. The phase difference between the measurement light and the reference light signal is obtained by switching the measurement light with a shutter. In addition, the signal obtained by photoelectric conversion of the reflected light reflected and returned from the target as the ranging light is transmitted and the signal obtained by photoelectric conversion of the reference light are alternately input to the CPU. In the CPU, a process for calculating the light to the target based on the phase difference between the phase of the signal obtained by photoelectrically converting the reflected light and the phase of the standard signal, and the signal obtained by photoelectrically converting the reference light Since the process of calculating the distance to the target is alternately performed based on the phase difference between the phase of the reference signal and the phase of the reference signal, the distance to the target is finally obtained based on the calculation result of each process. It is not enough to shorten the measurement time.

すなわち、反射光を光電変換して得られた信号の位相と基準信号の位相との位相差に基づいてターゲットまでの距離を演算する処理と、参照光を光電変換して得られた信号の位相と基準信号の位相との位相差を基にターゲットまでの距離を演算する処理をシリアルに行っているため、両者の処理時間の和が測定時間となり、各処理におけるデータ量を少なくしなければ、測定時間を短縮することはできない。   That is, the process of calculating the distance to the target based on the phase difference between the phase of the signal obtained by photoelectric conversion of the reflected light and the phase of the reference signal, and the phase of the signal obtained by photoelectric conversion of the reference light Since the processing to calculate the distance to the target based on the phase difference between the reference signal and the phase of the reference signal is performed serially, the sum of both processing times becomes the measurement time, and if the amount of data in each processing is not reduced, Measurement time cannot be shortened.

本発明は、前記従来技術の課題に鑑みて為されたものであり、その目的は、測定時間を短縮することにある。   The present invention has been made in view of the problems of the prior art, and an object thereof is to shorten the measurement time.

前記目的を達成するために、請求項1に係る光波距離計においては、基準信号で変調された光を発光する発光手段と、前記発光手段から光を導入して測距光として測定光路に送光する第1の送光手段と、前記発光手段から光を導入し、前記導入した光を第1参照光または第2参照光に振り分け、前記第1参照光を第1参照光路に送光し、前記第2参照光を第2参照光路に送光する第2の送光手段と、前記第1参照光路または第2参照光路のいずれか一方を遮断する参照光路遮断手段と、前記第1の送光手段による測距光の送光に伴って前記測定光路で反射した反射光を受光したときに、前記第1参照光路が遮断されているときには前記受光した反射光を第1受光路に導き、前記第2参照光路が遮断されているときには前記受光した反射光を第2受光路に導く受光手段と、前記第1受光路から反射光を受光したときに光電変換を行って第1測距信号を生成し、前記第1参照光路から前記第1参照光を受光したときに光電変換を行って第1参照信号を生成する第1の光電変換手段と、前記第2受光路から反射光を受光したときに光電変換を行って第2測距信号を生成し、前記第2参照光路から前記第2参照光を受光したときに光電変換を行って第2参照信号を生成する第2の光電変換手段と、前記基準信号に対する前記第1測距信号および前記第2参照信号の位相差または前記基準信号に対する前記第2測距信号および前記第1参照信号の位相差を演算し、前記いずれかの演算結果を基に前記測定光路上のターゲットまでの距離を演算する演算手段とを備えて構成した。   In order to achieve the above object, in the lightwave distance meter according to claim 1, a light emitting means for emitting light modulated by a reference signal, and light introduced from the light emitting means to be sent to the measurement optical path as distance measuring light. Light is introduced from the first light transmitting means that emits light and the light emitting means, the introduced light is distributed to the first reference light or the second reference light, and the first reference light is sent to the first reference light path. , Second light transmitting means for transmitting the second reference light to a second reference optical path, reference optical path blocking means for blocking either the first reference optical path or the second reference optical path, and the first When the reflected light reflected by the measurement optical path is received along with the distance measurement light transmitted by the light transmitting means, the received reflected light is guided to the first light receiving path when the first reference optical path is blocked. When the second reference light path is interrupted, the received reflected light is converted into the second A light receiving means for guiding the light to the light receiving path, and when the reflected light is received from the first light receiving path, photoelectric conversion is performed to generate a first ranging signal, and the first reference light is received from the first reference light path. First photoelectric conversion means for generating a first reference signal by performing photoelectric conversion, and generating a second distance measurement signal by performing photoelectric conversion when reflected light is received from the second light receiving path. Second photoelectric conversion means for generating a second reference signal by performing photoelectric conversion when receiving the second reference light from the two reference light paths, and the first ranging signal and the second reference signal for the reference signal Computing means for computing a phase difference between the second ranging signal and the first reference signal with respect to the reference signal, and computing a distance to the target on the measurement optical path based on one of the computation results And configured.

(作用)基準信号で変調された光が測距光として測定光路に送光されるとともに、第1参照光として第1参照光路または第2参照光路として第2参照光路に送光される過程で、測距光の送光に伴って測定光路で反射した反射光を受光手段が受光したときに、第1参照光路が遮断されているときには反射光を光電変換して第1測距信号が生成されるとともに、第2参照光を光電変換して第2参照信号が生成され、基準信号に対する第1測距信号および第2参照信号の位相差が演算される。一方、反射光を受光したときに第2参照光路が遮断されているときには反射光を光電変換して第2測距信号が生成され、第1参照信号を光電変換して第1参照信号が生成され、基準信号に対する第2測距信号および第1参照信号の位相差が演算され、いずれかの位相差の演算結果を基に測定光路上のターゲットまでの距離が演算される。   (Operation) In the process in which the light modulated by the reference signal is transmitted to the measurement optical path as distance measurement light and is transmitted to the second reference optical path as the first reference optical path or the second reference optical path as the first reference light When the light receiving means receives the reflected light reflected by the measurement light path in response to the transmission of the distance measuring light, and the first reference light path is interrupted, the reflected light is photoelectrically converted to generate a first distance measuring signal. At the same time, the second reference light is photoelectrically converted to generate a second reference signal, and the phase difference between the first ranging signal and the second reference signal with respect to the reference signal is calculated. On the other hand, when the second reference light path is interrupted when the reflected light is received, the reflected light is photoelectrically converted to generate a second ranging signal, and the first reference signal is photoelectrically converted to generate the first reference signal. Then, the phase difference between the second ranging signal and the first reference signal with respect to the reference signal is calculated, and the distance to the target on the measurement optical path is calculated based on the calculation result of one of the phase differences.

すなわち、測定光路に送光された測距光から得られた第1測距信号と第2参照光路から得られた第2参照信号の位相差を求める演算を同時に行うか、あるいは測定光路から得られた第2測距信号の位相差と第1参照光路から得られた第1参照信号の位相差を演算する処理を同時に行うようにしたため、測定光路に関する位相差演算と参照光に関する位相差演算を別々に実行するときよりも測定時間を短縮することができる。   That is, the calculation for obtaining the phase difference between the first distance measurement signal obtained from the distance measurement light transmitted to the measurement optical path and the second reference signal obtained from the second reference optical path is performed simultaneously or obtained from the measurement optical path. Since the processing for calculating the phase difference of the obtained second ranging signal and the phase difference of the first reference signal obtained from the first reference optical path is performed at the same time, the phase difference calculation for the measurement optical path and the phase difference calculation for the reference light are performed. The measurement time can be shortened as compared with the case where the processes are executed separately.

請求項2に係る光波距離計においては、基準信号で変調された光を発光する発光手段と、前記発光手段から光を導入して測距光として測定光路に送光する第1の送光手段と、前記発光手段から光を導入し、前記導入した光を第1参照光または第2参照光に振り分け、前記第1参照光を第1参照光路に送光し、前記第2参照光を第2参照光路に送光する第2の送光手段と、前記第1参照光路または第2参照光路のいずれか一方を遮断する参照光路遮断手段と、前記第1の送光手段による測距光の送光に伴って前記測定光路で反射した反射光を受光したときに、前記第1参照光路が遮断されているときには前記受光した反射光を第1受光路に導き、前記第2参照光路が遮断されているときには前記受光した反射光を第2受光路に導く受光手段と、前記第1受光路から反射光を受光したときに光電変換を行って第1測距信号を生成し、前記第1参照光路から前記第1参照光を受光したときに光電変換を行って第1参照信号を生成する第1の光電変換手段と、前記第2受光路から反射光を受光したときに光電変換を行って第2測距信号を生成し、前記第2参照光路から前記第2参照光を受光したときに光電変換を行って第2参照信号を生成する第2の光電変換手段と、前記基準信号と前記第1測距信号の位相差および前記基準信号と前記第2参照信号の位相差を演算するとともに、前記基準信号と前記第2測距信号の位相差および前記基準信号と前記第1参照信号の位相差を演算し、前記各演算結果を基に前記測定光路上のターゲットまでの距離を演算する演算手段とを備えて構成した。   In the lightwave distance meter according to claim 2, a light emitting means for emitting light modulated by a reference signal, and a first light sending means for introducing light from the light emitting means and transmitting it as a distance measuring light to a measurement optical path. Then, light is introduced from the light emitting means, the introduced light is distributed to the first reference light or the second reference light, the first reference light is sent to the first reference light path, and the second reference light is sent to the first reference light. 2 a second light transmitting means for transmitting to the reference light path, a reference light path blocking means for blocking either the first reference light path or the second reference light path, and a distance measuring light by the first light transmitting means. When the reflected light reflected by the measurement optical path with light transmission is received, when the first reference optical path is blocked, the received reflected light is guided to the first light receiving path, and the second reference optical path is blocked. A light receiving means for guiding the received reflected light to the second light receiving path, When the reflected light is received from the first light receiving path, photoelectric conversion is performed to generate a first ranging signal, and when the first reference light is received from the first reference light path, photoelectric conversion is performed to perform the first conversion. A first photoelectric conversion means for generating a reference signal; and a second ranging signal is generated by performing photoelectric conversion when reflected light is received from the second light receiving path, and the second reference is generated from the second reference optical path. Second photoelectric conversion means for generating a second reference signal by performing photoelectric conversion when receiving light; a phase difference between the reference signal and the first ranging signal; and the reference signal and the second reference signal A phase difference is calculated, a phase difference between the reference signal and the second ranging signal and a phase difference between the reference signal and the first reference signal are calculated, and a target on the measurement optical path is calculated based on the calculation results. And a calculation means for calculating the distance to.

(作用)基準信号で変調された光が測距光として測定光路に送光されるとともに、第1参照光として第1参照光路または第2参照光路として第2参照光路に送光される過程で、測距光の送光に伴って測定光路で反射した反射光を受光手段が受光したときに、第1参照光路が遮断されているときには反射光を光電変換して第1測距信号が生成されるとともに、第2参照光を光電変換して第2参照信号が生成され、基準信号に対する第1測距信号および第2参照信号の位相差が演算される。一方、反射光を受光したときに第2参照光路が遮断されているときには反射光を光電変換して第2測距信号が生成され、第1参照信号を光電変換して第1参照信号が生成され、基準信号に対する第2測距信号および第1参照信号の位相差が演算され、各位相差の演算結果を基に測定光路上のターゲットまでの距離が演算される。   (Operation) In the process in which the light modulated by the reference signal is transmitted to the measurement optical path as distance measurement light and is transmitted to the second reference optical path as the first reference optical path or the second reference optical path as the first reference light When the light receiving means receives the reflected light reflected by the measurement light path in response to the transmission of the distance measuring light, and the first reference light path is interrupted, the reflected light is photoelectrically converted to generate a first distance measuring signal. At the same time, the second reference light is photoelectrically converted to generate a second reference signal, and the phase difference between the first ranging signal and the second reference signal with respect to the reference signal is calculated. On the other hand, when the second reference light path is interrupted when the reflected light is received, the reflected light is photoelectrically converted to generate a second ranging signal, and the first reference signal is photoelectrically converted to generate the first reference signal. Then, the phase difference between the second ranging signal and the first reference signal with respect to the reference signal is calculated, and the distance to the target on the measurement optical path is calculated based on the calculation result of each phase difference.

すなわち、測定光路に送光された測距光から得られた第1測距信号と第2参照光路から得られた第2参照信号の位相差を求める演算を同時に行うとともに、測定光路から得られた第2測距信号の位相差と第1参照光路から得られた第1参照信号の位相差を演算する処理を同時に行うようにしたため、測定光路に関する位相差演算と参照光に関する位相差演算を別々に実行するときよりも測定時間を短縮することができる。   In other words, the calculation for obtaining the phase difference between the first distance measurement signal obtained from the distance measurement light transmitted to the measurement optical path and the second reference signal obtained from the second reference optical path is performed simultaneously and obtained from the measurement optical path. Since the processing for calculating the phase difference of the second ranging signal and the phase difference of the first reference signal obtained from the first reference optical path is performed simultaneously, the phase difference calculation regarding the measurement optical path and the phase difference calculation regarding the reference light are performed. The measurement time can be shortened compared with the case where they are executed separately.

例えば、測定光路を対象とした位相差演算のデータ量と参照光路を対象とした位相差演算のデータ量の総和を一定にすると、測定に要する時間を半分に短縮することができる。   For example, if the sum of the data amount of the phase difference calculation for the measurement optical path and the data amount of the phase difference calculation for the reference optical path is made constant, the time required for measurement can be reduced to half.

請求項3に係る光波距離計においては、基準信号で変調された光を発光する発光手段と、前記発光手段から光を導入して測距光として測定光路に送光する第1の送光手段と、前記発光手段から光を導入し、前記導入した光を第1参照光または第2参照光に振り分け、前記第1参照光を第1参照光路に送光し、前記第2参照光を第2参照光路に送光する第2の送光手段と、前記第1参照光路と前記第2参照光路を開放し、その後、前記第1参照光路または前記第2参照光路を遮断する参照光路制御手段と、前記第1の送光手段による測距光の送光に伴って前記測定光路で反射した反射光を受光したときに、前記第1参照光路と前記第2参照光路が開放しているときには前記受光した反射光を第1受光路と第2受光路との間に導き、前記第1参照光路が遮断されているときには前記受光した反射光を第1受光路に導き、前記第2参照光路が遮断されているときには前記受光した反射光を第2受光路に導く受光手段と、前記第1受光路から反射光を受光したときに光電変換を行って第1測距信号を生成し、前記第1参照光路から前記第1参照光を受光したときに光電変換を行って第1参照信号を生成する第1の光電変換手段と、前記第2受光路から反射光を受光したときに光電変換を行って第2測距信号を生成し、前記第2参照光路から前記第2参照光を受光したときに光電変換を行って第2参照信号を生成する第2の光電変換手段と、前記第1参照光路と前記第2参照光路が開放しているときに前記第1参照信号と前記第2参照信号の位相差を補正値として演算し、その後、前記基準信号に対する前記第1測距信号の位相差または前記基準信号に対する前記第2測距信号の位相差を演算し、前記いずれか一方の演算結果を基に前記測定光路上のターゲットまでの距離を演算し、この距離値を前記補正値で補正する演算手段とを備えて構成した。   In the lightwave distance meter according to claim 3, a light emitting means for emitting light modulated by a reference signal, and a first light sending means for introducing light from the light emitting means and sending it to the measuring optical path as distance measuring light Then, light is introduced from the light emitting means, the introduced light is distributed to the first reference light or the second reference light, the first reference light is sent to the first reference light path, and the second reference light is sent to the first reference light. 2nd light transmission means which transmits light to 2 reference light paths, and the reference light path control means which opens the first reference light path and the second reference light path and then blocks the first reference light path or the second reference light path And when the first reference light path and the second reference light path are open when the reflected light reflected by the measurement light path is received along with the distance measurement light transmitted by the first light transmission means. The received reflected light is guided between a first light receiving path and a second light receiving path, and the first reference A light receiving means for guiding the received reflected light to the first light receiving path when the path is blocked, and for guiding the received reflected light to the second light receiving path when the second reference light path is blocked; When the reflected light is received from the light receiving path, photoelectric conversion is performed to generate a first ranging signal, and when the first reference light is received from the first reference light path, photoelectric conversion is performed to generate the first reference signal. When the reflected light is received from the first photoelectric conversion means and the second light receiving path, photoelectric conversion is performed to generate a second ranging signal, and the second reference light is received from the second reference light path. Second photoelectric conversion means for performing photoelectric conversion to generate a second reference signal, and when the first reference optical path and the second reference optical path are open, the first reference signal and the second reference signal The phase difference of the reference signal is calculated as a correction value, and then the reference signal is The phase difference of the first ranging signal relative to the reference signal or the phase difference of the second ranging signal relative to the reference signal is calculated, and the distance to the target on the measurement optical path is calculated based on one of the calculation results. And an arithmetic means for correcting the distance value with the correction value.

(作用)基準信号で変調された光が測距光として測定光路に送光されるとともに、第1参照光として第1参照光路または第2参照光路として第2参照光路に送光される過程で、実際の測距前には、測距光の送光に伴って測定光路で反射した反射光を受光したときに、この反射光が第1の光電変換手段と第2の光電変換手段に入射しないように光路が切替えられる一方で、第1参照光路と第2参照光路が開放され、第1の光電変換手段で第1の参照信号が生成され、第2の光電変換手段で第2の参照信号が生成され、第1の参照信号と第2の参照信号の位相差が補正値として演算される。その後、実際の測距時には、基準信号で変調された光が測距光として測定光路に送光されるとともに、第1参照光路または第2参照光路が遮断される。測距光の送光に伴って測定光路で反射した反射光を受光手段が受光したときに、第1参照光路が遮断されているときには反射光を光電変換して第1測距信号が生成され、基準信号に対する第1測距信号の位相差が演算され、この演算結果を基に測定光路上のターゲットまでの距離が演算される。一方、反射光を受光したときに第2参照光路が遮断されているときには反射光を光電変換して第2測距信号が生成され、基準信号に対する第2測距信号の位相差が演算され、この演算結果を基に測定光路上のターゲットまでの距離が演算される。このとき、第1参照信号と第2参照信号の位相差は補正値として既に求められているので、この参照信号間の位相差を距離値から減算する補正を行うことで、受光系と送光系における誤差を消去することができる。   (Operation) In the process in which the light modulated by the reference signal is transmitted to the measurement optical path as distance measurement light and is transmitted to the second reference optical path as the first reference optical path or the second reference optical path as the first reference light Before the actual distance measurement, when the reflected light reflected by the measurement light path is received along with the transmission of the distance measuring light, the reflected light is incident on the first photoelectric conversion means and the second photoelectric conversion means. The first reference optical path and the second reference optical path are opened while the first reference optical path is generated by the first photoelectric conversion means, and the second reference is generated by the second photoelectric conversion means. A signal is generated, and the phase difference between the first reference signal and the second reference signal is calculated as a correction value. Thereafter, during actual distance measurement, light modulated by the reference signal is transmitted to the measurement optical path as distance measurement light, and the first reference optical path or the second reference optical path is blocked. When the light receiving means receives the reflected light reflected by the measurement light path as the distance measurement light is transmitted, the first distance signal is generated by photoelectrically converting the reflected light when the first reference light path is interrupted. The phase difference of the first ranging signal with respect to the reference signal is calculated, and the distance to the target on the measurement optical path is calculated based on the calculation result. On the other hand, when the second reference optical path is interrupted when the reflected light is received, the reflected light is photoelectrically converted to generate a second ranging signal, and the phase difference of the second ranging signal with respect to the reference signal is calculated, Based on the calculation result, the distance to the target on the measurement optical path is calculated. At this time, the phase difference between the first reference signal and the second reference signal has already been obtained as a correction value. Therefore, by correcting the phase difference between the reference signals from the distance value, the light receiving system and the light transmission Errors in the system can be eliminated.

すなわち、実際の測距時に、第1測距信号または第2測距信号を生成するだけでターゲットまでの距離を高精度に求めることができ、測定光路に関する位相差演算と参照光に関する位相差演算を別々に実行するときよりも、測定時間をより短縮することができる。   That is, during actual distance measurement, the distance to the target can be obtained with high accuracy by simply generating the first distance signal or the second distance signal, and the phase difference calculation for the measurement light path and the phase difference calculation for the reference light. The measurement time can be further shortened than when the processes are executed separately.

以上の説明から明らかなように、請求項1に係る光波距離計によれば、測定時間を短縮することができる。   As is clear from the above description, according to the lightwave distance meter according to the first aspect, the measurement time can be shortened.

請求項2に係る光波距離計によれば、測定時間を短縮することができる。   According to the optical distance meter according to claim 2, the measurement time can be shortened.

請求項3に係る光波距離計によれば、測定時間をより短縮することができる。   According to the optical distance meter according to claim 3, the measurement time can be further shortened.

以下、本発明の実施の形態を実施例に基づいて説明する。図1は、本発明の一実施例を示す光波距離計のブロック構成図、図2は、測定モード1における信号の生成方法と測定モード2における信号の生成方法を説明するための図、図3は、測定モード3における信号の生成方法を説明するための図である。   Hereinafter, embodiments of the present invention will be described based on examples. FIG. 1 is a block diagram of an optical distance meter showing an embodiment of the present invention, FIG. 2 is a diagram for explaining a signal generation method in measurement mode 1 and a signal generation method in measurement mode 2, and FIG. These are the figures for demonstrating the production | generation method of the signal in the measurement mode 3. FIG.

これらの図において、位相差方式の光波距離計12は、信号発生回路14、レーザダイオード駆動回路16、レーザダイオード18、送光レンズ20、ビームスプリッタ(ハーフミラー)22、24、送光レンズ26、シャッタ28、対物レンズ30、光路切替器32、フォトダイオード34、36、プリアンプ38、40、アンプ42、44、バンドパスフィルタ46、48、ミキサー(混合器)50、52、ローパスフィルタ54、56、A/D変換器58、60、CPU62、表示器64を備えて構成されている。なお、ターゲットを視準するための視準望遠鏡などは省略してある。   In these figures, a phase difference type lightwave distance meter 12 includes a signal generation circuit 14, a laser diode drive circuit 16, a laser diode 18, a light transmission lens 20, beam splitters (half mirrors) 22, 24, a light transmission lens 26, Shutter 28, objective lens 30, optical path switch 32, photodiodes 34 and 36, preamplifiers 38 and 40, amplifiers 42 and 44, band pass filters 46 and 48, mixers (mixers) 50 and 52, low pass filters 54 and 56, A / D converters 58 and 60, a CPU 62, and a display 64 are provided. A collimating telescope for collimating the target is omitted.

信号発生回路14は、CPU62からの指令に応答して、基準信号として、例えば、30MHz、15MHz、250kHzの信号をレーザダイオード駆動回路16に出力するとともに、基準信号とは周波数の異なるローカル信号をミキサー50、52に出力するようになっている。レーザダイオード駆動回路16は、基準信号に応答して、レーザダイオード18を駆動し、レーザダイオード18から発光する光(レーザ光)を基準信号にしたがって光量変調するようになっている。すなわち、レーザダイオード18は、基準信号で光量変調された光を発光する発光手段として構成されており、レーザダイオード18の発光による光は送光レンズ20を透過してビームスプリッタ22、24に入射するようになっている。   In response to a command from the CPU 62, the signal generation circuit 14 outputs, for example, signals of 30 MHz, 15 MHz, and 250 kHz to the laser diode driving circuit 16 as a reference signal, and a local signal having a frequency different from that of the reference signal. 50 and 52 are output. The laser diode drive circuit 16 drives the laser diode 18 in response to the reference signal, and modulates the amount of light (laser light) emitted from the laser diode 18 according to the reference signal. That is, the laser diode 18 is configured as a light emitting unit that emits light whose light amount is modulated by the reference signal, and the light emitted from the laser diode 18 passes through the light transmitting lens 20 and enters the beam splitters 22 and 24. It is like that.

ビームスプリッタ22は、レーザダイオード18の発光による光のうち一部をそのまま透過し、残りの光を反射し第1参照光100として第1参照光路(図示せず)に送光するようになっている。ビームスプリッタ22を透過した光はビームスプリッタ24に入射し、入射した光のうち一部はビームスプリッタ24をそのまま透過し、送光レンズ26を介して測定光路(図示せず)に測距光102として送光され、残りの光は反射し第2参照光104として第2参照光路(図示せず)に送光されるようになっている。なお、ビームスプリッタ22、24は平行平面ガラスでもよい。この場合約4%が反射される。   The beam splitter 22 transmits a part of the light emitted by the laser diode 18 as it is, reflects the remaining light, and transmits it as a first reference light 100 to a first reference optical path (not shown). Yes. The light that has passed through the beam splitter 22 enters the beam splitter 24, and a part of the incident light passes through the beam splitter 24 as it is, and passes through the light transmission lens 26 to the measuring optical path (not shown), and the distance measuring light 102. The remaining light is reflected and transmitted as a second reference light 104 to a second reference light path (not shown). The beam splitters 22 and 24 may be parallel plane glass. In this case, about 4% is reflected.

すなわち、送光レンズ20、ビームスプリッタ22、24、送光レンズ26は、レーザダイオード18の発光に伴う光を導入して測距光102として測定光路に送光する第1の送光手段として構成されているととともに、レーザダイオード18の発光に伴う光を導入し、導入した光を第1参照光100または第2参照光104に振り分け、第1参照光100を第1参照光路に送光し、第2参照光104を第2参照光路に送光する第2の送光手段として構成されている。   That is, the light transmitting lens 20, the beam splitters 22 and 24, and the light transmitting lens 26 are configured as first light transmitting means that introduces light accompanying light emission of the laser diode 18 and transmits the light as distance measuring light 102 to the measurement optical path. In addition, the light accompanying the light emission of the laser diode 18 is introduced, the introduced light is distributed to the first reference light 100 or the second reference light 104, and the first reference light 100 is transmitted to the first reference light path. The second reference light 104 is configured as a second light transmitting means for transmitting the second reference light 104 to the second reference light path.

第1参照光100が伝播する第1参照光路と第2参照光104が伝播する第2参照光の光路近傍にはシャッタ28が配置されている。このシャッタ28は、測定モード1〜3のうち測定モード1のときには第1参照光路を遮断して第1参照光100の伝播を阻止し、測定モード2のときには第2参照光路を遮断して第2参照光104の伝播を阻止する参照光路遮断手段として構成されている。また、シャッタ28は、測定モード3のときには、第1参照光路と第2参照光路を開放し、第1参照光100と第2参照光104をそのまま通過させ、その後、実際の測距時に、第1参照光路を遮断して第1参照光100の伝播を阻止し、または、第2参照光路を遮断して第2参照光104の伝播を阻止する参照光路制御手段として機能するようになっている。   A shutter 28 is disposed in the vicinity of the optical path of the first reference light path through which the first reference light 100 propagates and the second reference light through which the second reference light 104 propagates. The shutter 28 blocks the first reference light path and blocks the propagation of the first reference light 100 in the measurement mode 1 among the measurement modes 1 to 3, and blocks the second reference light path and blocks the second reference light path in the measurement mode 2. 2 is configured as a reference light path blocking means for blocking the propagation of the reference light 104. Further, in the measurement mode 3, the shutter 28 opens the first reference light path and the second reference light path, passes the first reference light 100 and the second reference light 104 as they are, and then performs the first reference light path during the actual distance measurement. It functions as reference optical path control means for blocking the propagation of the first reference light 100 by blocking the first reference light path, or blocking the propagation of the second reference light 104 by blocking the second reference light path. .

対物レンズ30には、測定光路に向けて照射された測距光102が測定光路上のターゲットで反射したときに、その反射光が入射するようになっており、対物レンズ30に入射した反射光は光路切替器32に入射するようになっている。光路切替器32は、機械的にあるいは光学的に、またはCPU62からの指令を基にシャッタ28と連動して測定モードに応じて受光路を切替えるようになっている。例えば、光路切替器32は、測定モード1のときには、第1参照光100が遮蔽されていることを条件に、対物レンズ30から入射した反射光を第1受光路(光路切換器32とフォトダイオード34とを結ぶ受光路)に導き、測定モード2のときには、第2参照光104が遮蔽されていることを条件に、対物レンズ30からの反射光を第2受光路(光路切換器32とフォトダイオード36とを結ぶ受光路)に導く受光手段として構成されている。また、光路切替器32は、測定モード3のときには、第1参照光路と第2参照光路が開放されていることを条件に、対物レンズ30からの反射光を第1受光路(光路切替器32とフォトダイオード34とを結ぶ受光路)と第2受光路(光路切替器32とフォトダイオード36とを結ぶ受光路)との間に導き、対物レンズ30からの反射光がフォトダイオード34とフォトダイオード36に入射しないように受光路を切替え、その後、実際の測距時に、第1参照光100が遮蔽されていることを条件に、対物レンズ30から入射した反射光を第1受光路(光路切替器32とフォトダイオード34とを結ぶ受光路)に導くように受光路を切替え、一方、第2参照光104が遮蔽されていることを条件に、対物レンズ30からの反射光を第2受光路(光路切替器32とフォトダイオード36とを結ぶ受光路)に導くように受光路を切替える受光手段として構成されている。   When the distance measuring light 102 irradiated toward the measurement optical path is reflected by the target on the measurement optical path, the reflected light enters the objective lens 30, and the reflected light incident on the objective lens 30 is reflected on the objective lens 30. Is incident on the optical path switch 32. The optical path switch 32 switches the light receiving path according to the measurement mode mechanically or optically or in conjunction with the shutter 28 based on a command from the CPU 62. For example, in the measurement mode 1, the optical path switch 32 converts the reflected light incident from the objective lens 30 into the first light receiving path (the optical path switch 32 and the photodiode) on the condition that the first reference light 100 is shielded. In the measurement mode 2, on the condition that the second reference light 104 is shielded, the reflected light from the objective lens 30 is reflected on the second light receiving path (the optical path switch 32 and the photo path). The light receiving means is guided to a light receiving path connecting to the diode 36. Further, in the measurement mode 3, the optical path switch 32 transmits the reflected light from the objective lens 30 on the first light receiving path (optical path switch 32) on condition that the first reference optical path and the second reference optical path are open. And a second light receiving path (light receiving path connecting the optical path switch 32 and the photodiode 36), and reflected light from the objective lens 30 is reflected between the photodiode 34 and the photodiode. The light receiving path is switched so that it does not enter 36, and then the reflected light incident from the objective lens 30 is changed to the first light receiving path (optical path switching) on condition that the first reference light 100 is shielded during actual distance measurement. On the other hand, the reflected light from the objective lens 30 is reflected to the second light receiving path on the condition that the second reference light 104 is shielded. Is configured as a light receiving means for switching the light path to direct the light path) that connects the optical path switching device 32 and the photodiode 36.

フォトダイオード34は、光電変換素子を用いて構成されており、測定モード1において、光路切替器32から反射光を受光したときに光電変換を行って第1測距信号を生成し、測定モード2において、ビームスプリッタ22から第1参照光100を受光したときに光電変換を行って第1参照信号を生成する第1の光電変換手段として構成されている。フォトダイオード36は、光電変換素子を用いて構成されており、測定モード1において、ビームスプリッタ24から第2参照光104を受光したときに光電変換を行って第2参照信号を生成し、測定モード2において、光路切替器32から反射光を受光したときに光電変換を行って第2測距信号を生成する第2の光電変換手段として構成されている。   The photodiode 34 is configured using a photoelectric conversion element. In the measurement mode 1, when the reflected light is received from the optical path switch 32, the photodiode 34 performs photoelectric conversion to generate a first distance measurement signal. 1, the first reference light 100 is generated from the beam splitter 22 to generate a first reference signal by performing photoelectric conversion. The photodiode 36 is configured by using a photoelectric conversion element. In the measurement mode 1, when the second reference light 104 is received from the beam splitter 24, the photodiode 36 performs photoelectric conversion to generate a second reference signal, and the measurement mode 1 2 is configured as a second photoelectric conversion means that performs photoelectric conversion when receiving reflected light from the optical path switch 32 to generate a second distance measurement signal.

フォトダイオード34の生成による第1測距信号または第1参照信号はプリアンプ38で増幅されたあとアンプ42で更に増幅され、増幅された信号はバンドパスフィルタ46を通過したあとミキサー50に入力される。ミキサー50に入力された信号は信号発生回路14からのローカル信号と混合され、中間周波の信号(第1測距信号または第1参照信号)に変換されたあとローパスフィルタ54を通過してA/D変換器58に入力される。中間周波による第1測距信号または第1参照信号はA/D変換器58でデジタル信号に変換され、デジタルデータとしてCPU62で処理されるようになっている。   The first ranging signal or the first reference signal generated by the photodiode 34 is amplified by the preamplifier 38 and then further amplified by the amplifier 42, and the amplified signal is input to the mixer 50 after passing through the band pass filter 46. . The signal input to the mixer 50 is mixed with the local signal from the signal generation circuit 14, converted into an intermediate frequency signal (first distance measurement signal or first reference signal), and then passed through the low-pass filter 54 to obtain the A / It is input to the D converter 58. The first ranging signal or the first reference signal based on the intermediate frequency is converted into a digital signal by the A / D converter 58 and processed by the CPU 62 as digital data.

一方、フォトダイオード36の生成による第2測距信号または第2参照信号はプリアンプ40で増幅されたあと更にアンプ44で増幅され、増幅された信号はバンドパスフィルタ48を通過したあとミキサー52に入力される。ミキサー52に入力された信号は信号発生回路14からのローカル信号と混合され、中間周波の信号(第2測距信号または第2参照信号)に変換されたあとローパスフィルタ56を通過してA/D変換器60に入力される。中間周波の第2測距信号または第2参照信号はA/D変換器60でデジタル信号に変換され、デジタルデータとしてCPU62で処理されるようになっている。   On the other hand, the second ranging signal or the second reference signal generated by the photodiode 36 is amplified by the preamplifier 40 and further amplified by the amplifier 44, and the amplified signal is input to the mixer 52 after passing through the band pass filter 48. Is done. The signal input to the mixer 52 is mixed with the local signal from the signal generation circuit 14, converted into an intermediate frequency signal (second ranging signal or second reference signal), and then passed through the low-pass filter 56 to obtain the A / Input to the D converter 60. The second ranging signal or the second reference signal having an intermediate frequency is converted into a digital signal by the A / D converter 60 and processed by the CPU 62 as digital data.

CPU62は、信号発生回路14から発生する基準信号の発生タイミングを監視しながらA/D変換器58、60からデジタル信号を取り込み、測定モード1のときには基準信号と第1測距信号の位相差を求める演算と基準信号と第2参照信号の位相差を求める演算を同時に行い、測定モード2のときには、基準信号と第2測距信号の位相差を求める演算と基準信号と第1参照信号の位相差を求める演算を同時に実行し、各演算結果を基に測定光路上のターゲットまでの距離を演算し、この演算結果を表示器64に表示させる演算手段として構成されている。   The CPU 62 captures the digital signal from the A / D converters 58 and 60 while monitoring the generation timing of the reference signal generated from the signal generation circuit 14. In the measurement mode 1, the CPU 62 calculates the phase difference between the reference signal and the first distance measurement signal. The calculation to obtain and the calculation to obtain the phase difference between the reference signal and the second reference signal are performed simultaneously. In measurement mode 2, the calculation to obtain the phase difference between the reference signal and the second ranging signal and the position of the reference signal and the first reference signal. The calculation unit is configured as a calculation unit that simultaneously executes a calculation for obtaining a phase difference, calculates a distance to the target on the measurement optical path based on each calculation result, and displays the calculation result on the display unit 64.

次に、光波距離計12を用いてターゲットまでの距離を求めるに際して、レーザダイオード18の発光による光が測距光102として測定光路に向けて出射されるとともに、第1参照光100として第1参照光路または第2参照光104として第2参照光路に送光される過程で、測定モード1による処理と測定モード2による処理が交互に複数回実行される。例えば、測定モード1のときには、シャッタ28と光路切替器32の切替動作により、図2(a)に示すように、ビームスプリッタ22からの第1参照光100が遮蔽され、ビームスプリッタ24からの第2参照光104がフォトダイオード36に入射するとともに、測距光102がターゲットで反射したときの反射光が対物レンズ30、光路切替器32からフォトダイオード34に入射する。この結果、フォトダイオード34の生成による第1測距信号とフォトダイオード36の生成による第2参照信号を基にCPU62において測距演算が行われる。   Next, when the distance to the target is obtained using the lightwave distance meter 12, the light emitted from the laser diode 18 is emitted as the distance measuring light 102 toward the measurement optical path, and as the first reference light 100, the first reference. In the process of being transmitted to the second reference optical path as the optical path or the second reference light 104, the process in the measurement mode 1 and the process in the measurement mode 2 are alternately executed a plurality of times. For example, in the measurement mode 1, the first reference light 100 from the beam splitter 22 is shielded by the switching operation of the shutter 28 and the optical path switch 32, as shown in FIG. 2 The reference light 104 enters the photodiode 36, and the reflected light when the distance measuring light 102 is reflected by the target enters the photodiode 34 from the objective lens 30 and the optical path switch 32. As a result, the CPU 62 performs distance calculation based on the first distance measurement signal generated by the photodiode 34 and the second reference signal generated by the photodiode 36.

すなわち、CPU62は、基準信号と第1測距信号の位相差を求める演算と基準信号と第2参照信号の位相差を求める演算を同時に行う。この場合、変調信号の波長をλとし、1波長に関するデータを1としたときに、例えば、3000個分のデータを処理して基準信号と第1測距信号の位相差を求めるとともに、1500個分のデータを処理して基準信号と第2参照信号の位相差を演算する。そして各位相差の演算結果を基に測距光路上のターゲットまでの距離を演算する。例えば、ターゲットまでの距離dを、距離d=位相差・測距信号の波長/2πに従って演算する。この際、両者の差を求めることで、レーザダイオード18を含む送光系における誤差を消去することができる。   That is, the CPU 62 simultaneously performs a calculation for obtaining the phase difference between the reference signal and the first ranging signal and a calculation for obtaining the phase difference between the reference signal and the second reference signal. In this case, assuming that the wavelength of the modulation signal is λ and the data related to one wavelength is 1, for example, 3000 pieces of data are processed to obtain the phase difference between the reference signal and the first ranging signal and 1500 pieces. Minute data is processed to calculate the phase difference between the reference signal and the second reference signal. Then, the distance to the target on the distance measuring optical path is calculated based on the calculation result of each phase difference. For example, the distance d to the target is calculated according to distance d = phase difference / wavelength of distance measurement signal / 2π. At this time, an error in the light transmission system including the laser diode 18 can be eliminated by obtaining the difference between the two.

次に、測定モード2のときには、シャッタ28と光路切替器32の切替動作により、図2(b)に示すように、ビームスプリッタ24からの第2参照光104が遮蔽され、ビームスプリッタ22からの第1参照光100がフォトダイオード34に入射し、測距光102がターゲットで反射したときの反射光がフォトダイオード36に入射し、フォトダイオード34によって第1参照信号が生成され、フォトダイオード36によって第2測距信号が生成される。そしてCPU62においては、基準信号と第2測距信号の位相差を求める演算と基準信号と第1参照信号の位相差を求める演算が同時に実行される。この場合、変調信号の波長をλとし、1波長に関するデータを1としたときに、例えば、3000個分のデータを処理して基準信号と第2測距信号の位相差を求めるとともに、1500個分のデータを処理して基準信号と第1参照信号の位相差を演算する。そして各位相差の演算結果を基に測距光路上のターゲットまでの距離を演算するに際して両者の差を求めることで、レーザダイオード18を含む送光系における誤差を消去することができる。   Next, in the measurement mode 2, the second reference light 104 from the beam splitter 24 is shielded by the switching operation of the shutter 28 and the optical path switch 32, as shown in FIG. The first reference light 100 is incident on the photodiode 34, the reflected light when the distance measuring light 102 is reflected by the target is incident on the photodiode 36, the first reference signal is generated by the photodiode 34, and the photodiode 36 A second ranging signal is generated. In the CPU 62, the calculation for obtaining the phase difference between the reference signal and the second ranging signal and the calculation for obtaining the phase difference between the reference signal and the first reference signal are simultaneously executed. In this case, assuming that the wavelength of the modulation signal is λ and the data related to one wavelength is 1, for example, 3000 pieces of data are processed to obtain the phase difference between the reference signal and the second ranging signal and 1500 pieces. Minute data is processed to calculate the phase difference between the reference signal and the first reference signal. An error in the light transmission system including the laser diode 18 can be eliminated by calculating the difference between the two when calculating the distance to the target on the distance measuring optical path based on the calculation result of each phase difference.

さらに、測定モード1における演算結果と測定モード2における演算結果を減算することで、フォトダイオード34とフォトダイオード36を含む受光系における誤差を消去することができる。   Furthermore, the error in the light receiving system including the photodiode 34 and the photodiode 36 can be eliminated by subtracting the calculation result in the measurement mode 1 and the calculation result in the measurement mode 2.

このように、本実施例においては、測定モード1で基準信号と第1測距信号の位相差を求める演算と基準信号と第2参照信号の位相差を求める演算を同時に行うとともに、測定モード2で基準信号と第2測距信号の位相差を求める演算と基準信号と第1参照信号の位相差を求める演算を同時に行い、各演算結果を基に測定光路上のターゲットまでの距離を演算するようにしたため、測定光路に関する位相差演算と参照光に関する位相差演算を別々に実行するときよりも測定時間を短縮することができる。   As described above, in the present embodiment, in the measurement mode 1, the calculation for obtaining the phase difference between the reference signal and the first ranging signal and the calculation for obtaining the phase difference between the reference signal and the second reference signal are simultaneously performed, and the measurement mode 2 Simultaneously calculate the phase difference between the reference signal and the second ranging signal and calculate the phase difference between the reference signal and the first reference signal, and calculate the distance to the target on the measurement optical path based on each calculation result. Since it did in this way, measurement time can be shortened rather than performing the phase difference calculation regarding a measurement optical path, and the phase difference calculation regarding a reference light separately.

また、本実施例によれば、測定光路を対象とした位相差演算のデータ量と参照光路を対象とした位相差演算のデータ量の総和を一定にすると、測定に要する時間を半分に短縮することができる。   Further, according to the present embodiment, if the sum of the data amount of the phase difference calculation for the measurement optical path and the data amount of the phase difference calculation for the reference optical path is made constant, the time required for the measurement is reduced by half. be able to.

なお、測定時間を従来と同一の時間としたときには、測定モード1におけるデータ量と測定モード2におけるデータ量の和が2倍となるため、測定精度を更に向上させることができる。   When the measurement time is the same as the conventional time, the sum of the data amount in measurement mode 1 and the data amount in measurement mode 2 is doubled, so that the measurement accuracy can be further improved.

また、測定モード1による測距演算と測定モード2による測距演算を実行する代わりに、測定モード1または測定モード2による測距演算を基に測定光路上のターゲットまでの距離を求めることもできる。   Further, instead of executing the ranging calculation in the measurement mode 1 and the ranging calculation in the measurement mode 2, the distance to the target on the measurement optical path can be obtained based on the ranging calculation in the measurement mode 1 or the measurement mode 2. .

次に、測定モード3のときには、シャッタ28と光路切替器32の切替動作により、図3(a)に示すように、シャッタ28を第1参照光路と第2参照光路から外れた位置に配置し、ビームスプリッタ22からの第1参照光100をフォトダイオード34に入射し、ビームスプリッタ24からの第2参照光104をフォトダイオード36に入射し、フォトダイオード34の光電変換によって第1参照信号を生成し、フォトダイオード36の光電変換によって第2参照信号を生成し、CPU62において、第1参照信号の位相と第2参照信号の位相の位相差を補正値として演算する。この後、実際の測距を実行する。   Next, in the measurement mode 3, as shown in FIG. 3A, the shutter 28 is disposed at a position deviated from the first reference optical path and the second reference optical path by the switching operation of the shutter 28 and the optical path switch 32. The first reference light 100 from the beam splitter 22 enters the photodiode 34, the second reference light 104 from the beam splitter 24 enters the photodiode 36, and a first reference signal is generated by photoelectric conversion of the photodiode 34. Then, the second reference signal is generated by photoelectric conversion of the photodiode 36, and the CPU 62 calculates the phase difference between the phase of the first reference signal and the phase of the second reference signal as a correction value. Thereafter, actual distance measurement is executed.

実際の測距で第1測距信号のみを生成するときには、シャッタ28と光路切替器32の切替動作により、図3(b)に示すようにシャッタ28で第1参照光100の伝送を遮断し、反射光をフォトダイオード34で受光し、フォトダイオード34の光電変換によって第1測距信号を生成し、CPU62において基準信号の位相と第1測距信号の位相の位相差を求め、この位相差を基にターゲットまでの距離を求める。このとき第1参照光100の位相と第2参照光104の位相の位相差を補正値として既に求めているため、この参照信号間の位相差を距離値から減算する補正を行うことで、受光系と送光系における誤差を消去することができる。このため、実際の測距時に、第1測距信号のみを生成するだけでターゲットまでの距離を高精度に求めることができ、測定時間をより短縮することができる。   When only the first distance measurement signal is generated by actual distance measurement, the transmission of the first reference light 100 is blocked by the shutter 28 as shown in FIG. The reflected light is received by the photodiode 34, a first distance measurement signal is generated by photoelectric conversion of the photodiode 34, and the CPU 62 obtains the phase difference between the phase of the reference signal and the phase of the first distance measurement signal. Find the distance to the target based on At this time, since the phase difference between the phase of the first reference light 100 and the phase of the second reference light 104 has already been obtained as a correction value, the correction is performed by subtracting the phase difference between the reference signals from the distance value. Errors in the system and the light transmission system can be eliminated. For this reason, the distance to the target can be obtained with high accuracy by generating only the first distance measurement signal during actual distance measurement, and the measurement time can be further shortened.

一方、第2測距信号のみを生成するときには、シャッタ28と光路切替器32の切替動作により、図3(c)に示すように、シャッタ28で第2参照光104の伝送を遮断し、反射光をフォトダイオード36で受光し、フォトダイオード36の光電変換によって第2測距信号を生成し、CPU62において基準信号と第2測距信号の位相の位相差を求める。このときも、第1参照光100の位相と第2参照光104の位相の位相差を補正値として既に求めているため、この参照信号間の位相差を距離値から減算する補正を行うことで、受光系と送光系における誤差を消去することができる。このため、実際の測距時に、第2測距信号のみの生成するだけでターゲットまでの距離を高精度に求めることができ、測定時間をより短縮することができる。   On the other hand, when only the second ranging signal is generated, the transmission of the second reference light 104 is blocked by the shutter 28 by the switching operation of the shutter 28 and the optical path switch 32, as shown in FIG. Light is received by the photodiode 36, a second distance measurement signal is generated by photoelectric conversion of the photodiode 36, and the CPU 62 obtains a phase difference between the phases of the reference signal and the second distance signal. Also at this time, since the phase difference between the phase of the first reference light 100 and the phase of the second reference light 104 has already been obtained as a correction value, correction by subtracting the phase difference between the reference signals from the distance value is performed. The error in the light receiving system and the light transmitting system can be eliminated. For this reason, the distance to the target can be obtained with high accuracy by generating only the second distance measurement signal during actual distance measurement, and the measurement time can be further shortened.

本発明の一実施例を示す光波距離計のブロック構成図である。It is a block block diagram of the light wave distance meter which shows one Example of this invention. (a)は、測定モード1における信号の生成方法を説明するための図、(b)は測定モード2における信号の生成方法を説明するための図である。(A) is a figure for demonstrating the production | generation method of the signal in the measurement mode 1, (b) is a figure for demonstrating the production | generation method of the signal in the measurement mode 2. FIG. (a)、(b)、(c)は、測定モード3における信号の生成方法を説明するための図である。(A), (b), (c) is a figure for demonstrating the production | generation method of the signal in the measurement mode 3. FIG.

符号の説明Explanation of symbols

12 光波距離計
14 信号発生回路
16 レーザダイオード駆動回路
18 レーザダイオード
22、24 ビームスプリッタ
26 送光レンズ
28 シャッタ
30 対物レンズ
34 光路切替器
34、36 フォトダイオード
50、52 ミキサー
58、60 A/D変換器
62 CPU
DESCRIPTION OF SYMBOLS 12 Optical wave distance meter 14 Signal generation circuit 16 Laser diode drive circuit 18 Laser diode 22, 24 Beam splitter 26 Light transmission lens 28 Shutter 30 Objective lens 34 Optical path switch 34, 36 Photodiode 50, 52 Mixer 58, 60 A / D conversion 62 CPU

Claims (3)

基準信号で変調された光を発光する発光手段と、前記発光手段から光を導入して測距光として測定光路に送光する第1の送光手段と、前記発光手段から光を導入し、前記導入した光を第1参照光または第2参照光に振り分け、前記第1参照光を第1参照光路に送光し、前記第2参照光を第2参照光路に送光する第2の送光手段と、前記第1参照光路または第2参照光路のいずれか一方を遮断する参照光路遮断手段と、前記第1の送光手段による測距光の送光に伴って前記測定光路で反射した反射光を受光したときに、前記第1参照光路が遮断されているときには前記受光した反射光を第1受光路に導き、前記第2参照光路が遮断されているときには前記受光した反射光を第2受光路に導く受光手段と、前記第1受光路から反射光を受光したときに光電変換を行って第1測距信号を生成し、前記第1参照光路から前記第1参照光を受光したときに光電変換を行って第1参照信号を生成する第1の光電変換手段と、前記第2受光路から反射光を受光したときに光電変換を行って第2測距信号を生成し、前記第2参照光路から前記第2参照光を受光したときに光電変換を行って第2参照信号を生成する第2の光電変換手段と、前記基準信号に対する前記第1測距信号および前記第2参照信号の位相差または前記基準信号に対する前記第2測距信号および前記第1参照信号の位相差を演算し、前記いずれかの演算結果を基に前記測定光路上のターゲットまでの距離を演算する演算手段とを備えてなる光波距離計。 A light emitting means for emitting light modulated by a reference signal, a first light sending means for introducing light from the light emitting means and sending it to the measuring optical path as ranging light, and introducing light from the light emitting means, The introduced light is distributed to the first reference light or the second reference light, the first reference light is transmitted to the first reference optical path, and the second reference light is transmitted to the second reference optical path. Reflected by the measurement optical path as the distance measuring light is transmitted by the first optical transmission means, the reference optical path blocking means for blocking either the first reference optical path or the second reference optical path, and the first light transmission means When the reflected light is received, the received reflected light is guided to the first light receiving path when the first reference light path is blocked, and the received reflected light is guided to the first light receiving path when the second reference light path is blocked. A light receiving means for guiding the light to the two light receiving paths, and reflected light from the first light receiving path; First photoelectric conversion means for generating a first reference signal by performing photoelectric conversion to generate a first ranging signal and receiving the first reference light from the first reference light path; When the reflected light is received from the second light receiving path, photoelectric conversion is performed to generate a second distance measurement signal, and when the second reference light is received from the second reference light path, photoelectric conversion is performed. A second photoelectric conversion means for generating two reference signals; a phase difference between the first ranging signal and the second reference signal with respect to the reference signal; or the second ranging signal and the first reference signal with respect to the reference signal And a calculation means for calculating a distance to the target on the measurement optical path based on any one of the calculation results. 基準信号で変調された光を発光する発光手段と、前記発光手段から光を導入して測距光として測定光路に送光する第1の送光手段と、前記発光手段から光を導入し、前記導入した光を第1参照光または第2参照光に振り分け、前記第1参照光を第1参照光路に送光し、前記第2参照光を第2参照光路に送光する第2の送光手段と、前記第1参照光路または第2参照光路のいずれか一方を遮断する参照光路遮断手段と、前記第1の送光手段による測距光の送光に伴って前記測定光路で反射した反射光を受光したときに、前記第1参照光路が遮断されているときには前記受光した反射光を第1受光路に導き、前記第2参照光路が遮断されているときには前記受光した反射光を第2受光路に導く受光手段と、前記第1受光路から反射光を受光したときに光電変換を行って第1測距信号を生成し、前記第1参照光路から前記第1参照光を受光したときに光電変換を行って第1参照信号を生成する第1の光電変換手段と、前記第2受光路から反射光を受光したときに光電変換を行って第2測距信号を生成し、前記第2参照光路から前記第2参照光を受光したときに光電変換を行って第2参照信号を生成する第2の光電変換手段と、前記基準信号と前記第1測距信号の位相差および前記基準信号と前記第2参照信号の位相差を演算するとともに、前記基準信号と前記第2測距信号の位相差および前記基準信号と前記第1参照信号の位相差を演算し、前記各演算結果を基に前記測定光路上のターゲットまでの距離を演算する演算手段とを備えてなる光波距離計。 A light emitting means for emitting light modulated by a reference signal, a first light sending means for introducing light from the light emitting means and sending it to the measuring optical path as ranging light, and introducing light from the light emitting means, The introduced light is distributed to the first reference light or the second reference light, the first reference light is transmitted to the first reference optical path, and the second reference light is transmitted to the second reference optical path. Reflected by the measurement optical path as the distance measuring light is transmitted by the first optical transmission means, the reference optical path blocking means for blocking either the first reference optical path or the second reference optical path, and the first light transmission means When the reflected light is received, the received reflected light is guided to the first light receiving path when the first reference light path is blocked, and the received reflected light is guided to the first light receiving path when the second reference light path is blocked. A light receiving means for guiding the light to the two light receiving paths, and reflected light from the first light receiving path; First photoelectric conversion means for generating a first reference signal by performing photoelectric conversion to generate a first ranging signal and receiving the first reference light from the first reference light path; When the reflected light is received from the second light receiving path, photoelectric conversion is performed to generate a second distance measurement signal, and when the second reference light is received from the second reference light path, photoelectric conversion is performed. A second photoelectric conversion means for generating two reference signals; a phase difference between the reference signal and the first ranging signal; and a phase difference between the reference signal and the second reference signal; Calculating means for calculating a phase difference of a second ranging signal and a phase difference between the reference signal and the first reference signal, and calculating a distance to the target on the measurement optical path based on the calculation results; Lightwave distance meter. 基準信号で変調された光を発光する発光手段と、前記発光手段から光を導入して測距光として測定光路に送光する第1の送光手段と、前記発光手段から光を導入し、前記導入した光を第1参照光または第2参照光に振り分け、前記第1参照光を第1参照光路に送光し、前記第2参照光を第2参照光路に送光する第2の送光手段と、前記第1参照光路と前記第2参照光路を開放し、その後、前記第1参照光路または前記第2参照光路を遮断する参照光路制御手段と、前記第1の送光手段による測距光の送光に伴って前記測定光路で反射した反射光を受光したときに、前記第1参照光路と前記第2参照光路が開放しているときには前記受光した反射光を第1受光路と第2受光路との間に導き、前記第1参照光路が遮断されているときには前記受光した反射光を第1受光路に導き、前記第2参照光路が遮断されているときには前記受光した反射光を第2受光路に導く受光手段と、前記第1受光路から反射光を受光したときに光電変換を行って第1測距信号を生成し、前記第1参照光路から前記第1参照光を受光したときに光電変換を行って第1参照信号を生成する第1の光電変換手段と、前記第2受光路から反射光を受光したときに光電変換を行って第2測距信号を生成し、前記第2参照光路から前記第2参照光を受光したときに光電変換を行って第2参照信号を生成する第2の光電変換手段と、前記第1参照光路と前記第2参照光路が開放しているときに前記第1参照信号と前記第2参照信号の位相差を補正値として演算し、その後、前記基準信号に対する前記第1測距信号の位相差または前記基準信号に対する前記第2測距信号の位相差を演算し、前記いずれか一方の演算結果を基に前記測定光路上のターゲットまでの距離を演算し、この距離値を前記補正値で補正する演算手段とを備えてなる光波距離計。 A light emitting means for emitting light modulated by a reference signal, a first light sending means for introducing light from the light emitting means and sending it to the measuring optical path as ranging light, and introducing light from the light emitting means, The introduced light is distributed to the first reference light or the second reference light, the first reference light is transmitted to the first reference optical path, and the second reference light is transmitted to the second reference optical path. Measurement by means of optical means, reference optical path control means for opening the first reference optical path and the second reference optical path, and then blocking the first reference optical path or the second reference optical path, and the first light transmission means. When the reflected light reflected by the measurement light path is received as the distance light is transmitted, and the first reference light path and the second reference light path are open, the received reflected light is used as the first light receiving path. When the first reference light path is blocked, the light reception is conducted between the second light receiving path and the second light receiving path. When the reflected light is received from the first light receiving path and the light receiving means for guiding the reflected light received to the first light receiving path and guiding the received reflected light to the second light receiving path when the second reference light path is blocked First photoelectric conversion means for generating a first reference signal by performing photoelectric conversion to generate a first ranging signal and receiving the first reference light from the first reference light path; When the reflected light is received from the second light receiving path, photoelectric conversion is performed to generate a second distance measurement signal, and when the second reference light is received from the second reference light path, photoelectric conversion is performed. A second photoelectric conversion means for generating two reference signals; and a phase difference between the first reference signal and the second reference signal when the first reference optical path and the second reference optical path are open as a correction value And then the phase difference of the first ranging signal with respect to the reference signal. Calculates the phase difference of the second ranging signal with respect to the reference signal, calculates the distance to the target on the measurement optical path based on one of the calculation results, and corrects the distance value with the correction value And a light wave distance meter comprising:
JP2005320943A 2005-11-04 2005-11-04 Light wave distance meter Expired - Fee Related JP4707142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005320943A JP4707142B2 (en) 2005-11-04 2005-11-04 Light wave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320943A JP4707142B2 (en) 2005-11-04 2005-11-04 Light wave distance meter

Publications (2)

Publication Number Publication Date
JP2007127541A JP2007127541A (en) 2007-05-24
JP4707142B2 true JP4707142B2 (en) 2011-06-22

Family

ID=38150314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320943A Expired - Fee Related JP4707142B2 (en) 2005-11-04 2005-11-04 Light wave distance meter

Country Status (1)

Country Link
JP (1) JP4707142B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5683782B2 (en) * 2008-12-25 2015-03-11 株式会社トプコン Distance measuring device and distance measuring method
KR101538731B1 (en) * 2014-01-28 2015-07-23 한화탈레스 주식회사 Apparatus for protecting laser in target optical
KR101538733B1 (en) * 2014-04-14 2015-07-24 한화탈레스 주식회사 Apparatus for protecting laser with electronic control in target optical

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838880A (en) * 1981-08-31 1983-03-07 Tokyo Optical Co Ltd Light wave range finder
JPS61145476A (en) * 1984-12-19 1986-07-03 Toshiba Corp Optical range finder
JPS61218979A (en) * 1985-03-25 1986-09-29 Matsushita Electric Works Ltd Distance-limited type optical sensor
JPS61272677A (en) * 1985-05-29 1986-12-02 Toshiba Corp Measuring instrument for length of optical path
JPH0368889A (en) * 1989-08-08 1991-03-25 Omron Corp Distance sensor
JPH0921875A (en) * 1995-07-06 1997-01-21 Asahi Optical Co Ltd Lightwave distance measuring device

Also Published As

Publication number Publication date
JP2007127541A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
JP7558335B2 (en) LIDAR system based on complementary modulation of multiple lasers and coherent receivers for simultaneous range and velocity measurements
JP7419395B2 (en) LIDAR device with optical amplifier on return path
US7738083B2 (en) Distant measurement method and distant measurement system
CA3163597A1 (en) On-chip monitoring and calibration circuits for frequency modulated continous wave lidar
JP5135587B2 (en) Distance measuring system
WO2014203654A1 (en) Distance measurement device, shape measurement device, processing system, distance measurement method, shape measurement method, and processing method
CN116648641A (en) Polarization Separation in Remote Imaging Systems
JP4707142B2 (en) Light wave distance meter
JP2013108840A (en) Laser radar device
CN101482619B (en) Distance measuring method and distance measuring system
JP2008209188A (en) Polarization mode dispersion measuring device
CN111194415B (en) Method for providing a detection signal for an object to be detected
JP2007205949A (en) Distance detector
JPH0510879A (en) Gas detecting network
JP2006329797A (en) Light wave distance meter
JP4785116B2 (en) Light wave distance meter
CN113721221A (en) Frequency modulation continuous wave laser radar
CN113721225A (en) Frequency modulation continuous wave laser radar
JP2006138702A (en) Light wave distance meter
JP2005181039A (en) Laser distance-measuring device
JP2003106942A (en) Device for measuring polarized wave mode dispersion and distribution
JPS599526A (en) Temperature measuring device
JPH0921875A (en) Lightwave distance measuring device
JP2002323563A (en) Lightwave rangefinder
CN120215023A (en) Photon integrated chip and frequency modulation continuous wave laser radar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees